//==- SIMachineFunctionInfo.h - SIMachineFunctionInfo interface --*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_AMDGPU_SIMACHINEFUNCTIONINFO_H #define LLVM_LIB_TARGET_AMDGPU_SIMACHINEFUNCTIONINFO_H #include "AMDGPUArgumentUsageInfo.h" #include "AMDGPUMachineFunction.h" #include "AMDGPUTargetMachine.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "SIInstrInfo.h" #include "llvm/ADT/SetVector.h" #include "llvm/CodeGen/MIRYamlMapping.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/Support/raw_ostream.h" #include namespace llvm { class MachineFrameInfo; class MachineFunction; class SIMachineFunctionInfo; class SIRegisterInfo; class TargetRegisterClass; class AMDGPUPseudoSourceValue : public PseudoSourceValue { public: enum AMDGPUPSVKind : unsigned { PSVImage = PseudoSourceValue::TargetCustom, GWSResource }; protected: AMDGPUPseudoSourceValue(unsigned Kind, const AMDGPUTargetMachine &TM) : PseudoSourceValue(Kind, TM) {} public: bool isConstant(const MachineFrameInfo *) const override { // This should probably be true for most images, but we will start by being // conservative. return false; } bool isAliased(const MachineFrameInfo *) const override { return true; } bool mayAlias(const MachineFrameInfo *) const override { return true; } }; class AMDGPUGWSResourcePseudoSourceValue final : public AMDGPUPseudoSourceValue { public: explicit AMDGPUGWSResourcePseudoSourceValue(const AMDGPUTargetMachine &TM) : AMDGPUPseudoSourceValue(GWSResource, TM) {} static bool classof(const PseudoSourceValue *V) { return V->kind() == GWSResource; } // These are inaccessible memory from IR. bool isAliased(const MachineFrameInfo *) const override { return false; } // These are inaccessible memory from IR. bool mayAlias(const MachineFrameInfo *) const override { return false; } void printCustom(raw_ostream &OS) const override { OS << "GWSResource"; } }; namespace yaml { struct SIArgument { bool IsRegister; union { StringValue RegisterName; unsigned StackOffset; }; std::optional Mask; // Default constructor, which creates a stack argument. SIArgument() : IsRegister(false), StackOffset(0) {} SIArgument(const SIArgument &Other) { IsRegister = Other.IsRegister; if (IsRegister) { ::new ((void *)std::addressof(RegisterName)) StringValue(Other.RegisterName); } else StackOffset = Other.StackOffset; Mask = Other.Mask; } SIArgument &operator=(const SIArgument &Other) { IsRegister = Other.IsRegister; if (IsRegister) { ::new ((void *)std::addressof(RegisterName)) StringValue(Other.RegisterName); } else StackOffset = Other.StackOffset; Mask = Other.Mask; return *this; } ~SIArgument() { if (IsRegister) RegisterName.~StringValue(); } // Helper to create a register or stack argument. static inline SIArgument createArgument(bool IsReg) { if (IsReg) return SIArgument(IsReg); return SIArgument(); } private: // Construct a register argument. SIArgument(bool) : IsRegister(true), RegisterName() {} }; template <> struct MappingTraits { static void mapping(IO &YamlIO, SIArgument &A) { if (YamlIO.outputting()) { if (A.IsRegister) YamlIO.mapRequired("reg", A.RegisterName); else YamlIO.mapRequired("offset", A.StackOffset); } else { auto Keys = YamlIO.keys(); if (is_contained(Keys, "reg")) { A = SIArgument::createArgument(true); YamlIO.mapRequired("reg", A.RegisterName); } else if (is_contained(Keys, "offset")) YamlIO.mapRequired("offset", A.StackOffset); else YamlIO.setError("missing required key 'reg' or 'offset'"); } YamlIO.mapOptional("mask", A.Mask); } static const bool flow = true; }; struct SIArgumentInfo { std::optional PrivateSegmentBuffer; std::optional DispatchPtr; std::optional QueuePtr; std::optional KernargSegmentPtr; std::optional DispatchID; std::optional FlatScratchInit; std::optional PrivateSegmentSize; std::optional WorkGroupIDX; std::optional WorkGroupIDY; std::optional WorkGroupIDZ; std::optional WorkGroupInfo; std::optional LDSKernelId; std::optional PrivateSegmentWaveByteOffset; std::optional ImplicitArgPtr; std::optional ImplicitBufferPtr; std::optional WorkItemIDX; std::optional WorkItemIDY; std::optional WorkItemIDZ; }; template <> struct MappingTraits { static void mapping(IO &YamlIO, SIArgumentInfo &AI) { YamlIO.mapOptional("privateSegmentBuffer", AI.PrivateSegmentBuffer); YamlIO.mapOptional("dispatchPtr", AI.DispatchPtr); YamlIO.mapOptional("queuePtr", AI.QueuePtr); YamlIO.mapOptional("kernargSegmentPtr", AI.KernargSegmentPtr); YamlIO.mapOptional("dispatchID", AI.DispatchID); YamlIO.mapOptional("flatScratchInit", AI.FlatScratchInit); YamlIO.mapOptional("privateSegmentSize", AI.PrivateSegmentSize); YamlIO.mapOptional("workGroupIDX", AI.WorkGroupIDX); YamlIO.mapOptional("workGroupIDY", AI.WorkGroupIDY); YamlIO.mapOptional("workGroupIDZ", AI.WorkGroupIDZ); YamlIO.mapOptional("workGroupInfo", AI.WorkGroupInfo); YamlIO.mapOptional("LDSKernelId", AI.LDSKernelId); YamlIO.mapOptional("privateSegmentWaveByteOffset", AI.PrivateSegmentWaveByteOffset); YamlIO.mapOptional("implicitArgPtr", AI.ImplicitArgPtr); YamlIO.mapOptional("implicitBufferPtr", AI.ImplicitBufferPtr); YamlIO.mapOptional("workItemIDX", AI.WorkItemIDX); YamlIO.mapOptional("workItemIDY", AI.WorkItemIDY); YamlIO.mapOptional("workItemIDZ", AI.WorkItemIDZ); } }; // Default to default mode for default calling convention. struct SIMode { bool IEEE = true; bool DX10Clamp = true; bool FP32InputDenormals = true; bool FP32OutputDenormals = true; bool FP64FP16InputDenormals = true; bool FP64FP16OutputDenormals = true; SIMode() = default; SIMode(const AMDGPU::SIModeRegisterDefaults &Mode) { IEEE = Mode.IEEE; DX10Clamp = Mode.DX10Clamp; FP32InputDenormals = Mode.FP32Denormals.Input != DenormalMode::PreserveSign; FP32OutputDenormals = Mode.FP32Denormals.Output != DenormalMode::PreserveSign; FP64FP16InputDenormals = Mode.FP64FP16Denormals.Input != DenormalMode::PreserveSign; FP64FP16OutputDenormals = Mode.FP64FP16Denormals.Output != DenormalMode::PreserveSign; } bool operator ==(const SIMode Other) const { return IEEE == Other.IEEE && DX10Clamp == Other.DX10Clamp && FP32InputDenormals == Other.FP32InputDenormals && FP32OutputDenormals == Other.FP32OutputDenormals && FP64FP16InputDenormals == Other.FP64FP16InputDenormals && FP64FP16OutputDenormals == Other.FP64FP16OutputDenormals; } }; template <> struct MappingTraits { static void mapping(IO &YamlIO, SIMode &Mode) { YamlIO.mapOptional("ieee", Mode.IEEE, true); YamlIO.mapOptional("dx10-clamp", Mode.DX10Clamp, true); YamlIO.mapOptional("fp32-input-denormals", Mode.FP32InputDenormals, true); YamlIO.mapOptional("fp32-output-denormals", Mode.FP32OutputDenormals, true); YamlIO.mapOptional("fp64-fp16-input-denormals", Mode.FP64FP16InputDenormals, true); YamlIO.mapOptional("fp64-fp16-output-denormals", Mode.FP64FP16OutputDenormals, true); } }; struct SIMachineFunctionInfo final : public yaml::MachineFunctionInfo { uint64_t ExplicitKernArgSize = 0; Align MaxKernArgAlign; uint32_t LDSSize = 0; uint32_t GDSSize = 0; Align DynLDSAlign; bool IsEntryFunction = false; bool NoSignedZerosFPMath = false; bool MemoryBound = false; bool WaveLimiter = false; bool HasSpilledSGPRs = false; bool HasSpilledVGPRs = false; uint32_t HighBitsOf32BitAddress = 0; // TODO: 10 may be a better default since it's the maximum. unsigned Occupancy = 0; SmallVector WWMReservedRegs; StringValue ScratchRSrcReg = "$private_rsrc_reg"; StringValue FrameOffsetReg = "$fp_reg"; StringValue StackPtrOffsetReg = "$sp_reg"; unsigned BytesInStackArgArea = 0; bool ReturnsVoid = true; std::optional ArgInfo; SIMode Mode; std::optional ScavengeFI; StringValue VGPRForAGPRCopy; SIMachineFunctionInfo() = default; SIMachineFunctionInfo(const llvm::SIMachineFunctionInfo &, const TargetRegisterInfo &TRI, const llvm::MachineFunction &MF); void mappingImpl(yaml::IO &YamlIO) override; ~SIMachineFunctionInfo() = default; }; template <> struct MappingTraits { static void mapping(IO &YamlIO, SIMachineFunctionInfo &MFI) { YamlIO.mapOptional("explicitKernArgSize", MFI.ExplicitKernArgSize, UINT64_C(0)); YamlIO.mapOptional("maxKernArgAlign", MFI.MaxKernArgAlign); YamlIO.mapOptional("ldsSize", MFI.LDSSize, 0u); YamlIO.mapOptional("gdsSize", MFI.GDSSize, 0u); YamlIO.mapOptional("dynLDSAlign", MFI.DynLDSAlign, Align()); YamlIO.mapOptional("isEntryFunction", MFI.IsEntryFunction, false); YamlIO.mapOptional("noSignedZerosFPMath", MFI.NoSignedZerosFPMath, false); YamlIO.mapOptional("memoryBound", MFI.MemoryBound, false); YamlIO.mapOptional("waveLimiter", MFI.WaveLimiter, false); YamlIO.mapOptional("hasSpilledSGPRs", MFI.HasSpilledSGPRs, false); YamlIO.mapOptional("hasSpilledVGPRs", MFI.HasSpilledVGPRs, false); YamlIO.mapOptional("scratchRSrcReg", MFI.ScratchRSrcReg, StringValue("$private_rsrc_reg")); YamlIO.mapOptional("frameOffsetReg", MFI.FrameOffsetReg, StringValue("$fp_reg")); YamlIO.mapOptional("stackPtrOffsetReg", MFI.StackPtrOffsetReg, StringValue("$sp_reg")); YamlIO.mapOptional("bytesInStackArgArea", MFI.BytesInStackArgArea, 0u); YamlIO.mapOptional("returnsVoid", MFI.ReturnsVoid, true); YamlIO.mapOptional("argumentInfo", MFI.ArgInfo); YamlIO.mapOptional("mode", MFI.Mode, SIMode()); YamlIO.mapOptional("highBitsOf32BitAddress", MFI.HighBitsOf32BitAddress, 0u); YamlIO.mapOptional("occupancy", MFI.Occupancy, 0); YamlIO.mapOptional("wwmReservedRegs", MFI.WWMReservedRegs); YamlIO.mapOptional("scavengeFI", MFI.ScavengeFI); YamlIO.mapOptional("vgprForAGPRCopy", MFI.VGPRForAGPRCopy, StringValue()); // Don't print out when it's empty. } }; } // end namespace yaml // A CSR SGPR value can be preserved inside a callee using one of the following // methods. // 1. Copy to an unused scratch SGPR. // 2. Spill to a VGPR lane. // 3. Spill to memory via. a scratch VGPR. // class PrologEpilogSGPRSaveRestoreInfo represents the save/restore method used // for an SGPR at function prolog/epilog. enum class SGPRSaveKind : uint8_t { COPY_TO_SCRATCH_SGPR, SPILL_TO_VGPR_LANE, SPILL_TO_MEM }; class PrologEpilogSGPRSaveRestoreInfo { SGPRSaveKind Kind; union { int Index; Register Reg; }; public: PrologEpilogSGPRSaveRestoreInfo(SGPRSaveKind K, int I) : Kind(K), Index(I) {} PrologEpilogSGPRSaveRestoreInfo(SGPRSaveKind K, Register R) : Kind(K), Reg(R) {} Register getReg() const { return Reg; } int getIndex() const { return Index; } SGPRSaveKind getKind() const { return Kind; } }; /// This class keeps track of the SPI_SP_INPUT_ADDR config register, which /// tells the hardware which interpolation parameters to load. class SIMachineFunctionInfo final : public AMDGPUMachineFunction { friend class GCNTargetMachine; // State of MODE register, assumed FP mode. AMDGPU::SIModeRegisterDefaults Mode; // Registers that may be reserved for spilling purposes. These may be the same // as the input registers. Register ScratchRSrcReg = AMDGPU::PRIVATE_RSRC_REG; // This is the unswizzled offset from the current dispatch's scratch wave // base to the beginning of the current function's frame. Register FrameOffsetReg = AMDGPU::FP_REG; // This is an ABI register used in the non-entry calling convention to // communicate the unswizzled offset from the current dispatch's scratch wave // base to the beginning of the new function's frame. Register StackPtrOffsetReg = AMDGPU::SP_REG; AMDGPUFunctionArgInfo ArgInfo; // Graphics info. unsigned PSInputAddr = 0; unsigned PSInputEnable = 0; /// Number of bytes of arguments this function has on the stack. If the callee /// is expected to restore the argument stack this should be a multiple of 16, /// all usable during a tail call. /// /// The alternative would forbid tail call optimisation in some cases: if we /// want to transfer control from a function with 8-bytes of stack-argument /// space to a function with 16-bytes then misalignment of this value would /// make a stack adjustment necessary, which could not be undone by the /// callee. unsigned BytesInStackArgArea = 0; bool ReturnsVoid = true; // A pair of default/requested minimum/maximum flat work group sizes. // Minimum - first, maximum - second. std::pair FlatWorkGroupSizes = {0, 0}; // A pair of default/requested minimum/maximum number of waves per execution // unit. Minimum - first, maximum - second. std::pair WavesPerEU = {0, 0}; const AMDGPUGWSResourcePseudoSourceValue GWSResourcePSV; private: unsigned NumUserSGPRs = 0; unsigned NumSystemSGPRs = 0; bool HasSpilledSGPRs = false; bool HasSpilledVGPRs = false; bool HasNonSpillStackObjects = false; bool IsStackRealigned = false; unsigned NumSpilledSGPRs = 0; unsigned NumSpilledVGPRs = 0; // Feature bits required for inputs passed in user SGPRs. bool PrivateSegmentBuffer : 1; bool DispatchPtr : 1; bool QueuePtr : 1; bool KernargSegmentPtr : 1; bool DispatchID : 1; bool FlatScratchInit : 1; // Feature bits required for inputs passed in system SGPRs. bool WorkGroupIDX : 1; // Always initialized. bool WorkGroupIDY : 1; bool WorkGroupIDZ : 1; bool WorkGroupInfo : 1; bool LDSKernelId : 1; bool PrivateSegmentWaveByteOffset : 1; bool WorkItemIDX : 1; // Always initialized. bool WorkItemIDY : 1; bool WorkItemIDZ : 1; // Private memory buffer // Compute directly in sgpr[0:1] // Other shaders indirect 64-bits at sgpr[0:1] bool ImplicitBufferPtr : 1; // Pointer to where the ABI inserts special kernel arguments separate from the // user arguments. This is an offset from the KernargSegmentPtr. bool ImplicitArgPtr : 1; bool MayNeedAGPRs : 1; // The hard-wired high half of the address of the global information table // for AMDPAL OS type. 0xffffffff represents no hard-wired high half, since // current hardware only allows a 16 bit value. unsigned GITPtrHigh; unsigned HighBitsOf32BitAddress; // Current recorded maximum possible occupancy. unsigned Occupancy; mutable std::optional UsesAGPRs; MCPhysReg getNextUserSGPR() const; MCPhysReg getNextSystemSGPR() const; public: struct VGPRSpillToAGPR { SmallVector Lanes; bool FullyAllocated = false; bool IsDead = false; }; private: // To track VGPR + lane index for each subregister of the SGPR spilled to // frameindex key during SILowerSGPRSpills pass. DenseMap> SGPRSpillToVGPRLanes; // To track VGPR + lane index for spilling special SGPRs like Frame Pointer // identified during PrologEpilogInserter. DenseMap> PrologEpilogSGPRSpillToVGPRLanes; unsigned NumVGPRSpillLanes = 0; unsigned NumVGPRPrologEpilogSpillLanes = 0; SmallVector SpillVGPRs; using WWMSpillsMap = MapVector; // To track the registers used in instructions that can potentially modify the // inactive lanes. The WWM instructions and the writelane instructions for // spilling SGPRs to VGPRs fall under such category of operations. The VGPRs // modified by them should be spilled/restored at function prolog/epilog to // avoid any undesired outcome. Each entry in this map holds a pair of values, // the VGPR and its stack slot index. WWMSpillsMap WWMSpills; using ReservedRegSet = SmallSetVector; // To track the VGPRs reserved for WWM instructions. They get stack slots // later during PrologEpilogInserter and get added into the superset WWMSpills // for actual spilling. A separate set makes the register reserved part and // the serialization easier. ReservedRegSet WWMReservedRegs; using PrologEpilogSGPRSpillsMap = DenseMap; // To track the SGPR spill method used for a CSR SGPR register during // frame lowering. Even though the SGPR spills are handled during // SILowerSGPRSpills pass, some special handling needed later during the // PrologEpilogInserter. PrologEpilogSGPRSpillsMap PrologEpilogSGPRSpills; DenseMap VGPRToAGPRSpills; // AGPRs used for VGPR spills. SmallVector SpillAGPR; // VGPRs used for AGPR spills. SmallVector SpillVGPR; // Emergency stack slot. Sometimes, we create this before finalizing the stack // frame, so save it here and add it to the RegScavenger later. std::optional ScavengeFI; private: Register VGPRForAGPRCopy; bool allocateVGPRForSGPRSpills(MachineFunction &MF, int FI, unsigned LaneIndex); bool allocateVGPRForPrologEpilogSGPRSpills(MachineFunction &MF, int FI, unsigned LaneIndex); public: Register getVGPRForAGPRCopy() const { return VGPRForAGPRCopy; } void setVGPRForAGPRCopy(Register NewVGPRForAGPRCopy) { VGPRForAGPRCopy = NewVGPRForAGPRCopy; } bool isCalleeSavedReg(const MCPhysReg *CSRegs, MCPhysReg Reg) const; public: SIMachineFunctionInfo(const SIMachineFunctionInfo &MFI) = default; SIMachineFunctionInfo(const Function &F, const GCNSubtarget *STI); MachineFunctionInfo * clone(BumpPtrAllocator &Allocator, MachineFunction &DestMF, const DenseMap &Src2DstMBB) const override; bool initializeBaseYamlFields(const yaml::SIMachineFunctionInfo &YamlMFI, const MachineFunction &MF, PerFunctionMIParsingState &PFS, SMDiagnostic &Error, SMRange &SourceRange); void reserveWWMRegister(Register Reg) { WWMReservedRegs.insert(Reg); } AMDGPU::SIModeRegisterDefaults getMode() const { return Mode; } ArrayRef getSGPRSpillToVGPRLanes(int FrameIndex) const { auto I = SGPRSpillToVGPRLanes.find(FrameIndex); return (I == SGPRSpillToVGPRLanes.end()) ? ArrayRef() : ArrayRef(I->second); } ArrayRef getSGPRSpillVGPRs() const { return SpillVGPRs; } const WWMSpillsMap &getWWMSpills() const { return WWMSpills; } const ReservedRegSet &getWWMReservedRegs() const { return WWMReservedRegs; } const PrologEpilogSGPRSpillsMap &getPrologEpilogSGPRSpills() const { return PrologEpilogSGPRSpills; } void addToPrologEpilogSGPRSpills(Register Reg, PrologEpilogSGPRSaveRestoreInfo SI) { PrologEpilogSGPRSpills.insert(std::make_pair(Reg, SI)); } // Check if an entry created for \p Reg in PrologEpilogSGPRSpills. Return true // on success and false otherwise. bool hasPrologEpilogSGPRSpillEntry(Register Reg) const { return PrologEpilogSGPRSpills.find(Reg) != PrologEpilogSGPRSpills.end(); } // Get the scratch SGPR if allocated to save/restore \p Reg. Register getScratchSGPRCopyDstReg(Register Reg) const { auto I = PrologEpilogSGPRSpills.find(Reg); if (I != PrologEpilogSGPRSpills.end() && I->second.getKind() == SGPRSaveKind::COPY_TO_SCRATCH_SGPR) return I->second.getReg(); return AMDGPU::NoRegister; } // Get all scratch SGPRs allocated to copy/restore the SGPR spills. void getAllScratchSGPRCopyDstRegs(SmallVectorImpl &Regs) const { for (const auto &SI : PrologEpilogSGPRSpills) { if (SI.second.getKind() == SGPRSaveKind::COPY_TO_SCRATCH_SGPR) Regs.push_back(SI.second.getReg()); } } // Check if \p FI is allocated for any SGPR spill to a VGPR lane during PEI. bool checkIndexInPrologEpilogSGPRSpills(int FI) const { return find_if(PrologEpilogSGPRSpills, [FI](const std::pair &SI) { return SI.second.getKind() == SGPRSaveKind::SPILL_TO_VGPR_LANE && SI.second.getIndex() == FI; }) != PrologEpilogSGPRSpills.end(); } const PrologEpilogSGPRSaveRestoreInfo & getPrologEpilogSGPRSaveRestoreInfo(Register Reg) const { auto I = PrologEpilogSGPRSpills.find(Reg); assert(I != PrologEpilogSGPRSpills.end()); return I->second; } ArrayRef getPrologEpilogSGPRSpillToVGPRLanes(int FrameIndex) const { auto I = PrologEpilogSGPRSpillToVGPRLanes.find(FrameIndex); return (I == PrologEpilogSGPRSpillToVGPRLanes.end()) ? ArrayRef() : ArrayRef(I->second); } void allocateWWMSpill(MachineFunction &MF, Register VGPR, uint64_t Size = 4, Align Alignment = Align(4)); void splitWWMSpillRegisters( MachineFunction &MF, SmallVectorImpl> &CalleeSavedRegs, SmallVectorImpl> &ScratchRegs) const; ArrayRef getAGPRSpillVGPRs() const { return SpillAGPR; } ArrayRef getVGPRSpillAGPRs() const { return SpillVGPR; } MCPhysReg getVGPRToAGPRSpill(int FrameIndex, unsigned Lane) const { auto I = VGPRToAGPRSpills.find(FrameIndex); return (I == VGPRToAGPRSpills.end()) ? (MCPhysReg)AMDGPU::NoRegister : I->second.Lanes[Lane]; } void setVGPRToAGPRSpillDead(int FrameIndex) { auto I = VGPRToAGPRSpills.find(FrameIndex); if (I != VGPRToAGPRSpills.end()) I->second.IsDead = true; } bool allocateSGPRSpillToVGPRLane(MachineFunction &MF, int FI, bool IsPrologEpilog = false); bool allocateVGPRSpillToAGPR(MachineFunction &MF, int FI, bool isAGPRtoVGPR); /// If \p ResetSGPRSpillStackIDs is true, reset the stack ID from sgpr-spill /// to the default stack. bool removeDeadFrameIndices(MachineFrameInfo &MFI, bool ResetSGPRSpillStackIDs); int getScavengeFI(MachineFrameInfo &MFI, const SIRegisterInfo &TRI); std::optional getOptionalScavengeFI() const { return ScavengeFI; } unsigned getBytesInStackArgArea() const { return BytesInStackArgArea; } void setBytesInStackArgArea(unsigned Bytes) { BytesInStackArgArea = Bytes; } // Add user SGPRs. Register addPrivateSegmentBuffer(const SIRegisterInfo &TRI); Register addDispatchPtr(const SIRegisterInfo &TRI); Register addQueuePtr(const SIRegisterInfo &TRI); Register addKernargSegmentPtr(const SIRegisterInfo &TRI); Register addDispatchID(const SIRegisterInfo &TRI); Register addFlatScratchInit(const SIRegisterInfo &TRI); Register addImplicitBufferPtr(const SIRegisterInfo &TRI); Register addLDSKernelId(); /// Increment user SGPRs used for padding the argument list only. Register addReservedUserSGPR() { Register Next = getNextUserSGPR(); ++NumUserSGPRs; return Next; } // Add system SGPRs. Register addWorkGroupIDX() { ArgInfo.WorkGroupIDX = ArgDescriptor::createRegister(getNextSystemSGPR()); NumSystemSGPRs += 1; return ArgInfo.WorkGroupIDX.getRegister(); } Register addWorkGroupIDY() { ArgInfo.WorkGroupIDY = ArgDescriptor::createRegister(getNextSystemSGPR()); NumSystemSGPRs += 1; return ArgInfo.WorkGroupIDY.getRegister(); } Register addWorkGroupIDZ() { ArgInfo.WorkGroupIDZ = ArgDescriptor::createRegister(getNextSystemSGPR()); NumSystemSGPRs += 1; return ArgInfo.WorkGroupIDZ.getRegister(); } Register addWorkGroupInfo() { ArgInfo.WorkGroupInfo = ArgDescriptor::createRegister(getNextSystemSGPR()); NumSystemSGPRs += 1; return ArgInfo.WorkGroupInfo.getRegister(); } // Add special VGPR inputs void setWorkItemIDX(ArgDescriptor Arg) { ArgInfo.WorkItemIDX = Arg; } void setWorkItemIDY(ArgDescriptor Arg) { ArgInfo.WorkItemIDY = Arg; } void setWorkItemIDZ(ArgDescriptor Arg) { ArgInfo.WorkItemIDZ = Arg; } Register addPrivateSegmentWaveByteOffset() { ArgInfo.PrivateSegmentWaveByteOffset = ArgDescriptor::createRegister(getNextSystemSGPR()); NumSystemSGPRs += 1; return ArgInfo.PrivateSegmentWaveByteOffset.getRegister(); } void setPrivateSegmentWaveByteOffset(Register Reg) { ArgInfo.PrivateSegmentWaveByteOffset = ArgDescriptor::createRegister(Reg); } bool hasPrivateSegmentBuffer() const { return PrivateSegmentBuffer; } bool hasDispatchPtr() const { return DispatchPtr; } bool hasQueuePtr() const { return QueuePtr; } bool hasKernargSegmentPtr() const { return KernargSegmentPtr; } bool hasDispatchID() const { return DispatchID; } bool hasFlatScratchInit() const { return FlatScratchInit; } bool hasWorkGroupIDX() const { return WorkGroupIDX; } bool hasWorkGroupIDY() const { return WorkGroupIDY; } bool hasWorkGroupIDZ() const { return WorkGroupIDZ; } bool hasWorkGroupInfo() const { return WorkGroupInfo; } bool hasLDSKernelId() const { return LDSKernelId; } bool hasPrivateSegmentWaveByteOffset() const { return PrivateSegmentWaveByteOffset; } bool hasWorkItemIDX() const { return WorkItemIDX; } bool hasWorkItemIDY() const { return WorkItemIDY; } bool hasWorkItemIDZ() const { return WorkItemIDZ; } bool hasImplicitArgPtr() const { return ImplicitArgPtr; } bool hasImplicitBufferPtr() const { return ImplicitBufferPtr; } AMDGPUFunctionArgInfo &getArgInfo() { return ArgInfo; } const AMDGPUFunctionArgInfo &getArgInfo() const { return ArgInfo; } std::tuple getPreloadedValue(AMDGPUFunctionArgInfo::PreloadedValue Value) const { return ArgInfo.getPreloadedValue(Value); } MCRegister getPreloadedReg(AMDGPUFunctionArgInfo::PreloadedValue Value) const { auto Arg = std::get<0>(ArgInfo.getPreloadedValue(Value)); return Arg ? Arg->getRegister() : MCRegister(); } unsigned getGITPtrHigh() const { return GITPtrHigh; } Register getGITPtrLoReg(const MachineFunction &MF) const; uint32_t get32BitAddressHighBits() const { return HighBitsOf32BitAddress; } unsigned getNumUserSGPRs() const { return NumUserSGPRs; } unsigned getNumPreloadedSGPRs() const { return NumUserSGPRs + NumSystemSGPRs; } Register getPrivateSegmentWaveByteOffsetSystemSGPR() const { return ArgInfo.PrivateSegmentWaveByteOffset.getRegister(); } /// Returns the physical register reserved for use as the resource /// descriptor for scratch accesses. Register getScratchRSrcReg() const { return ScratchRSrcReg; } void setScratchRSrcReg(Register Reg) { assert(Reg != 0 && "Should never be unset"); ScratchRSrcReg = Reg; } Register getFrameOffsetReg() const { return FrameOffsetReg; } void setFrameOffsetReg(Register Reg) { assert(Reg != 0 && "Should never be unset"); FrameOffsetReg = Reg; } void setStackPtrOffsetReg(Register Reg) { assert(Reg != 0 && "Should never be unset"); StackPtrOffsetReg = Reg; } // Note the unset value for this is AMDGPU::SP_REG rather than // NoRegister. This is mostly a workaround for MIR tests where state that // can't be directly computed from the function is not preserved in serialized // MIR. Register getStackPtrOffsetReg() const { return StackPtrOffsetReg; } Register getQueuePtrUserSGPR() const { return ArgInfo.QueuePtr.getRegister(); } Register getImplicitBufferPtrUserSGPR() const { return ArgInfo.ImplicitBufferPtr.getRegister(); } bool hasSpilledSGPRs() const { return HasSpilledSGPRs; } void setHasSpilledSGPRs(bool Spill = true) { HasSpilledSGPRs = Spill; } bool hasSpilledVGPRs() const { return HasSpilledVGPRs; } void setHasSpilledVGPRs(bool Spill = true) { HasSpilledVGPRs = Spill; } bool hasNonSpillStackObjects() const { return HasNonSpillStackObjects; } void setHasNonSpillStackObjects(bool StackObject = true) { HasNonSpillStackObjects = StackObject; } bool isStackRealigned() const { return IsStackRealigned; } void setIsStackRealigned(bool Realigned = true) { IsStackRealigned = Realigned; } unsigned getNumSpilledSGPRs() const { return NumSpilledSGPRs; } unsigned getNumSpilledVGPRs() const { return NumSpilledVGPRs; } void addToSpilledSGPRs(unsigned num) { NumSpilledSGPRs += num; } void addToSpilledVGPRs(unsigned num) { NumSpilledVGPRs += num; } unsigned getPSInputAddr() const { return PSInputAddr; } unsigned getPSInputEnable() const { return PSInputEnable; } bool isPSInputAllocated(unsigned Index) const { return PSInputAddr & (1 << Index); } void markPSInputAllocated(unsigned Index) { PSInputAddr |= 1 << Index; } void markPSInputEnabled(unsigned Index) { PSInputEnable |= 1 << Index; } bool returnsVoid() const { return ReturnsVoid; } void setIfReturnsVoid(bool Value) { ReturnsVoid = Value; } /// \returns A pair of default/requested minimum/maximum flat work group sizes /// for this function. std::pair getFlatWorkGroupSizes() const { return FlatWorkGroupSizes; } /// \returns Default/requested minimum flat work group size for this function. unsigned getMinFlatWorkGroupSize() const { return FlatWorkGroupSizes.first; } /// \returns Default/requested maximum flat work group size for this function. unsigned getMaxFlatWorkGroupSize() const { return FlatWorkGroupSizes.second; } /// \returns A pair of default/requested minimum/maximum number of waves per /// execution unit. std::pair getWavesPerEU() const { return WavesPerEU; } /// \returns Default/requested minimum number of waves per execution unit. unsigned getMinWavesPerEU() const { return WavesPerEU.first; } /// \returns Default/requested maximum number of waves per execution unit. unsigned getMaxWavesPerEU() const { return WavesPerEU.second; } /// \returns SGPR used for \p Dim's work group ID. Register getWorkGroupIDSGPR(unsigned Dim) const { switch (Dim) { case 0: assert(hasWorkGroupIDX()); return ArgInfo.WorkGroupIDX.getRegister(); case 1: assert(hasWorkGroupIDY()); return ArgInfo.WorkGroupIDY.getRegister(); case 2: assert(hasWorkGroupIDZ()); return ArgInfo.WorkGroupIDZ.getRegister(); } llvm_unreachable("unexpected dimension"); } const AMDGPUGWSResourcePseudoSourceValue * getGWSPSV(const AMDGPUTargetMachine &TM) { return &GWSResourcePSV; } unsigned getOccupancy() const { return Occupancy; } unsigned getMinAllowedOccupancy() const { if (!isMemoryBound() && !needsWaveLimiter()) return Occupancy; return (Occupancy < 4) ? Occupancy : 4; } void limitOccupancy(const MachineFunction &MF); void limitOccupancy(unsigned Limit) { if (Occupancy > Limit) Occupancy = Limit; } void increaseOccupancy(const MachineFunction &MF, unsigned Limit) { if (Occupancy < Limit) Occupancy = Limit; limitOccupancy(MF); } bool mayNeedAGPRs() const { return MayNeedAGPRs; } // \returns true if a function has a use of AGPRs via inline asm or // has a call which may use it. bool mayUseAGPRs(const Function &F) const; // \returns true if a function needs or may need AGPRs. bool usesAGPRs(const MachineFunction &MF) const; }; } // end namespace llvm #endif // LLVM_LIB_TARGET_AMDGPU_SIMACHINEFUNCTIONINFO_H