//===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "RISCVMatInt.h" #include "MCTargetDesc/RISCVMCTargetDesc.h" #include "llvm/ADT/APInt.h" #include "llvm/Support/MathExtras.h" using namespace llvm; static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) { if (!HasRVC) return Res.size(); int Cost = 0; for (auto Instr : Res) { bool Compressed; switch (Instr.Opc) { default: llvm_unreachable("Unexpected opcode"); case RISCV::SLLI: case RISCV::SRLI: Compressed = true; break; case RISCV::ADDI: case RISCV::ADDIW: case RISCV::LUI: Compressed = isInt<6>(Instr.Imm); break; case RISCV::ADDUW: Compressed = false; break; } // Two RVC instructions take the same space as one RVI instruction, but // can take longer to execute than the single RVI instruction. Thus, we // consider that two RVC instruction are slightly more costly than one // RVI instruction. For longer sequences of RVC instructions the space // savings can be worth it, though. The costs below try to model that. if (!Compressed) Cost += 100; // Baseline cost of one RVI instruction: 100%. else Cost += 70; // 70% cost of baseline. } return Cost; } // Recursively generate a sequence for materializing an integer. static void generateInstSeqImpl(int64_t Val, const FeatureBitset &ActiveFeatures, RISCVMatInt::InstSeq &Res) { bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit]; if (isInt<32>(Val)) { // Depending on the active bits in the immediate Value v, the following // instruction sequences are emitted: // // v == 0 : ADDI // v[0,12) != 0 && v[12,32) == 0 : ADDI // v[0,12) == 0 && v[12,32) != 0 : LUI // v[0,32) != 0 : LUI+ADDI(W) int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF; int64_t Lo12 = SignExtend64<12>(Val); if (Hi20) Res.push_back(RISCVMatInt::Inst(RISCV::LUI, Hi20)); if (Lo12 || Hi20 == 0) { unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI; Res.push_back(RISCVMatInt::Inst(AddiOpc, Lo12)); } return; } assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target"); // In the worst case, for a full 64-bit constant, a sequence of 8 instructions // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emmitted. Note // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits // while the following ADDI instructions contribute up to 12 bits each. // // On the first glance, implementing this seems to be possible by simply // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the // fact that ADDI performs a sign extended addition, doing it like that would // only be possible when at most 11 bits of the ADDI instructions are used. // Using all 12 bits of the ADDI instructions, like done by GAS, actually // requires that the constant is processed starting with the least significant // bit. // // In the following, constants are processed from LSB to MSB but instruction // emission is performed from MSB to LSB by recursively calling // generateInstSeq. In each recursion, first the lowest 12 bits are removed // from the constant and the optimal shift amount, which can be greater than // 12 bits if the constant is sparse, is determined. Then, the shifted // remaining constant is processed recursively and gets emitted as soon as it // fits into 32 bits. The emission of the shifts and additions is subsequently // performed when the recursion returns. int64_t Lo12 = SignExtend64<12>(Val); int64_t Hi52 = ((uint64_t)Val + 0x800ull) >> 12; int ShiftAmount = 12 + findFirstSet((uint64_t)Hi52); Hi52 = SignExtend64(Hi52 >> (ShiftAmount - 12), 64 - ShiftAmount); // If the remaining bits don't fit in 12 bits, we might be able to reduce the // shift amount in order to use LUI which will zero the lower 12 bits. if (ShiftAmount > 12 && !isInt<12>(Hi52) && isInt<32>((uint64_t)Hi52 << 12)) { // Reduce the shift amount and add zeros to the LSBs so it will match LUI. ShiftAmount -= 12; Hi52 = (uint64_t)Hi52 << 12; } generateInstSeqImpl(Hi52, ActiveFeatures, Res); Res.push_back(RISCVMatInt::Inst(RISCV::SLLI, ShiftAmount)); if (Lo12) Res.push_back(RISCVMatInt::Inst(RISCV::ADDI, Lo12)); } namespace llvm { namespace RISCVMatInt { InstSeq generateInstSeq(int64_t Val, const FeatureBitset &ActiveFeatures) { RISCVMatInt::InstSeq Res; generateInstSeqImpl(Val, ActiveFeatures, Res); // If the constant is positive we might be able to generate a shifted constant // with no leading zeros and use a final SRLI to restore them. if (Val > 0 && Res.size() > 2) { assert(ActiveFeatures[RISCV::Feature64Bit] && "Expected RV32 to only need 2 instructions"); unsigned LeadingZeros = countLeadingZeros((uint64_t)Val); uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros; // Fill in the bits that will be shifted out with 1s. An example where this // helps is trailing one masks with 32 or more ones. This will generate // ADDI -1 and an SRLI. ShiftedVal |= maskTrailingOnes(LeadingZeros); RISCVMatInt::InstSeq TmpSeq; generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros)); // Keep the new sequence if it is an improvement. if (TmpSeq.size() < Res.size()) { Res = TmpSeq; // A 2 instruction sequence is the best we can do. if (Res.size() <= 2) return Res; } // Some cases can benefit from filling the lower bits with zeros instead. ShiftedVal &= maskTrailingZeros(LeadingZeros); TmpSeq.clear(); generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros)); // Keep the new sequence if it is an improvement. if (TmpSeq.size() < Res.size()) { Res = TmpSeq; // A 2 instruction sequence is the best we can do. if (Res.size() <= 2) return Res; } // If we have exactly 32 leading zeros and Zba, we can try using zext.w at // the end of the sequence. if (LeadingZeros == 32 && ActiveFeatures[RISCV::FeatureExtZba]) { // Try replacing upper bits with 1. uint64_t LeadingOnesVal = Val | maskLeadingOnes(LeadingZeros); TmpSeq.clear(); generateInstSeqImpl(LeadingOnesVal, ActiveFeatures, TmpSeq); TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADDUW, 0)); // Keep the new sequence if it is an improvement. if (TmpSeq.size() < Res.size()) { Res = TmpSeq; // A 2 instruction sequence is the best we can do. if (Res.size() <= 2) return Res; } } } return Res; } int getIntMatCost(const APInt &Val, unsigned Size, const FeatureBitset &ActiveFeatures, bool CompressionCost) { bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit]; bool HasRVC = CompressionCost && ActiveFeatures[RISCV::FeatureStdExtC]; int PlatRegSize = IsRV64 ? 64 : 32; // Split the constant into platform register sized chunks, and calculate cost // of each chunk. int Cost = 0; for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) { APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize); InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), ActiveFeatures); Cost += getInstSeqCost(MatSeq, HasRVC); } return std::max(1, Cost); } } // namespace RISCVMatInt } // namespace llvm