//===- AMDGPUUnifyDivergentExitNodes.cpp ----------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This is a variant of the UnifyDivergentExitNodes pass. Rather than ensuring // there is at most one ret and one unreachable instruction, it ensures there is // at most one divergent exiting block. // // StructurizeCFG can't deal with multi-exit regions formed by branches to // multiple return nodes. It is not desirable to structurize regions with // uniform branches, so unifying those to the same return block as divergent // branches inhibits use of scalar branching. It still can't deal with the case // where one branch goes to return, and one unreachable. Replace unreachable in // this case with a return. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Analysis/LegacyDivergenceAnalysis.h" #include "llvm/Analysis/PostDominators.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Type.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils.h" #include "llvm/Transforms/Utils/Local.h" using namespace llvm; #define DEBUG_TYPE "amdgpu-unify-divergent-exit-nodes" namespace { class AMDGPUUnifyDivergentExitNodes : public FunctionPass { public: static char ID; // Pass identification, replacement for typeid AMDGPUUnifyDivergentExitNodes() : FunctionPass(ID) { initializeAMDGPUUnifyDivergentExitNodesPass(*PassRegistry::getPassRegistry()); } // We can preserve non-critical-edgeness when we unify function exit nodes void getAnalysisUsage(AnalysisUsage &AU) const override; bool runOnFunction(Function &F) override; }; } // end anonymous namespace char AMDGPUUnifyDivergentExitNodes::ID = 0; char &llvm::AMDGPUUnifyDivergentExitNodesID = AMDGPUUnifyDivergentExitNodes::ID; INITIALIZE_PASS_BEGIN(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE, "Unify divergent function exit nodes", false, false) INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) INITIALIZE_PASS_END(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE, "Unify divergent function exit nodes", false, false) void AMDGPUUnifyDivergentExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{ // TODO: Preserve dominator tree. AU.addRequired(); AU.addRequired(); // No divergent values are changed, only blocks and branch edges. AU.addPreserved(); // We preserve the non-critical-edgeness property AU.addPreservedID(BreakCriticalEdgesID); // This is a cluster of orthogonal Transforms AU.addPreservedID(LowerSwitchID); FunctionPass::getAnalysisUsage(AU); AU.addRequired(); } /// \returns true if \p BB is reachable through only uniform branches. /// XXX - Is there a more efficient way to find this? static bool isUniformlyReached(const LegacyDivergenceAnalysis &DA, BasicBlock &BB) { SmallVector Stack; SmallPtrSet Visited; for (BasicBlock *Pred : predecessors(&BB)) Stack.push_back(Pred); while (!Stack.empty()) { BasicBlock *Top = Stack.pop_back_val(); if (!DA.isUniform(Top->getTerminator())) return false; for (BasicBlock *Pred : predecessors(Top)) { if (Visited.insert(Pred).second) Stack.push_back(Pred); } } return true; } static void removeDoneExport(Function &F) { ConstantInt *BoolFalse = ConstantInt::getFalse(F.getContext()); for (BasicBlock &BB : F) { for (Instruction &I : BB) { if (IntrinsicInst *Intrin = llvm::dyn_cast(&I)) { if (Intrin->getIntrinsicID() == Intrinsic::amdgcn_exp) { Intrin->setArgOperand(6, BoolFalse); // done } else if (Intrin->getIntrinsicID() == Intrinsic::amdgcn_exp_compr) { Intrin->setArgOperand(4, BoolFalse); // done } } } } } static BasicBlock *unifyReturnBlockSet(Function &F, ArrayRef ReturningBlocks, bool InsertExport, const TargetTransformInfo &TTI, StringRef Name) { // Otherwise, we need to insert a new basic block into the function, add a PHI // nodes (if the function returns values), and convert all of the return // instructions into unconditional branches. BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(), Name, &F); IRBuilder<> B(NewRetBlock); if (InsertExport) { // Ensure that there's only one "done" export in the shader by removing the // "done" bit set on the original final export. More than one "done" export // can lead to undefined behavior. removeDoneExport(F); Value *Undef = UndefValue::get(B.getFloatTy()); B.CreateIntrinsic(Intrinsic::amdgcn_exp, { B.getFloatTy() }, { B.getInt32(9), // target, SQ_EXP_NULL B.getInt32(0), // enabled channels Undef, Undef, Undef, Undef, // values B.getTrue(), // done B.getTrue(), // valid mask }); } PHINode *PN = nullptr; if (F.getReturnType()->isVoidTy()) { B.CreateRetVoid(); } else { // If the function doesn't return void... add a PHI node to the block... PN = B.CreatePHI(F.getReturnType(), ReturningBlocks.size(), "UnifiedRetVal"); assert(!InsertExport); B.CreateRet(PN); } // Loop over all of the blocks, replacing the return instruction with an // unconditional branch. for (BasicBlock *BB : ReturningBlocks) { // Add an incoming element to the PHI node for every return instruction that // is merging into this new block... if (PN) PN->addIncoming(BB->getTerminator()->getOperand(0), BB); // Remove and delete the return inst. BB->getTerminator()->eraseFromParent(); BranchInst::Create(NewRetBlock, BB); } for (BasicBlock *BB : ReturningBlocks) { // Cleanup possible branch to unconditional branch to the return. simplifyCFG(BB, TTI, {2}); } return NewRetBlock; } bool AMDGPUUnifyDivergentExitNodes::runOnFunction(Function &F) { auto &PDT = getAnalysis().getPostDomTree(); // If there's only one exit, we don't need to do anything, unless this is a // pixel shader and that exit is an infinite loop, since we still have to // insert an export in that case. if (PDT.root_size() <= 1 && F.getCallingConv() != CallingConv::AMDGPU_PS) return false; LegacyDivergenceAnalysis &DA = getAnalysis(); // Loop over all of the blocks in a function, tracking all of the blocks that // return. SmallVector ReturningBlocks; SmallVector UniformlyReachedRetBlocks; SmallVector UnreachableBlocks; // Dummy return block for infinite loop. BasicBlock *DummyReturnBB = nullptr; bool InsertExport = false; bool Changed = false; for (BasicBlock *BB : PDT.roots()) { if (isa(BB->getTerminator())) { if (!isUniformlyReached(DA, *BB)) ReturningBlocks.push_back(BB); else UniformlyReachedRetBlocks.push_back(BB); } else if (isa(BB->getTerminator())) { if (!isUniformlyReached(DA, *BB)) UnreachableBlocks.push_back(BB); } else if (BranchInst *BI = dyn_cast(BB->getTerminator())) { ConstantInt *BoolTrue = ConstantInt::getTrue(F.getContext()); if (DummyReturnBB == nullptr) { DummyReturnBB = BasicBlock::Create(F.getContext(), "DummyReturnBlock", &F); Type *RetTy = F.getReturnType(); Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy); // For pixel shaders, the producer guarantees that an export is // executed before each return instruction. However, if there is an // infinite loop and we insert a return ourselves, we need to uphold // that guarantee by inserting a null export. This can happen e.g. in // an infinite loop with kill instructions, which is supposed to // terminate. However, we don't need to do this if there is a non-void // return value, since then there is an epilog afterwards which will // still export. // // Note: In the case where only some threads enter the infinite loop, // this can result in the null export happening redundantly after the // original exports. However, The last "real" export happens after all // the threads that didn't enter an infinite loop converged, which // means that the only extra threads to execute the null export are // threads that entered the infinite loop, and they only could've // exited through being killed which sets their exec bit to 0. // Therefore, unless there's an actual infinite loop, which can have // invalid results, or there's a kill after the last export, which we // assume the frontend won't do, this export will have the same exec // mask as the last "real" export, and therefore the valid mask will be // overwritten with the same value and will still be correct. Also, // even though this forces an extra unnecessary export wait, we assume // that this happens rare enough in practice to that we don't have to // worry about performance. if (F.getCallingConv() == CallingConv::AMDGPU_PS && RetTy->isVoidTy()) { InsertExport = true; } ReturnInst::Create(F.getContext(), RetVal, DummyReturnBB); ReturningBlocks.push_back(DummyReturnBB); } if (BI->isUnconditional()) { BasicBlock *LoopHeaderBB = BI->getSuccessor(0); BI->eraseFromParent(); // Delete the unconditional branch. // Add a new conditional branch with a dummy edge to the return block. BranchInst::Create(LoopHeaderBB, DummyReturnBB, BoolTrue, BB); } else { // Conditional branch. // Create a new transition block to hold the conditional branch. BasicBlock *TransitionBB = BB->splitBasicBlock(BI, "TransitionBlock"); // Create a branch that will always branch to the transition block and // references DummyReturnBB. BB->getTerminator()->eraseFromParent(); BranchInst::Create(TransitionBB, DummyReturnBB, BoolTrue, BB); } Changed = true; } } if (!UnreachableBlocks.empty()) { BasicBlock *UnreachableBlock = nullptr; if (UnreachableBlocks.size() == 1) { UnreachableBlock = UnreachableBlocks.front(); } else { UnreachableBlock = BasicBlock::Create(F.getContext(), "UnifiedUnreachableBlock", &F); new UnreachableInst(F.getContext(), UnreachableBlock); for (BasicBlock *BB : UnreachableBlocks) { // Remove and delete the unreachable inst. BB->getTerminator()->eraseFromParent(); BranchInst::Create(UnreachableBlock, BB); } Changed = true; } if (!ReturningBlocks.empty()) { // Don't create a new unreachable inst if we have a return. The // structurizer/annotator can't handle the multiple exits Type *RetTy = F.getReturnType(); Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy); // Remove and delete the unreachable inst. UnreachableBlock->getTerminator()->eraseFromParent(); Function *UnreachableIntrin = Intrinsic::getDeclaration(F.getParent(), Intrinsic::amdgcn_unreachable); // Insert a call to an intrinsic tracking that this is an unreachable // point, in case we want to kill the active lanes or something later. CallInst::Create(UnreachableIntrin, {}, "", UnreachableBlock); // Don't create a scalar trap. We would only want to trap if this code was // really reached, but a scalar trap would happen even if no lanes // actually reached here. ReturnInst::Create(F.getContext(), RetVal, UnreachableBlock); ReturningBlocks.push_back(UnreachableBlock); Changed = true; } } // Now handle return blocks. if (ReturningBlocks.empty()) return Changed; // No blocks return if (ReturningBlocks.size() == 1 && !InsertExport) return Changed; // Already has a single return block const TargetTransformInfo &TTI = getAnalysis().getTTI(F); // Unify returning blocks. If we are going to insert the export it is also // necessary to include blocks that are uniformly reached, because in addition // to inserting the export the "done" bits on existing exports will be cleared // and we do not want to end up with the normal export in a non-unified, // uniformly reached block with the "done" bit cleared. auto BlocksToUnify = std::move(ReturningBlocks); if (InsertExport) { BlocksToUnify.insert(BlocksToUnify.end(), UniformlyReachedRetBlocks.begin(), UniformlyReachedRetBlocks.end()); } unifyReturnBlockSet(F, BlocksToUnify, InsertExport, TTI, "UnifiedReturnBlock"); return true; }