//===- SIMachineFunctionInfo.cpp - SI Machine Function Info ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "SIMachineFunctionInfo.h" #include "AMDGPUTargetMachine.h" #include "AMDGPUSubtarget.h" #include "SIRegisterInfo.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MIRParser/MIParser.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Function.h" #include #include #include #define MAX_LANES 64 using namespace llvm; const GCNTargetMachine &getTM(const GCNSubtarget *STI) { const SITargetLowering *TLI = STI->getTargetLowering(); return static_cast(TLI->getTargetMachine()); } SIMachineFunctionInfo::SIMachineFunctionInfo(const Function &F, const GCNSubtarget *STI) : AMDGPUMachineFunction(F, *STI), Mode(F), GWSResourcePSV(getTM(STI)), PrivateSegmentBuffer(false), DispatchPtr(false), QueuePtr(false), KernargSegmentPtr(false), DispatchID(false), FlatScratchInit(false), WorkGroupIDX(false), WorkGroupIDY(false), WorkGroupIDZ(false), WorkGroupInfo(false), LDSKernelId(false), PrivateSegmentWaveByteOffset(false), WorkItemIDX(false), WorkItemIDY(false), WorkItemIDZ(false), ImplicitBufferPtr(false), ImplicitArgPtr(false), GITPtrHigh(0xffffffff), HighBitsOf32BitAddress(0) { const GCNSubtarget &ST = *static_cast(STI); FlatWorkGroupSizes = ST.getFlatWorkGroupSizes(F); WavesPerEU = ST.getWavesPerEU(F); Occupancy = ST.computeOccupancy(F, getLDSSize()); CallingConv::ID CC = F.getCallingConv(); VRegFlags.reserve(1024); // FIXME: Should have analysis or something rather than attribute to detect // calls. const bool HasCalls = F.hasFnAttribute("amdgpu-calls"); const bool IsKernel = CC == CallingConv::AMDGPU_KERNEL || CC == CallingConv::SPIR_KERNEL; if (IsKernel) { if (!F.arg_empty() || ST.getImplicitArgNumBytes(F) != 0) KernargSegmentPtr = true; WorkGroupIDX = true; WorkItemIDX = true; } else if (CC == CallingConv::AMDGPU_PS) { PSInputAddr = AMDGPU::getInitialPSInputAddr(F); } MayNeedAGPRs = ST.hasMAIInsts(); if (!isEntryFunction()) { if (CC != CallingConv::AMDGPU_Gfx) ArgInfo = AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; // TODO: Pick a high register, and shift down, similar to a kernel. FrameOffsetReg = AMDGPU::SGPR33; StackPtrOffsetReg = AMDGPU::SGPR32; if (!ST.enableFlatScratch()) { // Non-entry functions have no special inputs for now, other registers // required for scratch access. ScratchRSrcReg = AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3; ArgInfo.PrivateSegmentBuffer = ArgDescriptor::createRegister(ScratchRSrcReg); } if (!F.hasFnAttribute("amdgpu-no-implicitarg-ptr")) ImplicitArgPtr = true; } else { ImplicitArgPtr = false; MaxKernArgAlign = std::max(ST.getAlignmentForImplicitArgPtr(), MaxKernArgAlign); if (ST.hasGFX90AInsts() && ST.getMaxNumVGPRs(F) <= AMDGPU::VGPR_32RegClass.getNumRegs() && !mayUseAGPRs(F)) MayNeedAGPRs = false; // We will select all MAI with VGPR operands. } bool isAmdHsaOrMesa = ST.isAmdHsaOrMesa(F); if (isAmdHsaOrMesa && !ST.enableFlatScratch()) PrivateSegmentBuffer = true; else if (ST.isMesaGfxShader(F)) ImplicitBufferPtr = true; if (!AMDGPU::isGraphics(CC) || (CC == CallingConv::AMDGPU_CS && ST.hasArchitectedSGPRs())) { if (IsKernel || !F.hasFnAttribute("amdgpu-no-workgroup-id-x")) WorkGroupIDX = true; if (!F.hasFnAttribute("amdgpu-no-workgroup-id-y")) WorkGroupIDY = true; if (!F.hasFnAttribute("amdgpu-no-workgroup-id-z")) WorkGroupIDZ = true; } if (!AMDGPU::isGraphics(CC)) { if (IsKernel || !F.hasFnAttribute("amdgpu-no-workitem-id-x")) WorkItemIDX = true; if (!F.hasFnAttribute("amdgpu-no-workitem-id-y") && ST.getMaxWorkitemID(F, 1) != 0) WorkItemIDY = true; if (!F.hasFnAttribute("amdgpu-no-workitem-id-z") && ST.getMaxWorkitemID(F, 2) != 0) WorkItemIDZ = true; if (!F.hasFnAttribute("amdgpu-no-dispatch-ptr")) DispatchPtr = true; if (!F.hasFnAttribute("amdgpu-no-queue-ptr")) QueuePtr = true; if (!F.hasFnAttribute("amdgpu-no-dispatch-id")) DispatchID = true; if (!IsKernel && !F.hasFnAttribute("amdgpu-no-lds-kernel-id")) LDSKernelId = true; } // FIXME: This attribute is a hack, we just need an analysis on the function // to look for allocas. bool HasStackObjects = F.hasFnAttribute("amdgpu-stack-objects"); // TODO: This could be refined a lot. The attribute is a poor way of // detecting calls or stack objects that may require it before argument // lowering. if (ST.hasFlatAddressSpace() && isEntryFunction() && (isAmdHsaOrMesa || ST.enableFlatScratch()) && (HasCalls || HasStackObjects || ST.enableFlatScratch()) && !ST.flatScratchIsArchitected()) { FlatScratchInit = true; } if (isEntryFunction()) { // X, XY, and XYZ are the only supported combinations, so make sure Y is // enabled if Z is. if (WorkItemIDZ) WorkItemIDY = true; if (!ST.flatScratchIsArchitected()) { PrivateSegmentWaveByteOffset = true; // HS and GS always have the scratch wave offset in SGPR5 on GFX9. if (ST.getGeneration() >= AMDGPUSubtarget::GFX9 && (CC == CallingConv::AMDGPU_HS || CC == CallingConv::AMDGPU_GS)) ArgInfo.PrivateSegmentWaveByteOffset = ArgDescriptor::createRegister(AMDGPU::SGPR5); } } Attribute A = F.getFnAttribute("amdgpu-git-ptr-high"); StringRef S = A.getValueAsString(); if (!S.empty()) S.consumeInteger(0, GITPtrHigh); A = F.getFnAttribute("amdgpu-32bit-address-high-bits"); S = A.getValueAsString(); if (!S.empty()) S.consumeInteger(0, HighBitsOf32BitAddress); // On GFX908, in order to guarantee copying between AGPRs, we need a scratch // VGPR available at all times. For now, reserve highest available VGPR. After // RA, shift it to the lowest available unused VGPR if the one exist. if (ST.hasMAIInsts() && !ST.hasGFX90AInsts()) { VGPRForAGPRCopy = AMDGPU::VGPR_32RegClass.getRegister(ST.getMaxNumVGPRs(F) - 1); } } MachineFunctionInfo *SIMachineFunctionInfo::clone( BumpPtrAllocator &Allocator, MachineFunction &DestMF, const DenseMap &Src2DstMBB) const { return DestMF.cloneInfo(*this); } void SIMachineFunctionInfo::limitOccupancy(const MachineFunction &MF) { limitOccupancy(getMaxWavesPerEU()); const GCNSubtarget& ST = MF.getSubtarget(); limitOccupancy(ST.getOccupancyWithLocalMemSize(getLDSSize(), MF.getFunction())); } Register SIMachineFunctionInfo::addPrivateSegmentBuffer( const SIRegisterInfo &TRI) { ArgInfo.PrivateSegmentBuffer = ArgDescriptor::createRegister(TRI.getMatchingSuperReg( getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SGPR_128RegClass)); NumUserSGPRs += 4; return ArgInfo.PrivateSegmentBuffer.getRegister(); } Register SIMachineFunctionInfo::addDispatchPtr(const SIRegisterInfo &TRI) { ArgInfo.DispatchPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg( getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass)); NumUserSGPRs += 2; return ArgInfo.DispatchPtr.getRegister(); } Register SIMachineFunctionInfo::addQueuePtr(const SIRegisterInfo &TRI) { ArgInfo.QueuePtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg( getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass)); NumUserSGPRs += 2; return ArgInfo.QueuePtr.getRegister(); } Register SIMachineFunctionInfo::addKernargSegmentPtr(const SIRegisterInfo &TRI) { ArgInfo.KernargSegmentPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg( getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass)); NumUserSGPRs += 2; return ArgInfo.KernargSegmentPtr.getRegister(); } Register SIMachineFunctionInfo::addDispatchID(const SIRegisterInfo &TRI) { ArgInfo.DispatchID = ArgDescriptor::createRegister(TRI.getMatchingSuperReg( getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass)); NumUserSGPRs += 2; return ArgInfo.DispatchID.getRegister(); } Register SIMachineFunctionInfo::addFlatScratchInit(const SIRegisterInfo &TRI) { ArgInfo.FlatScratchInit = ArgDescriptor::createRegister(TRI.getMatchingSuperReg( getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass)); NumUserSGPRs += 2; return ArgInfo.FlatScratchInit.getRegister(); } Register SIMachineFunctionInfo::addImplicitBufferPtr(const SIRegisterInfo &TRI) { ArgInfo.ImplicitBufferPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg( getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass)); NumUserSGPRs += 2; return ArgInfo.ImplicitBufferPtr.getRegister(); } Register SIMachineFunctionInfo::addLDSKernelId() { ArgInfo.LDSKernelId = ArgDescriptor::createRegister(getNextUserSGPR()); NumUserSGPRs += 1; return ArgInfo.LDSKernelId.getRegister(); } void SIMachineFunctionInfo::allocateWWMSpill(MachineFunction &MF, Register VGPR, uint64_t Size, Align Alignment) { // Skip if it is an entry function or the register is already added. if (isEntryFunction() || WWMSpills.count(VGPR)) return; WWMSpills.insert(std::make_pair( VGPR, MF.getFrameInfo().CreateSpillStackObject(Size, Alignment))); } // Separate out the callee-saved and scratch registers. void SIMachineFunctionInfo::splitWWMSpillRegisters( MachineFunction &MF, SmallVectorImpl> &CalleeSavedRegs, SmallVectorImpl> &ScratchRegs) const { const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs(); for (auto &Reg : WWMSpills) { if (isCalleeSavedReg(CSRegs, Reg.first)) CalleeSavedRegs.push_back(Reg); else ScratchRegs.push_back(Reg); } } bool SIMachineFunctionInfo::isCalleeSavedReg(const MCPhysReg *CSRegs, MCPhysReg Reg) const { for (unsigned I = 0; CSRegs[I]; ++I) { if (CSRegs[I] == Reg) return true; } return false; } bool SIMachineFunctionInfo::allocateVirtualVGPRForSGPRSpills( MachineFunction &MF, int FI, unsigned LaneIndex) { MachineRegisterInfo &MRI = MF.getRegInfo(); Register LaneVGPR; if (!LaneIndex) { LaneVGPR = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); SpillVGPRs.push_back(LaneVGPR); } else { LaneVGPR = SpillVGPRs.back(); } SGPRSpillsToVirtualVGPRLanes[FI].push_back( SIRegisterInfo::SpilledReg(LaneVGPR, LaneIndex)); return true; } bool SIMachineFunctionInfo::allocatePhysicalVGPRForSGPRSpills( MachineFunction &MF, int FI, unsigned LaneIndex) { const GCNSubtarget &ST = MF.getSubtarget(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); Register LaneVGPR; if (!LaneIndex) { LaneVGPR = TRI->findUnusedRegister(MRI, &AMDGPU::VGPR_32RegClass, MF); if (LaneVGPR == AMDGPU::NoRegister) { // We have no VGPRs left for spilling SGPRs. Reset because we will not // partially spill the SGPR to VGPRs. SGPRSpillsToPhysicalVGPRLanes.erase(FI); return false; } allocateWWMSpill(MF, LaneVGPR); reserveWWMRegister(LaneVGPR); for (MachineBasicBlock &MBB : MF) { MBB.addLiveIn(LaneVGPR); MBB.sortUniqueLiveIns(); } } else { LaneVGPR = WWMReservedRegs.back(); } SGPRSpillsToPhysicalVGPRLanes[FI].push_back( SIRegisterInfo::SpilledReg(LaneVGPR, LaneIndex)); return true; } bool SIMachineFunctionInfo::allocateSGPRSpillToVGPRLane(MachineFunction &MF, int FI, bool IsPrologEpilog) { std::vector &SpillLanes = IsPrologEpilog ? SGPRSpillsToPhysicalVGPRLanes[FI] : SGPRSpillsToVirtualVGPRLanes[FI]; // This has already been allocated. if (!SpillLanes.empty()) return true; const GCNSubtarget &ST = MF.getSubtarget(); MachineFrameInfo &FrameInfo = MF.getFrameInfo(); unsigned WaveSize = ST.getWavefrontSize(); unsigned Size = FrameInfo.getObjectSize(FI); unsigned NumLanes = Size / 4; if (NumLanes > WaveSize) return false; assert(Size >= 4 && "invalid sgpr spill size"); assert(ST.getRegisterInfo()->spillSGPRToVGPR() && "not spilling SGPRs to VGPRs"); unsigned &NumSpillLanes = IsPrologEpilog ? NumPhysicalVGPRSpillLanes : NumVirtualVGPRSpillLanes; for (unsigned I = 0; I < NumLanes; ++I, ++NumSpillLanes) { unsigned LaneIndex = (NumSpillLanes % WaveSize); bool Allocated = IsPrologEpilog ? allocatePhysicalVGPRForSGPRSpills(MF, FI, LaneIndex) : allocateVirtualVGPRForSGPRSpills(MF, FI, LaneIndex); if (!Allocated) { NumSpillLanes -= I; return false; } } return true; } /// Reserve AGPRs or VGPRs to support spilling for FrameIndex \p FI. /// Either AGPR is spilled to VGPR to vice versa. /// Returns true if a \p FI can be eliminated completely. bool SIMachineFunctionInfo::allocateVGPRSpillToAGPR(MachineFunction &MF, int FI, bool isAGPRtoVGPR) { MachineRegisterInfo &MRI = MF.getRegInfo(); MachineFrameInfo &FrameInfo = MF.getFrameInfo(); const GCNSubtarget &ST = MF.getSubtarget(); assert(ST.hasMAIInsts() && FrameInfo.isSpillSlotObjectIndex(FI)); auto &Spill = VGPRToAGPRSpills[FI]; // This has already been allocated. if (!Spill.Lanes.empty()) return Spill.FullyAllocated; unsigned Size = FrameInfo.getObjectSize(FI); unsigned NumLanes = Size / 4; Spill.Lanes.resize(NumLanes, AMDGPU::NoRegister); const TargetRegisterClass &RC = isAGPRtoVGPR ? AMDGPU::VGPR_32RegClass : AMDGPU::AGPR_32RegClass; auto Regs = RC.getRegisters(); auto &SpillRegs = isAGPRtoVGPR ? SpillAGPR : SpillVGPR; const SIRegisterInfo *TRI = ST.getRegisterInfo(); Spill.FullyAllocated = true; // FIXME: Move allocation logic out of MachineFunctionInfo and initialize // once. BitVector OtherUsedRegs; OtherUsedRegs.resize(TRI->getNumRegs()); const uint32_t *CSRMask = TRI->getCallPreservedMask(MF, MF.getFunction().getCallingConv()); if (CSRMask) OtherUsedRegs.setBitsInMask(CSRMask); // TODO: Should include register tuples, but doesn't matter with current // usage. for (MCPhysReg Reg : SpillAGPR) OtherUsedRegs.set(Reg); for (MCPhysReg Reg : SpillVGPR) OtherUsedRegs.set(Reg); SmallVectorImpl::const_iterator NextSpillReg = Regs.begin(); for (int I = NumLanes - 1; I >= 0; --I) { NextSpillReg = std::find_if( NextSpillReg, Regs.end(), [&MRI, &OtherUsedRegs](MCPhysReg Reg) { return MRI.isAllocatable(Reg) && !MRI.isPhysRegUsed(Reg) && !OtherUsedRegs[Reg]; }); if (NextSpillReg == Regs.end()) { // Registers exhausted Spill.FullyAllocated = false; break; } OtherUsedRegs.set(*NextSpillReg); SpillRegs.push_back(*NextSpillReg); MRI.reserveReg(*NextSpillReg, TRI); Spill.Lanes[I] = *NextSpillReg++; } return Spill.FullyAllocated; } bool SIMachineFunctionInfo::removeDeadFrameIndices( MachineFrameInfo &MFI, bool ResetSGPRSpillStackIDs) { // Remove dead frame indices from function frame, however keep FP & BP since // spills for them haven't been inserted yet. And also make sure to remove the // frame indices from `SGPRSpillsToVirtualVGPRLanes` data structure, // otherwise, it could result in an unexpected side effect and bug, in case of // any re-mapping of freed frame indices by later pass(es) like "stack slot // coloring". for (auto &R : make_early_inc_range(SGPRSpillsToVirtualVGPRLanes)) { MFI.RemoveStackObject(R.first); SGPRSpillsToVirtualVGPRLanes.erase(R.first); } // Remove the dead frame indices of CSR SGPRs which are spilled to physical // VGPR lanes during SILowerSGPRSpills pass. if (!ResetSGPRSpillStackIDs) { for (auto &R : make_early_inc_range(SGPRSpillsToPhysicalVGPRLanes)) { MFI.RemoveStackObject(R.first); SGPRSpillsToPhysicalVGPRLanes.erase(R.first); } } bool HaveSGPRToMemory = false; if (ResetSGPRSpillStackIDs) { // All other SGPRs must be allocated on the default stack, so reset the // stack ID. for (int I = MFI.getObjectIndexBegin(), E = MFI.getObjectIndexEnd(); I != E; ++I) { if (!checkIndexInPrologEpilogSGPRSpills(I)) { if (MFI.getStackID(I) == TargetStackID::SGPRSpill) { MFI.setStackID(I, TargetStackID::Default); HaveSGPRToMemory = true; } } } } for (auto &R : VGPRToAGPRSpills) { if (R.second.IsDead) MFI.RemoveStackObject(R.first); } return HaveSGPRToMemory; } int SIMachineFunctionInfo::getScavengeFI(MachineFrameInfo &MFI, const SIRegisterInfo &TRI) { if (ScavengeFI) return *ScavengeFI; if (isEntryFunction()) { ScavengeFI = MFI.CreateFixedObject( TRI.getSpillSize(AMDGPU::SGPR_32RegClass), 0, false); } else { ScavengeFI = MFI.CreateStackObject( TRI.getSpillSize(AMDGPU::SGPR_32RegClass), TRI.getSpillAlign(AMDGPU::SGPR_32RegClass), false); } return *ScavengeFI; } MCPhysReg SIMachineFunctionInfo::getNextUserSGPR() const { assert(NumSystemSGPRs == 0 && "System SGPRs must be added after user SGPRs"); return AMDGPU::SGPR0 + NumUserSGPRs; } MCPhysReg SIMachineFunctionInfo::getNextSystemSGPR() const { return AMDGPU::SGPR0 + NumUserSGPRs + NumSystemSGPRs; } void SIMachineFunctionInfo::MRI_NoteNewVirtualRegister(Register Reg) { VRegFlags.grow(Reg); } void SIMachineFunctionInfo::MRI_NoteCloneVirtualRegister(Register NewReg, Register SrcReg) { VRegFlags.grow(NewReg); VRegFlags[NewReg] = VRegFlags[SrcReg]; } Register SIMachineFunctionInfo::getGITPtrLoReg(const MachineFunction &MF) const { const GCNSubtarget &ST = MF.getSubtarget(); if (!ST.isAmdPalOS()) return Register(); Register GitPtrLo = AMDGPU::SGPR0; // Low GIT address passed in if (ST.hasMergedShaders()) { switch (MF.getFunction().getCallingConv()) { case CallingConv::AMDGPU_HS: case CallingConv::AMDGPU_GS: // Low GIT address is passed in s8 rather than s0 for an LS+HS or // ES+GS merged shader on gfx9+. GitPtrLo = AMDGPU::SGPR8; return GitPtrLo; default: return GitPtrLo; } } return GitPtrLo; } static yaml::StringValue regToString(Register Reg, const TargetRegisterInfo &TRI) { yaml::StringValue Dest; { raw_string_ostream OS(Dest.Value); OS << printReg(Reg, &TRI); } return Dest; } static std::optional convertArgumentInfo(const AMDGPUFunctionArgInfo &ArgInfo, const TargetRegisterInfo &TRI) { yaml::SIArgumentInfo AI; auto convertArg = [&](std::optional &A, const ArgDescriptor &Arg) { if (!Arg) return false; // Create a register or stack argument. yaml::SIArgument SA = yaml::SIArgument::createArgument(Arg.isRegister()); if (Arg.isRegister()) { raw_string_ostream OS(SA.RegisterName.Value); OS << printReg(Arg.getRegister(), &TRI); } else SA.StackOffset = Arg.getStackOffset(); // Check and update the optional mask. if (Arg.isMasked()) SA.Mask = Arg.getMask(); A = SA; return true; }; bool Any = false; Any |= convertArg(AI.PrivateSegmentBuffer, ArgInfo.PrivateSegmentBuffer); Any |= convertArg(AI.DispatchPtr, ArgInfo.DispatchPtr); Any |= convertArg(AI.QueuePtr, ArgInfo.QueuePtr); Any |= convertArg(AI.KernargSegmentPtr, ArgInfo.KernargSegmentPtr); Any |= convertArg(AI.DispatchID, ArgInfo.DispatchID); Any |= convertArg(AI.FlatScratchInit, ArgInfo.FlatScratchInit); Any |= convertArg(AI.LDSKernelId, ArgInfo.LDSKernelId); Any |= convertArg(AI.PrivateSegmentSize, ArgInfo.PrivateSegmentSize); Any |= convertArg(AI.WorkGroupIDX, ArgInfo.WorkGroupIDX); Any |= convertArg(AI.WorkGroupIDY, ArgInfo.WorkGroupIDY); Any |= convertArg(AI.WorkGroupIDZ, ArgInfo.WorkGroupIDZ); Any |= convertArg(AI.WorkGroupInfo, ArgInfo.WorkGroupInfo); Any |= convertArg(AI.PrivateSegmentWaveByteOffset, ArgInfo.PrivateSegmentWaveByteOffset); Any |= convertArg(AI.ImplicitArgPtr, ArgInfo.ImplicitArgPtr); Any |= convertArg(AI.ImplicitBufferPtr, ArgInfo.ImplicitBufferPtr); Any |= convertArg(AI.WorkItemIDX, ArgInfo.WorkItemIDX); Any |= convertArg(AI.WorkItemIDY, ArgInfo.WorkItemIDY); Any |= convertArg(AI.WorkItemIDZ, ArgInfo.WorkItemIDZ); if (Any) return AI; return std::nullopt; } yaml::SIMachineFunctionInfo::SIMachineFunctionInfo( const llvm::SIMachineFunctionInfo &MFI, const TargetRegisterInfo &TRI, const llvm::MachineFunction &MF) : ExplicitKernArgSize(MFI.getExplicitKernArgSize()), MaxKernArgAlign(MFI.getMaxKernArgAlign()), LDSSize(MFI.getLDSSize()), GDSSize(MFI.getGDSSize()), DynLDSAlign(MFI.getDynLDSAlign()), IsEntryFunction(MFI.isEntryFunction()), NoSignedZerosFPMath(MFI.hasNoSignedZerosFPMath()), MemoryBound(MFI.isMemoryBound()), WaveLimiter(MFI.needsWaveLimiter()), HasSpilledSGPRs(MFI.hasSpilledSGPRs()), HasSpilledVGPRs(MFI.hasSpilledVGPRs()), HighBitsOf32BitAddress(MFI.get32BitAddressHighBits()), Occupancy(MFI.getOccupancy()), ScratchRSrcReg(regToString(MFI.getScratchRSrcReg(), TRI)), FrameOffsetReg(regToString(MFI.getFrameOffsetReg(), TRI)), StackPtrOffsetReg(regToString(MFI.getStackPtrOffsetReg(), TRI)), BytesInStackArgArea(MFI.getBytesInStackArgArea()), ReturnsVoid(MFI.returnsVoid()), ArgInfo(convertArgumentInfo(MFI.getArgInfo(), TRI)), PSInputAddr(MFI.getPSInputAddr()), PSInputEnable(MFI.getPSInputEnable()), Mode(MFI.getMode()) { for (Register Reg : MFI.getWWMReservedRegs()) WWMReservedRegs.push_back(regToString(Reg, TRI)); if (MFI.getLongBranchReservedReg()) LongBranchReservedReg = regToString(MFI.getLongBranchReservedReg(), TRI); if (MFI.getVGPRForAGPRCopy()) VGPRForAGPRCopy = regToString(MFI.getVGPRForAGPRCopy(), TRI); if (MFI.getSGPRForEXECCopy()) SGPRForEXECCopy = regToString(MFI.getSGPRForEXECCopy(), TRI); auto SFI = MFI.getOptionalScavengeFI(); if (SFI) ScavengeFI = yaml::FrameIndex(*SFI, MF.getFrameInfo()); } void yaml::SIMachineFunctionInfo::mappingImpl(yaml::IO &YamlIO) { MappingTraits::mapping(YamlIO, *this); } bool SIMachineFunctionInfo::initializeBaseYamlFields( const yaml::SIMachineFunctionInfo &YamlMFI, const MachineFunction &MF, PerFunctionMIParsingState &PFS, SMDiagnostic &Error, SMRange &SourceRange) { ExplicitKernArgSize = YamlMFI.ExplicitKernArgSize; MaxKernArgAlign = YamlMFI.MaxKernArgAlign; LDSSize = YamlMFI.LDSSize; GDSSize = YamlMFI.GDSSize; DynLDSAlign = YamlMFI.DynLDSAlign; PSInputAddr = YamlMFI.PSInputAddr; PSInputEnable = YamlMFI.PSInputEnable; HighBitsOf32BitAddress = YamlMFI.HighBitsOf32BitAddress; Occupancy = YamlMFI.Occupancy; IsEntryFunction = YamlMFI.IsEntryFunction; NoSignedZerosFPMath = YamlMFI.NoSignedZerosFPMath; MemoryBound = YamlMFI.MemoryBound; WaveLimiter = YamlMFI.WaveLimiter; HasSpilledSGPRs = YamlMFI.HasSpilledSGPRs; HasSpilledVGPRs = YamlMFI.HasSpilledVGPRs; BytesInStackArgArea = YamlMFI.BytesInStackArgArea; ReturnsVoid = YamlMFI.ReturnsVoid; if (YamlMFI.ScavengeFI) { auto FIOrErr = YamlMFI.ScavengeFI->getFI(MF.getFrameInfo()); if (!FIOrErr) { // Create a diagnostic for a the frame index. const MemoryBuffer &Buffer = *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1, SourceMgr::DK_Error, toString(FIOrErr.takeError()), "", std::nullopt, std::nullopt); SourceRange = YamlMFI.ScavengeFI->SourceRange; return true; } ScavengeFI = *FIOrErr; } else { ScavengeFI = std::nullopt; } return false; } bool SIMachineFunctionInfo::mayUseAGPRs(const Function &F) const { for (const BasicBlock &BB : F) { for (const Instruction &I : BB) { const auto *CB = dyn_cast(&I); if (!CB) continue; if (CB->isInlineAsm()) { const InlineAsm *IA = dyn_cast(CB->getCalledOperand()); for (const auto &CI : IA->ParseConstraints()) { for (StringRef Code : CI.Codes) { Code.consume_front("{"); if (Code.startswith("a")) return true; } } continue; } const Function *Callee = dyn_cast(CB->getCalledOperand()->stripPointerCasts()); if (!Callee) return true; if (Callee->getIntrinsicID() == Intrinsic::not_intrinsic) return true; } } return false; } bool SIMachineFunctionInfo::usesAGPRs(const MachineFunction &MF) const { if (UsesAGPRs) return *UsesAGPRs; if (!mayNeedAGPRs()) { UsesAGPRs = false; return false; } if (!AMDGPU::isEntryFunctionCC(MF.getFunction().getCallingConv()) || MF.getFrameInfo().hasCalls()) { UsesAGPRs = true; return true; } const MachineRegisterInfo &MRI = MF.getRegInfo(); for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { const Register Reg = Register::index2VirtReg(I); const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg); if (RC && SIRegisterInfo::isAGPRClass(RC)) { UsesAGPRs = true; return true; } else if (!RC && !MRI.use_empty(Reg) && MRI.getType(Reg).isValid()) { // Defer caching UsesAGPRs, function might not yet been regbank selected. return true; } } for (MCRegister Reg : AMDGPU::AGPR_32RegClass) { if (MRI.isPhysRegUsed(Reg)) { UsesAGPRs = true; return true; } } UsesAGPRs = false; return false; }