//===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "AMDGPUBaseInfo.h" #include "AMDGPU.h" #include "AMDGPUAsmUtils.h" #include "AMDKernelCodeT.h" #include "GCNSubtarget.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/IntrinsicsR600.h" #include "llvm/IR/LLVMContext.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/AMDHSAKernelDescriptor.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/TargetParser.h" #define GET_INSTRINFO_NAMED_OPS #define GET_INSTRMAP_INFO #include "AMDGPUGenInstrInfo.inc" static llvm::cl::opt AmdhsaCodeObjectVersion( "amdhsa-code-object-version", llvm::cl::Hidden, llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(4), llvm::cl::ZeroOrMore); namespace { /// \returns Bit mask for given bit \p Shift and bit \p Width. unsigned getBitMask(unsigned Shift, unsigned Width) { return ((1 << Width) - 1) << Shift; } /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. /// /// \returns Packed \p Dst. unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); Dst |= (Src << Shift) & getBitMask(Shift, Width); return Dst; } /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. /// /// \returns Unpacked bits. unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { return (Src & getBitMask(Shift, Width)) >> Shift; } /// \returns Vmcnt bit shift (lower bits). unsigned getVmcntBitShiftLo() { return 0; } /// \returns Vmcnt bit width (lower bits). unsigned getVmcntBitWidthLo() { return 4; } /// \returns Expcnt bit shift. unsigned getExpcntBitShift() { return 4; } /// \returns Expcnt bit width. unsigned getExpcntBitWidth() { return 3; } /// \returns Lgkmcnt bit shift. unsigned getLgkmcntBitShift() { return 8; } /// \returns Lgkmcnt bit width. unsigned getLgkmcntBitWidth(unsigned VersionMajor) { return (VersionMajor >= 10) ? 6 : 4; } /// \returns Vmcnt bit shift (higher bits). unsigned getVmcntBitShiftHi() { return 14; } /// \returns Vmcnt bit width (higher bits). unsigned getVmcntBitWidthHi() { return 2; } } // end namespace anonymous namespace llvm { namespace AMDGPU { Optional getHsaAbiVersion(const MCSubtargetInfo *STI) { if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA) return None; switch (AmdhsaCodeObjectVersion) { case 2: return ELF::ELFABIVERSION_AMDGPU_HSA_V2; case 3: return ELF::ELFABIVERSION_AMDGPU_HSA_V3; case 4: return ELF::ELFABIVERSION_AMDGPU_HSA_V4; case 5: return ELF::ELFABIVERSION_AMDGPU_HSA_V5; default: report_fatal_error(Twine("Unsupported AMDHSA Code Object Version ") + Twine(AmdhsaCodeObjectVersion)); } } bool isHsaAbiVersion2(const MCSubtargetInfo *STI) { if (Optional HsaAbiVer = getHsaAbiVersion(STI)) return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V2; return false; } bool isHsaAbiVersion3(const MCSubtargetInfo *STI) { if (Optional HsaAbiVer = getHsaAbiVersion(STI)) return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V3; return false; } bool isHsaAbiVersion4(const MCSubtargetInfo *STI) { if (Optional HsaAbiVer = getHsaAbiVersion(STI)) return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V4; return false; } bool isHsaAbiVersion5(const MCSubtargetInfo *STI) { if (Optional HsaAbiVer = getHsaAbiVersion(STI)) return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V5; return false; } bool isHsaAbiVersion3AndAbove(const MCSubtargetInfo *STI) { return isHsaAbiVersion3(STI) || isHsaAbiVersion4(STI) || isHsaAbiVersion5(STI); } #define GET_MIMGBaseOpcodesTable_IMPL #define GET_MIMGDimInfoTable_IMPL #define GET_MIMGInfoTable_IMPL #define GET_MIMGLZMappingTable_IMPL #define GET_MIMGMIPMappingTable_IMPL #define GET_MIMGBiasMappingTable_IMPL #define GET_MIMGOffsetMappingTable_IMPL #define GET_MIMGG16MappingTable_IMPL #include "AMDGPUGenSearchableTables.inc" int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, unsigned VDataDwords, unsigned VAddrDwords) { const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, VDataDwords, VAddrDwords); return Info ? Info->Opcode : -1; } const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) { const MIMGInfo *Info = getMIMGInfo(Opc); return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr; } int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { const MIMGInfo *OrigInfo = getMIMGInfo(Opc); const MIMGInfo *NewInfo = getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, NewChannels, OrigInfo->VAddrDwords); return NewInfo ? NewInfo->Opcode : -1; } unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode, const MIMGDimInfo *Dim, bool IsA16, bool IsG16Supported) { unsigned AddrWords = BaseOpcode->NumExtraArgs; unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) + (BaseOpcode->LodOrClampOrMip ? 1 : 0); if (IsA16) AddrWords += divideCeil(AddrComponents, 2); else AddrWords += AddrComponents; // Note: For subtargets that support A16 but not G16, enabling A16 also // enables 16 bit gradients. // For subtargets that support A16 (operand) and G16 (done with a different // instruction encoding), they are independent. if (BaseOpcode->Gradients) { if ((IsA16 && !IsG16Supported) || BaseOpcode->G16) // There are two gradients per coordinate, we pack them separately. // For the 3d case, // we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv) AddrWords += alignTo<2>(Dim->NumGradients / 2); else AddrWords += Dim->NumGradients; } return AddrWords; } struct MUBUFInfo { uint16_t Opcode; uint16_t BaseOpcode; uint8_t elements; bool has_vaddr; bool has_srsrc; bool has_soffset; bool IsBufferInv; }; struct MTBUFInfo { uint16_t Opcode; uint16_t BaseOpcode; uint8_t elements; bool has_vaddr; bool has_srsrc; bool has_soffset; }; struct SMInfo { uint16_t Opcode; bool IsBuffer; }; struct VOPInfo { uint16_t Opcode; bool IsSingle; }; #define GET_MTBUFInfoTable_DECL #define GET_MTBUFInfoTable_IMPL #define GET_MUBUFInfoTable_DECL #define GET_MUBUFInfoTable_IMPL #define GET_SMInfoTable_DECL #define GET_SMInfoTable_IMPL #define GET_VOP1InfoTable_DECL #define GET_VOP1InfoTable_IMPL #define GET_VOP2InfoTable_DECL #define GET_VOP2InfoTable_IMPL #define GET_VOP3InfoTable_DECL #define GET_VOP3InfoTable_IMPL #include "AMDGPUGenSearchableTables.inc" int getMTBUFBaseOpcode(unsigned Opc) { const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc); return Info ? Info->BaseOpcode : -1; } int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) { const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); return Info ? Info->Opcode : -1; } int getMTBUFElements(unsigned Opc) { const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); return Info ? Info->elements : 0; } bool getMTBUFHasVAddr(unsigned Opc) { const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); return Info ? Info->has_vaddr : false; } bool getMTBUFHasSrsrc(unsigned Opc) { const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); return Info ? Info->has_srsrc : false; } bool getMTBUFHasSoffset(unsigned Opc) { const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); return Info ? Info->has_soffset : false; } int getMUBUFBaseOpcode(unsigned Opc) { const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); return Info ? Info->BaseOpcode : -1; } int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) { const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); return Info ? Info->Opcode : -1; } int getMUBUFElements(unsigned Opc) { const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); return Info ? Info->elements : 0; } bool getMUBUFHasVAddr(unsigned Opc) { const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); return Info ? Info->has_vaddr : false; } bool getMUBUFHasSrsrc(unsigned Opc) { const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); return Info ? Info->has_srsrc : false; } bool getMUBUFHasSoffset(unsigned Opc) { const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); return Info ? Info->has_soffset : false; } bool getMUBUFIsBufferInv(unsigned Opc) { const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); return Info ? Info->IsBufferInv : false; } bool getSMEMIsBuffer(unsigned Opc) { const SMInfo *Info = getSMEMOpcodeHelper(Opc); return Info ? Info->IsBuffer : false; } bool getVOP1IsSingle(unsigned Opc) { const VOPInfo *Info = getVOP1OpcodeHelper(Opc); return Info ? Info->IsSingle : false; } bool getVOP2IsSingle(unsigned Opc) { const VOPInfo *Info = getVOP2OpcodeHelper(Opc); return Info ? Info->IsSingle : false; } bool getVOP3IsSingle(unsigned Opc) { const VOPInfo *Info = getVOP3OpcodeHelper(Opc); return Info ? Info->IsSingle : false; } // Wrapper for Tablegen'd function. enum Subtarget is not defined in any // header files, so we need to wrap it in a function that takes unsigned // instead. int getMCOpcode(uint16_t Opcode, unsigned Gen) { return getMCOpcodeGen(Opcode, static_cast(Gen)); } namespace IsaInfo { AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI) : STI(STI), XnackSetting(TargetIDSetting::Any), SramEccSetting(TargetIDSetting::Any) { if (!STI.getFeatureBits().test(FeatureSupportsXNACK)) XnackSetting = TargetIDSetting::Unsupported; if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC)) SramEccSetting = TargetIDSetting::Unsupported; } void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) { // Check if xnack or sramecc is explicitly enabled or disabled. In the // absence of the target features we assume we must generate code that can run // in any environment. SubtargetFeatures Features(FS); Optional XnackRequested; Optional SramEccRequested; for (const std::string &Feature : Features.getFeatures()) { if (Feature == "+xnack") XnackRequested = true; else if (Feature == "-xnack") XnackRequested = false; else if (Feature == "+sramecc") SramEccRequested = true; else if (Feature == "-sramecc") SramEccRequested = false; } bool XnackSupported = isXnackSupported(); bool SramEccSupported = isSramEccSupported(); if (XnackRequested) { if (XnackSupported) { XnackSetting = *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off; } else { // If a specific xnack setting was requested and this GPU does not support // xnack emit a warning. Setting will remain set to "Unsupported". if (*XnackRequested) { errs() << "warning: xnack 'On' was requested for a processor that does " "not support it!\n"; } else { errs() << "warning: xnack 'Off' was requested for a processor that " "does not support it!\n"; } } } if (SramEccRequested) { if (SramEccSupported) { SramEccSetting = *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off; } else { // If a specific sramecc setting was requested and this GPU does not // support sramecc emit a warning. Setting will remain set to // "Unsupported". if (*SramEccRequested) { errs() << "warning: sramecc 'On' was requested for a processor that " "does not support it!\n"; } else { errs() << "warning: sramecc 'Off' was requested for a processor that " "does not support it!\n"; } } } } static TargetIDSetting getTargetIDSettingFromFeatureString(StringRef FeatureString) { if (FeatureString.endswith("-")) return TargetIDSetting::Off; if (FeatureString.endswith("+")) return TargetIDSetting::On; llvm_unreachable("Malformed feature string"); } void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) { SmallVector TargetIDSplit; TargetID.split(TargetIDSplit, ':'); for (const auto &FeatureString : TargetIDSplit) { if (FeatureString.startswith("xnack")) XnackSetting = getTargetIDSettingFromFeatureString(FeatureString); if (FeatureString.startswith("sramecc")) SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString); } } std::string AMDGPUTargetID::toString() const { std::string StringRep; raw_string_ostream StreamRep(StringRep); auto TargetTriple = STI.getTargetTriple(); auto Version = getIsaVersion(STI.getCPU()); StreamRep << TargetTriple.getArchName() << '-' << TargetTriple.getVendorName() << '-' << TargetTriple.getOSName() << '-' << TargetTriple.getEnvironmentName() << '-'; std::string Processor; // TODO: Following else statement is present here because we used various // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803'). // Remove once all aliases are removed from GCNProcessors.td. if (Version.Major >= 9) Processor = STI.getCPU().str(); else Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) + Twine(Version.Stepping)) .str(); std::string Features; if (Optional HsaAbiVersion = getHsaAbiVersion(&STI)) { switch (*HsaAbiVersion) { case ELF::ELFABIVERSION_AMDGPU_HSA_V2: // Code object V2 only supported specific processors and had fixed // settings for the XNACK. if (Processor == "gfx600") { } else if (Processor == "gfx601") { } else if (Processor == "gfx602") { } else if (Processor == "gfx700") { } else if (Processor == "gfx701") { } else if (Processor == "gfx702") { } else if (Processor == "gfx703") { } else if (Processor == "gfx704") { } else if (Processor == "gfx705") { } else if (Processor == "gfx801") { if (!isXnackOnOrAny()) report_fatal_error( "AMD GPU code object V2 does not support processor " + Twine(Processor) + " without XNACK"); } else if (Processor == "gfx802") { } else if (Processor == "gfx803") { } else if (Processor == "gfx805") { } else if (Processor == "gfx810") { if (!isXnackOnOrAny()) report_fatal_error( "AMD GPU code object V2 does not support processor " + Twine(Processor) + " without XNACK"); } else if (Processor == "gfx900") { if (isXnackOnOrAny()) Processor = "gfx901"; } else if (Processor == "gfx902") { if (isXnackOnOrAny()) Processor = "gfx903"; } else if (Processor == "gfx904") { if (isXnackOnOrAny()) Processor = "gfx905"; } else if (Processor == "gfx906") { if (isXnackOnOrAny()) Processor = "gfx907"; } else if (Processor == "gfx90c") { if (isXnackOnOrAny()) report_fatal_error( "AMD GPU code object V2 does not support processor " + Twine(Processor) + " with XNACK being ON or ANY"); } else { report_fatal_error( "AMD GPU code object V2 does not support processor " + Twine(Processor)); } break; case ELF::ELFABIVERSION_AMDGPU_HSA_V3: // xnack. if (isXnackOnOrAny()) Features += "+xnack"; // In code object v2 and v3, "sramecc" feature was spelled with a // hyphen ("sram-ecc"). if (isSramEccOnOrAny()) Features += "+sram-ecc"; break; case ELF::ELFABIVERSION_AMDGPU_HSA_V4: case ELF::ELFABIVERSION_AMDGPU_HSA_V5: // sramecc. if (getSramEccSetting() == TargetIDSetting::Off) Features += ":sramecc-"; else if (getSramEccSetting() == TargetIDSetting::On) Features += ":sramecc+"; // xnack. if (getXnackSetting() == TargetIDSetting::Off) Features += ":xnack-"; else if (getXnackSetting() == TargetIDSetting::On) Features += ":xnack+"; break; default: break; } } StreamRep << Processor << Features; StreamRep.flush(); return StringRep; } unsigned getWavefrontSize(const MCSubtargetInfo *STI) { if (STI->getFeatureBits().test(FeatureWavefrontSize16)) return 16; if (STI->getFeatureBits().test(FeatureWavefrontSize32)) return 32; return 64; } unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) return 32768; if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) return 65536; return 0; } unsigned getEUsPerCU(const MCSubtargetInfo *STI) { // "Per CU" really means "per whatever functional block the waves of a // workgroup must share". For gfx10 in CU mode this is the CU, which contains // two SIMDs. if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode)) return 2; // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains // two CUs, so a total of four SIMDs. return 4; } unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, unsigned FlatWorkGroupSize) { assert(FlatWorkGroupSize != 0); if (STI->getTargetTriple().getArch() != Triple::amdgcn) return 8; unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); if (N == 1) return 40; N = 40 / N; return std::min(N, 16u); } unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { return 1; } unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) { // FIXME: Need to take scratch memory into account. if (isGFX90A(*STI)) return 8; if (!isGFX10Plus(*STI)) return 10; return hasGFX10_3Insts(*STI) ? 16 : 20; } unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI, unsigned FlatWorkGroupSize) { return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize), getEUsPerCU(STI)); } unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { return 1; } unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { // Some subtargets allow encoding 2048, but this isn't tested or supported. return 1024; } unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, unsigned FlatWorkGroupSize) { return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI)); } unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { IsaVersion Version = getIsaVersion(STI->getCPU()); if (Version.Major >= 10) return getAddressableNumSGPRs(STI); if (Version.Major >= 8) return 16; return 8; } unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { return 8; } unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { IsaVersion Version = getIsaVersion(STI->getCPU()); if (Version.Major >= 8) return 800; return 512; } unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { if (STI->getFeatureBits().test(FeatureSGPRInitBug)) return FIXED_NUM_SGPRS_FOR_INIT_BUG; IsaVersion Version = getIsaVersion(STI->getCPU()); if (Version.Major >= 10) return 106; if (Version.Major >= 8) return 102; return 104; } unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { assert(WavesPerEU != 0); IsaVersion Version = getIsaVersion(STI->getCPU()); if (Version.Major >= 10) return 0; if (WavesPerEU >= getMaxWavesPerEU(STI)) return 0; unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); if (STI->getFeatureBits().test(FeatureTrapHandler)) MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); } unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, bool Addressable) { assert(WavesPerEU != 0); unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); IsaVersion Version = getIsaVersion(STI->getCPU()); if (Version.Major >= 10) return Addressable ? AddressableNumSGPRs : 108; if (Version.Major >= 8 && !Addressable) AddressableNumSGPRs = 112; unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; if (STI->getFeatureBits().test(FeatureTrapHandler)) MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); return std::min(MaxNumSGPRs, AddressableNumSGPRs); } unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, bool FlatScrUsed, bool XNACKUsed) { unsigned ExtraSGPRs = 0; if (VCCUsed) ExtraSGPRs = 2; IsaVersion Version = getIsaVersion(STI->getCPU()); if (Version.Major >= 10) return ExtraSGPRs; if (Version.Major < 8) { if (FlatScrUsed) ExtraSGPRs = 4; } else { if (XNACKUsed) ExtraSGPRs = 4; if (FlatScrUsed || STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch)) ExtraSGPRs = 6; } return ExtraSGPRs; } unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, bool FlatScrUsed) { return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); } unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); // SGPRBlocks is actual number of SGPR blocks minus 1. return NumSGPRs / getSGPREncodingGranule(STI) - 1; } unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, Optional EnableWavefrontSize32) { if (STI->getFeatureBits().test(FeatureGFX90AInsts)) return 8; bool IsWave32 = EnableWavefrontSize32 ? *EnableWavefrontSize32 : STI->getFeatureBits().test(FeatureWavefrontSize32); if (hasGFX10_3Insts(*STI)) return IsWave32 ? 16 : 8; return IsWave32 ? 8 : 4; } unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, Optional EnableWavefrontSize32) { if (STI->getFeatureBits().test(FeatureGFX90AInsts)) return 8; bool IsWave32 = EnableWavefrontSize32 ? *EnableWavefrontSize32 : STI->getFeatureBits().test(FeatureWavefrontSize32); return IsWave32 ? 8 : 4; } unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { if (STI->getFeatureBits().test(FeatureGFX90AInsts)) return 512; if (!isGFX10Plus(*STI)) return 256; return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512; } unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { if (STI->getFeatureBits().test(FeatureGFX90AInsts)) return 512; return 256; } unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { assert(WavesPerEU != 0); if (WavesPerEU >= getMaxWavesPerEU(STI)) return 0; unsigned MinNumVGPRs = alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), getVGPRAllocGranule(STI)) + 1; return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); } unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { assert(WavesPerEU != 0); unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, getVGPRAllocGranule(STI)); unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); return std::min(MaxNumVGPRs, AddressableNumVGPRs); } unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, Optional EnableWavefrontSize32) { NumVGPRs = alignTo(std::max(1u, NumVGPRs), getVGPREncodingGranule(STI, EnableWavefrontSize32)); // VGPRBlocks is actual number of VGPR blocks minus 1. return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1; } } // end namespace IsaInfo void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, const MCSubtargetInfo *STI) { IsaVersion Version = getIsaVersion(STI->getCPU()); memset(&Header, 0, sizeof(Header)); Header.amd_kernel_code_version_major = 1; Header.amd_kernel_code_version_minor = 2; Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU Header.amd_machine_version_major = Version.Major; Header.amd_machine_version_minor = Version.Minor; Header.amd_machine_version_stepping = Version.Stepping; Header.kernel_code_entry_byte_offset = sizeof(Header); Header.wavefront_size = 6; // If the code object does not support indirect functions, then the value must // be 0xffffffff. Header.call_convention = -1; // These alignment values are specified in powers of two, so alignment = // 2^n. The minimum alignment is 2^4 = 16. Header.kernarg_segment_alignment = 4; Header.group_segment_alignment = 4; Header.private_segment_alignment = 4; if (Version.Major >= 10) { if (STI->getFeatureBits().test(FeatureWavefrontSize32)) { Header.wavefront_size = 5; Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; } Header.compute_pgm_resource_registers |= S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) | S_00B848_MEM_ORDERED(1); } } amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor( const MCSubtargetInfo *STI) { IsaVersion Version = getIsaVersion(STI->getCPU()); amdhsa::kernel_descriptor_t KD; memset(&KD, 0, sizeof(KD)); AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); if (Version.Major >= 10) { AMDHSA_BITS_SET(KD.kernel_code_properties, amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32, STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0); AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE, STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1); AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1); } if (AMDGPU::isGFX90A(*STI)) { AMDHSA_BITS_SET(KD.compute_pgm_rsrc3, amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT, STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0); } return KD; } bool isGroupSegment(const GlobalValue *GV) { return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; } bool isGlobalSegment(const GlobalValue *GV) { return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; } bool isReadOnlySegment(const GlobalValue *GV) { unsigned AS = GV->getAddressSpace(); return AS == AMDGPUAS::CONSTANT_ADDRESS || AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT; } bool shouldEmitConstantsToTextSection(const Triple &TT) { return TT.getArch() == Triple::r600; } int getIntegerAttribute(const Function &F, StringRef Name, int Default) { Attribute A = F.getFnAttribute(Name); int Result = Default; if (A.isStringAttribute()) { StringRef Str = A.getValueAsString(); if (Str.getAsInteger(0, Result)) { LLVMContext &Ctx = F.getContext(); Ctx.emitError("can't parse integer attribute " + Name); } } return Result; } std::pair getIntegerPairAttribute(const Function &F, StringRef Name, std::pair Default, bool OnlyFirstRequired) { Attribute A = F.getFnAttribute(Name); if (!A.isStringAttribute()) return Default; LLVMContext &Ctx = F.getContext(); std::pair Ints = Default; std::pair Strs = A.getValueAsString().split(','); if (Strs.first.trim().getAsInteger(0, Ints.first)) { Ctx.emitError("can't parse first integer attribute " + Name); return Default; } if (Strs.second.trim().getAsInteger(0, Ints.second)) { if (!OnlyFirstRequired || !Strs.second.trim().empty()) { Ctx.emitError("can't parse second integer attribute " + Name); return Default; } } return Ints; } unsigned getVmcntBitMask(const IsaVersion &Version) { unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; if (Version.Major < 9) return VmcntLo; unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); return VmcntLo | VmcntHi; } unsigned getExpcntBitMask(const IsaVersion &Version) { return (1 << getExpcntBitWidth()) - 1; } unsigned getLgkmcntBitMask(const IsaVersion &Version) { return (1 << getLgkmcntBitWidth(Version.Major)) - 1; } unsigned getWaitcntBitMask(const IsaVersion &Version) { unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), getLgkmcntBitWidth(Version.Major)); unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; if (Version.Major < 9) return Waitcnt; unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); return Waitcnt | VmcntHi; } unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { unsigned VmcntLo = unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); if (Version.Major < 9) return VmcntLo; unsigned VmcntHi = unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); VmcntHi <<= getVmcntBitWidthLo(); return VmcntLo | VmcntHi; } unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); } unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { return unpackBits(Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth(Version.Major)); } void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { Vmcnt = decodeVmcnt(Version, Waitcnt); Expcnt = decodeExpcnt(Version, Waitcnt); Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); } Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { Waitcnt Decoded; Decoded.VmCnt = decodeVmcnt(Version, Encoded); Decoded.ExpCnt = decodeExpcnt(Version, Encoded); Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); return Decoded; } unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Vmcnt) { Waitcnt = packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); if (Version.Major < 9) return Waitcnt; Vmcnt >>= getVmcntBitWidthLo(); return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); } unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Expcnt) { return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); } unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Lgkmcnt) { return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth(Version.Major)); } unsigned encodeWaitcnt(const IsaVersion &Version, unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { unsigned Waitcnt = getWaitcntBitMask(Version); Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); return Waitcnt; } unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); } //===----------------------------------------------------------------------===// // hwreg //===----------------------------------------------------------------------===// namespace Hwreg { int64_t getHwregId(const StringRef Name) { for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) { if (IdSymbolic[Id] && Name == IdSymbolic[Id]) return Id; } return ID_UNKNOWN_; } static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) { if (isSI(STI) || isCI(STI) || isVI(STI)) return ID_SYMBOLIC_FIRST_GFX9_; else if (isGFX9(STI)) return ID_SYMBOLIC_FIRST_GFX10_; else if (isGFX10(STI) && !isGFX10_BEncoding(STI)) return ID_SYMBOLIC_FIRST_GFX1030_; else return ID_SYMBOLIC_LAST_; } bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) { switch (Id) { case ID_HW_ID: return isSI(STI) || isCI(STI) || isVI(STI) || isGFX9(STI); case ID_HW_ID1: case ID_HW_ID2: return isGFX10Plus(STI); case ID_XNACK_MASK: return isGFX10(STI) && !AMDGPU::isGFX10_BEncoding(STI); default: return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) && IdSymbolic[Id]; } } bool isValidHwreg(int64_t Id) { return 0 <= Id && isUInt(Id); } bool isValidHwregOffset(int64_t Offset) { return 0 <= Offset && isUInt(Offset); } bool isValidHwregWidth(int64_t Width) { return 0 <= (Width - 1) && isUInt(Width - 1); } uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) { return (Id << ID_SHIFT_) | (Offset << OFFSET_SHIFT_) | ((Width - 1) << WIDTH_M1_SHIFT_); } StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) { return isValidHwreg(Id, STI) ? IdSymbolic[Id] : ""; } void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) { Id = (Val & ID_MASK_) >> ID_SHIFT_; Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_; Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1; } } // namespace Hwreg //===----------------------------------------------------------------------===// // exp tgt //===----------------------------------------------------------------------===// namespace Exp { struct ExpTgt { StringLiteral Name; unsigned Tgt; unsigned MaxIndex; }; static constexpr ExpTgt ExpTgtInfo[] = { {{"null"}, ET_NULL, ET_NULL_MAX_IDX}, {{"mrtz"}, ET_MRTZ, ET_MRTZ_MAX_IDX}, {{"prim"}, ET_PRIM, ET_PRIM_MAX_IDX}, {{"mrt"}, ET_MRT0, ET_MRT_MAX_IDX}, {{"pos"}, ET_POS0, ET_POS_MAX_IDX}, {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX}, }; bool getTgtName(unsigned Id, StringRef &Name, int &Index) { for (const ExpTgt &Val : ExpTgtInfo) { if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) { Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt); Name = Val.Name; return true; } } return false; } unsigned getTgtId(const StringRef Name) { for (const ExpTgt &Val : ExpTgtInfo) { if (Val.MaxIndex == 0 && Name == Val.Name) return Val.Tgt; if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) { StringRef Suffix = Name.drop_front(Val.Name.size()); unsigned Id; if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex) return ET_INVALID; // Disable leading zeroes if (Suffix.size() > 1 && Suffix[0] == '0') return ET_INVALID; return Val.Tgt + Id; } } return ET_INVALID; } bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) { return (Id != ET_POS4 && Id != ET_PRIM) || isGFX10Plus(STI); } } // namespace Exp //===----------------------------------------------------------------------===// // MTBUF Format //===----------------------------------------------------------------------===// namespace MTBUFFormat { int64_t getDfmt(const StringRef Name) { for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) { if (Name == DfmtSymbolic[Id]) return Id; } return DFMT_UNDEF; } StringRef getDfmtName(unsigned Id) { assert(Id <= DFMT_MAX); return DfmtSymbolic[Id]; } static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) { if (isSI(STI) || isCI(STI)) return NfmtSymbolicSICI; if (isVI(STI) || isGFX9(STI)) return NfmtSymbolicVI; return NfmtSymbolicGFX10; } int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) { auto lookupTable = getNfmtLookupTable(STI); for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) { if (Name == lookupTable[Id]) return Id; } return NFMT_UNDEF; } StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) { assert(Id <= NFMT_MAX); return getNfmtLookupTable(STI)[Id]; } bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) { unsigned Dfmt; unsigned Nfmt; decodeDfmtNfmt(Id, Dfmt, Nfmt); return isValidNfmt(Nfmt, STI); } bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) { return !getNfmtName(Id, STI).empty(); } int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) { return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT); } void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) { Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK; Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK; } int64_t getUnifiedFormat(const StringRef Name) { for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) { if (Name == UfmtSymbolic[Id]) return Id; } return UFMT_UNDEF; } StringRef getUnifiedFormatName(unsigned Id) { return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : ""; } bool isValidUnifiedFormat(unsigned Id) { return Id <= UFMT_LAST; } int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) { int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt); for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) { if (Fmt == DfmtNfmt2UFmt[Id]) return Id; } return UFMT_UNDEF; } bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) { return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX); } unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) { if (isGFX10Plus(STI)) return UFMT_DEFAULT; return DFMT_NFMT_DEFAULT; } } // namespace MTBUFFormat //===----------------------------------------------------------------------===// // SendMsg //===----------------------------------------------------------------------===// namespace SendMsg { int64_t getMsgId(const StringRef Name) { for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) { if (IdSymbolic[i] && Name == IdSymbolic[i]) return i; } return ID_UNKNOWN_; } bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) { if (Strict) { switch (MsgId) { case ID_SAVEWAVE: return isVI(STI) || isGFX9Plus(STI); case ID_STALL_WAVE_GEN: case ID_HALT_WAVES: case ID_ORDERED_PS_DONE: case ID_GS_ALLOC_REQ: case ID_GET_DOORBELL: return isGFX9Plus(STI); case ID_EARLY_PRIM_DEALLOC: return isGFX9(STI); case ID_GET_DDID: return isGFX10Plus(STI); default: return 0 <= MsgId && MsgId < ID_GAPS_LAST_ && IdSymbolic[MsgId]; } } else { return 0 <= MsgId && isUInt(MsgId); } } StringRef getMsgName(int64_t MsgId) { assert(0 <= MsgId && MsgId < ID_GAPS_LAST_); return IdSymbolic[MsgId]; } int64_t getMsgOpId(int64_t MsgId, const StringRef Name) { const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic; const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_; const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_; for (int i = F; i < L; ++i) { if (Name == S[i]) { return i; } } return OP_UNKNOWN_; } bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI, bool Strict) { assert(isValidMsgId(MsgId, STI, Strict)); if (!Strict) return 0 <= OpId && isUInt(OpId); switch(MsgId) { case ID_GS: return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP; case ID_GS_DONE: return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_; case ID_SYSMSG: return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_; default: return OpId == OP_NONE_; } } StringRef getMsgOpName(int64_t MsgId, int64_t OpId) { assert(msgRequiresOp(MsgId)); return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId]; } bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, const MCSubtargetInfo &STI, bool Strict) { assert(isValidMsgOp(MsgId, OpId, STI, Strict)); if (!Strict) return 0 <= StreamId && isUInt(StreamId); switch(MsgId) { case ID_GS: return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_; case ID_GS_DONE: return (OpId == OP_GS_NOP)? (StreamId == STREAM_ID_NONE_) : (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_); default: return StreamId == STREAM_ID_NONE_; } } bool msgRequiresOp(int64_t MsgId) { return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG; } bool msgSupportsStream(int64_t MsgId, int64_t OpId) { return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP; } void decodeMsg(unsigned Val, uint16_t &MsgId, uint16_t &OpId, uint16_t &StreamId) { MsgId = Val & ID_MASK_; OpId = (Val & OP_MASK_) >> OP_SHIFT_; StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_; } uint64_t encodeMsg(uint64_t MsgId, uint64_t OpId, uint64_t StreamId) { return (MsgId << ID_SHIFT_) | (OpId << OP_SHIFT_) | (StreamId << STREAM_ID_SHIFT_); } } // namespace SendMsg //===----------------------------------------------------------------------===// // //===----------------------------------------------------------------------===// unsigned getInitialPSInputAddr(const Function &F) { return getIntegerAttribute(F, "InitialPSInputAddr", 0); } bool getHasColorExport(const Function &F) { // As a safe default always respond as if PS has color exports. return getIntegerAttribute( F, "amdgpu-color-export", F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0; } bool getHasDepthExport(const Function &F) { return getIntegerAttribute(F, "amdgpu-depth-export", 0) != 0; } bool isShader(CallingConv::ID cc) { switch(cc) { case CallingConv::AMDGPU_VS: case CallingConv::AMDGPU_LS: case CallingConv::AMDGPU_HS: case CallingConv::AMDGPU_ES: case CallingConv::AMDGPU_GS: case CallingConv::AMDGPU_PS: case CallingConv::AMDGPU_CS: return true; default: return false; } } bool isGraphics(CallingConv::ID cc) { return isShader(cc) || cc == CallingConv::AMDGPU_Gfx; } bool isCompute(CallingConv::ID cc) { return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS; } bool isEntryFunctionCC(CallingConv::ID CC) { switch (CC) { case CallingConv::AMDGPU_KERNEL: case CallingConv::SPIR_KERNEL: case CallingConv::AMDGPU_VS: case CallingConv::AMDGPU_GS: case CallingConv::AMDGPU_PS: case CallingConv::AMDGPU_CS: case CallingConv::AMDGPU_ES: case CallingConv::AMDGPU_HS: case CallingConv::AMDGPU_LS: return true; default: return false; } } bool isModuleEntryFunctionCC(CallingConv::ID CC) { switch (CC) { case CallingConv::AMDGPU_Gfx: return true; default: return isEntryFunctionCC(CC); } } bool hasXNACK(const MCSubtargetInfo &STI) { return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; } bool hasSRAMECC(const MCSubtargetInfo &STI) { return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; } bool hasMIMG_R128(const MCSubtargetInfo &STI) { return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16]; } bool hasGFX10A16(const MCSubtargetInfo &STI) { return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16]; } bool hasG16(const MCSubtargetInfo &STI) { return STI.getFeatureBits()[AMDGPU::FeatureG16]; } bool hasPackedD16(const MCSubtargetInfo &STI) { return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; } bool isSI(const MCSubtargetInfo &STI) { return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; } bool isCI(const MCSubtargetInfo &STI) { return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; } bool isVI(const MCSubtargetInfo &STI) { return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; } bool isGFX9(const MCSubtargetInfo &STI) { return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; } bool isGFX9Plus(const MCSubtargetInfo &STI) { return isGFX9(STI) || isGFX10Plus(STI); } bool isGFX10(const MCSubtargetInfo &STI) { return STI.getFeatureBits()[AMDGPU::FeatureGFX10]; } bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); } bool isGCN3Encoding(const MCSubtargetInfo &STI) { return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; } bool isGFX10_AEncoding(const MCSubtargetInfo &STI) { return STI.getFeatureBits()[AMDGPU::FeatureGFX10_AEncoding]; } bool isGFX10_BEncoding(const MCSubtargetInfo &STI) { return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]; } bool hasGFX10_3Insts(const MCSubtargetInfo &STI) { return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts]; } bool isGFX90A(const MCSubtargetInfo &STI) { return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]; } bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI) { return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch]; } bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0); return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || Reg == AMDGPU::SCC; } bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { if (*R == Reg1) return true; } return false; } #define MAP_REG2REG \ using namespace AMDGPU; \ switch(Reg) { \ default: return Reg; \ CASE_CI_VI(FLAT_SCR) \ CASE_CI_VI(FLAT_SCR_LO) \ CASE_CI_VI(FLAT_SCR_HI) \ CASE_VI_GFX9PLUS(TTMP0) \ CASE_VI_GFX9PLUS(TTMP1) \ CASE_VI_GFX9PLUS(TTMP2) \ CASE_VI_GFX9PLUS(TTMP3) \ CASE_VI_GFX9PLUS(TTMP4) \ CASE_VI_GFX9PLUS(TTMP5) \ CASE_VI_GFX9PLUS(TTMP6) \ CASE_VI_GFX9PLUS(TTMP7) \ CASE_VI_GFX9PLUS(TTMP8) \ CASE_VI_GFX9PLUS(TTMP9) \ CASE_VI_GFX9PLUS(TTMP10) \ CASE_VI_GFX9PLUS(TTMP11) \ CASE_VI_GFX9PLUS(TTMP12) \ CASE_VI_GFX9PLUS(TTMP13) \ CASE_VI_GFX9PLUS(TTMP14) \ CASE_VI_GFX9PLUS(TTMP15) \ CASE_VI_GFX9PLUS(TTMP0_TTMP1) \ CASE_VI_GFX9PLUS(TTMP2_TTMP3) \ CASE_VI_GFX9PLUS(TTMP4_TTMP5) \ CASE_VI_GFX9PLUS(TTMP6_TTMP7) \ CASE_VI_GFX9PLUS(TTMP8_TTMP9) \ CASE_VI_GFX9PLUS(TTMP10_TTMP11) \ CASE_VI_GFX9PLUS(TTMP12_TTMP13) \ CASE_VI_GFX9PLUS(TTMP14_TTMP15) \ CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \ CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \ CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \ CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \ CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ } #define CASE_CI_VI(node) \ assert(!isSI(STI)); \ case node: return isCI(STI) ? node##_ci : node##_vi; #define CASE_VI_GFX9PLUS(node) \ case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi; unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { if (STI.getTargetTriple().getArch() == Triple::r600) return Reg; MAP_REG2REG } #undef CASE_CI_VI #undef CASE_VI_GFX9PLUS #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node; unsigned mc2PseudoReg(unsigned Reg) { MAP_REG2REG } #undef CASE_CI_VI #undef CASE_VI_GFX9PLUS #undef MAP_REG2REG bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { assert(OpNo < Desc.NumOperands); unsigned OpType = Desc.OpInfo[OpNo].OperandType; return OpType >= AMDGPU::OPERAND_SRC_FIRST && OpType <= AMDGPU::OPERAND_SRC_LAST; } bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { assert(OpNo < Desc.NumOperands); unsigned OpType = Desc.OpInfo[OpNo].OperandType; switch (OpType) { case AMDGPU::OPERAND_REG_IMM_FP32: case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED: case AMDGPU::OPERAND_REG_IMM_FP64: case AMDGPU::OPERAND_REG_IMM_FP16: case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED: case AMDGPU::OPERAND_REG_IMM_V2FP16: case AMDGPU::OPERAND_REG_IMM_V2INT16: case AMDGPU::OPERAND_REG_INLINE_C_FP32: case AMDGPU::OPERAND_REG_INLINE_C_FP64: case AMDGPU::OPERAND_REG_INLINE_C_FP16: case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: case AMDGPU::OPERAND_REG_INLINE_AC_FP32: case AMDGPU::OPERAND_REG_INLINE_AC_FP16: case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: case AMDGPU::OPERAND_REG_IMM_V2FP32: case AMDGPU::OPERAND_REG_INLINE_C_V2FP32: case AMDGPU::OPERAND_REG_INLINE_AC_FP64: return true; default: return false; } } bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { assert(OpNo < Desc.NumOperands); unsigned OpType = Desc.OpInfo[OpNo].OperandType; return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; } // Avoid using MCRegisterClass::getSize, since that function will go away // (move from MC* level to Target* level). Return size in bits. unsigned getRegBitWidth(unsigned RCID) { switch (RCID) { case AMDGPU::VGPR_LO16RegClassID: case AMDGPU::VGPR_HI16RegClassID: case AMDGPU::SGPR_LO16RegClassID: case AMDGPU::AGPR_LO16RegClassID: return 16; case AMDGPU::SGPR_32RegClassID: case AMDGPU::VGPR_32RegClassID: case AMDGPU::VRegOrLds_32RegClassID: case AMDGPU::AGPR_32RegClassID: case AMDGPU::VS_32RegClassID: case AMDGPU::AV_32RegClassID: case AMDGPU::SReg_32RegClassID: case AMDGPU::SReg_32_XM0RegClassID: case AMDGPU::SRegOrLds_32RegClassID: return 32; case AMDGPU::SGPR_64RegClassID: case AMDGPU::VS_64RegClassID: case AMDGPU::SReg_64RegClassID: case AMDGPU::VReg_64RegClassID: case AMDGPU::AReg_64RegClassID: case AMDGPU::SReg_64_XEXECRegClassID: case AMDGPU::VReg_64_Align2RegClassID: case AMDGPU::AReg_64_Align2RegClassID: case AMDGPU::AV_64RegClassID: case AMDGPU::AV_64_Align2RegClassID: return 64; case AMDGPU::SGPR_96RegClassID: case AMDGPU::SReg_96RegClassID: case AMDGPU::VReg_96RegClassID: case AMDGPU::AReg_96RegClassID: case AMDGPU::VReg_96_Align2RegClassID: case AMDGPU::AReg_96_Align2RegClassID: case AMDGPU::AV_96RegClassID: case AMDGPU::AV_96_Align2RegClassID: return 96; case AMDGPU::SGPR_128RegClassID: case AMDGPU::SReg_128RegClassID: case AMDGPU::VReg_128RegClassID: case AMDGPU::AReg_128RegClassID: case AMDGPU::VReg_128_Align2RegClassID: case AMDGPU::AReg_128_Align2RegClassID: case AMDGPU::AV_128RegClassID: case AMDGPU::AV_128_Align2RegClassID: return 128; case AMDGPU::SGPR_160RegClassID: case AMDGPU::SReg_160RegClassID: case AMDGPU::VReg_160RegClassID: case AMDGPU::AReg_160RegClassID: case AMDGPU::VReg_160_Align2RegClassID: case AMDGPU::AReg_160_Align2RegClassID: case AMDGPU::AV_160RegClassID: case AMDGPU::AV_160_Align2RegClassID: return 160; case AMDGPU::SGPR_192RegClassID: case AMDGPU::SReg_192RegClassID: case AMDGPU::VReg_192RegClassID: case AMDGPU::AReg_192RegClassID: case AMDGPU::VReg_192_Align2RegClassID: case AMDGPU::AReg_192_Align2RegClassID: case AMDGPU::AV_192RegClassID: case AMDGPU::AV_192_Align2RegClassID: return 192; case AMDGPU::SGPR_224RegClassID: case AMDGPU::SReg_224RegClassID: case AMDGPU::VReg_224RegClassID: case AMDGPU::AReg_224RegClassID: case AMDGPU::VReg_224_Align2RegClassID: case AMDGPU::AReg_224_Align2RegClassID: case AMDGPU::AV_224RegClassID: case AMDGPU::AV_224_Align2RegClassID: return 224; case AMDGPU::SGPR_256RegClassID: case AMDGPU::SReg_256RegClassID: case AMDGPU::VReg_256RegClassID: case AMDGPU::AReg_256RegClassID: case AMDGPU::VReg_256_Align2RegClassID: case AMDGPU::AReg_256_Align2RegClassID: case AMDGPU::AV_256RegClassID: case AMDGPU::AV_256_Align2RegClassID: return 256; case AMDGPU::SGPR_512RegClassID: case AMDGPU::SReg_512RegClassID: case AMDGPU::VReg_512RegClassID: case AMDGPU::AReg_512RegClassID: case AMDGPU::VReg_512_Align2RegClassID: case AMDGPU::AReg_512_Align2RegClassID: case AMDGPU::AV_512RegClassID: case AMDGPU::AV_512_Align2RegClassID: return 512; case AMDGPU::SGPR_1024RegClassID: case AMDGPU::SReg_1024RegClassID: case AMDGPU::VReg_1024RegClassID: case AMDGPU::AReg_1024RegClassID: case AMDGPU::VReg_1024_Align2RegClassID: case AMDGPU::AReg_1024_Align2RegClassID: case AMDGPU::AV_1024RegClassID: case AMDGPU::AV_1024_Align2RegClassID: return 1024; default: llvm_unreachable("Unexpected register class"); } } unsigned getRegBitWidth(const MCRegisterClass &RC) { return getRegBitWidth(RC.getID()); } unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, unsigned OpNo) { assert(OpNo < Desc.NumOperands); unsigned RCID = Desc.OpInfo[OpNo].RegClass; return getRegBitWidth(MRI->getRegClass(RCID)) / 8; } bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { if (isInlinableIntLiteral(Literal)) return true; uint64_t Val = static_cast(Literal); return (Val == DoubleToBits(0.0)) || (Val == DoubleToBits(1.0)) || (Val == DoubleToBits(-1.0)) || (Val == DoubleToBits(0.5)) || (Val == DoubleToBits(-0.5)) || (Val == DoubleToBits(2.0)) || (Val == DoubleToBits(-2.0)) || (Val == DoubleToBits(4.0)) || (Val == DoubleToBits(-4.0)) || (Val == 0x3fc45f306dc9c882 && HasInv2Pi); } bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { if (isInlinableIntLiteral(Literal)) return true; // The actual type of the operand does not seem to matter as long // as the bits match one of the inline immediate values. For example: // // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, // so it is a legal inline immediate. // // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in // floating-point, so it is a legal inline immediate. uint32_t Val = static_cast(Literal); return (Val == FloatToBits(0.0f)) || (Val == FloatToBits(1.0f)) || (Val == FloatToBits(-1.0f)) || (Val == FloatToBits(0.5f)) || (Val == FloatToBits(-0.5f)) || (Val == FloatToBits(2.0f)) || (Val == FloatToBits(-2.0f)) || (Val == FloatToBits(4.0f)) || (Val == FloatToBits(-4.0f)) || (Val == 0x3e22f983 && HasInv2Pi); } bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { if (!HasInv2Pi) return false; if (isInlinableIntLiteral(Literal)) return true; uint16_t Val = static_cast(Literal); return Val == 0x3C00 || // 1.0 Val == 0xBC00 || // -1.0 Val == 0x3800 || // 0.5 Val == 0xB800 || // -0.5 Val == 0x4000 || // 2.0 Val == 0xC000 || // -2.0 Val == 0x4400 || // 4.0 Val == 0xC400 || // -4.0 Val == 0x3118; // 1/2pi } bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { assert(HasInv2Pi); if (isInt<16>(Literal) || isUInt<16>(Literal)) { int16_t Trunc = static_cast(Literal); return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi); } if (!(Literal & 0xffff)) return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi); int16_t Lo16 = static_cast(Literal); int16_t Hi16 = static_cast(Literal >> 16); return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); } bool isInlinableIntLiteralV216(int32_t Literal) { int16_t Lo16 = static_cast(Literal); if (isInt<16>(Literal) || isUInt<16>(Literal)) return isInlinableIntLiteral(Lo16); int16_t Hi16 = static_cast(Literal >> 16); if (!(Literal & 0xffff)) return isInlinableIntLiteral(Hi16); return Lo16 == Hi16 && isInlinableIntLiteral(Lo16); } bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) { assert(HasInv2Pi); int16_t Lo16 = static_cast(Literal); if (isInt<16>(Literal) || isUInt<16>(Literal)) return true; int16_t Hi16 = static_cast(Literal >> 16); if (!(Literal & 0xffff)) return true; return Lo16 == Hi16; } bool isArgPassedInSGPR(const Argument *A) { const Function *F = A->getParent(); // Arguments to compute shaders are never a source of divergence. CallingConv::ID CC = F->getCallingConv(); switch (CC) { case CallingConv::AMDGPU_KERNEL: case CallingConv::SPIR_KERNEL: return true; case CallingConv::AMDGPU_VS: case CallingConv::AMDGPU_LS: case CallingConv::AMDGPU_HS: case CallingConv::AMDGPU_ES: case CallingConv::AMDGPU_GS: case CallingConv::AMDGPU_PS: case CallingConv::AMDGPU_CS: case CallingConv::AMDGPU_Gfx: // For non-compute shaders, SGPR inputs are marked with either inreg or byval. // Everything else is in VGPRs. return F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::InReg) || F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::ByVal); default: // TODO: Should calls support inreg for SGPR inputs? return false; } } static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) { return isGCN3Encoding(ST) || isGFX10Plus(ST); } static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) { return isGFX9Plus(ST); } bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST, int64_t EncodedOffset) { return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset); } bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST, int64_t EncodedOffset, bool IsBuffer) { return !IsBuffer && hasSMRDSignedImmOffset(ST) && isInt<21>(EncodedOffset); } static bool isDwordAligned(uint64_t ByteOffset) { return (ByteOffset & 3) == 0; } uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST, uint64_t ByteOffset) { if (hasSMEMByteOffset(ST)) return ByteOffset; assert(isDwordAligned(ByteOffset)); return ByteOffset >> 2; } Optional getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset, bool IsBuffer) { // The signed version is always a byte offset. if (!IsBuffer && hasSMRDSignedImmOffset(ST)) { assert(hasSMEMByteOffset(ST)); return isInt<20>(ByteOffset) ? Optional(ByteOffset) : None; } if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST)) return None; int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset) ? Optional(EncodedOffset) : None; } Optional getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST, int64_t ByteOffset) { if (!isCI(ST) || !isDwordAligned(ByteOffset)) return None; int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); return isUInt<32>(EncodedOffset) ? Optional(EncodedOffset) : None; } unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) { // Address offset is 12-bit signed for GFX10, 13-bit for GFX9. if (AMDGPU::isGFX10(ST)) return Signed ? 12 : 11; return Signed ? 13 : 12; } // Given Imm, split it into the values to put into the SOffset and ImmOffset // fields in an MUBUF instruction. Return false if it is not possible (due to a // hardware bug needing a workaround). // // The required alignment ensures that individual address components remain // aligned if they are aligned to begin with. It also ensures that additional // offsets within the given alignment can be added to the resulting ImmOffset. bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, const GCNSubtarget *Subtarget, Align Alignment) { const uint32_t MaxImm = alignDown(4095, Alignment.value()); uint32_t Overflow = 0; if (Imm > MaxImm) { if (Imm <= MaxImm + 64) { // Use an SOffset inline constant for 4..64 Overflow = Imm - MaxImm; Imm = MaxImm; } else { // Try to keep the same value in SOffset for adjacent loads, so that // the corresponding register contents can be re-used. // // Load values with all low-bits (except for alignment bits) set into // SOffset, so that a larger range of values can be covered using // s_movk_i32. // // Atomic operations fail to work correctly when individual address // components are unaligned, even if their sum is aligned. uint32_t High = (Imm + Alignment.value()) & ~4095; uint32_t Low = (Imm + Alignment.value()) & 4095; Imm = Low; Overflow = High - Alignment.value(); } } // There is a hardware bug in SI and CI which prevents address clamping in // MUBUF instructions from working correctly with SOffsets. The immediate // offset is unaffected. if (Overflow > 0 && Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) return false; ImmOffset = Imm; SOffset = Overflow; return true; } SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) { *this = getDefaultForCallingConv(F.getCallingConv()); StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString(); if (!IEEEAttr.empty()) IEEE = IEEEAttr == "true"; StringRef DX10ClampAttr = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString(); if (!DX10ClampAttr.empty()) DX10Clamp = DX10ClampAttr == "true"; StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString(); if (!DenormF32Attr.empty()) { DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr); FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; } StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString(); if (!DenormAttr.empty()) { DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr); if (DenormF32Attr.empty()) { FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; } FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE; FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE; } } namespace { struct SourceOfDivergence { unsigned Intr; }; const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); #define GET_SourcesOfDivergence_IMPL #define GET_Gfx9BufferFormat_IMPL #define GET_Gfx10PlusBufferFormat_IMPL #include "AMDGPUGenSearchableTables.inc" } // end anonymous namespace bool isIntrinsicSourceOfDivergence(unsigned IntrID) { return lookupSourceOfDivergence(IntrID); } const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp, uint8_t NumComponents, uint8_t NumFormat, const MCSubtargetInfo &STI) { return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents, NumFormat) : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat); } const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format, const MCSubtargetInfo &STI) { return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format) : getGfx9BufferFormatInfo(Format); } } // namespace AMDGPU raw_ostream &operator<<(raw_ostream &OS, const AMDGPU::IsaInfo::TargetIDSetting S) { switch (S) { case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported): OS << "Unsupported"; break; case (AMDGPU::IsaInfo::TargetIDSetting::Any): OS << "Any"; break; case (AMDGPU::IsaInfo::TargetIDSetting::Off): OS << "Off"; break; case (AMDGPU::IsaInfo::TargetIDSetting::On): OS << "On"; break; } return OS; } } // namespace llvm