//===- ARMTargetTransformInfo.h - ARM specific TTI --------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This file a TargetTransformInfo::Concept conforming object specific to the /// ARM target machine. It uses the target's detailed information to /// provide more precise answers to certain TTI queries, while letting the /// target independent and default TTI implementations handle the rest. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_ARM_ARMTARGETTRANSFORMINFO_H #define LLVM_LIB_TARGET_ARM_ARMTARGETTRANSFORMINFO_H #include "ARM.h" #include "ARMSubtarget.h" #include "ARMTargetMachine.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/CodeGen/BasicTTIImpl.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Function.h" #include "llvm/MC/SubtargetFeature.h" namespace llvm { class APInt; class ARMTargetLowering; class Instruction; class Loop; class SCEV; class ScalarEvolution; class Type; class Value; class ARMTTIImpl : public BasicTTIImplBase { using BaseT = BasicTTIImplBase; using TTI = TargetTransformInfo; friend BaseT; const ARMSubtarget *ST; const ARMTargetLowering *TLI; // Currently the following features are excluded from InlineFeatureWhitelist. // ModeThumb, FeatureNoARM, ModeSoftFloat, FeatureFP64, FeatureD32 // Depending on whether they are set or unset, different // instructions/registers are available. For example, inlining a callee with // -thumb-mode in a caller with +thumb-mode, may cause the assembler to // fail if the callee uses ARM only instructions, e.g. in inline asm. const FeatureBitset InlineFeatureWhitelist = { ARM::FeatureVFP2, ARM::FeatureVFP3, ARM::FeatureNEON, ARM::FeatureThumb2, ARM::FeatureFP16, ARM::FeatureVFP4, ARM::FeatureFPARMv8, ARM::FeatureFullFP16, ARM::FeatureFP16FML, ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM, ARM::FeatureDB, ARM::FeatureV7Clrex, ARM::FeatureAcquireRelease, ARM::FeatureSlowFPBrcc, ARM::FeaturePerfMon, ARM::FeatureTrustZone, ARM::Feature8MSecExt, ARM::FeatureCrypto, ARM::FeatureCRC, ARM::FeatureRAS, ARM::FeatureFPAO, ARM::FeatureFuseAES, ARM::FeatureZCZeroing, ARM::FeatureProfUnpredicate, ARM::FeatureSlowVGETLNi32, ARM::FeatureSlowVDUP32, ARM::FeaturePreferVMOVSR, ARM::FeaturePrefISHSTBarrier, ARM::FeatureMuxedUnits, ARM::FeatureSlowOddRegister, ARM::FeatureSlowLoadDSubreg, ARM::FeatureDontWidenVMOVS, ARM::FeatureExpandMLx, ARM::FeatureHasVMLxHazards, ARM::FeatureNEONForFPMovs, ARM::FeatureNEONForFP, ARM::FeatureCheckVLDnAlign, ARM::FeatureHasSlowFPVMLx, ARM::FeatureHasSlowFPVFMx, ARM::FeatureVMLxForwarding, ARM::FeaturePref32BitThumb, ARM::FeatureAvoidPartialCPSR, ARM::FeatureCheapPredicableCPSR, ARM::FeatureAvoidMOVsShOp, ARM::FeatureHasRetAddrStack, ARM::FeatureHasNoBranchPredictor, ARM::FeatureDSP, ARM::FeatureMP, ARM::FeatureVirtualization, ARM::FeatureMClass, ARM::FeatureRClass, ARM::FeatureAClass, ARM::FeatureNaClTrap, ARM::FeatureStrictAlign, ARM::FeatureLongCalls, ARM::FeatureExecuteOnly, ARM::FeatureReserveR9, ARM::FeatureNoMovt, ARM::FeatureNoNegativeImmediates }; const ARMSubtarget *getST() const { return ST; } const ARMTargetLowering *getTLI() const { return TLI; } public: explicit ARMTTIImpl(const ARMBaseTargetMachine *TM, const Function &F) : BaseT(TM, F.getParent()->getDataLayout()), ST(TM->getSubtargetImpl(F)), TLI(ST->getTargetLowering()) {} bool areInlineCompatible(const Function *Caller, const Function *Callee) const; bool enableInterleavedAccessVectorization() { return true; } bool shouldFavorBackedgeIndex(const Loop *L) const { if (L->getHeader()->getParent()->hasOptSize()) return false; return ST->isMClass() && ST->isThumb2() && L->getNumBlocks() == 1; } /// Floating-point computation using ARMv8 AArch32 Advanced /// SIMD instructions remains unchanged from ARMv7. Only AArch64 SIMD /// and Arm MVE are IEEE-754 compliant. bool isFPVectorizationPotentiallyUnsafe() { return !ST->isTargetDarwin() && !ST->hasMVEFloatOps(); } /// \name Scalar TTI Implementations /// @{ int getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty); using BaseT::getIntImmCost; int getIntImmCost(const APInt &Imm, Type *Ty); int getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty); /// @} /// \name Vector TTI Implementations /// @{ unsigned getNumberOfRegisters(unsigned ClassID) const { bool Vector = (ClassID == 1); if (Vector) { if (ST->hasNEON()) return 16; if (ST->hasMVEIntegerOps()) return 8; return 0; } if (ST->isThumb1Only()) return 8; return 13; } unsigned getRegisterBitWidth(bool Vector) const { if (Vector) { if (ST->hasNEON()) return 128; if (ST->hasMVEIntegerOps()) return 128; return 0; } return 32; } unsigned getMaxInterleaveFactor(unsigned VF) { return ST->getMaxInterleaveFactor(); } bool isLegalMaskedLoad(Type *DataTy, MaybeAlign Alignment); bool isLegalMaskedStore(Type *DataTy, MaybeAlign Alignment) { return isLegalMaskedLoad(DataTy, Alignment); } bool isLegalMaskedGather(Type *Ty, MaybeAlign Alignment); bool isLegalMaskedScatter(Type *Ty, MaybeAlign Alignment) { return false; } int getMemcpyCost(const Instruction *I); int getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, Type *SubTp); bool useReductionIntrinsic(unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const; bool shouldExpandReduction(const IntrinsicInst *II) const { return false; } int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, const Instruction *I = nullptr); int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, const Instruction *I = nullptr); int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index); int getAddressComputationCost(Type *Val, ScalarEvolution *SE, const SCEV *Ptr); int getArithmeticInstrCost( unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info = TTI::OK_AnyValue, TTI::OperandValueKind Op2Info = TTI::OK_AnyValue, TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None, TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None, ArrayRef Args = ArrayRef(), const Instruction *CxtI = nullptr); int getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment, unsigned AddressSpace, const Instruction *I = nullptr); int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef Indices, unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond = false, bool UseMaskForGaps = false); bool isLoweredToCall(const Function *F); bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo); bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *TLI, DominatorTree *DT, const LoopAccessInfo *LAI); void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP); bool shouldBuildLookupTablesForConstant(Constant *C) const { // In the ROPI and RWPI relocation models we can't have pointers to global // variables or functions in constant data, so don't convert switches to // lookup tables if any of the values would need relocation. if (ST->isROPI() || ST->isRWPI()) return !C->needsRelocation(); return true; } /// @} }; } // end namespace llvm #endif // LLVM_LIB_TARGET_ARM_ARMTARGETTRANSFORMINFO_H