//===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// Armv6 introduced instructions to perform 32-bit SIMD operations. The /// purpose of this pass is do some IR pattern matching to create ACLE /// DSP intrinsics, which map on these 32-bit SIMD operations. /// This pass runs only when unaligned accesses is supported/enabled. // //===----------------------------------------------------------------------===// #include "llvm/ADT/Statistic.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/LoopAccessAnalysis.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/NoFolder.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Pass.h" #include "llvm/PassRegistry.h" #include "llvm/PassSupport.h" #include "llvm/Support/Debug.h" #include "llvm/IR/PatternMatch.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "ARM.h" #include "ARMSubtarget.h" using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "arm-parallel-dsp" STATISTIC(NumSMLAD , "Number of smlad instructions generated"); static cl::opt DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), cl::desc("Disable the ARM Parallel DSP pass")); namespace { struct OpChain; struct BinOpChain; class Reduction; using OpChainList = SmallVector, 8>; using ReductionList = SmallVector; using ValueList = SmallVector; using MemInstList = SmallVector; using PMACPair = std::pair; using PMACPairList = SmallVector; using Instructions = SmallVector; using MemLocList = SmallVector; struct OpChain { Instruction *Root; ValueList AllValues; MemInstList VecLd; // List of all load instructions. MemInstList Loads; bool ReadOnly = true; OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { } virtual ~OpChain() = default; void PopulateLoads() { for (auto *V : AllValues) { if (auto *Ld = dyn_cast(V)) Loads.push_back(Ld); } } unsigned size() const { return AllValues.size(); } }; // 'BinOpChain' holds the multiplication instructions that are candidates // for parallel execution. struct BinOpChain : public OpChain { ValueList LHS; // List of all (narrow) left hand operands. ValueList RHS; // List of all (narrow) right hand operands. bool Exchange = false; BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) : OpChain(I, lhs), LHS(lhs), RHS(rhs) { for (auto *V : RHS) AllValues.push_back(V); } bool AreSymmetrical(BinOpChain *Other); }; /// Represent a sequence of multiply-accumulate operations with the aim to /// perform the multiplications in parallel. class Reduction { Instruction *Root = nullptr; Value *Acc = nullptr; OpChainList Muls; PMACPairList MulPairs; SmallPtrSet Adds; public: Reduction() = delete; Reduction (Instruction *Add) : Root(Add) { } /// Record an Add instruction that is a part of the this reduction. void InsertAdd(Instruction *I) { Adds.insert(I); } /// Record a BinOpChain, rooted at a Mul instruction, that is a part of /// this reduction. void InsertMul(Instruction *I, ValueList &LHS, ValueList &RHS) { Muls.push_back(make_unique(I, LHS, RHS)); } /// Add the incoming accumulator value, returns true if a value had not /// already been added. Returning false signals to the user that this /// reduction already has a value to initialise the accumulator. bool InsertAcc(Value *V) { if (Acc) return false; Acc = V; return true; } /// Set two BinOpChains, rooted at muls, that can be executed as a single /// parallel operation. void AddMulPair(BinOpChain *Mul0, BinOpChain *Mul1) { MulPairs.push_back(std::make_pair(Mul0, Mul1)); } /// Return true if enough mul operations are found that can be executed in /// parallel. bool CreateParallelPairs(); /// Return the add instruction which is the root of the reduction. Instruction *getRoot() { return Root; } /// Return the incoming value to be accumulated. This maybe null. Value *getAccumulator() { return Acc; } /// Return the set of adds that comprise the reduction. SmallPtrSetImpl &getAdds() { return Adds; } /// Return the BinOpChain, rooted at mul instruction, that comprise the /// the reduction. OpChainList &getMuls() { return Muls; } /// Return the BinOpChain, rooted at mul instructions, that have been /// paired for parallel execution. PMACPairList &getMulPairs() { return MulPairs; } /// To finalise, replace the uses of the root with the intrinsic call. void UpdateRoot(Instruction *SMLAD) { Root->replaceAllUsesWith(SMLAD); } }; class WidenedLoad { LoadInst *NewLd = nullptr; SmallVector Loads; public: WidenedLoad(SmallVectorImpl &Lds, LoadInst *Wide) : NewLd(Wide) { for (auto *I : Lds) Loads.push_back(I); } LoadInst *getLoad() { return NewLd; } }; class ARMParallelDSP : public LoopPass { ScalarEvolution *SE; AliasAnalysis *AA; TargetLibraryInfo *TLI; DominatorTree *DT; LoopInfo *LI; Loop *L; const DataLayout *DL; Module *M; std::map LoadPairs; SmallPtrSet OffsetLoads; std::map> WideLoads; template bool IsNarrowSequence(Value *V, ValueList &VL); bool RecordMemoryOps(BasicBlock *BB); void InsertParallelMACs(Reduction &Reduction); bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); LoadInst* CreateWideLoad(SmallVectorImpl &Loads, IntegerType *LoadTy); bool CreateParallelPairs(Reduction &R); /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate /// Dual performs two signed 16x16-bit multiplications. It adds the /// products to a 32-bit accumulate operand. Optionally, the instruction can /// exchange the halfwords of the second operand before performing the /// arithmetic. bool MatchSMLAD(Loop *L); public: static char ID; ARMParallelDSP() : LoopPass(ID) { } bool doInitialization(Loop *L, LPPassManager &LPM) override { LoadPairs.clear(); WideLoads.clear(); return true; } void getAnalysisUsage(AnalysisUsage &AU) const override { LoopPass::getAnalysisUsage(AU); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.setPreservesCFG(); } bool runOnLoop(Loop *TheLoop, LPPassManager &) override { if (DisableParallelDSP) return false; L = TheLoop; SE = &getAnalysis().getSE(); AA = &getAnalysis().getAAResults(); TLI = &getAnalysis().getTLI(); DT = &getAnalysis().getDomTree(); LI = &getAnalysis().getLoopInfo(); auto &TPC = getAnalysis(); BasicBlock *Header = TheLoop->getHeader(); if (!Header) return false; // TODO: We assume the loop header and latch to be the same block. // This is not a fundamental restriction, but lifting this would just // require more work to do the transformation and then patch up the CFG. if (Header != TheLoop->getLoopLatch()) { LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not " "running pass ARMParallelDSP\n"); return false; } if (!TheLoop->getLoopPreheader()) InsertPreheaderForLoop(L, DT, LI, nullptr, true); Function &F = *Header->getParent(); M = F.getParent(); DL = &M->getDataLayout(); auto &TM = TPC.getTM(); auto *ST = &TM.getSubtarget(F); if (!ST->allowsUnalignedMem()) { LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " "running pass ARMParallelDSP\n"); return false; } if (!ST->hasDSP()) { LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " "ARMParallelDSP\n"); return false; } if (!ST->isLittle()) { LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass " << "ARMParallelDSP\n"); return false; } LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI); LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); if (!RecordMemoryOps(Header)) { LLVM_DEBUG(dbgs() << " - No sequential loads found.\n"); return false; } bool Changes = MatchSMLAD(L); return Changes; } }; } template static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, const DataLayout &DL, ScalarEvolution &SE) { if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) return true; return false; } bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem) { if (!Ld0 || !Ld1) return false; if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) return false; LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n"; dbgs() << "Ld0:"; Ld0->dump(); dbgs() << "Ld1:"; Ld1->dump(); ); VecMem.clear(); VecMem.push_back(Ld0); VecMem.push_back(Ld1); return true; } // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP // instructions, which is set to 16. So here we should collect all i8 and i16 // narrow operations. // TODO: we currently only collect i16, and will support i8 later, so that's // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. template bool ARMParallelDSP::IsNarrowSequence(Value *V, ValueList &VL) { ConstantInt *CInt; if (match(V, m_ConstantInt(CInt))) { // TODO: if a constant is used, it needs to fit within the bit width. return false; } auto *I = dyn_cast(V); if (!I) return false; Value *Val, *LHS, *RHS; if (match(V, m_Trunc(m_Value(Val)))) { if (cast(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth) return IsNarrowSequence(Val, VL); } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) { // TODO: we need to implement sadd16/sadd8 for this, which enables to // also do the rewrite for smlad8.ll, but it is unsupported for now. return false; } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) { if (cast(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) return false; if (match(Val, m_Load(m_Value()))) { auto *Ld = cast(Val); // Check that these load could be paired. if (!LoadPairs.count(Ld) && !OffsetLoads.count(Ld)) return false; VL.push_back(Val); VL.push_back(I); return true; } } return false; } /// Iterate through the block and record base, offset pairs of loads which can /// be widened into a single load. bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) { SmallVector Loads; SmallVector Writes; // Collect loads and instruction that may write to memory. For now we only // record loads which are simple, sign-extended and have a single user. // TODO: Allow zero-extended loads. for (auto &I : *BB) { if (I.mayWriteToMemory()) Writes.push_back(&I); auto *Ld = dyn_cast(&I); if (!Ld || !Ld->isSimple() || !Ld->hasOneUse() || !isa(Ld->user_back())) continue; Loads.push_back(Ld); } using InstSet = std::set; using DepMap = std::map; DepMap RAWDeps; // Record any writes that may alias a load. const auto Size = LocationSize::unknown(); for (auto Read : Loads) { for (auto Write : Writes) { MemoryLocation ReadLoc = MemoryLocation(Read->getPointerOperand(), Size); if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc), ModRefInfo::ModRef))) continue; if (DT->dominates(Write, Read)) RAWDeps[Read].insert(Write); } } // Check whether there's not a write between the two loads which would // prevent them from being safely merged. auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) { LoadInst *Dominator = DT->dominates(Base, Offset) ? Base : Offset; LoadInst *Dominated = DT->dominates(Base, Offset) ? Offset : Base; if (RAWDeps.count(Dominated)) { InstSet &WritesBefore = RAWDeps[Dominated]; for (auto Before : WritesBefore) { // We can't move the second load backward, past a write, to merge // with the first load. if (DT->dominates(Dominator, Before)) return false; } } return true; }; // Record base, offset load pairs. for (auto *Base : Loads) { for (auto *Offset : Loads) { if (Base == Offset) continue; if (AreSequentialAccesses(Base, Offset, *DL, *SE) && SafeToPair(Base, Offset)) { LoadPairs[Base] = Offset; OffsetLoads.insert(Offset); break; } } } LLVM_DEBUG(if (!LoadPairs.empty()) { dbgs() << "Consecutive load pairs:\n"; for (auto &MapIt : LoadPairs) { LLVM_DEBUG(dbgs() << *MapIt.first << ", " << *MapIt.second << "\n"); } }); return LoadPairs.size() > 1; } // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector // multiplications. // To use SMLAD: // 1) we first need to find integer add then look for this pattern: // // acc0 = ... // ld0 = load i16 // sext0 = sext i16 %ld0 to i32 // ld1 = load i16 // sext1 = sext i16 %ld1 to i32 // mul0 = mul %sext0, %sext1 // ld2 = load i16 // sext2 = sext i16 %ld2 to i32 // ld3 = load i16 // sext3 = sext i16 %ld3 to i32 // mul1 = mul i32 %sext2, %sext3 // add0 = add i32 %mul0, %acc0 // acc1 = add i32 %add0, %mul1 // // Which can be selected to: // // ldr r0 // ldr r1 // smlad r2, r0, r1, r2 // // If constants are used instead of loads, these will need to be hoisted // out and into a register. // // If loop invariants are used instead of loads, these need to be packed // before the loop begins. // bool ARMParallelDSP::MatchSMLAD(Loop *L) { // Search recursively back through the operands to find a tree of values that // form a multiply-accumulate chain. The search records the Add and Mul // instructions that form the reduction and allows us to find a single value // to be used as the initial input to the accumlator. std::function Search = [&] (Value *V, Reduction &R) -> bool { // If we find a non-instruction, try to use it as the initial accumulator // value. This may have already been found during the search in which case // this function will return false, signaling a search fail. auto *I = dyn_cast(V); if (!I) return R.InsertAcc(V); switch (I->getOpcode()) { default: break; case Instruction::PHI: // Could be the accumulator value. return R.InsertAcc(V); case Instruction::Add: { // Adds should be adding together two muls, or another add and a mul to // be within the mac chain. One of the operands may also be the // accumulator value at which point we should stop searching. bool ValidLHS = Search(I->getOperand(0), R); bool ValidRHS = Search(I->getOperand(1), R); if (!ValidLHS && !ValidLHS) return false; else if (ValidLHS && ValidRHS) { R.InsertAdd(I); return true; } else { R.InsertAdd(I); return R.InsertAcc(I); } } case Instruction::Mul: { Value *MulOp0 = I->getOperand(0); Value *MulOp1 = I->getOperand(1); if (isa(MulOp0) && isa(MulOp1)) { ValueList LHS; ValueList RHS; if (IsNarrowSequence<16>(MulOp0, LHS) && IsNarrowSequence<16>(MulOp1, RHS)) { R.InsertMul(I, LHS, RHS); return true; } } return false; } case Instruction::SExt: return Search(I->getOperand(0), R); } return false; }; bool Changed = false; SmallPtrSet AllAdds; BasicBlock *Latch = L->getLoopLatch(); for (Instruction &I : reverse(*Latch)) { if (I.getOpcode() != Instruction::Add) continue; if (AllAdds.count(&I)) continue; const auto *Ty = I.getType(); if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) continue; Reduction R(&I); if (!Search(&I, R)) continue; if (!CreateParallelPairs(R)) continue; InsertParallelMACs(R); Changed = true; AllAdds.insert(R.getAdds().begin(), R.getAdds().end()); } return Changed; } bool ARMParallelDSP::CreateParallelPairs(Reduction &R) { // Not enough mul operations to make a pair. if (R.getMuls().size() < 2) return false; // Check that the muls operate directly upon sign extended loads. for (auto &MulChain : R.getMuls()) { // A mul has 2 operands, and a narrow op consist of sext and a load; thus // we expect at least 4 items in this operand value list. if (MulChain->size() < 4) { LLVM_DEBUG(dbgs() << "Operand list too short.\n"); return false; } MulChain->PopulateLoads(); ValueList &LHS = static_cast(MulChain.get())->LHS; ValueList &RHS = static_cast(MulChain.get())->RHS; // Use +=2 to skip over the expected extend instructions. for (unsigned i = 0, e = LHS.size(); i < e; i += 2) { if (!isa(LHS[i]) || !isa(RHS[i])) return false; } } auto CanPair = [&](Reduction &R, BinOpChain *PMul0, BinOpChain *PMul1) { if (!PMul0->AreSymmetrical(PMul1)) return false; // The first elements of each vector should be loads with sexts. If we // find that its two pairs of consecutive loads, then these can be // transformed into two wider loads and the users can be replaced with // DSP intrinsics. for (unsigned x = 0; x < PMul0->LHS.size(); x += 2) { auto *Ld0 = dyn_cast(PMul0->LHS[x]); auto *Ld1 = dyn_cast(PMul1->LHS[x]); auto *Ld2 = dyn_cast(PMul0->RHS[x]); auto *Ld3 = dyn_cast(PMul1->RHS[x]); if (!Ld0 || !Ld1 || !Ld2 || !Ld3) return false; LLVM_DEBUG(dbgs() << "Loads:\n" << " - " << *Ld0 << "\n" << " - " << *Ld1 << "\n" << " - " << *Ld2 << "\n" << " - " << *Ld3 << "\n"); if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); R.AddMulPair(PMul0, PMul1); return true; } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); PMul1->Exchange = true; R.AddMulPair(PMul0, PMul1); return true; } } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); LLVM_DEBUG(dbgs() << " and swapping muls\n"); PMul0->Exchange = true; // Only the second operand can be exchanged, so swap the muls. R.AddMulPair(PMul1, PMul0); return true; } } return false; }; OpChainList &Muls = R.getMuls(); const unsigned Elems = Muls.size(); SmallPtrSet Paired; for (unsigned i = 0; i < Elems; ++i) { BinOpChain *PMul0 = static_cast(Muls[i].get()); if (Paired.count(PMul0->Root)) continue; for (unsigned j = 0; j < Elems; ++j) { if (i == j) continue; BinOpChain *PMul1 = static_cast(Muls[j].get()); if (Paired.count(PMul1->Root)) continue; const Instruction *Mul0 = PMul0->Root; const Instruction *Mul1 = PMul1->Root; if (Mul0 == Mul1) continue; assert(PMul0 != PMul1 && "expected different chains"); if (CanPair(R, PMul0, PMul1)) { Paired.insert(Mul0); Paired.insert(Mul1); break; } } } return !R.getMulPairs().empty(); } void ARMParallelDSP::InsertParallelMACs(Reduction &R) { auto CreateSMLADCall = [&](SmallVectorImpl &VecLd0, SmallVectorImpl &VecLd1, Value *Acc, bool Exchange, Instruction *InsertAfter) { // Replace the reduction chain with an intrinsic call IntegerType *Ty = IntegerType::get(M->getContext(), 32); LoadInst *WideLd0 = WideLoads.count(VecLd0[0]) ? WideLoads[VecLd0[0]]->getLoad() : CreateWideLoad(VecLd0, Ty); LoadInst *WideLd1 = WideLoads.count(VecLd1[0]) ? WideLoads[VecLd1[0]]->getLoad() : CreateWideLoad(VecLd1, Ty); Value* Args[] = { WideLd0, WideLd1, Acc }; Function *SMLAD = nullptr; if (Exchange) SMLAD = Acc->getType()->isIntegerTy(32) ? Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); else SMLAD = Acc->getType()->isIntegerTy(32) ? Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); IRBuilder Builder(InsertAfter->getParent(), ++BasicBlock::iterator(InsertAfter)); Instruction *Call = Builder.CreateCall(SMLAD, Args); NumSMLAD++; return Call; }; Instruction *InsertAfter = R.getRoot(); Value *Acc = R.getAccumulator(); if (!Acc) Acc = ConstantInt::get(IntegerType::get(M->getContext(), 32), 0); LLVM_DEBUG(dbgs() << "Root: " << *InsertAfter << "\n" << "Acc: " << *Acc << "\n"); for (auto &Pair : R.getMulPairs()) { BinOpChain *PMul0 = Pair.first; BinOpChain *PMul1 = Pair.second; LLVM_DEBUG(dbgs() << "Muls:\n" << "- " << *PMul0->Root << "\n" << "- " << *PMul1->Root << "\n"); Acc = CreateSMLADCall(PMul0->VecLd, PMul1->VecLd, Acc, PMul1->Exchange, InsertAfter); InsertAfter = cast(Acc); } R.UpdateRoot(cast(Acc)); } LoadInst* ARMParallelDSP::CreateWideLoad(SmallVectorImpl &Loads, IntegerType *LoadTy) { assert(Loads.size() == 2 && "currently only support widening two loads"); LoadInst *Base = Loads[0]; LoadInst *Offset = Loads[1]; Instruction *BaseSExt = dyn_cast(Base->user_back()); Instruction *OffsetSExt = dyn_cast(Offset->user_back()); assert((BaseSExt && OffsetSExt) && "Loads should have a single, extending, user"); std::function MoveBefore = [&](Value *A, Value *B) -> void { if (!isa(A) || !isa(B)) return; auto *Source = cast(A); auto *Sink = cast(B); if (DT->dominates(Source, Sink) || Source->getParent() != Sink->getParent() || isa(Source) || isa(Sink)) return; Source->moveBefore(Sink); for (auto &U : Source->uses()) MoveBefore(Source, U.getUser()); }; // Insert the load at the point of the original dominating load. LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset; IRBuilder IRB(DomLoad->getParent(), ++BasicBlock::iterator(DomLoad)); // Bitcast the pointer to a wider type and create the wide load, while making // sure to maintain the original alignment as this prevents ldrd from being // generated when it could be illegal due to memory alignment. const unsigned AddrSpace = DomLoad->getPointerAddressSpace(); Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(), LoadTy->getPointerTo(AddrSpace)); LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, Base->getAlignment()); // Make sure everything is in the correct order in the basic block. MoveBefore(Base->getPointerOperand(), VecPtr); MoveBefore(VecPtr, WideLoad); // From the wide load, create two values that equal the original two loads. // Loads[0] needs trunc while Loads[1] needs a lshr and trunc. // TODO: Support big-endian as well. Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType()); BaseSExt->setOperand(0, Bottom); IntegerType *OffsetTy = cast(Offset->getType()); Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth()); Value *Top = IRB.CreateLShr(WideLoad, ShiftVal); Value *Trunc = IRB.CreateTrunc(Top, OffsetTy); OffsetSExt->setOperand(0, Trunc); WideLoads.emplace(std::make_pair(Base, make_unique(Loads, WideLoad))); return WideLoad; } // Compare the value lists in Other to this chain. bool BinOpChain::AreSymmetrical(BinOpChain *Other) { // Element-by-element comparison of Value lists returning true if they are // instructions with the same opcode or constants with the same value. auto CompareValueList = [](const ValueList &VL0, const ValueList &VL1) { if (VL0.size() != VL1.size()) { LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: " << VL0.size() << " != " << VL1.size() << "\n"); return false; } const unsigned Pairs = VL0.size(); for (unsigned i = 0; i < Pairs; ++i) { const Value *V0 = VL0[i]; const Value *V1 = VL1[i]; const auto *Inst0 = dyn_cast(V0); const auto *Inst1 = dyn_cast(V1); if (!Inst0 || !Inst1) return false; if (Inst0->isSameOperationAs(Inst1)) continue; const APInt *C0, *C1; if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1)) return false; } return true; }; return CompareValueList(LHS, Other->LHS) && CompareValueList(RHS, Other->RHS); } Pass *llvm::createARMParallelDSPPass() { return new ARMParallelDSP(); } char ARMParallelDSP::ID = 0; INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", "Transform loops to use DSP intrinsics", false, false) INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", "Transform loops to use DSP intrinsics", false, false)