//===-- X86InstrSSE.td - SSE Instruction Set ---------------*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the X86 SSE instruction set, defining the instructions, // and properties of the instructions which are needed for code generation, // machine code emission, and analysis. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // SSE 1 & 2 Instructions Classes //===----------------------------------------------------------------------===// /// sse12_fp_scalar - SSE 1 & 2 scalar instructions class multiclass sse12_fp_scalar opc, string OpcodeStr, SDNode OpNode, RegisterClass RC, X86MemOperand x86memop, Domain d, X86FoldableSchedWrite sched, bit Is2Addr = 1> { let isCodeGenOnly = 1 in { let isCommutable = 1 in { def rr : SI, Sched<[sched]>; } def rm : SI, Sched<[sched.Folded, sched.ReadAfterFold]>; } } /// sse12_fp_scalar_int - SSE 1 & 2 scalar instructions intrinsics class multiclass sse12_fp_scalar_int opc, string OpcodeStr, SDPatternOperator OpNode, RegisterClass RC, ValueType VT, string asm, Operand memopr, ComplexPattern mem_cpat, Domain d, X86FoldableSchedWrite sched, bit Is2Addr = 1> { let hasSideEffects = 0 in { def rr_Int : SI_Int, Sched<[sched]>; let mayLoad = 1 in def rm_Int : SI_Int, Sched<[sched.Folded, sched.ReadAfterFold]>; } } /// sse12_fp_packed - SSE 1 & 2 packed instructions class multiclass sse12_fp_packed opc, string OpcodeStr, SDNode OpNode, RegisterClass RC, ValueType vt, X86MemOperand x86memop, PatFrag mem_frag, Domain d, X86FoldableSchedWrite sched, bit Is2Addr = 1> { let isCommutable = 1 in def rr : PI, Sched<[sched]>; let mayLoad = 1 in def rm : PI, Sched<[sched.Folded, sched.ReadAfterFold]>; } /// sse12_fp_packed_logical_rm - SSE 1 & 2 packed instructions class multiclass sse12_fp_packed_logical_rm opc, RegisterClass RC, Domain d, string OpcodeStr, X86MemOperand x86memop, X86FoldableSchedWrite sched, list pat_rr, list pat_rm, bit Is2Addr = 1> { let isCommutable = 1, hasSideEffects = 0 in def rr : PI, Sched<[sched]>; let hasSideEffects = 0, mayLoad = 1 in def rm : PI, Sched<[sched.Folded, sched.ReadAfterFold]>; } // Alias instructions that map fld0 to xorps for sse or vxorps for avx. // This is expanded by ExpandPostRAPseudos. let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, isPseudo = 1, SchedRW = [WriteZero] in { def FsFLD0SS : I<0, Pseudo, (outs FR32:$dst), (ins), "", [(set FR32:$dst, fp32imm0)]>, Requires<[HasSSE1, NoAVX512]>; def FsFLD0SD : I<0, Pseudo, (outs FR64:$dst), (ins), "", [(set FR64:$dst, fp64imm0)]>, Requires<[HasSSE2, NoAVX512]>; def FsFLD0F128 : I<0, Pseudo, (outs VR128:$dst), (ins), "", [(set VR128:$dst, fp128imm0)]>, Requires<[HasSSE1, NoAVX512]>; } //===----------------------------------------------------------------------===// // AVX & SSE - Zero/One Vectors //===----------------------------------------------------------------------===// // Alias instruction that maps zero vector to pxor / xorp* for sse. // This is expanded by ExpandPostRAPseudos to an xorps / vxorps, and then // swizzled by ExecutionDomainFix to pxor. // We set canFoldAsLoad because this can be converted to a constant-pool // load of an all-zeros value if folding it would be beneficial. let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, isPseudo = 1, Predicates = [NoAVX512], SchedRW = [WriteZero] in { def V_SET0 : I<0, Pseudo, (outs VR128:$dst), (ins), "", [(set VR128:$dst, (v4f32 immAllZerosV))]>; } let Predicates = [NoAVX512] in { def : Pat<(v16i8 immAllZerosV), (V_SET0)>; def : Pat<(v8i16 immAllZerosV), (V_SET0)>; def : Pat<(v4i32 immAllZerosV), (V_SET0)>; def : Pat<(v2i64 immAllZerosV), (V_SET0)>; def : Pat<(v2f64 immAllZerosV), (V_SET0)>; } // The same as done above but for AVX. The 256-bit AVX1 ISA doesn't support PI, // and doesn't need it because on sandy bridge the register is set to zero // at the rename stage without using any execution unit, so SET0PSY // and SET0PDY can be used for vector int instructions without penalty let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, isPseudo = 1, Predicates = [NoAVX512], SchedRW = [WriteZero] in { def AVX_SET0 : I<0, Pseudo, (outs VR256:$dst), (ins), "", [(set VR256:$dst, (v8i32 immAllZerosV))]>; } let Predicates = [NoAVX512] in { def : Pat<(v32i8 immAllZerosV), (AVX_SET0)>; def : Pat<(v16i16 immAllZerosV), (AVX_SET0)>; def : Pat<(v4i64 immAllZerosV), (AVX_SET0)>; def : Pat<(v8f32 immAllZerosV), (AVX_SET0)>; def : Pat<(v4f64 immAllZerosV), (AVX_SET0)>; } // We set canFoldAsLoad because this can be converted to a constant-pool // load of an all-ones value if folding it would be beneficial. let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, isPseudo = 1, SchedRW = [WriteZero] in { def V_SETALLONES : I<0, Pseudo, (outs VR128:$dst), (ins), "", [(set VR128:$dst, (v4i32 immAllOnesV))]>; let Predicates = [HasAVX1Only, OptForMinSize] in { def AVX1_SETALLONES: I<0, Pseudo, (outs VR256:$dst), (ins), "", [(set VR256:$dst, (v8i32 immAllOnesV))]>; } let Predicates = [HasAVX2] in def AVX2_SETALLONES : I<0, Pseudo, (outs VR256:$dst), (ins), "", [(set VR256:$dst, (v8i32 immAllOnesV))]>; } //===----------------------------------------------------------------------===// // SSE 1 & 2 - Move FP Scalar Instructions // // Move Instructions. Register-to-register movss/movsd is not used for FR32/64 // register copies because it's a partial register update; Register-to-register // movss/movsd is not modeled as an INSERT_SUBREG because INSERT_SUBREG requires // that the insert be implementable in terms of a copy, and just mentioned, we // don't use movss/movsd for copies. //===----------------------------------------------------------------------===// multiclass sse12_move_rr { let isCommutable = 1 in def rr : SI<0x10, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), !strconcat(base_opc, asm_opr), [(set VR128:$dst, (vt (OpNode VR128:$src1, VR128:$src2)))], d>, Sched<[SchedWriteFShuffle.XMM]>; // For the disassembler let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in def rr_REV : SI<0x11, MRMDestReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), !strconcat(base_opc, asm_opr), []>, Sched<[SchedWriteFShuffle.XMM]>, FoldGenData; } multiclass sse12_move { // AVX let Predicates = [UseAVX, OptForSize] in defm V#NAME : sse12_move_rr, VEX_4V, VEX_LIG, VEX_WIG; def V#NAME#mr : SI<0x11, MRMDestMem, (outs), (ins x86memop:$dst, RC:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(store RC:$src, addr:$dst)], d>, VEX, VEX_LIG, Sched<[WriteFStore]>, VEX_WIG; // SSE1 & 2 let Constraints = "$src1 = $dst" in { let Predicates = [pred, NoSSE41_Or_OptForSize] in defm NAME : sse12_move_rr; } def NAME#mr : SI<0x11, MRMDestMem, (outs), (ins x86memop:$dst, RC:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(store RC:$src, addr:$dst)], d>, Sched<[WriteFStore]>; def : InstAlias<"v"#OpcodeStr#".s\t{$src2, $src1, $dst|$dst, $src1, $src2}", (!cast("V"#NAME#"rr_REV") VR128:$dst, VR128:$src1, VR128:$src2), 0>; def : InstAlias(NAME#"rr_REV") VR128:$dst, VR128:$src2), 0>; } // Loading from memory automatically zeroing upper bits. multiclass sse12_move_rm { def V#NAME#rm : SI<0x10, MRMSrcMem, (outs VR128:$dst), (ins x86memop:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set VR128:$dst, (vt (vzloadfrag addr:$src)))], d>, VEX, VEX_LIG, Sched<[WriteFLoad]>, VEX_WIG; def NAME#rm : SI<0x10, MRMSrcMem, (outs VR128:$dst), (ins x86memop:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set VR128:$dst, (vt (vzloadfrag addr:$src)))], d>, Sched<[WriteFLoad]>; // _alt version uses FR32/FR64 register class. let isCodeGenOnly = 1 in { def V#NAME#rm_alt : SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set RC:$dst, (mem_pat addr:$src))], d>, VEX, VEX_LIG, Sched<[WriteFLoad]>, VEX_WIG; def NAME#rm_alt : SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set RC:$dst, (mem_pat addr:$src))], d>, Sched<[WriteFLoad]>; } } defm MOVSS : sse12_move, XS; defm MOVSD : sse12_move, XD; let canFoldAsLoad = 1, isReMaterializable = 1 in { defm MOVSS : sse12_move_rm, XS; defm MOVSD : sse12_move_rm, XD; } // Patterns let Predicates = [UseAVX] in { def : Pat<(v4f32 (scalar_to_vector (loadf32 addr:$src))), (VMOVSSrm addr:$src)>; def : Pat<(v2f64 (scalar_to_vector (loadf64 addr:$src))), (VMOVSDrm addr:$src)>; // Represent the same patterns above but in the form they appear for // 256-bit types def : Pat<(v8f32 (X86vzload32 addr:$src)), (SUBREG_TO_REG (i32 0), (VMOVSSrm addr:$src), sub_xmm)>; def : Pat<(v4f64 (X86vzload64 addr:$src)), (SUBREG_TO_REG (i32 0), (VMOVSDrm addr:$src), sub_xmm)>; } let Predicates = [UseAVX, OptForSize] in { // Move scalar to XMM zero-extended, zeroing a VR128 then do a // MOVSS to the lower bits. def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))), (VMOVSSrr (v4f32 (V_SET0)), VR128:$src)>; def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))), (VMOVSSrr (v4i32 (V_SET0)), VR128:$src)>; // Move low f32 and clear high bits. def : Pat<(v8f32 (X86vzmovl (v8f32 VR256:$src))), (SUBREG_TO_REG (i32 0), (v4f32 (VMOVSSrr (v4f32 (V_SET0)), (v4f32 (EXTRACT_SUBREG (v8f32 VR256:$src), sub_xmm)))), sub_xmm)>; def : Pat<(v8i32 (X86vzmovl (v8i32 VR256:$src))), (SUBREG_TO_REG (i32 0), (v4i32 (VMOVSSrr (v4i32 (V_SET0)), (v4i32 (EXTRACT_SUBREG (v8i32 VR256:$src), sub_xmm)))), sub_xmm)>; } let Predicates = [UseSSE1, NoSSE41_Or_OptForSize] in { // Move scalar to XMM zero-extended, zeroing a VR128 then do a // MOVSS to the lower bits. def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))), (MOVSSrr (v4f32 (V_SET0)), VR128:$src)>; def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))), (MOVSSrr (v4i32 (V_SET0)), VR128:$src)>; } let Predicates = [UseSSE2] in def : Pat<(v2f64 (scalar_to_vector (loadf64 addr:$src))), (MOVSDrm addr:$src)>; let Predicates = [UseSSE1] in def : Pat<(v4f32 (scalar_to_vector (loadf32 addr:$src))), (MOVSSrm addr:$src)>; //===----------------------------------------------------------------------===// // SSE 1 & 2 - Move Aligned/Unaligned FP Instructions //===----------------------------------------------------------------------===// multiclass sse12_mov_packed opc, RegisterClass RC, X86MemOperand x86memop, PatFrag ld_frag, string asm, Domain d, X86SchedWriteMoveLS sched> { let hasSideEffects = 0, isMoveReg = 1 in def rr : PI, Sched<[sched.RR]>; let canFoldAsLoad = 1, isReMaterializable = 1 in def rm : PI, Sched<[sched.RM]>; } let Predicates = [HasAVX, NoVLX] in { defm VMOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32, "movaps", SSEPackedSingle, SchedWriteFMoveLS.XMM>, PS, VEX, VEX_WIG; defm VMOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64, "movapd", SSEPackedDouble, SchedWriteFMoveLS.XMM>, PD, VEX, VEX_WIG; defm VMOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32, "movups", SSEPackedSingle, SchedWriteFMoveLS.XMM>, PS, VEX, VEX_WIG; defm VMOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64, "movupd", SSEPackedDouble, SchedWriteFMoveLS.XMM>, PD, VEX, VEX_WIG; defm VMOVAPSY : sse12_mov_packed<0x28, VR256, f256mem, alignedloadv8f32, "movaps", SSEPackedSingle, SchedWriteFMoveLS.YMM>, PS, VEX, VEX_L, VEX_WIG; defm VMOVAPDY : sse12_mov_packed<0x28, VR256, f256mem, alignedloadv4f64, "movapd", SSEPackedDouble, SchedWriteFMoveLS.YMM>, PD, VEX, VEX_L, VEX_WIG; defm VMOVUPSY : sse12_mov_packed<0x10, VR256, f256mem, loadv8f32, "movups", SSEPackedSingle, SchedWriteFMoveLS.YMM>, PS, VEX, VEX_L, VEX_WIG; defm VMOVUPDY : sse12_mov_packed<0x10, VR256, f256mem, loadv4f64, "movupd", SSEPackedDouble, SchedWriteFMoveLS.YMM>, PD, VEX, VEX_L, VEX_WIG; } let Predicates = [UseSSE1] in { defm MOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32, "movaps", SSEPackedSingle, SchedWriteFMoveLS.XMM>, PS; defm MOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32, "movups", SSEPackedSingle, SchedWriteFMoveLS.XMM>, PS; } let Predicates = [UseSSE2] in { defm MOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64, "movapd", SSEPackedDouble, SchedWriteFMoveLS.XMM>, PD; defm MOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64, "movupd", SSEPackedDouble, SchedWriteFMoveLS.XMM>, PD; } let Predicates = [HasAVX, NoVLX] in { let SchedRW = [SchedWriteFMoveLS.XMM.MR] in { def VMOVAPSmr : VPSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movaps\t{$src, $dst|$dst, $src}", [(alignedstore (v4f32 VR128:$src), addr:$dst)]>, VEX, VEX_WIG; def VMOVAPDmr : VPDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movapd\t{$src, $dst|$dst, $src}", [(alignedstore (v2f64 VR128:$src), addr:$dst)]>, VEX, VEX_WIG; def VMOVUPSmr : VPSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movups\t{$src, $dst|$dst, $src}", [(store (v4f32 VR128:$src), addr:$dst)]>, VEX, VEX_WIG; def VMOVUPDmr : VPDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movupd\t{$src, $dst|$dst, $src}", [(store (v2f64 VR128:$src), addr:$dst)]>, VEX, VEX_WIG; } // SchedRW let SchedRW = [SchedWriteFMoveLS.YMM.MR] in { def VMOVAPSYmr : VPSI<0x29, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), "movaps\t{$src, $dst|$dst, $src}", [(alignedstore (v8f32 VR256:$src), addr:$dst)]>, VEX, VEX_L, VEX_WIG; def VMOVAPDYmr : VPDI<0x29, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), "movapd\t{$src, $dst|$dst, $src}", [(alignedstore (v4f64 VR256:$src), addr:$dst)]>, VEX, VEX_L, VEX_WIG; def VMOVUPSYmr : VPSI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), "movups\t{$src, $dst|$dst, $src}", [(store (v8f32 VR256:$src), addr:$dst)]>, VEX, VEX_L, VEX_WIG; def VMOVUPDYmr : VPDI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), "movupd\t{$src, $dst|$dst, $src}", [(store (v4f64 VR256:$src), addr:$dst)]>, VEX, VEX_L, VEX_WIG; } // SchedRW } // Predicate // For disassembler let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, isMoveReg = 1 in { let SchedRW = [SchedWriteFMoveLS.XMM.RR] in { def VMOVAPSrr_REV : VPSI<0x29, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), "movaps\t{$src, $dst|$dst, $src}", []>, VEX, VEX_WIG, FoldGenData<"VMOVAPSrr">; def VMOVAPDrr_REV : VPDI<0x29, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), "movapd\t{$src, $dst|$dst, $src}", []>, VEX, VEX_WIG, FoldGenData<"VMOVAPDrr">; def VMOVUPSrr_REV : VPSI<0x11, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), "movups\t{$src, $dst|$dst, $src}", []>, VEX, VEX_WIG, FoldGenData<"VMOVUPSrr">; def VMOVUPDrr_REV : VPDI<0x11, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), "movupd\t{$src, $dst|$dst, $src}", []>, VEX, VEX_WIG, FoldGenData<"VMOVUPDrr">; } // SchedRW let SchedRW = [SchedWriteFMoveLS.YMM.RR] in { def VMOVAPSYrr_REV : VPSI<0x29, MRMDestReg, (outs VR256:$dst), (ins VR256:$src), "movaps\t{$src, $dst|$dst, $src}", []>, VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVAPSYrr">; def VMOVAPDYrr_REV : VPDI<0x29, MRMDestReg, (outs VR256:$dst), (ins VR256:$src), "movapd\t{$src, $dst|$dst, $src}", []>, VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVAPDYrr">; def VMOVUPSYrr_REV : VPSI<0x11, MRMDestReg, (outs VR256:$dst), (ins VR256:$src), "movups\t{$src, $dst|$dst, $src}", []>, VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVUPSYrr">; def VMOVUPDYrr_REV : VPDI<0x11, MRMDestReg, (outs VR256:$dst), (ins VR256:$src), "movupd\t{$src, $dst|$dst, $src}", []>, VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVUPDYrr">; } // SchedRW } // Predicate // Reversed version with ".s" suffix for GAS compatibility. def : InstAlias<"vmovaps.s\t{$src, $dst|$dst, $src}", (VMOVAPSrr_REV VR128:$dst, VR128:$src), 0>; def : InstAlias<"vmovapd.s\t{$src, $dst|$dst, $src}", (VMOVAPDrr_REV VR128:$dst, VR128:$src), 0>; def : InstAlias<"vmovups.s\t{$src, $dst|$dst, $src}", (VMOVUPSrr_REV VR128:$dst, VR128:$src), 0>; def : InstAlias<"vmovupd.s\t{$src, $dst|$dst, $src}", (VMOVUPDrr_REV VR128:$dst, VR128:$src), 0>; def : InstAlias<"vmovaps.s\t{$src, $dst|$dst, $src}", (VMOVAPSYrr_REV VR256:$dst, VR256:$src), 0>; def : InstAlias<"vmovapd.s\t{$src, $dst|$dst, $src}", (VMOVAPDYrr_REV VR256:$dst, VR256:$src), 0>; def : InstAlias<"vmovups.s\t{$src, $dst|$dst, $src}", (VMOVUPSYrr_REV VR256:$dst, VR256:$src), 0>; def : InstAlias<"vmovupd.s\t{$src, $dst|$dst, $src}", (VMOVUPDYrr_REV VR256:$dst, VR256:$src), 0>; let SchedRW = [SchedWriteFMoveLS.XMM.MR] in { def MOVAPSmr : PSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movaps\t{$src, $dst|$dst, $src}", [(alignedstore (v4f32 VR128:$src), addr:$dst)]>; def MOVAPDmr : PDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movapd\t{$src, $dst|$dst, $src}", [(alignedstore (v2f64 VR128:$src), addr:$dst)]>; def MOVUPSmr : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movups\t{$src, $dst|$dst, $src}", [(store (v4f32 VR128:$src), addr:$dst)]>; def MOVUPDmr : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movupd\t{$src, $dst|$dst, $src}", [(store (v2f64 VR128:$src), addr:$dst)]>; } // SchedRW // For disassembler let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, isMoveReg = 1, SchedRW = [SchedWriteFMoveLS.XMM.RR] in { def MOVAPSrr_REV : PSI<0x29, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), "movaps\t{$src, $dst|$dst, $src}", []>, FoldGenData<"MOVAPSrr">; def MOVAPDrr_REV : PDI<0x29, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), "movapd\t{$src, $dst|$dst, $src}", []>, FoldGenData<"MOVAPDrr">; def MOVUPSrr_REV : PSI<0x11, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), "movups\t{$src, $dst|$dst, $src}", []>, FoldGenData<"MOVUPSrr">; def MOVUPDrr_REV : PDI<0x11, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), "movupd\t{$src, $dst|$dst, $src}", []>, FoldGenData<"MOVUPDrr">; } // Reversed version with ".s" suffix for GAS compatibility. def : InstAlias<"movaps.s\t{$src, $dst|$dst, $src}", (MOVAPSrr_REV VR128:$dst, VR128:$src), 0>; def : InstAlias<"movapd.s\t{$src, $dst|$dst, $src}", (MOVAPDrr_REV VR128:$dst, VR128:$src), 0>; def : InstAlias<"movups.s\t{$src, $dst|$dst, $src}", (MOVUPSrr_REV VR128:$dst, VR128:$src), 0>; def : InstAlias<"movupd.s\t{$src, $dst|$dst, $src}", (MOVUPDrr_REV VR128:$dst, VR128:$src), 0>; let Predicates = [HasAVX, NoVLX] in { // 256-bit load/store need to use floating point load/store in case we don't // have AVX2. Execution domain fixing will convert to integer if AVX2 is // available and changing the domain is beneficial. def : Pat<(alignedloadv4i64 addr:$src), (VMOVAPSYrm addr:$src)>; def : Pat<(alignedloadv8i32 addr:$src), (VMOVAPSYrm addr:$src)>; def : Pat<(alignedloadv16i16 addr:$src), (VMOVAPSYrm addr:$src)>; def : Pat<(alignedloadv32i8 addr:$src), (VMOVAPSYrm addr:$src)>; def : Pat<(loadv4i64 addr:$src), (VMOVUPSYrm addr:$src)>; def : Pat<(loadv8i32 addr:$src), (VMOVUPSYrm addr:$src)>; def : Pat<(loadv16i16 addr:$src), (VMOVUPSYrm addr:$src)>; def : Pat<(loadv32i8 addr:$src), (VMOVUPSYrm addr:$src)>; def : Pat<(alignedstore (v4i64 VR256:$src), addr:$dst), (VMOVAPSYmr addr:$dst, VR256:$src)>; def : Pat<(alignedstore (v8i32 VR256:$src), addr:$dst), (VMOVAPSYmr addr:$dst, VR256:$src)>; def : Pat<(alignedstore (v16i16 VR256:$src), addr:$dst), (VMOVAPSYmr addr:$dst, VR256:$src)>; def : Pat<(alignedstore (v32i8 VR256:$src), addr:$dst), (VMOVAPSYmr addr:$dst, VR256:$src)>; def : Pat<(store (v4i64 VR256:$src), addr:$dst), (VMOVUPSYmr addr:$dst, VR256:$src)>; def : Pat<(store (v8i32 VR256:$src), addr:$dst), (VMOVUPSYmr addr:$dst, VR256:$src)>; def : Pat<(store (v16i16 VR256:$src), addr:$dst), (VMOVUPSYmr addr:$dst, VR256:$src)>; def : Pat<(store (v32i8 VR256:$src), addr:$dst), (VMOVUPSYmr addr:$dst, VR256:$src)>; } // Use movaps / movups for SSE integer load / store (one byte shorter). // The instructions selected below are then converted to MOVDQA/MOVDQU // during the SSE domain pass. let Predicates = [UseSSE1] in { def : Pat<(alignedloadv2i64 addr:$src), (MOVAPSrm addr:$src)>; def : Pat<(alignedloadv4i32 addr:$src), (MOVAPSrm addr:$src)>; def : Pat<(alignedloadv8i16 addr:$src), (MOVAPSrm addr:$src)>; def : Pat<(alignedloadv16i8 addr:$src), (MOVAPSrm addr:$src)>; def : Pat<(loadv2i64 addr:$src), (MOVUPSrm addr:$src)>; def : Pat<(loadv4i32 addr:$src), (MOVUPSrm addr:$src)>; def : Pat<(loadv8i16 addr:$src), (MOVUPSrm addr:$src)>; def : Pat<(loadv16i8 addr:$src), (MOVUPSrm addr:$src)>; def : Pat<(alignedstore (v2i64 VR128:$src), addr:$dst), (MOVAPSmr addr:$dst, VR128:$src)>; def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst), (MOVAPSmr addr:$dst, VR128:$src)>; def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst), (MOVAPSmr addr:$dst, VR128:$src)>; def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst), (MOVAPSmr addr:$dst, VR128:$src)>; def : Pat<(store (v2i64 VR128:$src), addr:$dst), (MOVUPSmr addr:$dst, VR128:$src)>; def : Pat<(store (v4i32 VR128:$src), addr:$dst), (MOVUPSmr addr:$dst, VR128:$src)>; def : Pat<(store (v8i16 VR128:$src), addr:$dst), (MOVUPSmr addr:$dst, VR128:$src)>; def : Pat<(store (v16i8 VR128:$src), addr:$dst), (MOVUPSmr addr:$dst, VR128:$src)>; } //===----------------------------------------------------------------------===// // SSE 1 & 2 - Move Low packed FP Instructions //===----------------------------------------------------------------------===// multiclass sse12_mov_hilo_packed_baseopc, SDNode pdnode, string base_opc, string asm_opr> { // No pattern as they need be special cased between high and low. let hasSideEffects = 0, mayLoad = 1 in def PSrm : PI, PS, Sched<[SchedWriteFShuffle.XMM.Folded, SchedWriteFShuffle.XMM.ReadAfterFold]>; def PDrm : PI, PD, Sched<[SchedWriteFShuffle.XMM.Folded, SchedWriteFShuffle.XMM.ReadAfterFold]>; } multiclass sse12_mov_hilo_packedopc, SDPatternOperator pdnode, string base_opc> { let Predicates = [UseAVX] in defm V#NAME : sse12_mov_hilo_packed_base, VEX_4V, VEX_WIG; let Constraints = "$src1 = $dst" in defm NAME : sse12_mov_hilo_packed_base; } defm MOVL : sse12_mov_hilo_packed<0x12, X86Movsd, "movlp">; let SchedRW = [WriteFStore] in { let Predicates = [UseAVX] in { let mayStore = 1, hasSideEffects = 0 in def VMOVLPSmr : VPSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movlps\t{$src, $dst|$dst, $src}", []>, VEX, VEX_WIG; def VMOVLPDmr : VPDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movlpd\t{$src, $dst|$dst, $src}", [(store (f64 (extractelt (v2f64 VR128:$src), (iPTR 0))), addr:$dst)]>, VEX, VEX_WIG; }// UseAVX let mayStore = 1, hasSideEffects = 0 in def MOVLPSmr : PSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movlps\t{$src, $dst|$dst, $src}", []>; def MOVLPDmr : PDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movlpd\t{$src, $dst|$dst, $src}", [(store (f64 (extractelt (v2f64 VR128:$src), (iPTR 0))), addr:$dst)]>; } // SchedRW let Predicates = [UseSSE1] in { // This pattern helps select MOVLPS on SSE1 only targets. With SSE2 we'll // end up with a movsd or blend instead of shufp. // No need for aligned load, we're only loading 64-bits. def : Pat<(X86Shufp (v4f32 (simple_load addr:$src2)), VR128:$src1, (i8 -28)), (MOVLPSrm VR128:$src1, addr:$src2)>; def : Pat<(X86Shufp (v4f32 (X86vzload64 addr:$src2)), VR128:$src1, (i8 -28)), (MOVLPSrm VR128:$src1, addr:$src2)>; def : Pat<(v4f32 (X86vzload64 addr:$src)), (MOVLPSrm (v4f32 (V_SET0)), addr:$src)>; def : Pat<(X86vextractstore64 (v4f32 VR128:$src), addr:$dst), (MOVLPSmr addr:$dst, VR128:$src)>; } //===----------------------------------------------------------------------===// // SSE 1 & 2 - Move Hi packed FP Instructions //===----------------------------------------------------------------------===// defm MOVH : sse12_mov_hilo_packed<0x16, X86Unpckl, "movhp">; let SchedRW = [WriteFStore] in { // v2f64 extract element 1 is always custom lowered to unpack high to low // and extract element 0 so the non-store version isn't too horrible. let Predicates = [UseAVX] in { let mayStore = 1, hasSideEffects = 0 in def VMOVHPSmr : VPSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movhps\t{$src, $dst|$dst, $src}", []>, VEX, VEX_WIG; def VMOVHPDmr : VPDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movhpd\t{$src, $dst|$dst, $src}", [(store (f64 (extractelt (v2f64 (X86Unpckh VR128:$src, VR128:$src)), (iPTR 0))), addr:$dst)]>, VEX, VEX_WIG; } // UseAVX let mayStore = 1, hasSideEffects = 0 in def MOVHPSmr : PSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movhps\t{$src, $dst|$dst, $src}", []>; def MOVHPDmr : PDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movhpd\t{$src, $dst|$dst, $src}", [(store (f64 (extractelt (v2f64 (X86Unpckh VR128:$src, VR128:$src)), (iPTR 0))), addr:$dst)]>; } // SchedRW let Predicates = [UseAVX] in { // Also handle an i64 load because that may get selected as a faster way to // load the data. def : Pat<(v2f64 (X86Unpckl VR128:$src1, (bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src2)))))), (VMOVHPDrm VR128:$src1, addr:$src2)>; def : Pat<(v2f64 (X86Unpckl VR128:$src1, (X86vzload64 addr:$src2))), (VMOVHPDrm VR128:$src1, addr:$src2)>; def : Pat<(store (f64 (extractelt (v2f64 (X86VPermilpi VR128:$src, (i8 1))), (iPTR 0))), addr:$dst), (VMOVHPDmr addr:$dst, VR128:$src)>; // MOVLPD patterns def : Pat<(v2f64 (X86Movsd VR128:$src1, (X86vzload64 addr:$src2))), (VMOVLPDrm VR128:$src1, addr:$src2)>; } let Predicates = [UseSSE1] in { // This pattern helps select MOVHPS on SSE1 only targets. With SSE2 we'll // end up with a movsd or blend instead of shufp. // No need for aligned load, we're only loading 64-bits. def : Pat<(X86Movlhps VR128:$src1, (v4f32 (simple_load addr:$src2))), (MOVHPSrm VR128:$src1, addr:$src2)>; def : Pat<(X86Movlhps VR128:$src1, (v4f32 (X86vzload64 addr:$src2))), (MOVHPSrm VR128:$src1, addr:$src2)>; def : Pat<(X86vextractstore64 (v4f32 (X86Movhlps VR128:$src, VR128:$src)), addr:$dst), (MOVHPSmr addr:$dst, VR128:$src)>; } let Predicates = [UseSSE2] in { // MOVHPD patterns // Also handle an i64 load because that may get selected as a faster way to // load the data. def : Pat<(v2f64 (X86Unpckl VR128:$src1, (bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src2)))))), (MOVHPDrm VR128:$src1, addr:$src2)>; def : Pat<(v2f64 (X86Unpckl VR128:$src1, (X86vzload64 addr:$src2))), (MOVHPDrm VR128:$src1, addr:$src2)>; def : Pat<(store (f64 (extractelt (v2f64 (X86Shufp VR128:$src, VR128:$src, (i8 1))), (iPTR 0))), addr:$dst), (MOVHPDmr addr:$dst, VR128:$src)>; // MOVLPD patterns def : Pat<(v2f64 (X86Movsd VR128:$src1, (X86vzload64 addr:$src2))), (MOVLPDrm VR128:$src1, addr:$src2)>; } let Predicates = [UseSSE2, NoSSE41_Or_OptForSize] in { // Use MOVLPD to load into the low bits from a full vector unless we can use // BLENDPD. def : Pat<(X86Movsd VR128:$src1, (v2f64 (simple_load addr:$src2))), (MOVLPDrm VR128:$src1, addr:$src2)>; } //===----------------------------------------------------------------------===// // SSE 1 & 2 - Move Low to High and High to Low packed FP Instructions //===----------------------------------------------------------------------===// let Predicates = [UseAVX] in { def VMOVLHPSrr : VPSI<0x16, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "movlhps\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v4f32 (X86Movlhps VR128:$src1, VR128:$src2)))]>, VEX_4V, Sched<[SchedWriteFShuffle.XMM]>, VEX_WIG; let isCommutable = 1 in def VMOVHLPSrr : VPSI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "movhlps\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v4f32 (X86Movhlps VR128:$src1, VR128:$src2)))]>, VEX_4V, Sched<[SchedWriteFShuffle.XMM]>, VEX_WIG, NotMemoryFoldable; } let Constraints = "$src1 = $dst" in { def MOVLHPSrr : PSI<0x16, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "movlhps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4f32 (X86Movlhps VR128:$src1, VR128:$src2)))]>, Sched<[SchedWriteFShuffle.XMM]>; let isCommutable = 1 in def MOVHLPSrr : PSI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "movhlps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4f32 (X86Movhlps VR128:$src1, VR128:$src2)))]>, Sched<[SchedWriteFShuffle.XMM]>, NotMemoryFoldable; } //===----------------------------------------------------------------------===// // SSE 1 & 2 - Conversion Instructions //===----------------------------------------------------------------------===// multiclass sse12_cvt_s opc, RegisterClass SrcRC, RegisterClass DstRC, SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag, string asm, string mem, X86FoldableSchedWrite sched, Domain d, SchedRead Int2Fpu = ReadDefault> { let ExeDomain = d in { def rr : SI, Sched<[sched, Int2Fpu]>; def rm : SI, Sched<[sched.Folded]>; } } multiclass sse12_cvt_p opc, RegisterClass RC, X86MemOperand x86memop, ValueType DstTy, ValueType SrcTy, PatFrag ld_frag, string asm, Domain d, X86FoldableSchedWrite sched> { let hasSideEffects = 0, Uses = [MXCSR], mayRaiseFPException = 1 in { def rr : I, Sched<[sched]>; let mayLoad = 1 in def rm : I, Sched<[sched.Folded]>; } } multiclass sse12_vcvt_avx opc, RegisterClass SrcRC, RegisterClass DstRC, X86MemOperand x86memop, string asm, string mem, X86FoldableSchedWrite sched, Domain d> { let hasSideEffects = 0, Predicates = [UseAVX], ExeDomain = d in { def rr : SI, Sched<[sched, ReadDefault, ReadInt2Fpu]>; let mayLoad = 1 in def rm : SI, Sched<[sched.Folded, sched.ReadAfterFold]>; } // hasSideEffects = 0 } let isCodeGenOnly = 1, Predicates = [UseAVX], Uses = [MXCSR], mayRaiseFPException = 1 in { defm VCVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, any_fp_to_sint, f32mem, loadf32, "cvttss2si", "cvttss2si", WriteCvtSS2I, SSEPackedSingle>, XS, VEX, VEX_LIG; defm VCVTTSS2SI64 : sse12_cvt_s<0x2C, FR32, GR64, any_fp_to_sint, f32mem, loadf32, "cvttss2si", "cvttss2si", WriteCvtSS2I, SSEPackedSingle>, XS, VEX, VEX_W, VEX_LIG; defm VCVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, any_fp_to_sint, f64mem, loadf64, "cvttsd2si", "cvttsd2si", WriteCvtSD2I, SSEPackedDouble>, XD, VEX, VEX_LIG; defm VCVTTSD2SI64 : sse12_cvt_s<0x2C, FR64, GR64, any_fp_to_sint, f64mem, loadf64, "cvttsd2si", "cvttsd2si", WriteCvtSD2I, SSEPackedDouble>, XD, VEX, VEX_W, VEX_LIG; } // The assembler can recognize rr 64-bit instructions by seeing a rxx // register, but the same isn't true when only using memory operands, // provide other assembly "l" and "q" forms to address this explicitly // where appropriate to do so. let isCodeGenOnly = 1 in { defm VCVTSI2SS : sse12_vcvt_avx<0x2A, GR32, FR32, i32mem, "cvtsi2ss", "l", WriteCvtI2SS, SSEPackedSingle>, XS, VEX_4V, VEX_LIG, SIMD_EXC; defm VCVTSI642SS : sse12_vcvt_avx<0x2A, GR64, FR32, i64mem, "cvtsi2ss", "q", WriteCvtI2SS, SSEPackedSingle>, XS, VEX_4V, VEX_W, VEX_LIG, SIMD_EXC; defm VCVTSI2SD : sse12_vcvt_avx<0x2A, GR32, FR64, i32mem, "cvtsi2sd", "l", WriteCvtI2SD, SSEPackedDouble>, XD, VEX_4V, VEX_LIG; defm VCVTSI642SD : sse12_vcvt_avx<0x2A, GR64, FR64, i64mem, "cvtsi2sd", "q", WriteCvtI2SD, SSEPackedDouble>, XD, VEX_4V, VEX_W, VEX_LIG, SIMD_EXC; } // isCodeGenOnly = 1 let Predicates = [UseAVX] in { def : Pat<(f32 (any_sint_to_fp (loadi32 addr:$src))), (VCVTSI2SSrm (f32 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f32 (any_sint_to_fp (loadi64 addr:$src))), (VCVTSI642SSrm (f32 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f64 (any_sint_to_fp (loadi32 addr:$src))), (VCVTSI2SDrm (f64 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f64 (any_sint_to_fp (loadi64 addr:$src))), (VCVTSI642SDrm (f64 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f32 (any_sint_to_fp GR32:$src)), (VCVTSI2SSrr (f32 (IMPLICIT_DEF)), GR32:$src)>; def : Pat<(f32 (any_sint_to_fp GR64:$src)), (VCVTSI642SSrr (f32 (IMPLICIT_DEF)), GR64:$src)>; def : Pat<(f64 (any_sint_to_fp GR32:$src)), (VCVTSI2SDrr (f64 (IMPLICIT_DEF)), GR32:$src)>; def : Pat<(f64 (any_sint_to_fp GR64:$src)), (VCVTSI642SDrr (f64 (IMPLICIT_DEF)), GR64:$src)>; } let isCodeGenOnly = 1 in { defm CVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, any_fp_to_sint, f32mem, loadf32, "cvttss2si", "cvttss2si", WriteCvtSS2I, SSEPackedSingle>, XS, SIMD_EXC; defm CVTTSS2SI64 : sse12_cvt_s<0x2C, FR32, GR64, any_fp_to_sint, f32mem, loadf32, "cvttss2si", "cvttss2si", WriteCvtSS2I, SSEPackedSingle>, XS, REX_W, SIMD_EXC; defm CVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, any_fp_to_sint, f64mem, loadf64, "cvttsd2si", "cvttsd2si", WriteCvtSD2I, SSEPackedDouble>, XD, SIMD_EXC; defm CVTTSD2SI64 : sse12_cvt_s<0x2C, FR64, GR64, any_fp_to_sint, f64mem, loadf64, "cvttsd2si", "cvttsd2si", WriteCvtSD2I, SSEPackedDouble>, XD, REX_W, SIMD_EXC; defm CVTSI2SS : sse12_cvt_s<0x2A, GR32, FR32, any_sint_to_fp, i32mem, loadi32, "cvtsi2ss", "cvtsi2ss{l}", WriteCvtI2SS, SSEPackedSingle, ReadInt2Fpu>, XS, SIMD_EXC; defm CVTSI642SS : sse12_cvt_s<0x2A, GR64, FR32, any_sint_to_fp, i64mem, loadi64, "cvtsi2ss", "cvtsi2ss{q}", WriteCvtI2SS, SSEPackedSingle, ReadInt2Fpu>, XS, REX_W, SIMD_EXC; defm CVTSI2SD : sse12_cvt_s<0x2A, GR32, FR64, any_sint_to_fp, i32mem, loadi32, "cvtsi2sd", "cvtsi2sd{l}", WriteCvtI2SD, SSEPackedDouble, ReadInt2Fpu>, XD; defm CVTSI642SD : sse12_cvt_s<0x2A, GR64, FR64, any_sint_to_fp, i64mem, loadi64, "cvtsi2sd", "cvtsi2sd{q}", WriteCvtI2SD, SSEPackedDouble, ReadInt2Fpu>, XD, REX_W, SIMD_EXC; } // isCodeGenOnly = 1 // Conversion Instructions Intrinsics - Match intrinsics which expect MM // and/or XMM operand(s). multiclass sse12_cvt_sint opc, RegisterClass SrcRC, RegisterClass DstRC, ValueType DstVT, ValueType SrcVT, SDNode OpNode, Operand memop, ComplexPattern mem_cpat, string asm, X86FoldableSchedWrite sched, Domain d> { let ExeDomain = d in { def rr_Int : SI, Sched<[sched]>; def rm_Int : SI, Sched<[sched.Folded]>; } } multiclass sse12_cvt_sint_3addr opc, RegisterClass SrcRC, RegisterClass DstRC, X86MemOperand x86memop, string asm, string mem, X86FoldableSchedWrite sched, Domain d, bit Is2Addr = 1> { let hasSideEffects = 0, ExeDomain = d in { def rr_Int : SI, Sched<[sched, ReadDefault, ReadInt2Fpu]>; let mayLoad = 1 in def rm_Int : SI, Sched<[sched.Folded, sched.ReadAfterFold]>; } } let Uses = [MXCSR], mayRaiseFPException = 1 in { let Predicates = [UseAVX] in { defm VCVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32, i32, v2f64, X86cvts2si, sdmem, sse_load_f64, "cvtsd2si", WriteCvtSD2I, SSEPackedDouble>, XD, VEX, VEX_LIG; defm VCVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, i64, v2f64, X86cvts2si, sdmem, sse_load_f64, "cvtsd2si", WriteCvtSD2I, SSEPackedDouble>, XD, VEX, VEX_W, VEX_LIG; } defm CVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32, i32, v2f64, X86cvts2si, sdmem, sse_load_f64, "cvtsd2si", WriteCvtSD2I, SSEPackedDouble>, XD; defm CVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, i64, v2f64, X86cvts2si, sdmem, sse_load_f64, "cvtsd2si", WriteCvtSD2I, SSEPackedDouble>, XD, REX_W; } let Predicates = [UseAVX] in { defm VCVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128, i32mem, "cvtsi2ss", "l", WriteCvtI2SS, SSEPackedSingle, 0>, XS, VEX_4V, VEX_LIG, SIMD_EXC; defm VCVTSI642SS : sse12_cvt_sint_3addr<0x2A, GR64, VR128, i64mem, "cvtsi2ss", "q", WriteCvtI2SS, SSEPackedSingle, 0>, XS, VEX_4V, VEX_LIG, VEX_W, SIMD_EXC; defm VCVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128, i32mem, "cvtsi2sd", "l", WriteCvtI2SD, SSEPackedDouble, 0>, XD, VEX_4V, VEX_LIG; defm VCVTSI642SD : sse12_cvt_sint_3addr<0x2A, GR64, VR128, i64mem, "cvtsi2sd", "q", WriteCvtI2SD, SSEPackedDouble, 0>, XD, VEX_4V, VEX_LIG, VEX_W, SIMD_EXC; } let Constraints = "$src1 = $dst" in { defm CVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128, i32mem, "cvtsi2ss", "l", WriteCvtI2SS, SSEPackedSingle>, XS, SIMD_EXC; defm CVTSI642SS : sse12_cvt_sint_3addr<0x2A, GR64, VR128, i64mem, "cvtsi2ss", "q", WriteCvtI2SS, SSEPackedSingle>, XS, REX_W, SIMD_EXC; defm CVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128, i32mem, "cvtsi2sd", "l", WriteCvtI2SD, SSEPackedDouble>, XD; defm CVTSI642SD : sse12_cvt_sint_3addr<0x2A, GR64, VR128, i64mem, "cvtsi2sd", "q", WriteCvtI2SD, SSEPackedDouble>, XD, REX_W, SIMD_EXC; } def : InstAlias<"vcvtsi2ss{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", (VCVTSI2SSrr_Int VR128:$dst, VR128:$src1, GR32:$src2), 0, "att">; def : InstAlias<"vcvtsi2ss{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", (VCVTSI642SSrr_Int VR128:$dst, VR128:$src1, GR64:$src2), 0, "att">; def : InstAlias<"vcvtsi2sd{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", (VCVTSI2SDrr_Int VR128:$dst, VR128:$src1, GR32:$src2), 0, "att">; def : InstAlias<"vcvtsi2sd{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", (VCVTSI642SDrr_Int VR128:$dst, VR128:$src1, GR64:$src2), 0, "att">; def : InstAlias<"vcvtsi2ss\t{$src, $src1, $dst|$dst, $src1, $src}", (VCVTSI2SSrm_Int VR128:$dst, VR128:$src1, i32mem:$src), 0, "att">; def : InstAlias<"vcvtsi2sd\t{$src, $src1, $dst|$dst, $src1, $src}", (VCVTSI2SDrm_Int VR128:$dst, VR128:$src1, i32mem:$src), 0, "att">; def : InstAlias<"cvtsi2ss{l}\t{$src, $dst|$dst, $src}", (CVTSI2SSrr_Int VR128:$dst, GR32:$src), 0, "att">; def : InstAlias<"cvtsi2ss{q}\t{$src, $dst|$dst, $src}", (CVTSI642SSrr_Int VR128:$dst, GR64:$src), 0, "att">; def : InstAlias<"cvtsi2sd{l}\t{$src, $dst|$dst, $src}", (CVTSI2SDrr_Int VR128:$dst, GR32:$src), 0, "att">; def : InstAlias<"cvtsi2sd{q}\t{$src, $dst|$dst, $src}", (CVTSI642SDrr_Int VR128:$dst, GR64:$src), 0, "att">; def : InstAlias<"cvtsi2ss\t{$src, $dst|$dst, $src}", (CVTSI2SSrm_Int VR128:$dst, i32mem:$src), 0, "att">; def : InstAlias<"cvtsi2sd\t{$src, $dst|$dst, $src}", (CVTSI2SDrm_Int VR128:$dst, i32mem:$src), 0, "att">; /// SSE 1 Only // Aliases for intrinsics let Predicates = [UseAVX], Uses = [MXCSR], mayRaiseFPException = 1 in { defm VCVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, i32, v4f32, X86cvtts2Int, ssmem, sse_load_f32, "cvttss2si", WriteCvtSS2I, SSEPackedSingle>, XS, VEX, VEX_LIG; defm VCVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64, i64, v4f32, X86cvtts2Int, ssmem, sse_load_f32, "cvttss2si", WriteCvtSS2I, SSEPackedSingle>, XS, VEX, VEX_LIG, VEX_W; defm VCVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, i32, v2f64, X86cvtts2Int, sdmem, sse_load_f64, "cvttsd2si", WriteCvtSS2I, SSEPackedDouble>, XD, VEX, VEX_LIG; defm VCVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64, i64, v2f64, X86cvtts2Int, sdmem, sse_load_f64, "cvttsd2si", WriteCvtSS2I, SSEPackedDouble>, XD, VEX, VEX_LIG, VEX_W; } let Uses = [MXCSR], mayRaiseFPException = 1 in { defm CVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, i32, v4f32, X86cvtts2Int, ssmem, sse_load_f32, "cvttss2si", WriteCvtSS2I, SSEPackedSingle>, XS; defm CVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64, i64, v4f32, X86cvtts2Int, ssmem, sse_load_f32, "cvttss2si", WriteCvtSS2I, SSEPackedSingle>, XS, REX_W; defm CVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, i32, v2f64, X86cvtts2Int, sdmem, sse_load_f64, "cvttsd2si", WriteCvtSD2I, SSEPackedDouble>, XD; defm CVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64, i64, v2f64, X86cvtts2Int, sdmem, sse_load_f64, "cvttsd2si", WriteCvtSD2I, SSEPackedDouble>, XD, REX_W; } def : InstAlias<"vcvttss2si{l}\t{$src, $dst|$dst, $src}", (VCVTTSS2SIrr_Int GR32:$dst, VR128:$src), 0, "att">; def : InstAlias<"vcvttss2si{l}\t{$src, $dst|$dst, $src}", (VCVTTSS2SIrm_Int GR32:$dst, f32mem:$src), 0, "att">; def : InstAlias<"vcvttsd2si{l}\t{$src, $dst|$dst, $src}", (VCVTTSD2SIrr_Int GR32:$dst, VR128:$src), 0, "att">; def : InstAlias<"vcvttsd2si{l}\t{$src, $dst|$dst, $src}", (VCVTTSD2SIrm_Int GR32:$dst, f64mem:$src), 0, "att">; def : InstAlias<"vcvttss2si{q}\t{$src, $dst|$dst, $src}", (VCVTTSS2SI64rr_Int GR64:$dst, VR128:$src), 0, "att">; def : InstAlias<"vcvttss2si{q}\t{$src, $dst|$dst, $src}", (VCVTTSS2SI64rm_Int GR64:$dst, f32mem:$src), 0, "att">; def : InstAlias<"vcvttsd2si{q}\t{$src, $dst|$dst, $src}", (VCVTTSD2SI64rr_Int GR64:$dst, VR128:$src), 0, "att">; def : InstAlias<"vcvttsd2si{q}\t{$src, $dst|$dst, $src}", (VCVTTSD2SI64rm_Int GR64:$dst, f64mem:$src), 0, "att">; def : InstAlias<"cvttss2si{l}\t{$src, $dst|$dst, $src}", (CVTTSS2SIrr_Int GR32:$dst, VR128:$src), 0, "att">; def : InstAlias<"cvttss2si{l}\t{$src, $dst|$dst, $src}", (CVTTSS2SIrm_Int GR32:$dst, f32mem:$src), 0, "att">; def : InstAlias<"cvttsd2si{l}\t{$src, $dst|$dst, $src}", (CVTTSD2SIrr_Int GR32:$dst, VR128:$src), 0, "att">; def : InstAlias<"cvttsd2si{l}\t{$src, $dst|$dst, $src}", (CVTTSD2SIrm_Int GR32:$dst, f64mem:$src), 0, "att">; def : InstAlias<"cvttss2si{q}\t{$src, $dst|$dst, $src}", (CVTTSS2SI64rr_Int GR64:$dst, VR128:$src), 0, "att">; def : InstAlias<"cvttss2si{q}\t{$src, $dst|$dst, $src}", (CVTTSS2SI64rm_Int GR64:$dst, f32mem:$src), 0, "att">; def : InstAlias<"cvttsd2si{q}\t{$src, $dst|$dst, $src}", (CVTTSD2SI64rr_Int GR64:$dst, VR128:$src), 0, "att">; def : InstAlias<"cvttsd2si{q}\t{$src, $dst|$dst, $src}", (CVTTSD2SI64rm_Int GR64:$dst, f64mem:$src), 0, "att">; let Predicates = [UseAVX], Uses = [MXCSR], mayRaiseFPException = 1 in { defm VCVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, i32, v4f32, X86cvts2si, ssmem, sse_load_f32, "cvtss2si", WriteCvtSS2I, SSEPackedSingle>, XS, VEX, VEX_LIG; defm VCVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, i64, v4f32, X86cvts2si, ssmem, sse_load_f32, "cvtss2si", WriteCvtSS2I, SSEPackedSingle>, XS, VEX, VEX_W, VEX_LIG; } let Uses = [MXCSR], mayRaiseFPException = 1 in { defm CVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, i32, v4f32, X86cvts2si, ssmem, sse_load_f32, "cvtss2si", WriteCvtSS2I, SSEPackedSingle>, XS; defm CVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, i64, v4f32, X86cvts2si, ssmem, sse_load_f32, "cvtss2si", WriteCvtSS2I, SSEPackedSingle>, XS, REX_W; defm VCVTDQ2PS : sse12_cvt_p<0x5B, VR128, i128mem, v4f32, v4i32, load, "vcvtdq2ps\t{$src, $dst|$dst, $src}", SSEPackedSingle, WriteCvtI2PS>, PS, VEX, Requires<[HasAVX, NoVLX]>, VEX_WIG; defm VCVTDQ2PSY : sse12_cvt_p<0x5B, VR256, i256mem, v8f32, v8i32, load, "vcvtdq2ps\t{$src, $dst|$dst, $src}", SSEPackedSingle, WriteCvtI2PSY>, PS, VEX, VEX_L, Requires<[HasAVX, NoVLX]>, VEX_WIG; defm CVTDQ2PS : sse12_cvt_p<0x5B, VR128, i128mem, v4f32, v4i32, memop, "cvtdq2ps\t{$src, $dst|$dst, $src}", SSEPackedSingle, WriteCvtI2PS>, PS, Requires<[UseSSE2]>; } // AVX aliases def : InstAlias<"vcvtss2si{l}\t{$src, $dst|$dst, $src}", (VCVTSS2SIrr_Int GR32:$dst, VR128:$src), 0, "att">; def : InstAlias<"vcvtss2si{l}\t{$src, $dst|$dst, $src}", (VCVTSS2SIrm_Int GR32:$dst, ssmem:$src), 0, "att">; def : InstAlias<"vcvtsd2si{l}\t{$src, $dst|$dst, $src}", (VCVTSD2SIrr_Int GR32:$dst, VR128:$src), 0, "att">; def : InstAlias<"vcvtsd2si{l}\t{$src, $dst|$dst, $src}", (VCVTSD2SIrm_Int GR32:$dst, sdmem:$src), 0, "att">; def : InstAlias<"vcvtss2si{q}\t{$src, $dst|$dst, $src}", (VCVTSS2SI64rr_Int GR64:$dst, VR128:$src), 0, "att">; def : InstAlias<"vcvtss2si{q}\t{$src, $dst|$dst, $src}", (VCVTSS2SI64rm_Int GR64:$dst, ssmem:$src), 0, "att">; def : InstAlias<"vcvtsd2si{q}\t{$src, $dst|$dst, $src}", (VCVTSD2SI64rr_Int GR64:$dst, VR128:$src), 0, "att">; def : InstAlias<"vcvtsd2si{q}\t{$src, $dst|$dst, $src}", (VCVTSD2SI64rm_Int GR64:$dst, sdmem:$src), 0, "att">; // SSE aliases def : InstAlias<"cvtss2si{l}\t{$src, $dst|$dst, $src}", (CVTSS2SIrr_Int GR32:$dst, VR128:$src), 0, "att">; def : InstAlias<"cvtss2si{l}\t{$src, $dst|$dst, $src}", (CVTSS2SIrm_Int GR32:$dst, ssmem:$src), 0, "att">; def : InstAlias<"cvtsd2si{l}\t{$src, $dst|$dst, $src}", (CVTSD2SIrr_Int GR32:$dst, VR128:$src), 0, "att">; def : InstAlias<"cvtsd2si{l}\t{$src, $dst|$dst, $src}", (CVTSD2SIrm_Int GR32:$dst, sdmem:$src), 0, "att">; def : InstAlias<"cvtss2si{q}\t{$src, $dst|$dst, $src}", (CVTSS2SI64rr_Int GR64:$dst, VR128:$src), 0, "att">; def : InstAlias<"cvtss2si{q}\t{$src, $dst|$dst, $src}", (CVTSS2SI64rm_Int GR64:$dst, ssmem:$src), 0, "att">; def : InstAlias<"cvtsd2si{q}\t{$src, $dst|$dst, $src}", (CVTSD2SI64rr_Int GR64:$dst, VR128:$src), 0, "att">; def : InstAlias<"cvtsd2si{q}\t{$src, $dst|$dst, $src}", (CVTSD2SI64rm_Int GR64:$dst, sdmem:$src), 0, "att">; /// SSE 2 Only // Convert scalar double to scalar single let isCodeGenOnly = 1, hasSideEffects = 0, Predicates = [UseAVX] in { def VCVTSD2SSrr : VSDI<0x5A, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR64:$src2), "cvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, VEX_4V, VEX_LIG, VEX_WIG, Sched<[WriteCvtSD2SS]>, SIMD_EXC; let mayLoad = 1 in def VCVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst), (ins FR32:$src1, f64mem:$src2), "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, XD, VEX_4V, VEX_LIG, VEX_WIG, Sched<[WriteCvtSD2SS.Folded, WriteCvtSD2SS.ReadAfterFold]>, SIMD_EXC; } def : Pat<(f32 (any_fpround FR64:$src)), (VCVTSD2SSrr (f32 (IMPLICIT_DEF)), FR64:$src)>, Requires<[UseAVX]>; let isCodeGenOnly = 1 in { def CVTSD2SSrr : SDI<0x5A, MRMSrcReg, (outs FR32:$dst), (ins FR64:$src), "cvtsd2ss\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (any_fpround FR64:$src))]>, Sched<[WriteCvtSD2SS]>, SIMD_EXC; def CVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst), (ins f64mem:$src), "cvtsd2ss\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (any_fpround (loadf64 addr:$src)))]>, XD, Requires<[UseSSE2, OptForSize]>, Sched<[WriteCvtSD2SS.Folded]>, SIMD_EXC; } let Uses = [MXCSR], mayRaiseFPException = 1 in { def VCVTSD2SSrr_Int: I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v4f32 (X86frounds VR128:$src1, (v2f64 VR128:$src2))))]>, XD, VEX_4V, VEX_LIG, VEX_WIG, Requires<[UseAVX]>, Sched<[WriteCvtSD2SS]>; def VCVTSD2SSrm_Int: I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, sdmem:$src2), "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v4f32 (X86frounds VR128:$src1, sse_load_f64:$src2)))]>, XD, VEX_4V, VEX_LIG, VEX_WIG, Requires<[UseAVX]>, Sched<[WriteCvtSD2SS.Folded, WriteCvtSD2SS.ReadAfterFold]>; let Constraints = "$src1 = $dst" in { def CVTSD2SSrr_Int: I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "cvtsd2ss\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4f32 (X86frounds VR128:$src1, (v2f64 VR128:$src2))))]>, XD, Requires<[UseSSE2]>, Sched<[WriteCvtSD2SS]>; def CVTSD2SSrm_Int: I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, sdmem:$src2), "cvtsd2ss\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4f32 (X86frounds VR128:$src1,sse_load_f64:$src2)))]>, XD, Requires<[UseSSE2]>, Sched<[WriteCvtSD2SS.Folded, WriteCvtSD2SS.ReadAfterFold]>; } } // Convert scalar single to scalar double // SSE2 instructions with XS prefix let isCodeGenOnly = 1, hasSideEffects = 0 in { def VCVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR32:$src2), "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, XS, VEX_4V, VEX_LIG, VEX_WIG, Sched<[WriteCvtSS2SD]>, Requires<[UseAVX]>, SIMD_EXC; let mayLoad = 1 in def VCVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), (ins FR64:$src1, f32mem:$src2), "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, XS, VEX_4V, VEX_LIG, VEX_WIG, Sched<[WriteCvtSS2SD.Folded, WriteCvtSS2SD.ReadAfterFold]>, Requires<[UseAVX, OptForSize]>, SIMD_EXC; } // isCodeGenOnly = 1, hasSideEffects = 0 def : Pat<(f64 (any_fpextend FR32:$src)), (VCVTSS2SDrr (f64 (IMPLICIT_DEF)), FR32:$src)>, Requires<[UseAVX]>; def : Pat<(any_fpextend (loadf32 addr:$src)), (VCVTSS2SDrm (f64 (IMPLICIT_DEF)), addr:$src)>, Requires<[UseAVX, OptForSize]>; let isCodeGenOnly = 1 in { def CVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), (ins FR32:$src), "cvtss2sd\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (any_fpextend FR32:$src))]>, XS, Requires<[UseSSE2]>, Sched<[WriteCvtSS2SD]>, SIMD_EXC; def CVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), (ins f32mem:$src), "cvtss2sd\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (any_fpextend (loadf32 addr:$src)))]>, XS, Requires<[UseSSE2, OptForSize]>, Sched<[WriteCvtSS2SD.Folded]>, SIMD_EXC; } // isCodeGenOnly = 1 let hasSideEffects = 0, Uses = [MXCSR], mayRaiseFPException = 1 in { def VCVTSS2SDrr_Int: I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, XS, VEX_4V, VEX_LIG, VEX_WIG, Requires<[HasAVX]>, Sched<[WriteCvtSS2SD]>; let mayLoad = 1 in def VCVTSS2SDrm_Int: I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, ssmem:$src2), "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, XS, VEX_4V, VEX_LIG, VEX_WIG, Requires<[HasAVX]>, Sched<[WriteCvtSS2SD.Folded, WriteCvtSS2SD.ReadAfterFold]>; let Constraints = "$src1 = $dst" in { // SSE2 instructions with XS prefix def CVTSS2SDrr_Int: I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "cvtss2sd\t{$src2, $dst|$dst, $src2}", []>, XS, Requires<[UseSSE2]>, Sched<[WriteCvtSS2SD]>; let mayLoad = 1 in def CVTSS2SDrm_Int: I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, ssmem:$src2), "cvtss2sd\t{$src2, $dst|$dst, $src2}", []>, XS, Requires<[UseSSE2]>, Sched<[WriteCvtSS2SD.Folded, WriteCvtSS2SD.ReadAfterFold]>; } } // hasSideEffects = 0 // Patterns used for matching (v)cvtsi2ss, (v)cvtsi2sd, (v)cvtsd2ss and // (v)cvtss2sd intrinsic sequences from clang which produce unnecessary // vmovs{s,d} instructions let Predicates = [UseAVX] in { def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (f32 (any_fpround (f64 (extractelt VR128:$src, (iPTR 0))))))))), (VCVTSD2SSrr_Int VR128:$dst, VR128:$src)>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (f64 (any_fpextend (f32 (extractelt VR128:$src, (iPTR 0))))))))), (VCVTSS2SDrr_Int VR128:$dst, VR128:$src)>; def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (f32 (any_sint_to_fp GR64:$src)))))), (VCVTSI642SSrr_Int VR128:$dst, GR64:$src)>; def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (f32 (any_sint_to_fp (loadi64 addr:$src))))))), (VCVTSI642SSrm_Int VR128:$dst, addr:$src)>; def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (f32 (any_sint_to_fp GR32:$src)))))), (VCVTSI2SSrr_Int VR128:$dst, GR32:$src)>; def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (f32 (any_sint_to_fp (loadi32 addr:$src))))))), (VCVTSI2SSrm_Int VR128:$dst, addr:$src)>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (f64 (any_sint_to_fp GR64:$src)))))), (VCVTSI642SDrr_Int VR128:$dst, GR64:$src)>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (f64 (any_sint_to_fp (loadi64 addr:$src))))))), (VCVTSI642SDrm_Int VR128:$dst, addr:$src)>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (f64 (any_sint_to_fp GR32:$src)))))), (VCVTSI2SDrr_Int VR128:$dst, GR32:$src)>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (f64 (any_sint_to_fp (loadi32 addr:$src))))))), (VCVTSI2SDrm_Int VR128:$dst, addr:$src)>; } // Predicates = [UseAVX] let Predicates = [UseSSE2] in { def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (f32 (any_fpround (f64 (extractelt VR128:$src, (iPTR 0))))))))), (CVTSD2SSrr_Int VR128:$dst, VR128:$src)>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (f64 (any_fpextend (f32 (extractelt VR128:$src, (iPTR 0))))))))), (CVTSS2SDrr_Int VR128:$dst, VR128:$src)>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (f64 (any_sint_to_fp GR64:$src)))))), (CVTSI642SDrr_Int VR128:$dst, GR64:$src)>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (f64 (any_sint_to_fp (loadi64 addr:$src))))))), (CVTSI642SDrm_Int VR128:$dst, addr:$src)>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (f64 (any_sint_to_fp GR32:$src)))))), (CVTSI2SDrr_Int VR128:$dst, GR32:$src)>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (f64 (any_sint_to_fp (loadi32 addr:$src))))))), (CVTSI2SDrm_Int VR128:$dst, addr:$src)>; } // Predicates = [UseSSE2] let Predicates = [UseSSE1] in { def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (f32 (any_sint_to_fp GR64:$src)))))), (CVTSI642SSrr_Int VR128:$dst, GR64:$src)>; def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (f32 (any_sint_to_fp (loadi64 addr:$src))))))), (CVTSI642SSrm_Int VR128:$dst, addr:$src)>; def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (f32 (any_sint_to_fp GR32:$src)))))), (CVTSI2SSrr_Int VR128:$dst, GR32:$src)>; def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (f32 (any_sint_to_fp (loadi32 addr:$src))))))), (CVTSI2SSrm_Int VR128:$dst, addr:$src)>; } // Predicates = [UseSSE1] let Predicates = [HasAVX, NoVLX] in { // Convert packed single/double fp to doubleword def VCVTPS2DQrr : VPDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86cvtp2Int (v4f32 VR128:$src))))]>, VEX, Sched<[WriteCvtPS2I]>, VEX_WIG, SIMD_EXC; def VCVTPS2DQrm : VPDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86cvtp2Int (loadv4f32 addr:$src))))]>, VEX, Sched<[WriteCvtPS2ILd]>, VEX_WIG, SIMD_EXC; def VCVTPS2DQYrr : VPDI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR256:$dst, (v8i32 (X86cvtp2Int (v8f32 VR256:$src))))]>, VEX, VEX_L, Sched<[WriteCvtPS2IY]>, VEX_WIG, SIMD_EXC; def VCVTPS2DQYrm : VPDI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR256:$dst, (v8i32 (X86cvtp2Int (loadv8f32 addr:$src))))]>, VEX, VEX_L, Sched<[WriteCvtPS2IYLd]>, VEX_WIG, SIMD_EXC; } def CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86cvtp2Int (v4f32 VR128:$src))))]>, Sched<[WriteCvtPS2I]>, SIMD_EXC; def CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86cvtp2Int (memopv4f32 addr:$src))))]>, Sched<[WriteCvtPS2ILd]>, SIMD_EXC; // Convert Packed Double FP to Packed DW Integers let Predicates = [HasAVX, NoVLX], Uses = [MXCSR], mayRaiseFPException = 1 in { // The assembler can recognize rr 256-bit instructions by seeing a ymm // register, but the same isn't true when using memory operands instead. // Provide other assembly rr and rm forms to address this explicitly. def VCVTPD2DQrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vcvtpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86cvtp2Int (v2f64 VR128:$src))))]>, VEX, Sched<[WriteCvtPD2I]>, VEX_WIG; // XMM only def VCVTPD2DQrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "vcvtpd2dq{x}\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86cvtp2Int (loadv2f64 addr:$src))))]>, VEX, Sched<[WriteCvtPD2ILd]>, VEX_WIG; // YMM only def VCVTPD2DQYrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src), "vcvtpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86cvtp2Int (v4f64 VR256:$src))))]>, VEX, VEX_L, Sched<[WriteCvtPD2IY]>, VEX_WIG; def VCVTPD2DQYrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src), "vcvtpd2dq{y}\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86cvtp2Int (loadv4f64 addr:$src))))]>, VEX, VEX_L, Sched<[WriteCvtPD2IYLd]>, VEX_WIG; } def : InstAlias<"vcvtpd2dqx\t{$src, $dst|$dst, $src}", (VCVTPD2DQrr VR128:$dst, VR128:$src), 0, "att">; def : InstAlias<"vcvtpd2dqy\t{$src, $dst|$dst, $src}", (VCVTPD2DQYrr VR128:$dst, VR256:$src), 0, "att">; def CVTPD2DQrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86cvtp2Int (memopv2f64 addr:$src))))]>, Sched<[WriteCvtPD2ILd]>, SIMD_EXC; def CVTPD2DQrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86cvtp2Int (v2f64 VR128:$src))))]>, Sched<[WriteCvtPD2I]>, SIMD_EXC; // Convert with truncation packed single/double fp to doubleword // SSE2 packed instructions with XS prefix let Uses = [MXCSR], mayRaiseFPException = 1 in { let Predicates = [HasAVX, NoVLX] in { def VCVTTPS2DQrr : VS2SI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86any_cvttp2si (v4f32 VR128:$src))))]>, VEX, Sched<[WriteCvtPS2I]>, VEX_WIG; def VCVTTPS2DQrm : VS2SI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86any_cvttp2si (loadv4f32 addr:$src))))]>, VEX, Sched<[WriteCvtPS2ILd]>, VEX_WIG; def VCVTTPS2DQYrr : VS2SI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", [(set VR256:$dst, (v8i32 (X86any_cvttp2si (v8f32 VR256:$src))))]>, VEX, VEX_L, Sched<[WriteCvtPS2IY]>, VEX_WIG; def VCVTTPS2DQYrm : VS2SI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", [(set VR256:$dst, (v8i32 (X86any_cvttp2si (loadv8f32 addr:$src))))]>, VEX, VEX_L, Sched<[WriteCvtPS2IYLd]>, VEX_WIG; } def CVTTPS2DQrr : S2SI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86any_cvttp2si (v4f32 VR128:$src))))]>, Sched<[WriteCvtPS2I]>; def CVTTPS2DQrm : S2SI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86any_cvttp2si (memopv4f32 addr:$src))))]>, Sched<[WriteCvtPS2ILd]>; } // The assembler can recognize rr 256-bit instructions by seeing a ymm // register, but the same isn't true when using memory operands instead. // Provide other assembly rr and rm forms to address this explicitly. let Predicates = [HasAVX, NoVLX], Uses = [MXCSR], mayRaiseFPException = 1 in { // XMM only def VCVTTPD2DQrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86any_cvttp2si (v2f64 VR128:$src))))]>, VEX, Sched<[WriteCvtPD2I]>, VEX_WIG; def VCVTTPD2DQrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvttpd2dq{x}\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86any_cvttp2si (loadv2f64 addr:$src))))]>, VEX, Sched<[WriteCvtPD2ILd]>, VEX_WIG; // YMM only def VCVTTPD2DQYrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src), "cvttpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86any_cvttp2si (v4f64 VR256:$src))))]>, VEX, VEX_L, Sched<[WriteCvtPD2IY]>, VEX_WIG; def VCVTTPD2DQYrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src), "cvttpd2dq{y}\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86any_cvttp2si (loadv4f64 addr:$src))))]>, VEX, VEX_L, Sched<[WriteCvtPD2IYLd]>, VEX_WIG; } // Predicates = [HasAVX, NoVLX] def : InstAlias<"vcvttpd2dqx\t{$src, $dst|$dst, $src}", (VCVTTPD2DQrr VR128:$dst, VR128:$src), 0, "att">; def : InstAlias<"vcvttpd2dqy\t{$src, $dst|$dst, $src}", (VCVTTPD2DQYrr VR128:$dst, VR256:$src), 0, "att">; let Predicates = [HasAVX, NoVLX] in { def : Pat<(v4i32 (any_fp_to_sint (v4f64 VR256:$src))), (VCVTTPD2DQYrr VR256:$src)>; def : Pat<(v4i32 (any_fp_to_sint (loadv4f64 addr:$src))), (VCVTTPD2DQYrm addr:$src)>; } def CVTTPD2DQrr : PDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86any_cvttp2si (v2f64 VR128:$src))))]>, Sched<[WriteCvtPD2I]>, SIMD_EXC; def CVTTPD2DQrm : PDI<0xE6, MRMSrcMem, (outs VR128:$dst),(ins f128mem:$src), "cvttpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86any_cvttp2si (memopv2f64 addr:$src))))]>, Sched<[WriteCvtPD2ILd]>, SIMD_EXC; // Convert packed single to packed double let Predicates = [HasAVX, NoVLX], Uses = [MXCSR], mayRaiseFPException = 1 in { // SSE2 instructions without OpSize prefix def VCVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vcvtps2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2f64 (X86any_vfpext (v4f32 VR128:$src))))]>, PS, VEX, Sched<[WriteCvtPS2PD]>, VEX_WIG; def VCVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), "vcvtps2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2f64 (extloadv2f32 addr:$src)))]>, PS, VEX, Sched<[WriteCvtPS2PD.Folded]>, VEX_WIG; def VCVTPS2PDYrr : I<0x5A, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src), "vcvtps2pd\t{$src, $dst|$dst, $src}", [(set VR256:$dst, (v4f64 (any_fpextend (v4f32 VR128:$src))))]>, PS, VEX, VEX_L, Sched<[WriteCvtPS2PDY]>, VEX_WIG; def VCVTPS2PDYrm : I<0x5A, MRMSrcMem, (outs VR256:$dst), (ins f128mem:$src), "vcvtps2pd\t{$src, $dst|$dst, $src}", [(set VR256:$dst, (v4f64 (extloadv4f32 addr:$src)))]>, PS, VEX, VEX_L, Sched<[WriteCvtPS2PDY.Folded]>, VEX_WIG; } let Predicates = [UseSSE2], Uses = [MXCSR], mayRaiseFPException = 1 in { def CVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2f64 (X86any_vfpext (v4f32 VR128:$src))))]>, PS, Sched<[WriteCvtPS2PD]>; def CVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), "cvtps2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2f64 (extloadv2f32 addr:$src)))]>, PS, Sched<[WriteCvtPS2PD.Folded]>; } // Convert Packed DW Integers to Packed Double FP let Predicates = [HasAVX, NoVLX] in { let hasSideEffects = 0, mayLoad = 1 in def VCVTDQ2PDrm : S2SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "vcvtdq2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2f64 (X86any_VSintToFP (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))))]>, VEX, Sched<[WriteCvtI2PDLd]>, VEX_WIG; def VCVTDQ2PDrr : S2SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vcvtdq2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2f64 (X86any_VSintToFP (v4i32 VR128:$src))))]>, VEX, Sched<[WriteCvtI2PD]>, VEX_WIG; def VCVTDQ2PDYrm : S2SI<0xE6, MRMSrcMem, (outs VR256:$dst), (ins i128mem:$src), "vcvtdq2pd\t{$src, $dst|$dst, $src}", [(set VR256:$dst, (v4f64 (any_sint_to_fp (loadv4i32 addr:$src))))]>, VEX, VEX_L, Sched<[WriteCvtI2PDYLd]>, VEX_WIG; def VCVTDQ2PDYrr : S2SI<0xE6, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src), "vcvtdq2pd\t{$src, $dst|$dst, $src}", [(set VR256:$dst, (v4f64 (any_sint_to_fp (v4i32 VR128:$src))))]>, VEX, VEX_L, Sched<[WriteCvtI2PDY]>, VEX_WIG; } let hasSideEffects = 0, mayLoad = 1 in def CVTDQ2PDrm : S2SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "cvtdq2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2f64 (X86any_VSintToFP (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))))]>, Sched<[WriteCvtI2PDLd]>; def CVTDQ2PDrr : S2SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtdq2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2f64 (X86any_VSintToFP (v4i32 VR128:$src))))]>, Sched<[WriteCvtI2PD]>; // AVX register conversion intrinsics let Predicates = [HasAVX, NoVLX] in { def : Pat<(v2f64 (X86any_VSintToFP (bc_v4i32 (v2i64 (X86vzload64 addr:$src))))), (VCVTDQ2PDrm addr:$src)>; } // Predicates = [HasAVX, NoVLX] // SSE2 register conversion intrinsics let Predicates = [UseSSE2] in { def : Pat<(v2f64 (X86any_VSintToFP (bc_v4i32 (v2i64 (X86vzload64 addr:$src))))), (CVTDQ2PDrm addr:$src)>; } // Predicates = [UseSSE2] // Convert packed double to packed single // The assembler can recognize rr 256-bit instructions by seeing a ymm // register, but the same isn't true when using memory operands instead. // Provide other assembly rr and rm forms to address this explicitly. let Predicates = [HasAVX, NoVLX], Uses = [MXCSR], mayRaiseFPException = 1 in { // XMM only def VCVTPD2PSrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (X86any_vfpround (v2f64 VR128:$src)))]>, VEX, Sched<[WriteCvtPD2PS]>, VEX_WIG; def VCVTPD2PSrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtpd2ps{x}\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (X86any_vfpround (loadv2f64 addr:$src)))]>, VEX, Sched<[WriteCvtPD2PS.Folded]>, VEX_WIG; def VCVTPD2PSYrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (X86any_vfpround VR256:$src))]>, VEX, VEX_L, Sched<[WriteCvtPD2PSY]>, VEX_WIG; def VCVTPD2PSYrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src), "cvtpd2ps{y}\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (X86any_vfpround (loadv4f64 addr:$src)))]>, VEX, VEX_L, Sched<[WriteCvtPD2PSY.Folded]>, VEX_WIG; } // Predicates = [HasAVX, NoVLX] def : InstAlias<"vcvtpd2psx\t{$src, $dst|$dst, $src}", (VCVTPD2PSrr VR128:$dst, VR128:$src), 0, "att">; def : InstAlias<"vcvtpd2psy\t{$src, $dst|$dst, $src}", (VCVTPD2PSYrr VR128:$dst, VR256:$src), 0, "att">; def CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (X86any_vfpround (v2f64 VR128:$src)))]>, Sched<[WriteCvtPD2PS]>, SIMD_EXC; def CVTPD2PSrm : PDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (X86any_vfpround (memopv2f64 addr:$src)))]>, Sched<[WriteCvtPD2PS.Folded]>, SIMD_EXC; //===----------------------------------------------------------------------===// // SSE 1 & 2 - Compare Instructions //===----------------------------------------------------------------------===// // sse12_cmp_scalar - sse 1 & 2 compare scalar instructions multiclass sse12_cmp_scalar { let Uses = [MXCSR], mayRaiseFPException = 1 in { let isCommutable = 1 in def rr : SIi8<0xC2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, u8imm:$cc), asm, [(set RC:$dst, (OpNode (VT RC:$src1), RC:$src2, timm:$cc))]>, Sched<[sched]>; def rm : SIi8<0xC2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2, u8imm:$cc), asm, [(set RC:$dst, (OpNode (VT RC:$src1), (ld_frag addr:$src2), timm:$cc))]>, Sched<[sched.Folded, sched.ReadAfterFold]>; } } let isCodeGenOnly = 1 in { let ExeDomain = SSEPackedSingle in defm VCMPSS : sse12_cmp_scalar, XS, VEX_4V, VEX_LIG, VEX_WIG; let ExeDomain = SSEPackedDouble in defm VCMPSD : sse12_cmp_scalar, XD, VEX_4V, VEX_LIG, VEX_WIG; let Constraints = "$src1 = $dst" in { let ExeDomain = SSEPackedSingle in defm CMPSS : sse12_cmp_scalar, XS; let ExeDomain = SSEPackedDouble in defm CMPSD : sse12_cmp_scalar, XD; } } multiclass sse12_cmp_scalar_int { let Uses = [MXCSR], mayRaiseFPException = 1 in { def rr_Int : SIi8<0xC2, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src, u8imm:$cc), asm, [(set VR128:$dst, (Int VR128:$src1, VR128:$src, timm:$cc))]>, Sched<[sched]>; let mayLoad = 1 in def rm_Int : SIi8<0xC2, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, memop:$src, u8imm:$cc), asm, [(set VR128:$dst, (Int VR128:$src1, mem_cpat:$src, timm:$cc))]>, Sched<[sched.Folded, sched.ReadAfterFold]>; } } // Aliases to match intrinsics which expect XMM operand(s). let ExeDomain = SSEPackedSingle in defm VCMPSS : sse12_cmp_scalar_int, XS, VEX_4V, VEX_LIG, VEX_WIG; let ExeDomain = SSEPackedDouble in defm VCMPSD : sse12_cmp_scalar_int, XD, VEX_4V, VEX_LIG, VEX_WIG; let Constraints = "$src1 = $dst" in { let ExeDomain = SSEPackedSingle in defm CMPSS : sse12_cmp_scalar_int, XS; let ExeDomain = SSEPackedDouble in defm CMPSD : sse12_cmp_scalar_int, XD; } // sse12_ord_cmp - Unordered/Ordered scalar fp compare and set EFLAGS multiclass sse12_ord_cmp opc, RegisterClass RC, SDNode OpNode, ValueType vt, X86MemOperand x86memop, PatFrag ld_frag, string OpcodeStr, Domain d, X86FoldableSchedWrite sched = WriteFCom> { let hasSideEffects = 0, Uses = [MXCSR], mayRaiseFPException = 1, ExeDomain = d in { def rr: SI, Sched<[sched]>; let mayLoad = 1 in def rm: SI, Sched<[sched.Folded, sched.ReadAfterFold]>; } } // sse12_ord_cmp_int - Intrinsic version of sse12_ord_cmp multiclass sse12_ord_cmp_int opc, RegisterClass RC, SDNode OpNode, ValueType vt, Operand memop, ComplexPattern mem_cpat, string OpcodeStr, Domain d, X86FoldableSchedWrite sched = WriteFCom> { let Uses = [MXCSR], mayRaiseFPException = 1, ExeDomain = d in { def rr_Int: SI, Sched<[sched]>; let mayLoad = 1 in def rm_Int: SI, Sched<[sched.Folded, sched.ReadAfterFold]>; } } let Defs = [EFLAGS] in { defm VUCOMISS : sse12_ord_cmp<0x2E, FR32, X86any_fcmp, f32, f32mem, loadf32, "ucomiss", SSEPackedSingle>, PS, VEX, VEX_LIG, VEX_WIG; defm VUCOMISD : sse12_ord_cmp<0x2E, FR64, X86any_fcmp, f64, f64mem, loadf64, "ucomisd", SSEPackedDouble>, PD, VEX, VEX_LIG, VEX_WIG; defm VCOMISS : sse12_ord_cmp<0x2F, FR32, X86strict_fcmps, f32, f32mem, loadf32, "comiss", SSEPackedSingle>, PS, VEX, VEX_LIG, VEX_WIG; defm VCOMISD : sse12_ord_cmp<0x2F, FR64, X86strict_fcmps, f64, f64mem, loadf64, "comisd", SSEPackedDouble>, PD, VEX, VEX_LIG, VEX_WIG; let isCodeGenOnly = 1 in { defm VUCOMISS : sse12_ord_cmp_int<0x2E, VR128, X86ucomi, v4f32, ssmem, sse_load_f32, "ucomiss", SSEPackedSingle>, PS, VEX, VEX_LIG, VEX_WIG; defm VUCOMISD : sse12_ord_cmp_int<0x2E, VR128, X86ucomi, v2f64, sdmem, sse_load_f64, "ucomisd", SSEPackedDouble>, PD, VEX, VEX_LIG, VEX_WIG; defm VCOMISS : sse12_ord_cmp_int<0x2F, VR128, X86comi, v4f32, ssmem, sse_load_f32, "comiss", SSEPackedSingle>, PS, VEX, VEX_LIG, VEX_WIG; defm VCOMISD : sse12_ord_cmp_int<0x2F, VR128, X86comi, v2f64, sdmem, sse_load_f64, "comisd", SSEPackedDouble>, PD, VEX, VEX_LIG, VEX_WIG; } defm UCOMISS : sse12_ord_cmp<0x2E, FR32, X86any_fcmp, f32, f32mem, loadf32, "ucomiss", SSEPackedSingle>, PS; defm UCOMISD : sse12_ord_cmp<0x2E, FR64, X86any_fcmp, f64, f64mem, loadf64, "ucomisd", SSEPackedDouble>, PD; defm COMISS : sse12_ord_cmp<0x2F, FR32, X86strict_fcmps, f32, f32mem, loadf32, "comiss", SSEPackedSingle>, PS; defm COMISD : sse12_ord_cmp<0x2F, FR64, X86strict_fcmps, f64, f64mem, loadf64, "comisd", SSEPackedDouble>, PD; let isCodeGenOnly = 1 in { defm UCOMISS : sse12_ord_cmp_int<0x2E, VR128, X86ucomi, v4f32, ssmem, sse_load_f32, "ucomiss", SSEPackedSingle>, PS; defm UCOMISD : sse12_ord_cmp_int<0x2E, VR128, X86ucomi, v2f64, sdmem, sse_load_f64, "ucomisd", SSEPackedDouble>, PD; defm COMISS : sse12_ord_cmp_int<0x2F, VR128, X86comi, v4f32, ssmem, sse_load_f32, "comiss", SSEPackedSingle>, PS; defm COMISD : sse12_ord_cmp_int<0x2F, VR128, X86comi, v2f64, sdmem, sse_load_f64, "comisd", SSEPackedDouble>, PD; } } // Defs = [EFLAGS] // sse12_cmp_packed - sse 1 & 2 compare packed instructions multiclass sse12_cmp_packed { let Uses = [MXCSR], mayRaiseFPException = 1 in { let isCommutable = 1 in def rri : PIi8<0xC2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, u8imm:$cc), asm, [(set RC:$dst, (VT (X86any_cmpp RC:$src1, RC:$src2, timm:$cc)))], d>, Sched<[sched]>; def rmi : PIi8<0xC2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2, u8imm:$cc), asm, [(set RC:$dst, (VT (X86any_cmpp RC:$src1, (ld_frag addr:$src2), timm:$cc)))], d>, Sched<[sched.Folded, sched.ReadAfterFold]>; } } defm VCMPPS : sse12_cmp_packed, PS, VEX_4V, VEX_WIG; defm VCMPPD : sse12_cmp_packed, PD, VEX_4V, VEX_WIG; defm VCMPPSY : sse12_cmp_packed, PS, VEX_4V, VEX_L, VEX_WIG; defm VCMPPDY : sse12_cmp_packed, PD, VEX_4V, VEX_L, VEX_WIG; let Constraints = "$src1 = $dst" in { defm CMPPS : sse12_cmp_packed, PS; defm CMPPD : sse12_cmp_packed, PD; } def CommutableCMPCC : PatLeaf<(timm), [{ uint64_t Imm = N->getZExtValue() & 0x7; return (Imm == 0x00 || Imm == 0x03 || Imm == 0x04 || Imm == 0x07); }]>; // Patterns to select compares with loads in first operand. let Predicates = [HasAVX] in { def : Pat<(v4f64 (X86any_cmpp (loadv4f64 addr:$src2), VR256:$src1, CommutableCMPCC:$cc)), (VCMPPDYrmi VR256:$src1, addr:$src2, timm:$cc)>; def : Pat<(v8f32 (X86any_cmpp (loadv8f32 addr:$src2), VR256:$src1, CommutableCMPCC:$cc)), (VCMPPSYrmi VR256:$src1, addr:$src2, timm:$cc)>; def : Pat<(v2f64 (X86any_cmpp (loadv2f64 addr:$src2), VR128:$src1, CommutableCMPCC:$cc)), (VCMPPDrmi VR128:$src1, addr:$src2, timm:$cc)>; def : Pat<(v4f32 (X86any_cmpp (loadv4f32 addr:$src2), VR128:$src1, CommutableCMPCC:$cc)), (VCMPPSrmi VR128:$src1, addr:$src2, timm:$cc)>; def : Pat<(f64 (X86cmps (loadf64 addr:$src2), FR64:$src1, CommutableCMPCC:$cc)), (VCMPSDrm FR64:$src1, addr:$src2, timm:$cc)>; def : Pat<(f32 (X86cmps (loadf32 addr:$src2), FR32:$src1, CommutableCMPCC:$cc)), (VCMPSSrm FR32:$src1, addr:$src2, timm:$cc)>; } let Predicates = [UseSSE2] in { def : Pat<(v2f64 (X86any_cmpp (memopv2f64 addr:$src2), VR128:$src1, CommutableCMPCC:$cc)), (CMPPDrmi VR128:$src1, addr:$src2, timm:$cc)>; def : Pat<(f64 (X86cmps (loadf64 addr:$src2), FR64:$src1, CommutableCMPCC:$cc)), (CMPSDrm FR64:$src1, addr:$src2, timm:$cc)>; } let Predicates = [UseSSE1] in { def : Pat<(v4f32 (X86any_cmpp (memopv4f32 addr:$src2), VR128:$src1, CommutableCMPCC:$cc)), (CMPPSrmi VR128:$src1, addr:$src2, timm:$cc)>; def : Pat<(f32 (X86cmps (loadf32 addr:$src2), FR32:$src1, CommutableCMPCC:$cc)), (CMPSSrm FR32:$src1, addr:$src2, timm:$cc)>; } //===----------------------------------------------------------------------===// // SSE 1 & 2 - Shuffle Instructions //===----------------------------------------------------------------------===// /// sse12_shuffle - sse 1 & 2 fp shuffle instructions multiclass sse12_shuffle { def rmi : PIi8<0xC6, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2, u8imm:$src3), asm, [(set RC:$dst, (vt (X86Shufp RC:$src1, (mem_frag addr:$src2), (i8 timm:$src3))))], d>, Sched<[sched.Folded, sched.ReadAfterFold]>; let isCommutable = IsCommutable in def rri : PIi8<0xC6, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, u8imm:$src3), asm, [(set RC:$dst, (vt (X86Shufp RC:$src1, RC:$src2, (i8 timm:$src3))))], d>, Sched<[sched]>; } let Predicates = [HasAVX, NoVLX] in { defm VSHUFPS : sse12_shuffle, PS, VEX_4V, VEX_WIG; defm VSHUFPSY : sse12_shuffle, PS, VEX_4V, VEX_L, VEX_WIG; defm VSHUFPD : sse12_shuffle, PD, VEX_4V, VEX_WIG; defm VSHUFPDY : sse12_shuffle, PD, VEX_4V, VEX_L, VEX_WIG; } let Constraints = "$src1 = $dst" in { defm SHUFPS : sse12_shuffle, PS; defm SHUFPD : sse12_shuffle, PD; } //===----------------------------------------------------------------------===// // SSE 1 & 2 - Unpack FP Instructions //===----------------------------------------------------------------------===// /// sse12_unpack_interleave - sse 1 & 2 fp unpack and interleave multiclass sse12_unpack_interleave opc, SDNode OpNode, ValueType vt, PatFrag mem_frag, RegisterClass RC, X86MemOperand x86memop, string asm, X86FoldableSchedWrite sched, Domain d, bit IsCommutable = 0> { let isCommutable = IsCommutable in def rr : PI, Sched<[sched]>; def rm : PI, Sched<[sched.Folded, sched.ReadAfterFold]>; } let Predicates = [HasAVX, NoVLX] in { defm VUNPCKHPS: sse12_unpack_interleave<0x15, X86Unpckh, v4f32, load, VR128, f128mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}", SchedWriteFShuffle.XMM, SSEPackedSingle>, PS, VEX_4V, VEX_WIG; defm VUNPCKHPD: sse12_unpack_interleave<0x15, X86Unpckh, v2f64, load, VR128, f128mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", SchedWriteFShuffle.XMM, SSEPackedDouble, 1>, PD, VEX_4V, VEX_WIG; defm VUNPCKLPS: sse12_unpack_interleave<0x14, X86Unpckl, v4f32, load, VR128, f128mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}", SchedWriteFShuffle.XMM, SSEPackedSingle>, PS, VEX_4V, VEX_WIG; defm VUNPCKLPD: sse12_unpack_interleave<0x14, X86Unpckl, v2f64, load, VR128, f128mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", SchedWriteFShuffle.XMM, SSEPackedDouble>, PD, VEX_4V, VEX_WIG; defm VUNPCKHPSY: sse12_unpack_interleave<0x15, X86Unpckh, v8f32, load, VR256, f256mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}", SchedWriteFShuffle.YMM, SSEPackedSingle>, PS, VEX_4V, VEX_L, VEX_WIG; defm VUNPCKHPDY: sse12_unpack_interleave<0x15, X86Unpckh, v4f64, load, VR256, f256mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", SchedWriteFShuffle.YMM, SSEPackedDouble>, PD, VEX_4V, VEX_L, VEX_WIG; defm VUNPCKLPSY: sse12_unpack_interleave<0x14, X86Unpckl, v8f32, load, VR256, f256mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}", SchedWriteFShuffle.YMM, SSEPackedSingle>, PS, VEX_4V, VEX_L, VEX_WIG; defm VUNPCKLPDY: sse12_unpack_interleave<0x14, X86Unpckl, v4f64, load, VR256, f256mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", SchedWriteFShuffle.YMM, SSEPackedDouble>, PD, VEX_4V, VEX_L, VEX_WIG; }// Predicates = [HasAVX, NoVLX] let Constraints = "$src1 = $dst" in { defm UNPCKHPS: sse12_unpack_interleave<0x15, X86Unpckh, v4f32, memop, VR128, f128mem, "unpckhps\t{$src2, $dst|$dst, $src2}", SchedWriteFShuffle.XMM, SSEPackedSingle>, PS; defm UNPCKHPD: sse12_unpack_interleave<0x15, X86Unpckh, v2f64, memop, VR128, f128mem, "unpckhpd\t{$src2, $dst|$dst, $src2}", SchedWriteFShuffle.XMM, SSEPackedDouble, 1>, PD; defm UNPCKLPS: sse12_unpack_interleave<0x14, X86Unpckl, v4f32, memop, VR128, f128mem, "unpcklps\t{$src2, $dst|$dst, $src2}", SchedWriteFShuffle.XMM, SSEPackedSingle>, PS; defm UNPCKLPD: sse12_unpack_interleave<0x14, X86Unpckl, v2f64, memop, VR128, f128mem, "unpcklpd\t{$src2, $dst|$dst, $src2}", SchedWriteFShuffle.XMM, SSEPackedDouble>, PD; } // Constraints = "$src1 = $dst" let Predicates = [HasAVX1Only] in { def : Pat<(v8i32 (X86Unpckl VR256:$src1, (loadv8i32 addr:$src2))), (VUNPCKLPSYrm VR256:$src1, addr:$src2)>; def : Pat<(v8i32 (X86Unpckl VR256:$src1, VR256:$src2)), (VUNPCKLPSYrr VR256:$src1, VR256:$src2)>; def : Pat<(v8i32 (X86Unpckh VR256:$src1, (loadv8i32 addr:$src2))), (VUNPCKHPSYrm VR256:$src1, addr:$src2)>; def : Pat<(v8i32 (X86Unpckh VR256:$src1, VR256:$src2)), (VUNPCKHPSYrr VR256:$src1, VR256:$src2)>; def : Pat<(v4i64 (X86Unpckl VR256:$src1, (loadv4i64 addr:$src2))), (VUNPCKLPDYrm VR256:$src1, addr:$src2)>; def : Pat<(v4i64 (X86Unpckl VR256:$src1, VR256:$src2)), (VUNPCKLPDYrr VR256:$src1, VR256:$src2)>; def : Pat<(v4i64 (X86Unpckh VR256:$src1, (loadv4i64 addr:$src2))), (VUNPCKHPDYrm VR256:$src1, addr:$src2)>; def : Pat<(v4i64 (X86Unpckh VR256:$src1, VR256:$src2)), (VUNPCKHPDYrr VR256:$src1, VR256:$src2)>; } let Predicates = [UseSSE2] in { // Use MOVHPD if the load isn't aligned enough for UNPCKLPD. def : Pat<(v2f64 (X86Unpckl VR128:$src1, (v2f64 (simple_load addr:$src2)))), (MOVHPDrm VR128:$src1, addr:$src2)>; } //===----------------------------------------------------------------------===// // SSE 1 & 2 - Extract Floating-Point Sign mask //===----------------------------------------------------------------------===// /// sse12_extr_sign_mask - sse 1 & 2 unpack and interleave multiclass sse12_extr_sign_mask { def rr : PI<0x50, MRMSrcReg, (outs GR32orGR64:$dst), (ins RC:$src), !strconcat(asm, "\t{$src, $dst|$dst, $src}"), [(set GR32orGR64:$dst, (X86movmsk (vt RC:$src)))], d>, Sched<[WriteFMOVMSK]>; } let Predicates = [HasAVX] in { defm VMOVMSKPS : sse12_extr_sign_mask, PS, VEX, VEX_WIG; defm VMOVMSKPD : sse12_extr_sign_mask, PD, VEX, VEX_WIG; defm VMOVMSKPSY : sse12_extr_sign_mask, PS, VEX, VEX_L, VEX_WIG; defm VMOVMSKPDY : sse12_extr_sign_mask, PD, VEX, VEX_L, VEX_WIG; // Also support integer VTs to avoid a int->fp bitcast in the DAG. def : Pat<(X86movmsk (v4i32 VR128:$src)), (VMOVMSKPSrr VR128:$src)>; def : Pat<(X86movmsk (v2i64 VR128:$src)), (VMOVMSKPDrr VR128:$src)>; def : Pat<(X86movmsk (v8i32 VR256:$src)), (VMOVMSKPSYrr VR256:$src)>; def : Pat<(X86movmsk (v4i64 VR256:$src)), (VMOVMSKPDYrr VR256:$src)>; } defm MOVMSKPS : sse12_extr_sign_mask, PS; defm MOVMSKPD : sse12_extr_sign_mask, PD; let Predicates = [UseSSE2] in { // Also support integer VTs to avoid a int->fp bitcast in the DAG. def : Pat<(X86movmsk (v4i32 VR128:$src)), (MOVMSKPSrr VR128:$src)>; def : Pat<(X86movmsk (v2i64 VR128:$src)), (MOVMSKPDrr VR128:$src)>; } //===---------------------------------------------------------------------===// // SSE2 - Packed Integer Logical Instructions //===---------------------------------------------------------------------===// let ExeDomain = SSEPackedInt in { // SSE integer instructions /// PDI_binop_rm - Simple SSE2 binary operator. multiclass PDI_binop_rm opc, string OpcodeStr, SDNode OpNode, ValueType OpVT, RegisterClass RC, PatFrag memop_frag, X86MemOperand x86memop, X86FoldableSchedWrite sched, bit IsCommutable, bit Is2Addr> { let isCommutable = IsCommutable in def rr : PDI, Sched<[sched]>; def rm : PDI, Sched<[sched.Folded, sched.ReadAfterFold]>; } } // ExeDomain = SSEPackedInt multiclass PDI_binop_all opc, string OpcodeStr, SDNode Opcode, ValueType OpVT128, ValueType OpVT256, X86SchedWriteWidths sched, bit IsCommutable, Predicate prd> { let Predicates = [HasAVX, prd] in defm V#NAME : PDI_binop_rm, VEX_4V, VEX_WIG; let Constraints = "$src1 = $dst" in defm NAME : PDI_binop_rm; let Predicates = [HasAVX2, prd] in defm V#NAME#Y : PDI_binop_rm, VEX_4V, VEX_L, VEX_WIG; } // These are ordered here for pattern ordering requirements with the fp versions defm PAND : PDI_binop_all<0xDB, "pand", and, v2i64, v4i64, SchedWriteVecLogic, 1, NoVLX>; defm POR : PDI_binop_all<0xEB, "por", or, v2i64, v4i64, SchedWriteVecLogic, 1, NoVLX>; defm PXOR : PDI_binop_all<0xEF, "pxor", xor, v2i64, v4i64, SchedWriteVecLogic, 1, NoVLX>; defm PANDN : PDI_binop_all<0xDF, "pandn", X86andnp, v2i64, v4i64, SchedWriteVecLogic, 0, NoVLX>; //===----------------------------------------------------------------------===// // SSE 1 & 2 - Logical Instructions //===----------------------------------------------------------------------===// /// sse12_fp_packed_logical - SSE 1 & 2 packed FP logical ops /// /// There are no patterns here because isel prefers integer versions for SSE2 /// and later. There are SSE1 v4f32 patterns later. multiclass sse12_fp_packed_logical opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched> { let Predicates = [HasAVX, NoVLX] in { defm V#NAME#PSY : sse12_fp_packed_logical_rm, PS, VEX_4V, VEX_L, VEX_WIG; defm V#NAME#PDY : sse12_fp_packed_logical_rm, PD, VEX_4V, VEX_L, VEX_WIG; defm V#NAME#PS : sse12_fp_packed_logical_rm, PS, VEX_4V, VEX_WIG; defm V#NAME#PD : sse12_fp_packed_logical_rm, PD, VEX_4V, VEX_WIG; } let Constraints = "$src1 = $dst" in { defm PS : sse12_fp_packed_logical_rm, PS; defm PD : sse12_fp_packed_logical_rm, PD; } } defm AND : sse12_fp_packed_logical<0x54, "and", and, SchedWriteFLogic>; defm OR : sse12_fp_packed_logical<0x56, "or", or, SchedWriteFLogic>; defm XOR : sse12_fp_packed_logical<0x57, "xor", xor, SchedWriteFLogic>; let isCommutable = 0 in defm ANDN : sse12_fp_packed_logical<0x55, "andn", X86andnp, SchedWriteFLogic>; let Predicates = [HasAVX2, NoVLX] in { def : Pat<(v32i8 (and VR256:$src1, VR256:$src2)), (VPANDYrr VR256:$src1, VR256:$src2)>; def : Pat<(v16i16 (and VR256:$src1, VR256:$src2)), (VPANDYrr VR256:$src1, VR256:$src2)>; def : Pat<(v8i32 (and VR256:$src1, VR256:$src2)), (VPANDYrr VR256:$src1, VR256:$src2)>; def : Pat<(v32i8 (or VR256:$src1, VR256:$src2)), (VPORYrr VR256:$src1, VR256:$src2)>; def : Pat<(v16i16 (or VR256:$src1, VR256:$src2)), (VPORYrr VR256:$src1, VR256:$src2)>; def : Pat<(v8i32 (or VR256:$src1, VR256:$src2)), (VPORYrr VR256:$src1, VR256:$src2)>; def : Pat<(v32i8 (xor VR256:$src1, VR256:$src2)), (VPXORYrr VR256:$src1, VR256:$src2)>; def : Pat<(v16i16 (xor VR256:$src1, VR256:$src2)), (VPXORYrr VR256:$src1, VR256:$src2)>; def : Pat<(v8i32 (xor VR256:$src1, VR256:$src2)), (VPXORYrr VR256:$src1, VR256:$src2)>; def : Pat<(v32i8 (X86andnp VR256:$src1, VR256:$src2)), (VPANDNYrr VR256:$src1, VR256:$src2)>; def : Pat<(v16i16 (X86andnp VR256:$src1, VR256:$src2)), (VPANDNYrr VR256:$src1, VR256:$src2)>; def : Pat<(v8i32 (X86andnp VR256:$src1, VR256:$src2)), (VPANDNYrr VR256:$src1, VR256:$src2)>; def : Pat<(and VR256:$src1, (loadv32i8 addr:$src2)), (VPANDYrm VR256:$src1, addr:$src2)>; def : Pat<(and VR256:$src1, (loadv16i16 addr:$src2)), (VPANDYrm VR256:$src1, addr:$src2)>; def : Pat<(and VR256:$src1, (loadv8i32 addr:$src2)), (VPANDYrm VR256:$src1, addr:$src2)>; def : Pat<(or VR256:$src1, (loadv32i8 addr:$src2)), (VPORYrm VR256:$src1, addr:$src2)>; def : Pat<(or VR256:$src1, (loadv16i16 addr:$src2)), (VPORYrm VR256:$src1, addr:$src2)>; def : Pat<(or VR256:$src1, (loadv8i32 addr:$src2)), (VPORYrm VR256:$src1, addr:$src2)>; def : Pat<(xor VR256:$src1, (loadv32i8 addr:$src2)), (VPXORYrm VR256:$src1, addr:$src2)>; def : Pat<(xor VR256:$src1, (loadv16i16 addr:$src2)), (VPXORYrm VR256:$src1, addr:$src2)>; def : Pat<(xor VR256:$src1, (loadv8i32 addr:$src2)), (VPXORYrm VR256:$src1, addr:$src2)>; def : Pat<(X86andnp VR256:$src1, (loadv32i8 addr:$src2)), (VPANDNYrm VR256:$src1, addr:$src2)>; def : Pat<(X86andnp VR256:$src1, (loadv16i16 addr:$src2)), (VPANDNYrm VR256:$src1, addr:$src2)>; def : Pat<(X86andnp VR256:$src1, (loadv8i32 addr:$src2)), (VPANDNYrm VR256:$src1, addr:$src2)>; } // If only AVX1 is supported, we need to handle integer operations with // floating point instructions since the integer versions aren't available. let Predicates = [HasAVX1Only] in { def : Pat<(v32i8 (and VR256:$src1, VR256:$src2)), (VANDPSYrr VR256:$src1, VR256:$src2)>; def : Pat<(v16i16 (and VR256:$src1, VR256:$src2)), (VANDPSYrr VR256:$src1, VR256:$src2)>; def : Pat<(v8i32 (and VR256:$src1, VR256:$src2)), (VANDPSYrr VR256:$src1, VR256:$src2)>; def : Pat<(v4i64 (and VR256:$src1, VR256:$src2)), (VANDPSYrr VR256:$src1, VR256:$src2)>; def : Pat<(v32i8 (or VR256:$src1, VR256:$src2)), (VORPSYrr VR256:$src1, VR256:$src2)>; def : Pat<(v16i16 (or VR256:$src1, VR256:$src2)), (VORPSYrr VR256:$src1, VR256:$src2)>; def : Pat<(v8i32 (or VR256:$src1, VR256:$src2)), (VORPSYrr VR256:$src1, VR256:$src2)>; def : Pat<(v4i64 (or VR256:$src1, VR256:$src2)), (VORPSYrr VR256:$src1, VR256:$src2)>; def : Pat<(v32i8 (xor VR256:$src1, VR256:$src2)), (VXORPSYrr VR256:$src1, VR256:$src2)>; def : Pat<(v16i16 (xor VR256:$src1, VR256:$src2)), (VXORPSYrr VR256:$src1, VR256:$src2)>; def : Pat<(v8i32 (xor VR256:$src1, VR256:$src2)), (VXORPSYrr VR256:$src1, VR256:$src2)>; def : Pat<(v4i64 (xor VR256:$src1, VR256:$src2)), (VXORPSYrr VR256:$src1, VR256:$src2)>; def : Pat<(v32i8 (X86andnp VR256:$src1, VR256:$src2)), (VANDNPSYrr VR256:$src1, VR256:$src2)>; def : Pat<(v16i16 (X86andnp VR256:$src1, VR256:$src2)), (VANDNPSYrr VR256:$src1, VR256:$src2)>; def : Pat<(v8i32 (X86andnp VR256:$src1, VR256:$src2)), (VANDNPSYrr VR256:$src1, VR256:$src2)>; def : Pat<(v4i64 (X86andnp VR256:$src1, VR256:$src2)), (VANDNPSYrr VR256:$src1, VR256:$src2)>; def : Pat<(and VR256:$src1, (loadv32i8 addr:$src2)), (VANDPSYrm VR256:$src1, addr:$src2)>; def : Pat<(and VR256:$src1, (loadv16i16 addr:$src2)), (VANDPSYrm VR256:$src1, addr:$src2)>; def : Pat<(and VR256:$src1, (loadv8i32 addr:$src2)), (VANDPSYrm VR256:$src1, addr:$src2)>; def : Pat<(and VR256:$src1, (loadv4i64 addr:$src2)), (VANDPSYrm VR256:$src1, addr:$src2)>; def : Pat<(or VR256:$src1, (loadv32i8 addr:$src2)), (VORPSYrm VR256:$src1, addr:$src2)>; def : Pat<(or VR256:$src1, (loadv16i16 addr:$src2)), (VORPSYrm VR256:$src1, addr:$src2)>; def : Pat<(or VR256:$src1, (loadv8i32 addr:$src2)), (VORPSYrm VR256:$src1, addr:$src2)>; def : Pat<(or VR256:$src1, (loadv4i64 addr:$src2)), (VORPSYrm VR256:$src1, addr:$src2)>; def : Pat<(xor VR256:$src1, (loadv32i8 addr:$src2)), (VXORPSYrm VR256:$src1, addr:$src2)>; def : Pat<(xor VR256:$src1, (loadv16i16 addr:$src2)), (VXORPSYrm VR256:$src1, addr:$src2)>; def : Pat<(xor VR256:$src1, (loadv8i32 addr:$src2)), (VXORPSYrm VR256:$src1, addr:$src2)>; def : Pat<(xor VR256:$src1, (loadv4i64 addr:$src2)), (VXORPSYrm VR256:$src1, addr:$src2)>; def : Pat<(X86andnp VR256:$src1, (loadv32i8 addr:$src2)), (VANDNPSYrm VR256:$src1, addr:$src2)>; def : Pat<(X86andnp VR256:$src1, (loadv16i16 addr:$src2)), (VANDNPSYrm VR256:$src1, addr:$src2)>; def : Pat<(X86andnp VR256:$src1, (loadv8i32 addr:$src2)), (VANDNPSYrm VR256:$src1, addr:$src2)>; def : Pat<(X86andnp VR256:$src1, (loadv4i64 addr:$src2)), (VANDNPSYrm VR256:$src1, addr:$src2)>; } let Predicates = [HasAVX, NoVLX] in { def : Pat<(v16i8 (and VR128:$src1, VR128:$src2)), (VPANDrr VR128:$src1, VR128:$src2)>; def : Pat<(v8i16 (and VR128:$src1, VR128:$src2)), (VPANDrr VR128:$src1, VR128:$src2)>; def : Pat<(v4i32 (and VR128:$src1, VR128:$src2)), (VPANDrr VR128:$src1, VR128:$src2)>; def : Pat<(v16i8 (or VR128:$src1, VR128:$src2)), (VPORrr VR128:$src1, VR128:$src2)>; def : Pat<(v8i16 (or VR128:$src1, VR128:$src2)), (VPORrr VR128:$src1, VR128:$src2)>; def : Pat<(v4i32 (or VR128:$src1, VR128:$src2)), (VPORrr VR128:$src1, VR128:$src2)>; def : Pat<(v16i8 (xor VR128:$src1, VR128:$src2)), (VPXORrr VR128:$src1, VR128:$src2)>; def : Pat<(v8i16 (xor VR128:$src1, VR128:$src2)), (VPXORrr VR128:$src1, VR128:$src2)>; def : Pat<(v4i32 (xor VR128:$src1, VR128:$src2)), (VPXORrr VR128:$src1, VR128:$src2)>; def : Pat<(v16i8 (X86andnp VR128:$src1, VR128:$src2)), (VPANDNrr VR128:$src1, VR128:$src2)>; def : Pat<(v8i16 (X86andnp VR128:$src1, VR128:$src2)), (VPANDNrr VR128:$src1, VR128:$src2)>; def : Pat<(v4i32 (X86andnp VR128:$src1, VR128:$src2)), (VPANDNrr VR128:$src1, VR128:$src2)>; def : Pat<(and VR128:$src1, (loadv16i8 addr:$src2)), (VPANDrm VR128:$src1, addr:$src2)>; def : Pat<(and VR128:$src1, (loadv8i16 addr:$src2)), (VPANDrm VR128:$src1, addr:$src2)>; def : Pat<(and VR128:$src1, (loadv4i32 addr:$src2)), (VPANDrm VR128:$src1, addr:$src2)>; def : Pat<(or VR128:$src1, (loadv16i8 addr:$src2)), (VPORrm VR128:$src1, addr:$src2)>; def : Pat<(or VR128:$src1, (loadv8i16 addr:$src2)), (VPORrm VR128:$src1, addr:$src2)>; def : Pat<(or VR128:$src1, (loadv4i32 addr:$src2)), (VPORrm VR128:$src1, addr:$src2)>; def : Pat<(xor VR128:$src1, (loadv16i8 addr:$src2)), (VPXORrm VR128:$src1, addr:$src2)>; def : Pat<(xor VR128:$src1, (loadv8i16 addr:$src2)), (VPXORrm VR128:$src1, addr:$src2)>; def : Pat<(xor VR128:$src1, (loadv4i32 addr:$src2)), (VPXORrm VR128:$src1, addr:$src2)>; def : Pat<(X86andnp VR128:$src1, (loadv16i8 addr:$src2)), (VPANDNrm VR128:$src1, addr:$src2)>; def : Pat<(X86andnp VR128:$src1, (loadv8i16 addr:$src2)), (VPANDNrm VR128:$src1, addr:$src2)>; def : Pat<(X86andnp VR128:$src1, (loadv4i32 addr:$src2)), (VPANDNrm VR128:$src1, addr:$src2)>; } let Predicates = [UseSSE2] in { def : Pat<(v16i8 (and VR128:$src1, VR128:$src2)), (PANDrr VR128:$src1, VR128:$src2)>; def : Pat<(v8i16 (and VR128:$src1, VR128:$src2)), (PANDrr VR128:$src1, VR128:$src2)>; def : Pat<(v4i32 (and VR128:$src1, VR128:$src2)), (PANDrr VR128:$src1, VR128:$src2)>; def : Pat<(v16i8 (or VR128:$src1, VR128:$src2)), (PORrr VR128:$src1, VR128:$src2)>; def : Pat<(v8i16 (or VR128:$src1, VR128:$src2)), (PORrr VR128:$src1, VR128:$src2)>; def : Pat<(v4i32 (or VR128:$src1, VR128:$src2)), (PORrr VR128:$src1, VR128:$src2)>; def : Pat<(v16i8 (xor VR128:$src1, VR128:$src2)), (PXORrr VR128:$src1, VR128:$src2)>; def : Pat<(v8i16 (xor VR128:$src1, VR128:$src2)), (PXORrr VR128:$src1, VR128:$src2)>; def : Pat<(v4i32 (xor VR128:$src1, VR128:$src2)), (PXORrr VR128:$src1, VR128:$src2)>; def : Pat<(v16i8 (X86andnp VR128:$src1, VR128:$src2)), (PANDNrr VR128:$src1, VR128:$src2)>; def : Pat<(v8i16 (X86andnp VR128:$src1, VR128:$src2)), (PANDNrr VR128:$src1, VR128:$src2)>; def : Pat<(v4i32 (X86andnp VR128:$src1, VR128:$src2)), (PANDNrr VR128:$src1, VR128:$src2)>; def : Pat<(and VR128:$src1, (memopv16i8 addr:$src2)), (PANDrm VR128:$src1, addr:$src2)>; def : Pat<(and VR128:$src1, (memopv8i16 addr:$src2)), (PANDrm VR128:$src1, addr:$src2)>; def : Pat<(and VR128:$src1, (memopv4i32 addr:$src2)), (PANDrm VR128:$src1, addr:$src2)>; def : Pat<(or VR128:$src1, (memopv16i8 addr:$src2)), (PORrm VR128:$src1, addr:$src2)>; def : Pat<(or VR128:$src1, (memopv8i16 addr:$src2)), (PORrm VR128:$src1, addr:$src2)>; def : Pat<(or VR128:$src1, (memopv4i32 addr:$src2)), (PORrm VR128:$src1, addr:$src2)>; def : Pat<(xor VR128:$src1, (memopv16i8 addr:$src2)), (PXORrm VR128:$src1, addr:$src2)>; def : Pat<(xor VR128:$src1, (memopv8i16 addr:$src2)), (PXORrm VR128:$src1, addr:$src2)>; def : Pat<(xor VR128:$src1, (memopv4i32 addr:$src2)), (PXORrm VR128:$src1, addr:$src2)>; def : Pat<(X86andnp VR128:$src1, (memopv16i8 addr:$src2)), (PANDNrm VR128:$src1, addr:$src2)>; def : Pat<(X86andnp VR128:$src1, (memopv8i16 addr:$src2)), (PANDNrm VR128:$src1, addr:$src2)>; def : Pat<(X86andnp VR128:$src1, (memopv4i32 addr:$src2)), (PANDNrm VR128:$src1, addr:$src2)>; } // Patterns for packed operations when we don't have integer type available. def : Pat<(v4f32 (X86fand VR128:$src1, VR128:$src2)), (ANDPSrr VR128:$src1, VR128:$src2)>; def : Pat<(v4f32 (X86for VR128:$src1, VR128:$src2)), (ORPSrr VR128:$src1, VR128:$src2)>; def : Pat<(v4f32 (X86fxor VR128:$src1, VR128:$src2)), (XORPSrr VR128:$src1, VR128:$src2)>; def : Pat<(v4f32 (X86fandn VR128:$src1, VR128:$src2)), (ANDNPSrr VR128:$src1, VR128:$src2)>; def : Pat<(X86fand VR128:$src1, (memopv4f32 addr:$src2)), (ANDPSrm VR128:$src1, addr:$src2)>; def : Pat<(X86for VR128:$src1, (memopv4f32 addr:$src2)), (ORPSrm VR128:$src1, addr:$src2)>; def : Pat<(X86fxor VR128:$src1, (memopv4f32 addr:$src2)), (XORPSrm VR128:$src1, addr:$src2)>; def : Pat<(X86fandn VR128:$src1, (memopv4f32 addr:$src2)), (ANDNPSrm VR128:$src1, addr:$src2)>; //===----------------------------------------------------------------------===// // SSE 1 & 2 - Arithmetic Instructions //===----------------------------------------------------------------------===// /// basic_sse12_fp_binop_xxx - SSE 1 & 2 binops come in both scalar and /// vector forms. /// /// In addition, we also have a special variant of the scalar form here to /// represent the associated intrinsic operation. This form is unlike the /// plain scalar form, in that it takes an entire vector (instead of a scalar) /// and leaves the top elements unmodified (therefore these cannot be commuted). /// /// These three forms can each be reg+reg or reg+mem. /// /// FIXME: once all 256-bit intrinsics are matched, cleanup and refactor those /// classes below multiclass basic_sse12_fp_binop_p opc, string OpcodeStr, SDNode OpNode, X86SchedWriteSizes sched> { let Uses = [MXCSR], mayRaiseFPException = 1 in { let Predicates = [HasAVX, NoVLX] in { defm V#NAME#PS : sse12_fp_packed, PS, VEX_4V, VEX_WIG; defm V#NAME#PD : sse12_fp_packed, PD, VEX_4V, VEX_WIG; defm V#NAME#PSY : sse12_fp_packed, PS, VEX_4V, VEX_L, VEX_WIG; defm V#NAME#PDY : sse12_fp_packed, PD, VEX_4V, VEX_L, VEX_WIG; } let Constraints = "$src1 = $dst" in { defm PS : sse12_fp_packed, PS; defm PD : sse12_fp_packed, PD; } } } multiclass basic_sse12_fp_binop_s opc, string OpcodeStr, SDNode OpNode, X86SchedWriteSizes sched> { let Uses = [MXCSR], mayRaiseFPException = 1 in { defm V#NAME#SS : sse12_fp_scalar, XS, VEX_4V, VEX_LIG, VEX_WIG; defm V#NAME#SD : sse12_fp_scalar, XD, VEX_4V, VEX_LIG, VEX_WIG; let Constraints = "$src1 = $dst" in { defm SS : sse12_fp_scalar, XS; defm SD : sse12_fp_scalar, XD; } } } multiclass basic_sse12_fp_binop_s_int opc, string OpcodeStr, SDPatternOperator OpNode, X86SchedWriteSizes sched> { let Uses = [MXCSR], mayRaiseFPException = 1 in { defm V#NAME#SS : sse12_fp_scalar_int, XS, VEX_4V, VEX_LIG, VEX_WIG; defm V#NAME#SD : sse12_fp_scalar_int, XD, VEX_4V, VEX_LIG, VEX_WIG; let Constraints = "$src1 = $dst" in { defm SS : sse12_fp_scalar_int, XS; defm SD : sse12_fp_scalar_int, XD; } } } // Binary Arithmetic instructions defm ADD : basic_sse12_fp_binop_p<0x58, "add", any_fadd, SchedWriteFAddSizes>, basic_sse12_fp_binop_s<0x58, "add", any_fadd, SchedWriteFAddSizes>, basic_sse12_fp_binop_s_int<0x58, "add", null_frag, SchedWriteFAddSizes>; defm MUL : basic_sse12_fp_binop_p<0x59, "mul", any_fmul, SchedWriteFMulSizes>, basic_sse12_fp_binop_s<0x59, "mul", any_fmul, SchedWriteFMulSizes>, basic_sse12_fp_binop_s_int<0x59, "mul", null_frag, SchedWriteFMulSizes>; let isCommutable = 0 in { defm SUB : basic_sse12_fp_binop_p<0x5C, "sub", any_fsub, SchedWriteFAddSizes>, basic_sse12_fp_binop_s<0x5C, "sub", any_fsub, SchedWriteFAddSizes>, basic_sse12_fp_binop_s_int<0x5C, "sub", null_frag, SchedWriteFAddSizes>; defm DIV : basic_sse12_fp_binop_p<0x5E, "div", any_fdiv, SchedWriteFDivSizes>, basic_sse12_fp_binop_s<0x5E, "div", any_fdiv, SchedWriteFDivSizes>, basic_sse12_fp_binop_s_int<0x5E, "div", null_frag, SchedWriteFDivSizes>; defm MAX : basic_sse12_fp_binop_p<0x5F, "max", X86fmax, SchedWriteFCmpSizes>, basic_sse12_fp_binop_s<0x5F, "max", X86fmax, SchedWriteFCmpSizes>, basic_sse12_fp_binop_s_int<0x5F, "max", X86fmaxs, SchedWriteFCmpSizes>; defm MIN : basic_sse12_fp_binop_p<0x5D, "min", X86fmin, SchedWriteFCmpSizes>, basic_sse12_fp_binop_s<0x5D, "min", X86fmin, SchedWriteFCmpSizes>, basic_sse12_fp_binop_s_int<0x5D, "min", X86fmins, SchedWriteFCmpSizes>; } let isCodeGenOnly = 1 in { defm MAXC: basic_sse12_fp_binop_p<0x5F, "max", X86fmaxc, SchedWriteFCmpSizes>, basic_sse12_fp_binop_s<0x5F, "max", X86fmaxc, SchedWriteFCmpSizes>; defm MINC: basic_sse12_fp_binop_p<0x5D, "min", X86fminc, SchedWriteFCmpSizes>, basic_sse12_fp_binop_s<0x5D, "min", X86fminc, SchedWriteFCmpSizes>; } // Patterns used to select SSE scalar fp arithmetic instructions from // either: // // (1) a scalar fp operation followed by a blend // // The effect is that the backend no longer emits unnecessary vector // insert instructions immediately after SSE scalar fp instructions // like addss or mulss. // // For example, given the following code: // __m128 foo(__m128 A, __m128 B) { // A[0] += B[0]; // return A; // } // // Previously we generated: // addss %xmm0, %xmm1 // movss %xmm1, %xmm0 // // We now generate: // addss %xmm1, %xmm0 // // (2) a vector packed single/double fp operation followed by a vector insert // // The effect is that the backend converts the packed fp instruction // followed by a vector insert into a single SSE scalar fp instruction. // // For example, given the following code: // __m128 foo(__m128 A, __m128 B) { // __m128 C = A + B; // return (__m128) {c[0], a[1], a[2], a[3]}; // } // // Previously we generated: // addps %xmm0, %xmm1 // movss %xmm1, %xmm0 // // We now generate: // addss %xmm1, %xmm0 // TODO: Some canonicalization in lowering would simplify the number of // patterns we have to try to match. multiclass scalar_math_patterns { let Predicates = [BasePredicate] in { // extracted scalar math op with insert via movss/movsd def : Pat<(VT (Move (VT VR128:$dst), (VT (scalar_to_vector (Op (EltTy (extractelt (VT VR128:$dst), (iPTR 0))), RC:$src))))), (!cast(OpcPrefix#rr_Int) VT:$dst, (VT (COPY_TO_REGCLASS RC:$src, VR128)))>; def : Pat<(VT (Move (VT VR128:$dst), (VT (scalar_to_vector (Op (EltTy (extractelt (VT VR128:$dst), (iPTR 0))), (ld_frag addr:$src)))))), (!cast(OpcPrefix#rm_Int) VT:$dst, addr:$src)>; } // Repeat for AVX versions of the instructions. let Predicates = [UseAVX] in { // extracted scalar math op with insert via movss/movsd def : Pat<(VT (Move (VT VR128:$dst), (VT (scalar_to_vector (Op (EltTy (extractelt (VT VR128:$dst), (iPTR 0))), RC:$src))))), (!cast("V"#OpcPrefix#rr_Int) VT:$dst, (VT (COPY_TO_REGCLASS RC:$src, VR128)))>; def : Pat<(VT (Move (VT VR128:$dst), (VT (scalar_to_vector (Op (EltTy (extractelt (VT VR128:$dst), (iPTR 0))), (ld_frag addr:$src)))))), (!cast("V"#OpcPrefix#rm_Int) VT:$dst, addr:$src)>; } } defm : scalar_math_patterns; defm : scalar_math_patterns; defm : scalar_math_patterns; defm : scalar_math_patterns; defm : scalar_math_patterns; defm : scalar_math_patterns; defm : scalar_math_patterns; defm : scalar_math_patterns; /// Unop Arithmetic /// In addition, we also have a special variant of the scalar form here to /// represent the associated intrinsic operation. This form is unlike the /// plain scalar form, in that it takes an entire vector (instead of a /// scalar) and leaves the top elements undefined. /// /// And, we have a special variant form for a full-vector intrinsic form. /// sse_fp_unop_s - SSE1 unops in scalar form /// For the non-AVX defs, we need $src1 to be tied to $dst because /// the HW instructions are 2 operand / destructive. multiclass sse_fp_unop_s opc, string OpcodeStr, RegisterClass RC, ValueType ScalarVT, X86MemOperand x86memop, Operand intmemop, SDNode OpNode, Domain d, X86FoldableSchedWrite sched, Predicate target> { let isCodeGenOnly = 1, hasSideEffects = 0 in { def r : I, Sched<[sched]>, Requires<[target]>; let mayLoad = 1 in def m : I, Sched<[sched.Folded]>, Requires<[target, OptForSize]>; } let hasSideEffects = 0, Constraints = "$src1 = $dst", ExeDomain = d in { def r_Int : I, Sched<[sched]>; let mayLoad = 1 in def m_Int : I, Sched<[sched.Folded, sched.ReadAfterFold]>; } } multiclass sse_fp_unop_s_intr { let Predicates = [target] in { // These are unary operations, but they are modeled as having 2 source operands // because the high elements of the destination are unchanged in SSE. def : Pat<(Intr VR128:$src), (!cast(NAME#r_Int) VR128:$src, VR128:$src)>; } // We don't want to fold scalar loads into these instructions unless // optimizing for size. This is because the folded instruction will have a // partial register update, while the unfolded sequence will not, e.g. // movss mem, %xmm0 // rcpss %xmm0, %xmm0 // which has a clobber before the rcp, vs. // rcpss mem, %xmm0 let Predicates = [target, OptForSize] in { def : Pat<(Intr int_cpat:$src2), (!cast(NAME#m_Int) (vt (IMPLICIT_DEF)), addr:$src2)>; } } multiclass avx_fp_unop_s_intr { let Predicates = [target] in { def : Pat<(Intr VR128:$src), (!cast(NAME#r_Int) VR128:$src, VR128:$src)>; } let Predicates = [target, OptForSize] in { def : Pat<(Intr int_cpat:$src2), (!cast(NAME#m_Int) (vt (IMPLICIT_DEF)), addr:$src2)>; } } multiclass avx_fp_unop_s opc, string OpcodeStr, RegisterClass RC, ValueType ScalarVT, X86MemOperand x86memop, Operand intmemop, SDNode OpNode, Domain d, X86FoldableSchedWrite sched, Predicate target> { let isCodeGenOnly = 1, hasSideEffects = 0 in { def r : I, Sched<[sched]>; let mayLoad = 1 in def m : I, Sched<[sched.Folded, sched.ReadAfterFold]>; } let hasSideEffects = 0, ExeDomain = d in { def r_Int : I, Sched<[sched]>; let mayLoad = 1 in def m_Int : I, Sched<[sched.Folded, sched.ReadAfterFold]>; } // We don't want to fold scalar loads into these instructions unless // optimizing for size. This is because the folded instruction will have a // partial register update, while the unfolded sequence will not, e.g. // vmovss mem, %xmm0 // vrcpss %xmm0, %xmm0, %xmm0 // which has a clobber before the rcp, vs. // vrcpss mem, %xmm0, %xmm0 // TODO: In theory, we could fold the load, and avoid the stall caused by // the partial register store, either in BreakFalseDeps or with smarter RA. let Predicates = [target] in { def : Pat<(OpNode RC:$src), (!cast(NAME#r) (ScalarVT (IMPLICIT_DEF)), RC:$src)>; } let Predicates = [target, OptForSize] in { def : Pat<(ScalarVT (OpNode (load addr:$src))), (!cast(NAME#m) (ScalarVT (IMPLICIT_DEF)), addr:$src)>; } } /// sse1_fp_unop_p - SSE1 unops in packed form. multiclass sse1_fp_unop_p opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, list prds> { let Predicates = prds in { def V#NAME#PSr : PSI, VEX, Sched<[sched.XMM]>, VEX_WIG; def V#NAME#PSm : PSI, VEX, Sched<[sched.XMM.Folded]>, VEX_WIG; def V#NAME#PSYr : PSI, VEX, VEX_L, Sched<[sched.YMM]>, VEX_WIG; def V#NAME#PSYm : PSI, VEX, VEX_L, Sched<[sched.YMM.Folded]>, VEX_WIG; } def PSr : PSI, Sched<[sched.XMM]>; def PSm : PSI, Sched<[sched.XMM.Folded]>; } /// sse2_fp_unop_p - SSE2 unops in vector forms. multiclass sse2_fp_unop_p opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched> { let Predicates = [HasAVX, NoVLX] in { def V#NAME#PDr : PDI, VEX, Sched<[sched.XMM]>, VEX_WIG; def V#NAME#PDm : PDI, VEX, Sched<[sched.XMM.Folded]>, VEX_WIG; def V#NAME#PDYr : PDI, VEX, VEX_L, Sched<[sched.YMM]>, VEX_WIG; def V#NAME#PDYm : PDI, VEX, VEX_L, Sched<[sched.YMM.Folded]>, VEX_WIG; } def PDr : PDI, Sched<[sched.XMM]>; def PDm : PDI, Sched<[sched.XMM.Folded]>; } multiclass sse1_fp_unop_s_intr opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, Predicate AVXTarget> { defm SS : sse_fp_unop_s_intr("int_x86_sse_"##OpcodeStr##_ss), UseSSE1, "SS">, XS; defm V#NAME#SS : avx_fp_unop_s_intr("int_x86_sse_"##OpcodeStr##_ss), AVXTarget>, XS, VEX_4V, VEX_LIG, VEX_WIG, NotMemoryFoldable; } multiclass sse1_fp_unop_s opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, Predicate AVXTarget> { defm SS : sse_fp_unop_s, XS; defm V#NAME#SS : avx_fp_unop_s, XS, VEX_4V, VEX_LIG, VEX_WIG; } multiclass sse2_fp_unop_s opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, Predicate AVXTarget> { defm SD : sse_fp_unop_s, XD; defm V#NAME#SD : avx_fp_unop_s, XD, VEX_4V, VEX_LIG, VEX_WIG; } // Square root. defm SQRT : sse1_fp_unop_s<0x51, "sqrt", any_fsqrt, SchedWriteFSqrt, UseAVX>, sse1_fp_unop_p<0x51, "sqrt", any_fsqrt, SchedWriteFSqrt, [HasAVX, NoVLX]>, sse2_fp_unop_s<0x51, "sqrt", any_fsqrt, SchedWriteFSqrt64, UseAVX>, sse2_fp_unop_p<0x51, "sqrt", any_fsqrt, SchedWriteFSqrt64>, SIMD_EXC; // Reciprocal approximations. Note that these typically require refinement // in order to obtain suitable precision. defm RSQRT : sse1_fp_unop_s<0x52, "rsqrt", X86frsqrt, SchedWriteFRsqrt, HasAVX>, sse1_fp_unop_s_intr<0x52, "rsqrt", X86frsqrt, SchedWriteFRsqrt, HasAVX>, sse1_fp_unop_p<0x52, "rsqrt", X86frsqrt, SchedWriteFRsqrt, [HasAVX]>; defm RCP : sse1_fp_unop_s<0x53, "rcp", X86frcp, SchedWriteFRcp, HasAVX>, sse1_fp_unop_s_intr<0x53, "rcp", X86frcp, SchedWriteFRcp, HasAVX>, sse1_fp_unop_p<0x53, "rcp", X86frcp, SchedWriteFRcp, [HasAVX]>; // There is no f64 version of the reciprocal approximation instructions. multiclass scalar_unary_math_patterns { let Predicates = [BasePredicate] in { def : Pat<(VT (Move VT:$dst, (scalar_to_vector (OpNode (extractelt VT:$src, 0))))), (!cast(OpcPrefix#r_Int) VT:$dst, VT:$src)>; } // Repeat for AVX versions of the instructions. let Predicates = [UseAVX] in { def : Pat<(VT (Move VT:$dst, (scalar_to_vector (OpNode (extractelt VT:$src, 0))))), (!cast("V"#OpcPrefix#r_Int) VT:$dst, VT:$src)>; } } defm : scalar_unary_math_patterns; defm : scalar_unary_math_patterns; multiclass scalar_unary_math_intr_patterns { let Predicates = [BasePredicate] in { def : Pat<(VT (Move VT:$dst, (Intr VT:$src))), (!cast(OpcPrefix#r_Int) VT:$dst, VT:$src)>; } // Repeat for AVX versions of the instructions. let Predicates = [HasAVX] in { def : Pat<(VT (Move VT:$dst, (Intr VT:$src))), (!cast("V"#OpcPrefix#r_Int) VT:$dst, VT:$src)>; } } defm : scalar_unary_math_intr_patterns; defm : scalar_unary_math_intr_patterns; //===----------------------------------------------------------------------===// // SSE 1 & 2 - Non-temporal stores //===----------------------------------------------------------------------===// let AddedComplexity = 400 in { // Prefer non-temporal versions let Predicates = [HasAVX, NoVLX] in { let SchedRW = [SchedWriteFMoveLSNT.XMM.MR] in { def VMOVNTPSmr : VPSI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movntps\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v4f32 VR128:$src), addr:$dst)]>, VEX, VEX_WIG; def VMOVNTPDmr : VPDI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movntpd\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v2f64 VR128:$src), addr:$dst)]>, VEX, VEX_WIG; } // SchedRW let SchedRW = [SchedWriteFMoveLSNT.YMM.MR] in { def VMOVNTPSYmr : VPSI<0x2B, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), "movntps\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v8f32 VR256:$src), addr:$dst)]>, VEX, VEX_L, VEX_WIG; def VMOVNTPDYmr : VPDI<0x2B, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), "movntpd\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v4f64 VR256:$src), addr:$dst)]>, VEX, VEX_L, VEX_WIG; } // SchedRW let ExeDomain = SSEPackedInt in { def VMOVNTDQmr : VPDI<0xE7, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movntdq\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v2i64 VR128:$src), addr:$dst)]>, VEX, VEX_WIG, Sched<[SchedWriteVecMoveLSNT.XMM.MR]>; def VMOVNTDQYmr : VPDI<0xE7, MRMDestMem, (outs), (ins i256mem:$dst, VR256:$src), "movntdq\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v4i64 VR256:$src), addr:$dst)]>, VEX, VEX_L, VEX_WIG, Sched<[SchedWriteVecMoveLSNT.YMM.MR]>; } // ExeDomain } // Predicates let SchedRW = [SchedWriteFMoveLSNT.XMM.MR] in { def MOVNTPSmr : PSI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movntps\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v4f32 VR128:$src), addr:$dst)]>; def MOVNTPDmr : PDI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movntpd\t{$src, $dst|$dst, $src}", [(alignednontemporalstore(v2f64 VR128:$src), addr:$dst)]>; } // SchedRW let ExeDomain = SSEPackedInt, SchedRW = [SchedWriteVecMoveLSNT.XMM.MR] in def MOVNTDQmr : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movntdq\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v2i64 VR128:$src), addr:$dst)]>; let SchedRW = [WriteStoreNT] in { // There is no AVX form for instructions below this point def MOVNTImr : I<0xC3, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "movnti{l}\t{$src, $dst|$dst, $src}", [(nontemporalstore (i32 GR32:$src), addr:$dst)]>, PS, Requires<[HasSSE2]>; def MOVNTI_64mr : RI<0xC3, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), "movnti{q}\t{$src, $dst|$dst, $src}", [(nontemporalstore (i64 GR64:$src), addr:$dst)]>, PS, Requires<[HasSSE2]>; } // SchedRW = [WriteStoreNT] let Predicates = [HasAVX, NoVLX] in { def : Pat<(alignednontemporalstore (v8i32 VR256:$src), addr:$dst), (VMOVNTDQYmr addr:$dst, VR256:$src)>; def : Pat<(alignednontemporalstore (v16i16 VR256:$src), addr:$dst), (VMOVNTDQYmr addr:$dst, VR256:$src)>; def : Pat<(alignednontemporalstore (v32i8 VR256:$src), addr:$dst), (VMOVNTDQYmr addr:$dst, VR256:$src)>; def : Pat<(alignednontemporalstore (v4i32 VR128:$src), addr:$dst), (VMOVNTDQmr addr:$dst, VR128:$src)>; def : Pat<(alignednontemporalstore (v8i16 VR128:$src), addr:$dst), (VMOVNTDQmr addr:$dst, VR128:$src)>; def : Pat<(alignednontemporalstore (v16i8 VR128:$src), addr:$dst), (VMOVNTDQmr addr:$dst, VR128:$src)>; } let Predicates = [UseSSE2] in { def : Pat<(alignednontemporalstore (v4i32 VR128:$src), addr:$dst), (MOVNTDQmr addr:$dst, VR128:$src)>; def : Pat<(alignednontemporalstore (v8i16 VR128:$src), addr:$dst), (MOVNTDQmr addr:$dst, VR128:$src)>; def : Pat<(alignednontemporalstore (v16i8 VR128:$src), addr:$dst), (MOVNTDQmr addr:$dst, VR128:$src)>; } } // AddedComplexity //===----------------------------------------------------------------------===// // SSE 1 & 2 - Prefetch and memory fence //===----------------------------------------------------------------------===// // Prefetch intrinsic. let Predicates = [HasSSEPrefetch], SchedRW = [WriteLoad] in { def PREFETCHT0 : I<0x18, MRM1m, (outs), (ins i8mem:$src), "prefetcht0\t$src", [(prefetch addr:$src, imm, (i32 3), (i32 1))]>, TB; def PREFETCHT1 : I<0x18, MRM2m, (outs), (ins i8mem:$src), "prefetcht1\t$src", [(prefetch addr:$src, imm, (i32 2), (i32 1))]>, TB; def PREFETCHT2 : I<0x18, MRM3m, (outs), (ins i8mem:$src), "prefetcht2\t$src", [(prefetch addr:$src, imm, (i32 1), (i32 1))]>, TB; def PREFETCHNTA : I<0x18, MRM0m, (outs), (ins i8mem:$src), "prefetchnta\t$src", [(prefetch addr:$src, imm, (i32 0), (i32 1))]>, TB; } // FIXME: How should flush instruction be modeled? let SchedRW = [WriteLoad] in { // Flush cache def CLFLUSH : I<0xAE, MRM7m, (outs), (ins i8mem:$src), "clflush\t$src", [(int_x86_sse2_clflush addr:$src)]>, PS, Requires<[HasSSE2]>; } let SchedRW = [WriteNop] in { // Pause. This "instruction" is encoded as "rep; nop", so even though it // was introduced with SSE2, it's backward compatible. def PAUSE : I<0x90, RawFrm, (outs), (ins), "pause", [(int_x86_sse2_pause)]>, OBXS; } let SchedRW = [WriteFence] in { // Load, store, and memory fence // TODO: As with mfence, we may want to ease the availablity of sfence/lfence // to include any 64-bit target. def SFENCE : I<0xAE, MRM_F8, (outs), (ins), "sfence", [(int_x86_sse_sfence)]>, PS, Requires<[HasSSE1]>; def LFENCE : I<0xAE, MRM_E8, (outs), (ins), "lfence", [(int_x86_sse2_lfence)]>, PS, Requires<[HasSSE2]>; def MFENCE : I<0xAE, MRM_F0, (outs), (ins), "mfence", [(int_x86_sse2_mfence)]>, PS, Requires<[HasMFence]>; } // SchedRW def : Pat<(X86MFence), (MFENCE)>; //===----------------------------------------------------------------------===// // SSE 1 & 2 - Load/Store XCSR register //===----------------------------------------------------------------------===// let mayLoad=1, hasSideEffects=1 in def VLDMXCSR : VPSI<0xAE, MRM2m, (outs), (ins i32mem:$src), "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>, VEX, Sched<[WriteLDMXCSR]>, VEX_WIG; let mayStore=1, hasSideEffects=1 in def VSTMXCSR : VPSI<0xAE, MRM3m, (outs), (ins i32mem:$dst), "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)]>, VEX, Sched<[WriteSTMXCSR]>, VEX_WIG; let mayLoad=1, hasSideEffects=1 in def LDMXCSR : I<0xAE, MRM2m, (outs), (ins i32mem:$src), "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>, TB, Sched<[WriteLDMXCSR]>; let mayStore=1, hasSideEffects=1 in def STMXCSR : I<0xAE, MRM3m, (outs), (ins i32mem:$dst), "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)]>, TB, Sched<[WriteSTMXCSR]>; //===---------------------------------------------------------------------===// // SSE2 - Move Aligned/Unaligned Packed Integer Instructions //===---------------------------------------------------------------------===// let ExeDomain = SSEPackedInt in { // SSE integer instructions let hasSideEffects = 0 in { def VMOVDQArr : VPDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movdqa\t{$src, $dst|$dst, $src}", []>, Sched<[SchedWriteVecMoveLS.XMM.RR]>, VEX, VEX_WIG; def VMOVDQUrr : VSSI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movdqu\t{$src, $dst|$dst, $src}", []>, Sched<[SchedWriteVecMoveLS.XMM.RR]>, VEX, VEX_WIG; def VMOVDQAYrr : VPDI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), "movdqa\t{$src, $dst|$dst, $src}", []>, Sched<[SchedWriteVecMoveLS.YMM.RR]>, VEX, VEX_L, VEX_WIG; def VMOVDQUYrr : VSSI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), "movdqu\t{$src, $dst|$dst, $src}", []>, Sched<[SchedWriteVecMoveLS.YMM.RR]>, VEX, VEX_L, VEX_WIG; } // For Disassembler let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in { def VMOVDQArr_REV : VPDI<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), "movdqa\t{$src, $dst|$dst, $src}", []>, Sched<[SchedWriteVecMoveLS.XMM.RR]>, VEX, VEX_WIG, FoldGenData<"VMOVDQArr">; def VMOVDQAYrr_REV : VPDI<0x7F, MRMDestReg, (outs VR256:$dst), (ins VR256:$src), "movdqa\t{$src, $dst|$dst, $src}", []>, Sched<[SchedWriteVecMoveLS.YMM.RR]>, VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVDQAYrr">; def VMOVDQUrr_REV : VSSI<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), "movdqu\t{$src, $dst|$dst, $src}", []>, Sched<[SchedWriteVecMoveLS.XMM.RR]>, VEX, VEX_WIG, FoldGenData<"VMOVDQUrr">; def VMOVDQUYrr_REV : VSSI<0x7F, MRMDestReg, (outs VR256:$dst), (ins VR256:$src), "movdqu\t{$src, $dst|$dst, $src}", []>, Sched<[SchedWriteVecMoveLS.YMM.RR]>, VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVDQUYrr">; } let canFoldAsLoad = 1, mayLoad = 1, isReMaterializable = 1, hasSideEffects = 0, Predicates = [HasAVX,NoVLX] in { def VMOVDQArm : VPDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movdqa\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (alignedloadv2i64 addr:$src))]>, Sched<[SchedWriteVecMoveLS.XMM.RM]>, VEX, VEX_WIG; def VMOVDQAYrm : VPDI<0x6F, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src), "movdqa\t{$src, $dst|$dst, $src}", []>, Sched<[SchedWriteVecMoveLS.YMM.RM]>, VEX, VEX_L, VEX_WIG; def VMOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "vmovdqu\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (loadv2i64 addr:$src))]>, Sched<[SchedWriteVecMoveLS.XMM.RM]>, XS, VEX, VEX_WIG; def VMOVDQUYrm : I<0x6F, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src), "vmovdqu\t{$src, $dst|$dst, $src}", []>, Sched<[SchedWriteVecMoveLS.YMM.RM]>, XS, VEX, VEX_L, VEX_WIG; } let mayStore = 1, hasSideEffects = 0, Predicates = [HasAVX,NoVLX] in { def VMOVDQAmr : VPDI<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movdqa\t{$src, $dst|$dst, $src}", [(alignedstore (v2i64 VR128:$src), addr:$dst)]>, Sched<[SchedWriteVecMoveLS.XMM.MR]>, VEX, VEX_WIG; def VMOVDQAYmr : VPDI<0x7F, MRMDestMem, (outs), (ins i256mem:$dst, VR256:$src), "movdqa\t{$src, $dst|$dst, $src}", []>, Sched<[SchedWriteVecMoveLS.YMM.MR]>, VEX, VEX_L, VEX_WIG; def VMOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "vmovdqu\t{$src, $dst|$dst, $src}", [(store (v2i64 VR128:$src), addr:$dst)]>, Sched<[SchedWriteVecMoveLS.XMM.MR]>, XS, VEX, VEX_WIG; def VMOVDQUYmr : I<0x7F, MRMDestMem, (outs), (ins i256mem:$dst, VR256:$src), "vmovdqu\t{$src, $dst|$dst, $src}",[]>, Sched<[SchedWriteVecMoveLS.YMM.MR]>, XS, VEX, VEX_L, VEX_WIG; } let SchedRW = [SchedWriteVecMoveLS.XMM.RR] in { let hasSideEffects = 0 in { def MOVDQArr : PDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movdqa\t{$src, $dst|$dst, $src}", []>; def MOVDQUrr : I<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movdqu\t{$src, $dst|$dst, $src}", []>, XS, Requires<[UseSSE2]>; } // For Disassembler let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in { def MOVDQArr_REV : PDI<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), "movdqa\t{$src, $dst|$dst, $src}", []>, FoldGenData<"MOVDQArr">; def MOVDQUrr_REV : I<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), "movdqu\t{$src, $dst|$dst, $src}", []>, XS, Requires<[UseSSE2]>, FoldGenData<"MOVDQUrr">; } } // SchedRW let canFoldAsLoad = 1, mayLoad = 1, isReMaterializable = 1, hasSideEffects = 0, SchedRW = [SchedWriteVecMoveLS.XMM.RM] in { def MOVDQArm : PDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movdqa\t{$src, $dst|$dst, $src}", [/*(set VR128:$dst, (alignedloadv2i64 addr:$src))*/]>; def MOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movdqu\t{$src, $dst|$dst, $src}", [/*(set VR128:$dst, (loadv2i64 addr:$src))*/]>, XS, Requires<[UseSSE2]>; } let mayStore = 1, hasSideEffects = 0, SchedRW = [SchedWriteVecMoveLS.XMM.MR] in { def MOVDQAmr : PDI<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movdqa\t{$src, $dst|$dst, $src}", [/*(alignedstore (v2i64 VR128:$src), addr:$dst)*/]>; def MOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movdqu\t{$src, $dst|$dst, $src}", [/*(store (v2i64 VR128:$src), addr:$dst)*/]>, XS, Requires<[UseSSE2]>; } } // ExeDomain = SSEPackedInt // Reversed version with ".s" suffix for GAS compatibility. def : InstAlias<"vmovdqa.s\t{$src, $dst|$dst, $src}", (VMOVDQArr_REV VR128:$dst, VR128:$src), 0>; def : InstAlias<"vmovdqa.s\t{$src, $dst|$dst, $src}", (VMOVDQAYrr_REV VR256:$dst, VR256:$src), 0>; def : InstAlias<"vmovdqu.s\t{$src, $dst|$dst, $src}", (VMOVDQUrr_REV VR128:$dst, VR128:$src), 0>; def : InstAlias<"vmovdqu.s\t{$src, $dst|$dst, $src}", (VMOVDQUYrr_REV VR256:$dst, VR256:$src), 0>; // Reversed version with ".s" suffix for GAS compatibility. def : InstAlias<"movdqa.s\t{$src, $dst|$dst, $src}", (MOVDQArr_REV VR128:$dst, VR128:$src), 0>; def : InstAlias<"movdqu.s\t{$src, $dst|$dst, $src}", (MOVDQUrr_REV VR128:$dst, VR128:$src), 0>; let Predicates = [HasAVX, NoVLX] in { // Additional patterns for other integer sizes. def : Pat<(alignedloadv4i32 addr:$src), (VMOVDQArm addr:$src)>; def : Pat<(alignedloadv8i16 addr:$src), (VMOVDQArm addr:$src)>; def : Pat<(alignedloadv16i8 addr:$src), (VMOVDQArm addr:$src)>; def : Pat<(loadv4i32 addr:$src), (VMOVDQUrm addr:$src)>; def : Pat<(loadv8i16 addr:$src), (VMOVDQUrm addr:$src)>; def : Pat<(loadv16i8 addr:$src), (VMOVDQUrm addr:$src)>; def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst), (VMOVDQAmr addr:$dst, VR128:$src)>; def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst), (VMOVDQAmr addr:$dst, VR128:$src)>; def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst), (VMOVDQAmr addr:$dst, VR128:$src)>; def : Pat<(store (v4i32 VR128:$src), addr:$dst), (VMOVDQUmr addr:$dst, VR128:$src)>; def : Pat<(store (v8i16 VR128:$src), addr:$dst), (VMOVDQUmr addr:$dst, VR128:$src)>; def : Pat<(store (v16i8 VR128:$src), addr:$dst), (VMOVDQUmr addr:$dst, VR128:$src)>; } //===---------------------------------------------------------------------===// // SSE2 - Packed Integer Arithmetic Instructions //===---------------------------------------------------------------------===// let ExeDomain = SSEPackedInt in { // SSE integer instructions /// PDI_binop_rm2 - Simple SSE2 binary operator with different src and dst types multiclass PDI_binop_rm2 opc, string OpcodeStr, SDNode OpNode, ValueType DstVT, ValueType SrcVT, RegisterClass RC, PatFrag memop_frag, X86MemOperand x86memop, X86FoldableSchedWrite sched, bit Is2Addr = 1> { let isCommutable = 1 in def rr : PDI, Sched<[sched]>; def rm : PDI, Sched<[sched.Folded, sched.ReadAfterFold]>; } } // ExeDomain = SSEPackedInt defm PADDB : PDI_binop_all<0xFC, "paddb", add, v16i8, v32i8, SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; defm PADDW : PDI_binop_all<0xFD, "paddw", add, v8i16, v16i16, SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; defm PADDD : PDI_binop_all<0xFE, "paddd", add, v4i32, v8i32, SchedWriteVecALU, 1, NoVLX>; defm PADDQ : PDI_binop_all<0xD4, "paddq", add, v2i64, v4i64, SchedWriteVecALU, 1, NoVLX>; defm PADDSB : PDI_binop_all<0xEC, "paddsb", saddsat, v16i8, v32i8, SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; defm PADDSW : PDI_binop_all<0xED, "paddsw", saddsat, v8i16, v16i16, SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; defm PADDUSB : PDI_binop_all<0xDC, "paddusb", uaddsat, v16i8, v32i8, SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; defm PADDUSW : PDI_binop_all<0xDD, "paddusw", uaddsat, v8i16, v16i16, SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; defm PMULLW : PDI_binop_all<0xD5, "pmullw", mul, v8i16, v16i16, SchedWriteVecIMul, 1, NoVLX_Or_NoBWI>; defm PMULHUW : PDI_binop_all<0xE4, "pmulhuw", mulhu, v8i16, v16i16, SchedWriteVecIMul, 1, NoVLX_Or_NoBWI>; defm PMULHW : PDI_binop_all<0xE5, "pmulhw", mulhs, v8i16, v16i16, SchedWriteVecIMul, 1, NoVLX_Or_NoBWI>; defm PSUBB : PDI_binop_all<0xF8, "psubb", sub, v16i8, v32i8, SchedWriteVecALU, 0, NoVLX_Or_NoBWI>; defm PSUBW : PDI_binop_all<0xF9, "psubw", sub, v8i16, v16i16, SchedWriteVecALU, 0, NoVLX_Or_NoBWI>; defm PSUBD : PDI_binop_all<0xFA, "psubd", sub, v4i32, v8i32, SchedWriteVecALU, 0, NoVLX>; defm PSUBQ : PDI_binop_all<0xFB, "psubq", sub, v2i64, v4i64, SchedWriteVecALU, 0, NoVLX>; defm PSUBSB : PDI_binop_all<0xE8, "psubsb", ssubsat, v16i8, v32i8, SchedWriteVecALU, 0, NoVLX_Or_NoBWI>; defm PSUBSW : PDI_binop_all<0xE9, "psubsw", ssubsat, v8i16, v16i16, SchedWriteVecALU, 0, NoVLX_Or_NoBWI>; defm PSUBUSB : PDI_binop_all<0xD8, "psubusb", usubsat, v16i8, v32i8, SchedWriteVecALU, 0, NoVLX_Or_NoBWI>; defm PSUBUSW : PDI_binop_all<0xD9, "psubusw", usubsat, v8i16, v16i16, SchedWriteVecALU, 0, NoVLX_Or_NoBWI>; defm PMINUB : PDI_binop_all<0xDA, "pminub", umin, v16i8, v32i8, SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; defm PMINSW : PDI_binop_all<0xEA, "pminsw", smin, v8i16, v16i16, SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; defm PMAXUB : PDI_binop_all<0xDE, "pmaxub", umax, v16i8, v32i8, SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; defm PMAXSW : PDI_binop_all<0xEE, "pmaxsw", smax, v8i16, v16i16, SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; defm PAVGB : PDI_binop_all<0xE0, "pavgb", X86avg, v16i8, v32i8, SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; defm PAVGW : PDI_binop_all<0xE3, "pavgw", X86avg, v8i16, v16i16, SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; defm PMULUDQ : PDI_binop_all<0xF4, "pmuludq", X86pmuludq, v2i64, v4i64, SchedWriteVecIMul, 1, NoVLX>; let Predicates = [HasAVX, NoVLX_Or_NoBWI] in defm VPMADDWD : PDI_binop_rm2<0xF5, "vpmaddwd", X86vpmaddwd, v4i32, v8i16, VR128, load, i128mem, SchedWriteVecIMul.XMM, 0>, VEX_4V, VEX_WIG; let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in defm VPMADDWDY : PDI_binop_rm2<0xF5, "vpmaddwd", X86vpmaddwd, v8i32, v16i16, VR256, load, i256mem, SchedWriteVecIMul.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; let Constraints = "$src1 = $dst" in defm PMADDWD : PDI_binop_rm2<0xF5, "pmaddwd", X86vpmaddwd, v4i32, v8i16, VR128, memop, i128mem, SchedWriteVecIMul.XMM>; let Predicates = [HasAVX, NoVLX_Or_NoBWI] in defm VPSADBW : PDI_binop_rm2<0xF6, "vpsadbw", X86psadbw, v2i64, v16i8, VR128, load, i128mem, SchedWritePSADBW.XMM, 0>, VEX_4V, VEX_WIG; let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in defm VPSADBWY : PDI_binop_rm2<0xF6, "vpsadbw", X86psadbw, v4i64, v32i8, VR256, load, i256mem, SchedWritePSADBW.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; let Constraints = "$src1 = $dst" in defm PSADBW : PDI_binop_rm2<0xF6, "psadbw", X86psadbw, v2i64, v16i8, VR128, memop, i128mem, SchedWritePSADBW.XMM>; //===---------------------------------------------------------------------===// // SSE2 - Packed Integer Logical Instructions //===---------------------------------------------------------------------===// multiclass PDI_binop_rmi opc, bits<8> opc2, Format ImmForm, string OpcodeStr, SDNode OpNode, SDNode OpNode2, RegisterClass RC, X86FoldableSchedWrite sched, X86FoldableSchedWrite schedImm, ValueType DstVT, ValueType SrcVT, PatFrag ld_frag, bit Is2Addr = 1> { // src2 is always 128-bit def rr : PDI, Sched<[sched]>; def rm : PDI, Sched<[sched.Folded, sched.ReadAfterFold]>; def ri : PDIi8, Sched<[schedImm]>; } multiclass PDI_binop_rmi_all opc, bits<8> opc2, Format ImmForm, string OpcodeStr, SDNode OpNode, SDNode OpNode2, ValueType DstVT128, ValueType DstVT256, ValueType SrcVT, X86SchedWriteWidths sched, X86SchedWriteWidths schedImm, Predicate prd> { let Predicates = [HasAVX, prd] in defm V#NAME : PDI_binop_rmi, VEX_4V, VEX_WIG; let Predicates = [HasAVX2, prd] in defm V#NAME#Y : PDI_binop_rmi, VEX_4V, VEX_L, VEX_WIG; let Constraints = "$src1 = $dst" in defm NAME : PDI_binop_rmi; } multiclass PDI_binop_ri opc, Format ImmForm, string OpcodeStr, SDNode OpNode, RegisterClass RC, ValueType VT, X86FoldableSchedWrite sched, bit Is2Addr = 1> { def ri : PDIi8, Sched<[sched]>; } multiclass PDI_binop_ri_all opc, Format ImmForm, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched> { let Predicates = [HasAVX, NoVLX_Or_NoBWI] in defm V#NAME : PDI_binop_ri, VEX_4V, VEX_WIG; let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in defm V#NAME#Y : PDI_binop_ri, VEX_4V, VEX_L, VEX_WIG; let Constraints = "$src1 = $dst" in defm NAME : PDI_binop_ri; } let ExeDomain = SSEPackedInt in { defm PSLLW : PDI_binop_rmi_all<0xF1, 0x71, MRM6r, "psllw", X86vshl, X86vshli, v8i16, v16i16, v8i16, SchedWriteVecShift, SchedWriteVecShiftImm, NoVLX_Or_NoBWI>; defm PSLLD : PDI_binop_rmi_all<0xF2, 0x72, MRM6r, "pslld", X86vshl, X86vshli, v4i32, v8i32, v4i32, SchedWriteVecShift, SchedWriteVecShiftImm, NoVLX>; defm PSLLQ : PDI_binop_rmi_all<0xF3, 0x73, MRM6r, "psllq", X86vshl, X86vshli, v2i64, v4i64, v2i64, SchedWriteVecShift, SchedWriteVecShiftImm, NoVLX>; defm PSRLW : PDI_binop_rmi_all<0xD1, 0x71, MRM2r, "psrlw", X86vsrl, X86vsrli, v8i16, v16i16, v8i16, SchedWriteVecShift, SchedWriteVecShiftImm, NoVLX_Or_NoBWI>; defm PSRLD : PDI_binop_rmi_all<0xD2, 0x72, MRM2r, "psrld", X86vsrl, X86vsrli, v4i32, v8i32, v4i32, SchedWriteVecShift, SchedWriteVecShiftImm, NoVLX>; defm PSRLQ : PDI_binop_rmi_all<0xD3, 0x73, MRM2r, "psrlq", X86vsrl, X86vsrli, v2i64, v4i64, v2i64, SchedWriteVecShift, SchedWriteVecShiftImm, NoVLX>; defm PSRAW : PDI_binop_rmi_all<0xE1, 0x71, MRM4r, "psraw", X86vsra, X86vsrai, v8i16, v16i16, v8i16, SchedWriteVecShift, SchedWriteVecShiftImm, NoVLX_Or_NoBWI>; defm PSRAD : PDI_binop_rmi_all<0xE2, 0x72, MRM4r, "psrad", X86vsra, X86vsrai, v4i32, v8i32, v4i32, SchedWriteVecShift, SchedWriteVecShiftImm, NoVLX>; defm PSLLDQ : PDI_binop_ri_all<0x73, MRM7r, "pslldq", X86vshldq, SchedWriteShuffle>; defm PSRLDQ : PDI_binop_ri_all<0x73, MRM3r, "psrldq", X86vshrdq, SchedWriteShuffle>; } // ExeDomain = SSEPackedInt //===---------------------------------------------------------------------===// // SSE2 - Packed Integer Comparison Instructions //===---------------------------------------------------------------------===// defm PCMPEQB : PDI_binop_all<0x74, "pcmpeqb", X86pcmpeq, v16i8, v32i8, SchedWriteVecALU, 1, TruePredicate>; defm PCMPEQW : PDI_binop_all<0x75, "pcmpeqw", X86pcmpeq, v8i16, v16i16, SchedWriteVecALU, 1, TruePredicate>; defm PCMPEQD : PDI_binop_all<0x76, "pcmpeqd", X86pcmpeq, v4i32, v8i32, SchedWriteVecALU, 1, TruePredicate>; defm PCMPGTB : PDI_binop_all<0x64, "pcmpgtb", X86pcmpgt, v16i8, v32i8, SchedWriteVecALU, 0, TruePredicate>; defm PCMPGTW : PDI_binop_all<0x65, "pcmpgtw", X86pcmpgt, v8i16, v16i16, SchedWriteVecALU, 0, TruePredicate>; defm PCMPGTD : PDI_binop_all<0x66, "pcmpgtd", X86pcmpgt, v4i32, v8i32, SchedWriteVecALU, 0, TruePredicate>; //===---------------------------------------------------------------------===// // SSE2 - Packed Integer Shuffle Instructions //===---------------------------------------------------------------------===// let ExeDomain = SSEPackedInt in { multiclass sse2_pshuffle { let Predicates = [HasAVX, prd] in { def V#NAME#ri : Ii8<0x70, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, u8imm:$src2), !strconcat("v", OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set VR128:$dst, (vt128 (OpNode VR128:$src1, (i8 timm:$src2))))]>, VEX, Sched<[sched.XMM]>, VEX_WIG; def V#NAME#mi : Ii8<0x70, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src1, u8imm:$src2), !strconcat("v", OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set VR128:$dst, (vt128 (OpNode (load addr:$src1), (i8 timm:$src2))))]>, VEX, Sched<[sched.XMM.Folded]>, VEX_WIG; } let Predicates = [HasAVX2, prd] in { def V#NAME#Yri : Ii8<0x70, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src1, u8imm:$src2), !strconcat("v", OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set VR256:$dst, (vt256 (OpNode VR256:$src1, (i8 timm:$src2))))]>, VEX, VEX_L, Sched<[sched.YMM]>, VEX_WIG; def V#NAME#Ymi : Ii8<0x70, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src1, u8imm:$src2), !strconcat("v", OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set VR256:$dst, (vt256 (OpNode (load addr:$src1), (i8 timm:$src2))))]>, VEX, VEX_L, Sched<[sched.YMM.Folded]>, VEX_WIG; } let Predicates = [UseSSE2] in { def ri : Ii8<0x70, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, u8imm:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set VR128:$dst, (vt128 (OpNode VR128:$src1, (i8 timm:$src2))))]>, Sched<[sched.XMM]>; def mi : Ii8<0x70, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src1, u8imm:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set VR128:$dst, (vt128 (OpNode (memop addr:$src1), (i8 timm:$src2))))]>, Sched<[sched.XMM.Folded]>; } } } // ExeDomain = SSEPackedInt defm PSHUFD : sse2_pshuffle<"pshufd", v4i32, v8i32, X86PShufd, SchedWriteShuffle, NoVLX>, PD; defm PSHUFHW : sse2_pshuffle<"pshufhw", v8i16, v16i16, X86PShufhw, SchedWriteShuffle, NoVLX_Or_NoBWI>, XS; defm PSHUFLW : sse2_pshuffle<"pshuflw", v8i16, v16i16, X86PShuflw, SchedWriteShuffle, NoVLX_Or_NoBWI>, XD; //===---------------------------------------------------------------------===// // Packed Integer Pack Instructions (SSE & AVX) //===---------------------------------------------------------------------===// let ExeDomain = SSEPackedInt in { multiclass sse2_pack opc, string OpcodeStr, ValueType OutVT, ValueType ArgVT, SDNode OpNode, RegisterClass RC, X86MemOperand x86memop, X86FoldableSchedWrite sched, PatFrag ld_frag, bit Is2Addr = 1> { def rr : PDI, Sched<[sched]>; def rm : PDI, Sched<[sched.Folded, sched.ReadAfterFold]>; } multiclass sse4_pack opc, string OpcodeStr, ValueType OutVT, ValueType ArgVT, SDNode OpNode, RegisterClass RC, X86MemOperand x86memop, X86FoldableSchedWrite sched, PatFrag ld_frag, bit Is2Addr = 1> { def rr : SS48I, Sched<[sched]>; def rm : SS48I, Sched<[sched.Folded, sched.ReadAfterFold]>; } let Predicates = [HasAVX, NoVLX_Or_NoBWI] in { defm VPACKSSWB : sse2_pack<0x63, "vpacksswb", v16i8, v8i16, X86Packss, VR128, i128mem, SchedWriteShuffle.XMM, load, 0>, VEX_4V, VEX_WIG; defm VPACKSSDW : sse2_pack<0x6B, "vpackssdw", v8i16, v4i32, X86Packss, VR128, i128mem, SchedWriteShuffle.XMM, load, 0>, VEX_4V, VEX_WIG; defm VPACKUSWB : sse2_pack<0x67, "vpackuswb", v16i8, v8i16, X86Packus, VR128, i128mem, SchedWriteShuffle.XMM, load, 0>, VEX_4V, VEX_WIG; defm VPACKUSDW : sse4_pack<0x2B, "vpackusdw", v8i16, v4i32, X86Packus, VR128, i128mem, SchedWriteShuffle.XMM, load, 0>, VEX_4V; } let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in { defm VPACKSSWBY : sse2_pack<0x63, "vpacksswb", v32i8, v16i16, X86Packss, VR256, i256mem, SchedWriteShuffle.YMM, load, 0>, VEX_4V, VEX_L, VEX_WIG; defm VPACKSSDWY : sse2_pack<0x6B, "vpackssdw", v16i16, v8i32, X86Packss, VR256, i256mem, SchedWriteShuffle.YMM, load, 0>, VEX_4V, VEX_L, VEX_WIG; defm VPACKUSWBY : sse2_pack<0x67, "vpackuswb", v32i8, v16i16, X86Packus, VR256, i256mem, SchedWriteShuffle.YMM, load, 0>, VEX_4V, VEX_L, VEX_WIG; defm VPACKUSDWY : sse4_pack<0x2B, "vpackusdw", v16i16, v8i32, X86Packus, VR256, i256mem, SchedWriteShuffle.YMM, load, 0>, VEX_4V, VEX_L; } let Constraints = "$src1 = $dst" in { defm PACKSSWB : sse2_pack<0x63, "packsswb", v16i8, v8i16, X86Packss, VR128, i128mem, SchedWriteShuffle.XMM, memop>; defm PACKSSDW : sse2_pack<0x6B, "packssdw", v8i16, v4i32, X86Packss, VR128, i128mem, SchedWriteShuffle.XMM, memop>; defm PACKUSWB : sse2_pack<0x67, "packuswb", v16i8, v8i16, X86Packus, VR128, i128mem, SchedWriteShuffle.XMM, memop>; defm PACKUSDW : sse4_pack<0x2B, "packusdw", v8i16, v4i32, X86Packus, VR128, i128mem, SchedWriteShuffle.XMM, memop>; } } // ExeDomain = SSEPackedInt //===---------------------------------------------------------------------===// // SSE2 - Packed Integer Unpack Instructions //===---------------------------------------------------------------------===// let ExeDomain = SSEPackedInt in { multiclass sse2_unpack opc, string OpcodeStr, ValueType vt, SDNode OpNode, RegisterClass RC, X86MemOperand x86memop, X86FoldableSchedWrite sched, PatFrag ld_frag, bit Is2Addr = 1> { def rr : PDI, Sched<[sched]>; def rm : PDI, Sched<[sched.Folded, sched.ReadAfterFold]>; } let Predicates = [HasAVX, NoVLX_Or_NoBWI] in { defm VPUNPCKLBW : sse2_unpack<0x60, "vpunpcklbw", v16i8, X86Unpckl, VR128, i128mem, SchedWriteShuffle.XMM, load, 0>, VEX_4V, VEX_WIG; defm VPUNPCKLWD : sse2_unpack<0x61, "vpunpcklwd", v8i16, X86Unpckl, VR128, i128mem, SchedWriteShuffle.XMM, load, 0>, VEX_4V, VEX_WIG; defm VPUNPCKHBW : sse2_unpack<0x68, "vpunpckhbw", v16i8, X86Unpckh, VR128, i128mem, SchedWriteShuffle.XMM, load, 0>, VEX_4V, VEX_WIG; defm VPUNPCKHWD : sse2_unpack<0x69, "vpunpckhwd", v8i16, X86Unpckh, VR128, i128mem, SchedWriteShuffle.XMM, load, 0>, VEX_4V, VEX_WIG; } let Predicates = [HasAVX, NoVLX] in { defm VPUNPCKLDQ : sse2_unpack<0x62, "vpunpckldq", v4i32, X86Unpckl, VR128, i128mem, SchedWriteShuffle.XMM, load, 0>, VEX_4V, VEX_WIG; defm VPUNPCKLQDQ : sse2_unpack<0x6C, "vpunpcklqdq", v2i64, X86Unpckl, VR128, i128mem, SchedWriteShuffle.XMM, load, 0>, VEX_4V, VEX_WIG; defm VPUNPCKHDQ : sse2_unpack<0x6A, "vpunpckhdq", v4i32, X86Unpckh, VR128, i128mem, SchedWriteShuffle.XMM, load, 0>, VEX_4V, VEX_WIG; defm VPUNPCKHQDQ : sse2_unpack<0x6D, "vpunpckhqdq", v2i64, X86Unpckh, VR128, i128mem, SchedWriteShuffle.XMM, load, 0>, VEX_4V, VEX_WIG; } let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in { defm VPUNPCKLBWY : sse2_unpack<0x60, "vpunpcklbw", v32i8, X86Unpckl, VR256, i256mem, SchedWriteShuffle.YMM, load, 0>, VEX_4V, VEX_L, VEX_WIG; defm VPUNPCKLWDY : sse2_unpack<0x61, "vpunpcklwd", v16i16, X86Unpckl, VR256, i256mem, SchedWriteShuffle.YMM, load, 0>, VEX_4V, VEX_L, VEX_WIG; defm VPUNPCKHBWY : sse2_unpack<0x68, "vpunpckhbw", v32i8, X86Unpckh, VR256, i256mem, SchedWriteShuffle.YMM, load, 0>, VEX_4V, VEX_L, VEX_WIG; defm VPUNPCKHWDY : sse2_unpack<0x69, "vpunpckhwd", v16i16, X86Unpckh, VR256, i256mem, SchedWriteShuffle.YMM, load, 0>, VEX_4V, VEX_L, VEX_WIG; } let Predicates = [HasAVX2, NoVLX] in { defm VPUNPCKLDQY : sse2_unpack<0x62, "vpunpckldq", v8i32, X86Unpckl, VR256, i256mem, SchedWriteShuffle.YMM, load, 0>, VEX_4V, VEX_L, VEX_WIG; defm VPUNPCKLQDQY : sse2_unpack<0x6C, "vpunpcklqdq", v4i64, X86Unpckl, VR256, i256mem, SchedWriteShuffle.YMM, load, 0>, VEX_4V, VEX_L, VEX_WIG; defm VPUNPCKHDQY : sse2_unpack<0x6A, "vpunpckhdq", v8i32, X86Unpckh, VR256, i256mem, SchedWriteShuffle.YMM, load, 0>, VEX_4V, VEX_L, VEX_WIG; defm VPUNPCKHQDQY : sse2_unpack<0x6D, "vpunpckhqdq", v4i64, X86Unpckh, VR256, i256mem, SchedWriteShuffle.YMM, load, 0>, VEX_4V, VEX_L, VEX_WIG; } let Constraints = "$src1 = $dst" in { defm PUNPCKLBW : sse2_unpack<0x60, "punpcklbw", v16i8, X86Unpckl, VR128, i128mem, SchedWriteShuffle.XMM, memop>; defm PUNPCKLWD : sse2_unpack<0x61, "punpcklwd", v8i16, X86Unpckl, VR128, i128mem, SchedWriteShuffle.XMM, memop>; defm PUNPCKLDQ : sse2_unpack<0x62, "punpckldq", v4i32, X86Unpckl, VR128, i128mem, SchedWriteShuffle.XMM, memop>; defm PUNPCKLQDQ : sse2_unpack<0x6C, "punpcklqdq", v2i64, X86Unpckl, VR128, i128mem, SchedWriteShuffle.XMM, memop>; defm PUNPCKHBW : sse2_unpack<0x68, "punpckhbw", v16i8, X86Unpckh, VR128, i128mem, SchedWriteShuffle.XMM, memop>; defm PUNPCKHWD : sse2_unpack<0x69, "punpckhwd", v8i16, X86Unpckh, VR128, i128mem, SchedWriteShuffle.XMM, memop>; defm PUNPCKHDQ : sse2_unpack<0x6A, "punpckhdq", v4i32, X86Unpckh, VR128, i128mem, SchedWriteShuffle.XMM, memop>; defm PUNPCKHQDQ : sse2_unpack<0x6D, "punpckhqdq", v2i64, X86Unpckh, VR128, i128mem, SchedWriteShuffle.XMM, memop>; } } // ExeDomain = SSEPackedInt //===---------------------------------------------------------------------===// // SSE2 - Packed Integer Extract and Insert //===---------------------------------------------------------------------===// let ExeDomain = SSEPackedInt in { multiclass sse2_pinsrw { def rr : Ii8<0xC4, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, GR32orGR64:$src2, u8imm:$src3), !if(Is2Addr, "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}", "vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR128:$dst, (X86pinsrw VR128:$src1, GR32orGR64:$src2, imm:$src3))]>, Sched<[WriteVecInsert, ReadDefault, ReadInt2Fpu]>; def rm : Ii8<0xC4, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i16mem:$src2, u8imm:$src3), !if(Is2Addr, "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}", "vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR128:$dst, (X86pinsrw VR128:$src1, (extloadi16 addr:$src2), imm:$src3))]>, Sched<[WriteVecInsert.Folded, WriteVecInsert.ReadAfterFold]>; } // Extract let Predicates = [HasAVX, NoBWI] in def VPEXTRWrr : Ii8<0xC5, MRMSrcReg, (outs GR32orGR64:$dst), (ins VR128:$src1, u8imm:$src2), "vpextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32orGR64:$dst, (X86pextrw (v8i16 VR128:$src1), imm:$src2))]>, PD, VEX, VEX_WIG, Sched<[WriteVecExtract]>; def PEXTRWrr : PDIi8<0xC5, MRMSrcReg, (outs GR32orGR64:$dst), (ins VR128:$src1, u8imm:$src2), "pextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32orGR64:$dst, (X86pextrw (v8i16 VR128:$src1), imm:$src2))]>, Sched<[WriteVecExtract]>; // Insert let Predicates = [HasAVX, NoBWI] in defm VPINSRW : sse2_pinsrw<0>, PD, VEX_4V, VEX_WIG; let Predicates = [UseSSE2], Constraints = "$src1 = $dst" in defm PINSRW : sse2_pinsrw, PD; } // ExeDomain = SSEPackedInt //===---------------------------------------------------------------------===// // SSE2 - Packed Mask Creation //===---------------------------------------------------------------------===// let ExeDomain = SSEPackedInt in { def VPMOVMSKBrr : VPDI<0xD7, MRMSrcReg, (outs GR32orGR64:$dst), (ins VR128:$src), "pmovmskb\t{$src, $dst|$dst, $src}", [(set GR32orGR64:$dst, (X86movmsk (v16i8 VR128:$src)))]>, Sched<[WriteVecMOVMSK]>, VEX, VEX_WIG; let Predicates = [HasAVX2] in { def VPMOVMSKBYrr : VPDI<0xD7, MRMSrcReg, (outs GR32orGR64:$dst), (ins VR256:$src), "pmovmskb\t{$src, $dst|$dst, $src}", [(set GR32orGR64:$dst, (X86movmsk (v32i8 VR256:$src)))]>, Sched<[WriteVecMOVMSKY]>, VEX, VEX_L, VEX_WIG; } def PMOVMSKBrr : PDI<0xD7, MRMSrcReg, (outs GR32orGR64:$dst), (ins VR128:$src), "pmovmskb\t{$src, $dst|$dst, $src}", [(set GR32orGR64:$dst, (X86movmsk (v16i8 VR128:$src)))]>, Sched<[WriteVecMOVMSK]>; } // ExeDomain = SSEPackedInt //===---------------------------------------------------------------------===// // SSE2 - Conditional Store //===---------------------------------------------------------------------===// let ExeDomain = SSEPackedInt, SchedRW = [SchedWriteVecMoveLS.XMM.MR] in { let Uses = [EDI], Predicates = [HasAVX,Not64BitMode] in def VMASKMOVDQU : VPDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask), "maskmovdqu\t{$mask, $src|$src, $mask}", [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)]>, VEX, VEX_WIG; let Uses = [RDI], Predicates = [HasAVX,In64BitMode] in def VMASKMOVDQU64 : VPDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask), "maskmovdqu\t{$mask, $src|$src, $mask}", [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)]>, VEX, VEX_WIG; let Uses = [EDI], Predicates = [UseSSE2,Not64BitMode] in def MASKMOVDQU : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask), "maskmovdqu\t{$mask, $src|$src, $mask}", [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)]>; let Uses = [RDI], Predicates = [UseSSE2,In64BitMode] in def MASKMOVDQU64 : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask), "maskmovdqu\t{$mask, $src|$src, $mask}", [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)]>; } // ExeDomain = SSEPackedInt //===---------------------------------------------------------------------===// // SSE2 - Move Doubleword/Quadword //===---------------------------------------------------------------------===// //===---------------------------------------------------------------------===// // Move Int Doubleword to Packed Double Int // let ExeDomain = SSEPackedInt in { def VMOVDI2PDIrr : VS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (scalar_to_vector GR32:$src)))]>, VEX, Sched<[WriteVecMoveFromGpr]>; def VMOVDI2PDIrm : VS2I<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (scalar_to_vector (loadi32 addr:$src))))]>, VEX, Sched<[WriteVecLoad]>; def VMOV64toPQIrr : VRS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src), "movq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (scalar_to_vector GR64:$src)))]>, VEX, Sched<[WriteVecMoveFromGpr]>; let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayLoad = 1 in def VMOV64toPQIrm : VRS2I<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "movq\t{$src, $dst|$dst, $src}", []>, VEX, Sched<[WriteVecLoad]>; let isCodeGenOnly = 1 in def VMOV64toSDrr : VRS2I<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src), "movq\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (bitconvert GR64:$src))]>, VEX, Sched<[WriteVecMoveFromGpr]>; def MOVDI2PDIrr : S2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (scalar_to_vector GR32:$src)))]>, Sched<[WriteVecMoveFromGpr]>; def MOVDI2PDIrm : S2I<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (scalar_to_vector (loadi32 addr:$src))))]>, Sched<[WriteVecLoad]>; def MOV64toPQIrr : RS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src), "movq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (scalar_to_vector GR64:$src)))]>, Sched<[WriteVecMoveFromGpr]>; let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayLoad = 1 in def MOV64toPQIrm : RS2I<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "movq\t{$src, $dst|$dst, $src}", []>, Sched<[WriteVecLoad]>; let isCodeGenOnly = 1 in def MOV64toSDrr : RS2I<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src), "movq\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (bitconvert GR64:$src))]>, Sched<[WriteVecMoveFromGpr]>; } // ExeDomain = SSEPackedInt //===---------------------------------------------------------------------===// // Move Int Doubleword to Single Scalar // let ExeDomain = SSEPackedInt, isCodeGenOnly = 1 in { def VMOVDI2SSrr : VS2I<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (bitconvert GR32:$src))]>, VEX, Sched<[WriteVecMoveFromGpr]>; def MOVDI2SSrr : S2I<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (bitconvert GR32:$src))]>, Sched<[WriteVecMoveFromGpr]>; } // ExeDomain = SSEPackedInt, isCodeGenOnly = 1 //===---------------------------------------------------------------------===// // Move Packed Doubleword Int to Packed Double Int // let ExeDomain = SSEPackedInt in { def VMOVPDI2DIrr : VS2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (extractelt (v4i32 VR128:$src), (iPTR 0)))]>, VEX, Sched<[WriteVecMoveToGpr]>; def VMOVPDI2DImr : VS2I<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR128:$src), "movd\t{$src, $dst|$dst, $src}", [(store (i32 (extractelt (v4i32 VR128:$src), (iPTR 0))), addr:$dst)]>, VEX, Sched<[WriteVecStore]>; def MOVPDI2DIrr : S2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (extractelt (v4i32 VR128:$src), (iPTR 0)))]>, Sched<[WriteVecMoveToGpr]>; def MOVPDI2DImr : S2I<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR128:$src), "movd\t{$src, $dst|$dst, $src}", [(store (i32 (extractelt (v4i32 VR128:$src), (iPTR 0))), addr:$dst)]>, Sched<[WriteVecStore]>; } // ExeDomain = SSEPackedInt //===---------------------------------------------------------------------===// // Move Packed Doubleword Int first element to Doubleword Int // let ExeDomain = SSEPackedInt in { let SchedRW = [WriteVecMoveToGpr] in { def VMOVPQIto64rr : VRS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (extractelt (v2i64 VR128:$src), (iPTR 0)))]>, VEX; def MOVPQIto64rr : RS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (extractelt (v2i64 VR128:$src), (iPTR 0)))]>; } //SchedRW let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayStore = 1 in def VMOVPQIto64mr : VRS2I<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), "movq\t{$src, $dst|$dst, $src}", []>, VEX, Sched<[WriteVecStore]>; let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayStore = 1 in def MOVPQIto64mr : RS2I<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), "movq\t{$src, $dst|$dst, $src}", []>, Sched<[WriteVecStore]>; } // ExeDomain = SSEPackedInt //===---------------------------------------------------------------------===// // Bitcast FR64 <-> GR64 // let ExeDomain = SSEPackedInt, isCodeGenOnly = 1 in { def VMOVSDto64rr : VRS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src), "movq\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (bitconvert FR64:$src))]>, VEX, Sched<[WriteVecMoveToGpr]>; def MOVSDto64rr : RS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src), "movq\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (bitconvert FR64:$src))]>, Sched<[WriteVecMoveToGpr]>; } // ExeDomain = SSEPackedInt, isCodeGenOnly = 1 //===---------------------------------------------------------------------===// // Move Scalar Single to Double Int // let ExeDomain = SSEPackedInt, isCodeGenOnly = 1 in { def VMOVSS2DIrr : VS2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (bitconvert FR32:$src))]>, VEX, Sched<[WriteVecMoveToGpr]>; def MOVSS2DIrr : S2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (bitconvert FR32:$src))]>, Sched<[WriteVecMoveToGpr]>; } // ExeDomain = SSEPackedInt, isCodeGenOnly = 1 let Predicates = [UseAVX] in { def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector GR32:$src)))), (VMOVDI2PDIrr GR32:$src)>; def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector GR64:$src)))), (VMOV64toPQIrr GR64:$src)>; // AVX 128-bit movd/movq instructions write zeros in the high 128-bit part. // These instructions also write zeros in the high part of a 256-bit register. def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector (zextloadi64i32 addr:$src))))), (VMOVDI2PDIrm addr:$src)>; def : Pat<(v4i32 (X86vzload32 addr:$src)), (VMOVDI2PDIrm addr:$src)>; def : Pat<(v8i32 (X86vzload32 addr:$src)), (SUBREG_TO_REG (i64 0), (v4i32 (VMOVDI2PDIrm addr:$src)), sub_xmm)>; } let Predicates = [UseSSE2] in { def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector GR32:$src)))), (MOVDI2PDIrr GR32:$src)>; def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector GR64:$src)))), (MOV64toPQIrr GR64:$src)>; def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector (zextloadi64i32 addr:$src))))), (MOVDI2PDIrm addr:$src)>; def : Pat<(v4i32 (X86vzload32 addr:$src)), (MOVDI2PDIrm addr:$src)>; } // Before the MC layer of LLVM existed, clang emitted "movd" assembly instead of // "movq" due to MacOS parsing limitation. In order to parse old assembly, we add // these aliases. def : InstAlias<"movd\t{$src, $dst|$dst, $src}", (MOV64toPQIrr VR128:$dst, GR64:$src), 0>; def : InstAlias<"movd\t{$src, $dst|$dst, $src}", (MOVPQIto64rr GR64:$dst, VR128:$src), 0>; // Allow "vmovd" but print "vmovq" since we don't need compatibility for AVX. def : InstAlias<"vmovd\t{$src, $dst|$dst, $src}", (VMOV64toPQIrr VR128:$dst, GR64:$src), 0>; def : InstAlias<"vmovd\t{$src, $dst|$dst, $src}", (VMOVPQIto64rr GR64:$dst, VR128:$src), 0>; //===---------------------------------------------------------------------===// // SSE2 - Move Quadword //===---------------------------------------------------------------------===// //===---------------------------------------------------------------------===// // Move Quadword Int to Packed Quadword Int // let ExeDomain = SSEPackedInt, SchedRW = [WriteVecLoad] in { def VMOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, XS, VEX, Requires<[UseAVX]>, VEX_WIG; def MOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "movq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, XS, Requires<[UseSSE2]>; // SSE2 instruction with XS Prefix } // ExeDomain, SchedRW //===---------------------------------------------------------------------===// // Move Packed Quadword Int to Quadword Int // let ExeDomain = SSEPackedInt, SchedRW = [WriteVecStore] in { def VMOVPQI2QImr : VS2I<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(store (i64 (extractelt (v2i64 VR128:$src), (iPTR 0))), addr:$dst)]>, VEX, VEX_WIG; def MOVPQI2QImr : S2I<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(store (i64 (extractelt (v2i64 VR128:$src), (iPTR 0))), addr:$dst)]>; } // ExeDomain, SchedRW // For disassembler only let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, SchedRW = [SchedWriteVecLogic.XMM] in { def VMOVPQI2QIrr : VS2I<0xD6, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), "movq\t{$src, $dst|$dst, $src}", []>, VEX, VEX_WIG; def MOVPQI2QIrr : S2I<0xD6, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), "movq\t{$src, $dst|$dst, $src}", []>; } def : InstAlias<"vmovq.s\t{$src, $dst|$dst, $src}", (VMOVPQI2QIrr VR128:$dst, VR128:$src), 0>; def : InstAlias<"movq.s\t{$src, $dst|$dst, $src}", (MOVPQI2QIrr VR128:$dst, VR128:$src), 0>; let Predicates = [UseAVX] in { def : Pat<(v2i64 (X86vzload64 addr:$src)), (VMOVQI2PQIrm addr:$src)>; def : Pat<(v4i64 (X86vzload64 addr:$src)), (SUBREG_TO_REG (i64 0), (v2i64 (VMOVQI2PQIrm addr:$src)), sub_xmm)>; def : Pat<(X86vextractstore64 (v2i64 VR128:$src), addr:$dst), (VMOVPQI2QImr addr:$dst, VR128:$src)>; } let Predicates = [UseSSE2] in { def : Pat<(v2i64 (X86vzload64 addr:$src)), (MOVQI2PQIrm addr:$src)>; def : Pat<(X86vextractstore64 (v2i64 VR128:$src), addr:$dst), (MOVPQI2QImr addr:$dst, VR128:$src)>; } //===---------------------------------------------------------------------===// // Moving from XMM to XMM and clear upper 64 bits. Note, there is a bug in // IA32 document. movq xmm1, xmm2 does clear the high bits. // let ExeDomain = SSEPackedInt, SchedRW = [SchedWriteVecLogic.XMM] in { def VMOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))]>, XS, VEX, Requires<[UseAVX]>, VEX_WIG; def MOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))]>, XS, Requires<[UseSSE2]>; } // ExeDomain, SchedRW let Predicates = [UseAVX] in { def : Pat<(v2f64 (X86vzmovl (v2f64 VR128:$src))), (VMOVZPQILo2PQIrr VR128:$src)>; } let Predicates = [UseSSE2] in { def : Pat<(v2f64 (X86vzmovl (v2f64 VR128:$src))), (MOVZPQILo2PQIrr VR128:$src)>; } let Predicates = [UseAVX] in { def : Pat<(v4f64 (X86vzmovl (v4f64 VR256:$src))), (SUBREG_TO_REG (i32 0), (v2f64 (VMOVZPQILo2PQIrr (v2f64 (EXTRACT_SUBREG (v4f64 VR256:$src), sub_xmm)))), sub_xmm)>; def : Pat<(v4i64 (X86vzmovl (v4i64 VR256:$src))), (SUBREG_TO_REG (i32 0), (v2i64 (VMOVZPQILo2PQIrr (v2i64 (EXTRACT_SUBREG (v4i64 VR256:$src), sub_xmm)))), sub_xmm)>; } //===---------------------------------------------------------------------===// // SSE3 - Replicate Single FP - MOVSHDUP and MOVSLDUP //===---------------------------------------------------------------------===// multiclass sse3_replicate_sfp op, SDNode OpNode, string OpcodeStr, ValueType vt, RegisterClass RC, PatFrag mem_frag, X86MemOperand x86memop, X86FoldableSchedWrite sched> { def rr : S3SI, Sched<[sched]>; def rm : S3SI, Sched<[sched.Folded]>; } let Predicates = [HasAVX, NoVLX] in { defm VMOVSHDUP : sse3_replicate_sfp<0x16, X86Movshdup, "vmovshdup", v4f32, VR128, loadv4f32, f128mem, SchedWriteFShuffle.XMM>, VEX, VEX_WIG; defm VMOVSLDUP : sse3_replicate_sfp<0x12, X86Movsldup, "vmovsldup", v4f32, VR128, loadv4f32, f128mem, SchedWriteFShuffle.XMM>, VEX, VEX_WIG; defm VMOVSHDUPY : sse3_replicate_sfp<0x16, X86Movshdup, "vmovshdup", v8f32, VR256, loadv8f32, f256mem, SchedWriteFShuffle.YMM>, VEX, VEX_L, VEX_WIG; defm VMOVSLDUPY : sse3_replicate_sfp<0x12, X86Movsldup, "vmovsldup", v8f32, VR256, loadv8f32, f256mem, SchedWriteFShuffle.YMM>, VEX, VEX_L, VEX_WIG; } defm MOVSHDUP : sse3_replicate_sfp<0x16, X86Movshdup, "movshdup", v4f32, VR128, memopv4f32, f128mem, SchedWriteFShuffle.XMM>; defm MOVSLDUP : sse3_replicate_sfp<0x12, X86Movsldup, "movsldup", v4f32, VR128, memopv4f32, f128mem, SchedWriteFShuffle.XMM>; let Predicates = [HasAVX, NoVLX] in { def : Pat<(v4i32 (X86Movshdup VR128:$src)), (VMOVSHDUPrr VR128:$src)>; def : Pat<(v4i32 (X86Movshdup (load addr:$src))), (VMOVSHDUPrm addr:$src)>; def : Pat<(v4i32 (X86Movsldup VR128:$src)), (VMOVSLDUPrr VR128:$src)>; def : Pat<(v4i32 (X86Movsldup (load addr:$src))), (VMOVSLDUPrm addr:$src)>; def : Pat<(v8i32 (X86Movshdup VR256:$src)), (VMOVSHDUPYrr VR256:$src)>; def : Pat<(v8i32 (X86Movshdup (load addr:$src))), (VMOVSHDUPYrm addr:$src)>; def : Pat<(v8i32 (X86Movsldup VR256:$src)), (VMOVSLDUPYrr VR256:$src)>; def : Pat<(v8i32 (X86Movsldup (load addr:$src))), (VMOVSLDUPYrm addr:$src)>; } let Predicates = [UseSSE3] in { def : Pat<(v4i32 (X86Movshdup VR128:$src)), (MOVSHDUPrr VR128:$src)>; def : Pat<(v4i32 (X86Movshdup (memop addr:$src))), (MOVSHDUPrm addr:$src)>; def : Pat<(v4i32 (X86Movsldup VR128:$src)), (MOVSLDUPrr VR128:$src)>; def : Pat<(v4i32 (X86Movsldup (memop addr:$src))), (MOVSLDUPrm addr:$src)>; } //===---------------------------------------------------------------------===// // SSE3 - Replicate Double FP - MOVDDUP //===---------------------------------------------------------------------===// multiclass sse3_replicate_dfp { def rr : S3DI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set VR128:$dst, (v2f64 (X86Movddup VR128:$src)))]>, Sched<[sched.XMM]>; def rm : S3DI<0x12, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set VR128:$dst, (v2f64 (X86Movddup (scalar_to_vector (loadf64 addr:$src)))))]>, Sched<[sched.XMM.Folded]>; } // FIXME: Merge with above classes when there are patterns for the ymm version multiclass sse3_replicate_dfp_y { def rr : S3DI<0x12, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set VR256:$dst, (v4f64 (X86Movddup VR256:$src)))]>, Sched<[sched.YMM]>; def rm : S3DI<0x12, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set VR256:$dst, (v4f64 (X86Movddup (loadv4f64 addr:$src))))]>, Sched<[sched.YMM.Folded]>; } let Predicates = [HasAVX, NoVLX] in { defm VMOVDDUP : sse3_replicate_dfp<"vmovddup", SchedWriteFShuffle>, VEX, VEX_WIG; defm VMOVDDUPY : sse3_replicate_dfp_y<"vmovddup", SchedWriteFShuffle>, VEX, VEX_L, VEX_WIG; } defm MOVDDUP : sse3_replicate_dfp<"movddup", SchedWriteFShuffle>; let Predicates = [HasAVX, NoVLX] in { def : Pat<(X86Movddup (v2f64 (simple_load addr:$src))), (VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>; def : Pat<(X86Movddup (v2f64 (X86vzload64 addr:$src))), (VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>; } let Predicates = [UseSSE3] in { // No need for aligned memory as this only loads 64-bits. def : Pat<(X86Movddup (v2f64 (simple_load addr:$src))), (MOVDDUPrm addr:$src)>; def : Pat<(X86Movddup (v2f64 (X86vzload64 addr:$src))), (MOVDDUPrm addr:$src)>; } //===---------------------------------------------------------------------===// // SSE3 - Move Unaligned Integer //===---------------------------------------------------------------------===// let Predicates = [HasAVX] in { def VLDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "vlddqu\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>, Sched<[SchedWriteVecMoveLS.XMM.RM]>, VEX, VEX_WIG; def VLDDQUYrm : S3DI<0xF0, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src), "vlddqu\t{$src, $dst|$dst, $src}", [(set VR256:$dst, (int_x86_avx_ldu_dq_256 addr:$src))]>, Sched<[SchedWriteVecMoveLS.YMM.RM]>, VEX, VEX_L, VEX_WIG; } // Predicates def LDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "lddqu\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>, Sched<[SchedWriteVecMoveLS.XMM.RM]>; //===---------------------------------------------------------------------===// // SSE3 - Arithmetic //===---------------------------------------------------------------------===// multiclass sse3_addsub { let Uses = [MXCSR], mayRaiseFPException = 1 in { def rr : I<0xD0, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set RC:$dst, (vt (X86Addsub RC:$src1, RC:$src2)))]>, Sched<[sched]>; def rm : I<0xD0, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set RC:$dst, (vt (X86Addsub RC:$src1, (ld_frag addr:$src2))))]>, Sched<[sched.Folded, sched.ReadAfterFold]>; } } let Predicates = [HasAVX] in { let ExeDomain = SSEPackedSingle in { defm VADDSUBPS : sse3_addsub<"vaddsubps", v4f32, VR128, f128mem, SchedWriteFAddSizes.PS.XMM, loadv4f32, 0>, XD, VEX_4V, VEX_WIG; defm VADDSUBPSY : sse3_addsub<"vaddsubps", v8f32, VR256, f256mem, SchedWriteFAddSizes.PS.YMM, loadv8f32, 0>, XD, VEX_4V, VEX_L, VEX_WIG; } let ExeDomain = SSEPackedDouble in { defm VADDSUBPD : sse3_addsub<"vaddsubpd", v2f64, VR128, f128mem, SchedWriteFAddSizes.PD.XMM, loadv2f64, 0>, PD, VEX_4V, VEX_WIG; defm VADDSUBPDY : sse3_addsub<"vaddsubpd", v4f64, VR256, f256mem, SchedWriteFAddSizes.PD.YMM, loadv4f64, 0>, PD, VEX_4V, VEX_L, VEX_WIG; } } let Constraints = "$src1 = $dst", Predicates = [UseSSE3] in { let ExeDomain = SSEPackedSingle in defm ADDSUBPS : sse3_addsub<"addsubps", v4f32, VR128, f128mem, SchedWriteFAddSizes.PS.XMM, memopv4f32>, XD; let ExeDomain = SSEPackedDouble in defm ADDSUBPD : sse3_addsub<"addsubpd", v2f64, VR128, f128mem, SchedWriteFAddSizes.PD.XMM, memopv2f64>, PD; } //===---------------------------------------------------------------------===// // SSE3 Instructions //===---------------------------------------------------------------------===// // Horizontal ops multiclass S3D_Int o, string OpcodeStr, ValueType vt, RegisterClass RC, X86MemOperand x86memop, SDNode OpNode, X86FoldableSchedWrite sched, PatFrag ld_frag, bit Is2Addr = 1> { let Uses = [MXCSR], mayRaiseFPException = 1 in { def rr : S3DI, Sched<[sched]>; def rm : S3DI, Sched<[sched.Folded, sched.ReadAfterFold]>; } } multiclass S3_Int o, string OpcodeStr, ValueType vt, RegisterClass RC, X86MemOperand x86memop, SDNode OpNode, X86FoldableSchedWrite sched, PatFrag ld_frag, bit Is2Addr = 1> { let Uses = [MXCSR], mayRaiseFPException = 1 in { def rr : S3I, Sched<[sched]>; def rm : S3I, Sched<[sched.Folded, sched.ReadAfterFold]>; } } let Predicates = [HasAVX] in { let ExeDomain = SSEPackedSingle in { defm VHADDPS : S3D_Int<0x7C, "vhaddps", v4f32, VR128, f128mem, X86fhadd, WriteFHAdd, loadv4f32, 0>, VEX_4V, VEX_WIG; defm VHSUBPS : S3D_Int<0x7D, "vhsubps", v4f32, VR128, f128mem, X86fhsub, WriteFHAdd, loadv4f32, 0>, VEX_4V, VEX_WIG; defm VHADDPSY : S3D_Int<0x7C, "vhaddps", v8f32, VR256, f256mem, X86fhadd, WriteFHAddY, loadv8f32, 0>, VEX_4V, VEX_L, VEX_WIG; defm VHSUBPSY : S3D_Int<0x7D, "vhsubps", v8f32, VR256, f256mem, X86fhsub, WriteFHAddY, loadv8f32, 0>, VEX_4V, VEX_L, VEX_WIG; } let ExeDomain = SSEPackedDouble in { defm VHADDPD : S3_Int<0x7C, "vhaddpd", v2f64, VR128, f128mem, X86fhadd, WriteFHAdd, loadv2f64, 0>, VEX_4V, VEX_WIG; defm VHSUBPD : S3_Int<0x7D, "vhsubpd", v2f64, VR128, f128mem, X86fhsub, WriteFHAdd, loadv2f64, 0>, VEX_4V, VEX_WIG; defm VHADDPDY : S3_Int<0x7C, "vhaddpd", v4f64, VR256, f256mem, X86fhadd, WriteFHAddY, loadv4f64, 0>, VEX_4V, VEX_L, VEX_WIG; defm VHSUBPDY : S3_Int<0x7D, "vhsubpd", v4f64, VR256, f256mem, X86fhsub, WriteFHAddY, loadv4f64, 0>, VEX_4V, VEX_L, VEX_WIG; } } let Constraints = "$src1 = $dst" in { let ExeDomain = SSEPackedSingle in { defm HADDPS : S3D_Int<0x7C, "haddps", v4f32, VR128, f128mem, X86fhadd, WriteFHAdd, memopv4f32>; defm HSUBPS : S3D_Int<0x7D, "hsubps", v4f32, VR128, f128mem, X86fhsub, WriteFHAdd, memopv4f32>; } let ExeDomain = SSEPackedDouble in { defm HADDPD : S3_Int<0x7C, "haddpd", v2f64, VR128, f128mem, X86fhadd, WriteFHAdd, memopv2f64>; defm HSUBPD : S3_Int<0x7D, "hsubpd", v2f64, VR128, f128mem, X86fhsub, WriteFHAdd, memopv2f64>; } } //===---------------------------------------------------------------------===// // SSSE3 - Packed Absolute Instructions //===---------------------------------------------------------------------===// /// SS3I_unop_rm_int - Simple SSSE3 unary op whose type can be v*{i8,i16,i32}. multiclass SS3I_unop_rm opc, string OpcodeStr, ValueType vt, SDNode OpNode, X86SchedWriteWidths sched, PatFrag ld_frag> { def rr : SS38I, Sched<[sched.XMM]>; def rm : SS38I, Sched<[sched.XMM.Folded]>; } /// SS3I_unop_rm_int_y - Simple SSSE3 unary op whose type can be v*{i8,i16,i32}. multiclass SS3I_unop_rm_y opc, string OpcodeStr, ValueType vt, SDNode OpNode, X86SchedWriteWidths sched> { def Yrr : SS38I, Sched<[sched.YMM]>; def Yrm : SS38I, Sched<[sched.YMM.Folded]>; } let Predicates = [HasAVX, NoVLX_Or_NoBWI] in { defm VPABSB : SS3I_unop_rm<0x1C, "vpabsb", v16i8, abs, SchedWriteVecALU, load>, VEX, VEX_WIG; defm VPABSW : SS3I_unop_rm<0x1D, "vpabsw", v8i16, abs, SchedWriteVecALU, load>, VEX, VEX_WIG; } let Predicates = [HasAVX, NoVLX] in { defm VPABSD : SS3I_unop_rm<0x1E, "vpabsd", v4i32, abs, SchedWriteVecALU, load>, VEX, VEX_WIG; } let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in { defm VPABSB : SS3I_unop_rm_y<0x1C, "vpabsb", v32i8, abs, SchedWriteVecALU>, VEX, VEX_L, VEX_WIG; defm VPABSW : SS3I_unop_rm_y<0x1D, "vpabsw", v16i16, abs, SchedWriteVecALU>, VEX, VEX_L, VEX_WIG; } let Predicates = [HasAVX2, NoVLX] in { defm VPABSD : SS3I_unop_rm_y<0x1E, "vpabsd", v8i32, abs, SchedWriteVecALU>, VEX, VEX_L, VEX_WIG; } defm PABSB : SS3I_unop_rm<0x1C, "pabsb", v16i8, abs, SchedWriteVecALU, memop>; defm PABSW : SS3I_unop_rm<0x1D, "pabsw", v8i16, abs, SchedWriteVecALU, memop>; defm PABSD : SS3I_unop_rm<0x1E, "pabsd", v4i32, abs, SchedWriteVecALU, memop>; //===---------------------------------------------------------------------===// // SSSE3 - Packed Binary Operator Instructions //===---------------------------------------------------------------------===// /// SS3I_binop_rm - Simple SSSE3 bin op multiclass SS3I_binop_rm opc, string OpcodeStr, SDNode OpNode, ValueType DstVT, ValueType OpVT, RegisterClass RC, PatFrag memop_frag, X86MemOperand x86memop, X86FoldableSchedWrite sched, bit Is2Addr = 1> { let isCommutable = 1 in def rr : SS38I, Sched<[sched]>; def rm : SS38I, Sched<[sched.Folded, sched.ReadAfterFold]>; } /// SS3I_binop_rm_int - Simple SSSE3 bin op whose type can be v*{i8,i16,i32}. multiclass SS3I_binop_rm_int opc, string OpcodeStr, Intrinsic IntId128, X86FoldableSchedWrite sched, PatFrag ld_frag, bit Is2Addr = 1> { let isCommutable = 1 in def rr : SS38I, Sched<[sched]>; def rm : SS38I, Sched<[sched.Folded, sched.ReadAfterFold]>; } multiclass SS3I_binop_rm_int_y opc, string OpcodeStr, Intrinsic IntId256, X86FoldableSchedWrite sched> { let isCommutable = 1 in def Yrr : SS38I, Sched<[sched]>; def Yrm : SS38I, Sched<[sched.Folded, sched.ReadAfterFold]>; } let ImmT = NoImm, Predicates = [HasAVX, NoVLX_Or_NoBWI] in { let isCommutable = 0 in { defm VPSHUFB : SS3I_binop_rm<0x00, "vpshufb", X86pshufb, v16i8, v16i8, VR128, load, i128mem, SchedWriteVarShuffle.XMM, 0>, VEX_4V, VEX_WIG; defm VPMADDUBSW : SS3I_binop_rm<0x04, "vpmaddubsw", X86vpmaddubsw, v8i16, v16i8, VR128, load, i128mem, SchedWriteVecIMul.XMM, 0>, VEX_4V, VEX_WIG; } defm VPMULHRSW : SS3I_binop_rm<0x0B, "vpmulhrsw", X86mulhrs, v8i16, v8i16, VR128, load, i128mem, SchedWriteVecIMul.XMM, 0>, VEX_4V, VEX_WIG; } let ImmT = NoImm, Predicates = [HasAVX] in { let isCommutable = 0 in { defm VPHADDW : SS3I_binop_rm<0x01, "vphaddw", X86hadd, v8i16, v8i16, VR128, load, i128mem, SchedWritePHAdd.XMM, 0>, VEX_4V, VEX_WIG; defm VPHADDD : SS3I_binop_rm<0x02, "vphaddd", X86hadd, v4i32, v4i32, VR128, load, i128mem, SchedWritePHAdd.XMM, 0>, VEX_4V, VEX_WIG; defm VPHSUBW : SS3I_binop_rm<0x05, "vphsubw", X86hsub, v8i16, v8i16, VR128, load, i128mem, SchedWritePHAdd.XMM, 0>, VEX_4V, VEX_WIG; defm VPHSUBD : SS3I_binop_rm<0x06, "vphsubd", X86hsub, v4i32, v4i32, VR128, load, i128mem, SchedWritePHAdd.XMM, 0>, VEX_4V; defm VPSIGNB : SS3I_binop_rm_int<0x08, "vpsignb", int_x86_ssse3_psign_b_128, SchedWriteVecALU.XMM, load, 0>, VEX_4V, VEX_WIG; defm VPSIGNW : SS3I_binop_rm_int<0x09, "vpsignw", int_x86_ssse3_psign_w_128, SchedWriteVecALU.XMM, load, 0>, VEX_4V, VEX_WIG; defm VPSIGND : SS3I_binop_rm_int<0x0A, "vpsignd", int_x86_ssse3_psign_d_128, SchedWriteVecALU.XMM, load, 0>, VEX_4V, VEX_WIG; defm VPHADDSW : SS3I_binop_rm_int<0x03, "vphaddsw", int_x86_ssse3_phadd_sw_128, SchedWritePHAdd.XMM, load, 0>, VEX_4V, VEX_WIG; defm VPHSUBSW : SS3I_binop_rm_int<0x07, "vphsubsw", int_x86_ssse3_phsub_sw_128, SchedWritePHAdd.XMM, load, 0>, VEX_4V, VEX_WIG; } } let ImmT = NoImm, Predicates = [HasAVX2, NoVLX_Or_NoBWI] in { let isCommutable = 0 in { defm VPSHUFBY : SS3I_binop_rm<0x00, "vpshufb", X86pshufb, v32i8, v32i8, VR256, load, i256mem, SchedWriteVarShuffle.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; defm VPMADDUBSWY : SS3I_binop_rm<0x04, "vpmaddubsw", X86vpmaddubsw, v16i16, v32i8, VR256, load, i256mem, SchedWriteVecIMul.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; } defm VPMULHRSWY : SS3I_binop_rm<0x0B, "vpmulhrsw", X86mulhrs, v16i16, v16i16, VR256, load, i256mem, SchedWriteVecIMul.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; } let ImmT = NoImm, Predicates = [HasAVX2] in { let isCommutable = 0 in { defm VPHADDWY : SS3I_binop_rm<0x01, "vphaddw", X86hadd, v16i16, v16i16, VR256, load, i256mem, SchedWritePHAdd.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; defm VPHADDDY : SS3I_binop_rm<0x02, "vphaddd", X86hadd, v8i32, v8i32, VR256, load, i256mem, SchedWritePHAdd.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; defm VPHSUBWY : SS3I_binop_rm<0x05, "vphsubw", X86hsub, v16i16, v16i16, VR256, load, i256mem, SchedWritePHAdd.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; defm VPHSUBDY : SS3I_binop_rm<0x06, "vphsubd", X86hsub, v8i32, v8i32, VR256, load, i256mem, SchedWritePHAdd.YMM, 0>, VEX_4V, VEX_L; defm VPSIGNB : SS3I_binop_rm_int_y<0x08, "vpsignb", int_x86_avx2_psign_b, SchedWriteVecALU.YMM>, VEX_4V, VEX_L, VEX_WIG; defm VPSIGNW : SS3I_binop_rm_int_y<0x09, "vpsignw", int_x86_avx2_psign_w, SchedWriteVecALU.YMM>, VEX_4V, VEX_L, VEX_WIG; defm VPSIGND : SS3I_binop_rm_int_y<0x0A, "vpsignd", int_x86_avx2_psign_d, SchedWriteVecALU.YMM>, VEX_4V, VEX_L, VEX_WIG; defm VPHADDSW : SS3I_binop_rm_int_y<0x03, "vphaddsw", int_x86_avx2_phadd_sw, SchedWritePHAdd.YMM>, VEX_4V, VEX_L, VEX_WIG; defm VPHSUBSW : SS3I_binop_rm_int_y<0x07, "vphsubsw", int_x86_avx2_phsub_sw, SchedWritePHAdd.YMM>, VEX_4V, VEX_L, VEX_WIG; } } // None of these have i8 immediate fields. let ImmT = NoImm, Constraints = "$src1 = $dst" in { let isCommutable = 0 in { defm PHADDW : SS3I_binop_rm<0x01, "phaddw", X86hadd, v8i16, v8i16, VR128, memop, i128mem, SchedWritePHAdd.XMM>; defm PHADDD : SS3I_binop_rm<0x02, "phaddd", X86hadd, v4i32, v4i32, VR128, memop, i128mem, SchedWritePHAdd.XMM>; defm PHSUBW : SS3I_binop_rm<0x05, "phsubw", X86hsub, v8i16, v8i16, VR128, memop, i128mem, SchedWritePHAdd.XMM>; defm PHSUBD : SS3I_binop_rm<0x06, "phsubd", X86hsub, v4i32, v4i32, VR128, memop, i128mem, SchedWritePHAdd.XMM>; defm PSIGNB : SS3I_binop_rm_int<0x08, "psignb", int_x86_ssse3_psign_b_128, SchedWriteVecALU.XMM, memop>; defm PSIGNW : SS3I_binop_rm_int<0x09, "psignw", int_x86_ssse3_psign_w_128, SchedWriteVecALU.XMM, memop>; defm PSIGND : SS3I_binop_rm_int<0x0A, "psignd", int_x86_ssse3_psign_d_128, SchedWriteVecALU.XMM, memop>; defm PSHUFB : SS3I_binop_rm<0x00, "pshufb", X86pshufb, v16i8, v16i8, VR128, memop, i128mem, SchedWriteVarShuffle.XMM>; defm PHADDSW : SS3I_binop_rm_int<0x03, "phaddsw", int_x86_ssse3_phadd_sw_128, SchedWritePHAdd.XMM, memop>; defm PHSUBSW : SS3I_binop_rm_int<0x07, "phsubsw", int_x86_ssse3_phsub_sw_128, SchedWritePHAdd.XMM, memop>; defm PMADDUBSW : SS3I_binop_rm<0x04, "pmaddubsw", X86vpmaddubsw, v8i16, v16i8, VR128, memop, i128mem, SchedWriteVecIMul.XMM>; } defm PMULHRSW : SS3I_binop_rm<0x0B, "pmulhrsw", X86mulhrs, v8i16, v8i16, VR128, memop, i128mem, SchedWriteVecIMul.XMM>; } //===---------------------------------------------------------------------===// // SSSE3 - Packed Align Instruction Patterns //===---------------------------------------------------------------------===// multiclass ssse3_palignr { let hasSideEffects = 0 in { def rri : SS3AI<0x0F, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, u8imm:$src3), !if(Is2Addr, !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), !strconcat(asm, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), [(set RC:$dst, (VT (X86PAlignr RC:$src1, RC:$src2, (i8 timm:$src3))))]>, Sched<[sched]>; let mayLoad = 1 in def rmi : SS3AI<0x0F, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2, u8imm:$src3), !if(Is2Addr, !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), !strconcat(asm, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), [(set RC:$dst, (VT (X86PAlignr RC:$src1, (memop_frag addr:$src2), (i8 timm:$src3))))]>, Sched<[sched.Folded, sched.ReadAfterFold]>; } } let Predicates = [HasAVX, NoVLX_Or_NoBWI] in defm VPALIGNR : ssse3_palignr<"vpalignr", v16i8, VR128, load, i128mem, SchedWriteShuffle.XMM, 0>, VEX_4V, VEX_WIG; let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in defm VPALIGNRY : ssse3_palignr<"vpalignr", v32i8, VR256, load, i256mem, SchedWriteShuffle.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; let Constraints = "$src1 = $dst", Predicates = [UseSSSE3] in defm PALIGNR : ssse3_palignr<"palignr", v16i8, VR128, memop, i128mem, SchedWriteShuffle.XMM>; //===---------------------------------------------------------------------===// // SSSE3 - Thread synchronization //===---------------------------------------------------------------------===// let SchedRW = [WriteSystem] in { let Uses = [EAX, ECX, EDX] in def MONITOR32rrr : I<0x01, MRM_C8, (outs), (ins), "monitor", []>, TB, Requires<[HasSSE3, Not64BitMode]>; let Uses = [RAX, ECX, EDX] in def MONITOR64rrr : I<0x01, MRM_C8, (outs), (ins), "monitor", []>, TB, Requires<[HasSSE3, In64BitMode]>; let Uses = [ECX, EAX] in def MWAITrr : I<0x01, MRM_C9, (outs), (ins), "mwait", [(int_x86_sse3_mwait ECX, EAX)]>, TB, Requires<[HasSSE3]>; } // SchedRW def : InstAlias<"mwait\t{%eax, %ecx|ecx, eax}", (MWAITrr)>, Requires<[Not64BitMode]>; def : InstAlias<"mwait\t{%rax, %rcx|rcx, rax}", (MWAITrr)>, Requires<[In64BitMode]>; def : InstAlias<"monitor\t{%eax, %ecx, %edx|edx, ecx, eax}", (MONITOR32rrr)>, Requires<[Not64BitMode]>; def : InstAlias<"monitor\t{%rax, %rcx, %rdx|rdx, rcx, rax}", (MONITOR64rrr)>, Requires<[In64BitMode]>; //===----------------------------------------------------------------------===// // SSE4.1 - Packed Move with Sign/Zero Extend // NOTE: Any Extend is promoted to Zero Extend in X86ISelDAGToDAG.cpp //===----------------------------------------------------------------------===// multiclass SS41I_pmovx_rrrm opc, string OpcodeStr, X86MemOperand MemOp, RegisterClass OutRC, RegisterClass InRC, X86FoldableSchedWrite sched> { def rr : SS48I, Sched<[sched]>; def rm : SS48I, Sched<[sched.Folded]>; } multiclass SS41I_pmovx_rm_all opc, string OpcodeStr, X86MemOperand MemOp, X86MemOperand MemYOp, Predicate prd> { defm NAME : SS41I_pmovx_rrrm; let Predicates = [HasAVX, prd] in defm V#NAME : SS41I_pmovx_rrrm, VEX, VEX_WIG; let Predicates = [HasAVX2, prd] in defm V#NAME#Y : SS41I_pmovx_rrrm, VEX, VEX_L, VEX_WIG; } multiclass SS41I_pmovx_rm opc, string OpcodeStr, X86MemOperand MemOp, X86MemOperand MemYOp, Predicate prd> { defm PMOVSX#NAME : SS41I_pmovx_rm_all; defm PMOVZX#NAME : SS41I_pmovx_rm_all; } defm BW : SS41I_pmovx_rm<0x20, "bw", i64mem, i128mem, NoVLX_Or_NoBWI>; defm WD : SS41I_pmovx_rm<0x23, "wd", i64mem, i128mem, NoVLX>; defm DQ : SS41I_pmovx_rm<0x25, "dq", i64mem, i128mem, NoVLX>; defm BD : SS41I_pmovx_rm<0x21, "bd", i32mem, i64mem, NoVLX>; defm WQ : SS41I_pmovx_rm<0x24, "wq", i32mem, i64mem, NoVLX>; defm BQ : SS41I_pmovx_rm<0x22, "bq", i16mem, i32mem, NoVLX>; // AVX2 Patterns multiclass SS41I_pmovx_avx2_patterns { // Register-Register patterns let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in { def : Pat<(v16i16 (ExtOp (v16i8 VR128:$src))), (!cast(OpcPrefix#BWYrr) VR128:$src)>; } let Predicates = [HasAVX2, NoVLX] in { def : Pat<(v8i32 (InVecOp (v16i8 VR128:$src))), (!cast(OpcPrefix#BDYrr) VR128:$src)>; def : Pat<(v4i64 (InVecOp (v16i8 VR128:$src))), (!cast(OpcPrefix#BQYrr) VR128:$src)>; def : Pat<(v8i32 (ExtOp (v8i16 VR128:$src))), (!cast(OpcPrefix#WDYrr) VR128:$src)>; def : Pat<(v4i64 (InVecOp (v8i16 VR128:$src))), (!cast(OpcPrefix#WQYrr) VR128:$src)>; def : Pat<(v4i64 (ExtOp (v4i32 VR128:$src))), (!cast(OpcPrefix#DQYrr) VR128:$src)>; } // Simple Register-Memory patterns let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in { def : Pat<(v16i16 (!cast(ExtTy#"extloadvi8") addr:$src)), (!cast(OpcPrefix#BWYrm) addr:$src)>; def : Pat<(v16i16 (ExtOp (loadv16i8 addr:$src))), (!cast(OpcPrefix#BWYrm) addr:$src)>; } let Predicates = [HasAVX2, NoVLX] in { def : Pat<(v8i32 (!cast(ExtTy#"extloadvi8") addr:$src)), (!cast(OpcPrefix#BDYrm) addr:$src)>; def : Pat<(v4i64 (!cast(ExtTy#"extloadvi8") addr:$src)), (!cast(OpcPrefix#BQYrm) addr:$src)>; def : Pat<(v8i32 (!cast(ExtTy#"extloadvi16") addr:$src)), (!cast(OpcPrefix#WDYrm) addr:$src)>; def : Pat<(v4i64 (!cast(ExtTy#"extloadvi16") addr:$src)), (!cast(OpcPrefix#WQYrm) addr:$src)>; def : Pat<(v4i64 (!cast(ExtTy#"extloadvi32") addr:$src)), (!cast(OpcPrefix#DQYrm) addr:$src)>; } // AVX2 Register-Memory patterns let Predicates = [HasAVX2, NoVLX] in { def : Pat<(v8i32 (ExtOp (loadv8i16 addr:$src))), (!cast(OpcPrefix#WDYrm) addr:$src)>; def : Pat<(v8i32 (InVecOp (bc_v16i8 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (!cast(OpcPrefix#BDYrm) addr:$src)>; def : Pat<(v8i32 (InVecOp (v16i8 (X86vzload64 addr:$src)))), (!cast(OpcPrefix#BDYrm) addr:$src)>; def : Pat<(v4i64 (ExtOp (loadv4i32 addr:$src))), (!cast(OpcPrefix#DQYrm) addr:$src)>; def : Pat<(v4i64 (InVecOp (bc_v16i8 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))), (!cast(OpcPrefix#BQYrm) addr:$src)>; def : Pat<(v4i64 (InVecOp (v16i8 (X86vzload64 addr:$src)))), (!cast(OpcPrefix#BQYrm) addr:$src)>; def : Pat<(v4i64 (InVecOp (bc_v8i16 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (!cast(OpcPrefix#WQYrm) addr:$src)>; def : Pat<(v4i64 (InVecOp (v8i16 (X86vzload64 addr:$src)))), (!cast(OpcPrefix#WQYrm) addr:$src)>; } } defm : SS41I_pmovx_avx2_patterns<"VPMOVSX", "s", sext, sext_invec>; defm : SS41I_pmovx_avx2_patterns<"VPMOVZX", "z", zext, zext_invec>; // SSE4.1/AVX patterns. multiclass SS41I_pmovx_patterns { let Predicates = [HasAVX, NoVLX_Or_NoBWI] in { def : Pat<(v8i16 (ExtOp (v16i8 VR128:$src))), (!cast(OpcPrefix#BWrr) VR128:$src)>; } let Predicates = [HasAVX, NoVLX] in { def : Pat<(v4i32 (ExtOp (v16i8 VR128:$src))), (!cast(OpcPrefix#BDrr) VR128:$src)>; def : Pat<(v2i64 (ExtOp (v16i8 VR128:$src))), (!cast(OpcPrefix#BQrr) VR128:$src)>; def : Pat<(v4i32 (ExtOp (v8i16 VR128:$src))), (!cast(OpcPrefix#WDrr) VR128:$src)>; def : Pat<(v2i64 (ExtOp (v8i16 VR128:$src))), (!cast(OpcPrefix#WQrr) VR128:$src)>; def : Pat<(v2i64 (ExtOp (v4i32 VR128:$src))), (!cast(OpcPrefix#DQrr) VR128:$src)>; } let Predicates = [HasAVX, NoVLX_Or_NoBWI] in { def : Pat<(v8i16 (!cast(ExtTy#"extloadvi8") addr:$src)), (!cast(OpcPrefix#BWrm) addr:$src)>; } let Predicates = [HasAVX, NoVLX] in { def : Pat<(v4i32 (!cast(ExtTy#"extloadvi8") addr:$src)), (!cast(OpcPrefix#BDrm) addr:$src)>; def : Pat<(v2i64 (!cast(ExtTy#"extloadvi8") addr:$src)), (!cast(OpcPrefix#BQrm) addr:$src)>; def : Pat<(v4i32 (!cast(ExtTy#"extloadvi16") addr:$src)), (!cast(OpcPrefix#WDrm) addr:$src)>; def : Pat<(v2i64 (!cast(ExtTy#"extloadvi16") addr:$src)), (!cast(OpcPrefix#WQrm) addr:$src)>; def : Pat<(v2i64 (!cast(ExtTy#"extloadvi32") addr:$src)), (!cast(OpcPrefix#DQrm) addr:$src)>; } let Predicates = [HasAVX, NoVLX_Or_NoBWI] in { def : Pat<(v8i16 (ExtOp (bc_v16i8 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (!cast(OpcPrefix#BWrm) addr:$src)>; def : Pat<(v8i16 (ExtOp (bc_v16i8 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))), (!cast(OpcPrefix#BWrm) addr:$src)>; def : Pat<(v8i16 (ExtOp (bc_v16i8 (v2i64 (X86vzload64 addr:$src))))), (!cast(OpcPrefix#BWrm) addr:$src)>; def : Pat<(v8i16 (ExtOp (loadv16i8 addr:$src))), (!cast(OpcPrefix#BWrm) addr:$src)>; } let Predicates = [HasAVX, NoVLX] in { def : Pat<(v4i32 (ExtOp (bc_v16i8 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))), (!cast(OpcPrefix#BDrm) addr:$src)>; def : Pat<(v4i32 (ExtOp (bc_v16i8 (v4i32 (X86vzload32 addr:$src))))), (!cast(OpcPrefix#BDrm) addr:$src)>; def : Pat<(v4i32 (ExtOp (loadv16i8 addr:$src))), (!cast(OpcPrefix#BDrm) addr:$src)>; def : Pat<(v2i64 (ExtOp (bc_v16i8 (v4i32 (scalar_to_vector (extloadi32i16 addr:$src)))))), (!cast(OpcPrefix#BQrm) addr:$src)>; def : Pat<(v2i64 (ExtOp (loadv16i8 addr:$src))), (!cast(OpcPrefix#BQrm) addr:$src)>; def : Pat<(v4i32 (ExtOp (bc_v8i16 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (!cast(OpcPrefix#WDrm) addr:$src)>; def : Pat<(v4i32 (ExtOp (bc_v8i16 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))), (!cast(OpcPrefix#WDrm) addr:$src)>; def : Pat<(v4i32 (ExtOp (bc_v8i16 (v2i64 (X86vzload64 addr:$src))))), (!cast(OpcPrefix#WDrm) addr:$src)>; def : Pat<(v4i32 (ExtOp (loadv8i16 addr:$src))), (!cast(OpcPrefix#WDrm) addr:$src)>; def : Pat<(v2i64 (ExtOp (bc_v8i16 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))), (!cast(OpcPrefix#WQrm) addr:$src)>; def : Pat<(v2i64 (ExtOp (bc_v8i16 (v4i32 (X86vzload32 addr:$src))))), (!cast(OpcPrefix#WQrm) addr:$src)>; def : Pat<(v2i64 (ExtOp (loadv8i16 addr:$src))), (!cast(OpcPrefix#WQrm) addr:$src)>; def : Pat<(v2i64 (ExtOp (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (!cast(OpcPrefix#DQrm) addr:$src)>; def : Pat<(v2i64 (ExtOp (bc_v4i32 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))), (!cast(OpcPrefix#DQrm) addr:$src)>; def : Pat<(v2i64 (ExtOp (bc_v4i32 (v2i64 (X86vzload64 addr:$src))))), (!cast(OpcPrefix#DQrm) addr:$src)>; def : Pat<(v2i64 (ExtOp (loadv4i32 addr:$src))), (!cast(OpcPrefix#DQrm) addr:$src)>; } } defm : SS41I_pmovx_patterns<"VPMOVSX", "s", sext_invec>; defm : SS41I_pmovx_patterns<"VPMOVZX", "z", zext_invec>; let Predicates = [UseSSE41] in { defm : SS41I_pmovx_patterns<"PMOVSX", "s", sext_invec>; defm : SS41I_pmovx_patterns<"PMOVZX", "z", zext_invec>; } //===----------------------------------------------------------------------===// // SSE4.1 - Extract Instructions //===----------------------------------------------------------------------===// /// SS41I_binop_ext8 - SSE 4.1 extract 8 bits to 32 bit reg or 8 bit mem multiclass SS41I_extract8 opc, string OpcodeStr> { def rr : SS4AIi8, Sched<[WriteVecExtract]>; let hasSideEffects = 0, mayStore = 1 in def mr : SS4AIi8, Sched<[WriteVecExtractSt]>; } let Predicates = [HasAVX, NoBWI] in defm VPEXTRB : SS41I_extract8<0x14, "vpextrb">, VEX, VEX_WIG; defm PEXTRB : SS41I_extract8<0x14, "pextrb">; /// SS41I_extract16 - SSE 4.1 extract 16 bits to memory destination multiclass SS41I_extract16 opc, string OpcodeStr> { let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in def rr_REV : SS4AIi8, Sched<[WriteVecExtract]>, FoldGenData; let hasSideEffects = 0, mayStore = 1 in def mr : SS4AIi8, Sched<[WriteVecExtractSt]>; } let Predicates = [HasAVX, NoBWI] in defm VPEXTRW : SS41I_extract16<0x15, "vpextrw">, VEX, VEX_WIG; defm PEXTRW : SS41I_extract16<0x15, "pextrw">; /// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination multiclass SS41I_extract32 opc, string OpcodeStr> { def rr : SS4AIi8, Sched<[WriteVecExtract]>; def mr : SS4AIi8, Sched<[WriteVecExtractSt]>; } let Predicates = [HasAVX, NoDQI] in defm VPEXTRD : SS41I_extract32<0x16, "vpextrd">, VEX; defm PEXTRD : SS41I_extract32<0x16, "pextrd">; /// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination multiclass SS41I_extract64 opc, string OpcodeStr> { def rr : SS4AIi8, Sched<[WriteVecExtract]>; def mr : SS4AIi8, Sched<[WriteVecExtractSt]>; } let Predicates = [HasAVX, NoDQI] in defm VPEXTRQ : SS41I_extract64<0x16, "vpextrq">, VEX, VEX_W; defm PEXTRQ : SS41I_extract64<0x16, "pextrq">, REX_W; /// SS41I_extractf32 - SSE 4.1 extract 32 bits fp value to int reg or memory /// destination multiclass SS41I_extractf32 opc, string OpcodeStr> { def rr : SS4AIi8, Sched<[WriteVecExtract]>; def mr : SS4AIi8, Sched<[WriteVecExtractSt]>; } let ExeDomain = SSEPackedSingle in { let Predicates = [UseAVX] in defm VEXTRACTPS : SS41I_extractf32<0x17, "vextractps">, VEX, VEX_WIG; defm EXTRACTPS : SS41I_extractf32<0x17, "extractps">; } //===----------------------------------------------------------------------===// // SSE4.1 - Insert Instructions //===----------------------------------------------------------------------===// multiclass SS41I_insert8 opc, string asm, bit Is2Addr = 1> { def rr : SS4AIi8, Sched<[WriteVecInsert, ReadDefault, ReadInt2Fpu]>; def rm : SS4AIi8, Sched<[WriteVecInsert.Folded, WriteVecInsert.ReadAfterFold]>; } let Predicates = [HasAVX, NoBWI] in defm VPINSRB : SS41I_insert8<0x20, "vpinsrb", 0>, VEX_4V, VEX_WIG; let Constraints = "$src1 = $dst" in defm PINSRB : SS41I_insert8<0x20, "pinsrb">; multiclass SS41I_insert32 opc, string asm, bit Is2Addr = 1> { def rr : SS4AIi8, Sched<[WriteVecInsert, ReadDefault, ReadInt2Fpu]>; def rm : SS4AIi8, Sched<[WriteVecInsert.Folded, WriteVecInsert.ReadAfterFold]>; } let Predicates = [HasAVX, NoDQI] in defm VPINSRD : SS41I_insert32<0x22, "vpinsrd", 0>, VEX_4V; let Constraints = "$src1 = $dst" in defm PINSRD : SS41I_insert32<0x22, "pinsrd">; multiclass SS41I_insert64 opc, string asm, bit Is2Addr = 1> { def rr : SS4AIi8, Sched<[WriteVecInsert, ReadDefault, ReadInt2Fpu]>; def rm : SS4AIi8, Sched<[WriteVecInsert.Folded, WriteVecInsert.ReadAfterFold]>; } let Predicates = [HasAVX, NoDQI] in defm VPINSRQ : SS41I_insert64<0x22, "vpinsrq", 0>, VEX_4V, VEX_W; let Constraints = "$src1 = $dst" in defm PINSRQ : SS41I_insert64<0x22, "pinsrq">, REX_W; // insertps has a few different modes, there's the first two here below which // are optimized inserts that won't zero arbitrary elements in the destination // vector. The next one matches the intrinsic and could zero arbitrary elements // in the target vector. multiclass SS41I_insertf32 opc, string asm, bit Is2Addr = 1> { let isCommutable = 1 in def rr : SS4AIi8, Sched<[SchedWriteFShuffle.XMM]>; def rm : SS4AIi8, Sched<[SchedWriteFShuffle.XMM.Folded, SchedWriteFShuffle.XMM.ReadAfterFold]>; } let ExeDomain = SSEPackedSingle in { let Predicates = [UseAVX] in defm VINSERTPS : SS41I_insertf32<0x21, "vinsertps", 0>, VEX_4V, VEX_WIG; let Constraints = "$src1 = $dst" in defm INSERTPS : SS41I_insertf32<0x21, "insertps", 1>; } //===----------------------------------------------------------------------===// // SSE4.1 - Round Instructions //===----------------------------------------------------------------------===// multiclass sse41_fp_unop_p opc, string OpcodeStr, X86MemOperand x86memop, RegisterClass RC, ValueType VT, PatFrag mem_frag, SDNode OpNode, X86FoldableSchedWrite sched> { // Intrinsic operation, reg. // Vector intrinsic operation, reg let Uses = [MXCSR], mayRaiseFPException = 1 in { def r : SS4AIi8, Sched<[sched]>; // Vector intrinsic operation, mem def m : SS4AIi8, Sched<[sched.Folded]>; } } multiclass avx_fp_unop_rm opcss, bits<8> opcsd, string OpcodeStr, X86FoldableSchedWrite sched> { let ExeDomain = SSEPackedSingle, hasSideEffects = 0, isCodeGenOnly = 1 in { def SSr : SS4AIi8, Sched<[sched]>; let mayLoad = 1 in def SSm : SS4AIi8, Sched<[sched.Folded, sched.ReadAfterFold]>; } // ExeDomain = SSEPackedSingle, hasSideEffects = 0 let ExeDomain = SSEPackedDouble, hasSideEffects = 0, isCodeGenOnly = 1 in { def SDr : SS4AIi8, Sched<[sched]>; let mayLoad = 1 in def SDm : SS4AIi8, Sched<[sched.Folded, sched.ReadAfterFold]>; } // ExeDomain = SSEPackedDouble, hasSideEffects = 0 } multiclass sse41_fp_unop_s opcss, bits<8> opcsd, string OpcodeStr, X86FoldableSchedWrite sched> { let Uses = [MXCSR], mayRaiseFPException = 1 in { let ExeDomain = SSEPackedSingle, hasSideEffects = 0, isCodeGenOnly = 1 in { def SSr : SS4AIi8, Sched<[sched]>; let mayLoad = 1 in def SSm : SS4AIi8, Sched<[sched.Folded, sched.ReadAfterFold]>; } // ExeDomain = SSEPackedSingle, hasSideEffects = 0 let ExeDomain = SSEPackedDouble, hasSideEffects = 0, isCodeGenOnly = 1 in { def SDr : SS4AIi8, Sched<[sched]>; let mayLoad = 1 in def SDm : SS4AIi8, Sched<[sched.Folded, sched.ReadAfterFold]>; } // ExeDomain = SSEPackedDouble, hasSideEffects = 0 } } multiclass sse41_fp_binop_s opcss, bits<8> opcsd, string OpcodeStr, X86FoldableSchedWrite sched, ValueType VT32, ValueType VT64, SDNode OpNode, bit Is2Addr = 1> { let Uses = [MXCSR], mayRaiseFPException = 1 in { let ExeDomain = SSEPackedSingle in { def SSr_Int : SS4AIi8, Sched<[sched]>; def SSm_Int : SS4AIi8, Sched<[sched.Folded, sched.ReadAfterFold]>; } // ExeDomain = SSEPackedSingle, isCodeGenOnly = 1 let ExeDomain = SSEPackedDouble in { def SDr_Int : SS4AIi8, Sched<[sched]>; def SDm_Int : SS4AIi8, Sched<[sched.Folded, sched.ReadAfterFold]>; } // ExeDomain = SSEPackedDouble, isCodeGenOnly = 1 } } // FP round - roundss, roundps, roundsd, roundpd let Predicates = [HasAVX, NoVLX] in { let ExeDomain = SSEPackedSingle, Uses = [MXCSR], mayRaiseFPException = 1 in { // Intrinsic form defm VROUNDPS : sse41_fp_unop_p<0x08, "vroundps", f128mem, VR128, v4f32, loadv4f32, X86any_VRndScale, SchedWriteFRnd.XMM>, VEX, VEX_WIG; defm VROUNDPSY : sse41_fp_unop_p<0x08, "vroundps", f256mem, VR256, v8f32, loadv8f32, X86any_VRndScale, SchedWriteFRnd.YMM>, VEX, VEX_L, VEX_WIG; } let ExeDomain = SSEPackedDouble, Uses = [MXCSR], mayRaiseFPException = 1 in { defm VROUNDPD : sse41_fp_unop_p<0x09, "vroundpd", f128mem, VR128, v2f64, loadv2f64, X86any_VRndScale, SchedWriteFRnd.XMM>, VEX, VEX_WIG; defm VROUNDPDY : sse41_fp_unop_p<0x09, "vroundpd", f256mem, VR256, v4f64, loadv4f64, X86any_VRndScale, SchedWriteFRnd.YMM>, VEX, VEX_L, VEX_WIG; } } let Predicates = [UseAVX] in { defm VROUND : sse41_fp_binop_s<0x0A, 0x0B, "vround", SchedWriteFRnd.Scl, v4f32, v2f64, X86RndScales, 0>, VEX_4V, VEX_LIG, VEX_WIG, SIMD_EXC; defm VROUND : avx_fp_unop_rm<0x0A, 0x0B, "vround", SchedWriteFRnd.Scl>, VEX_4V, VEX_LIG, VEX_WIG, SIMD_EXC; } let Predicates = [UseAVX] in { def : Pat<(X86any_VRndScale FR32:$src1, timm:$src2), (VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src1, timm:$src2)>; def : Pat<(X86any_VRndScale FR64:$src1, timm:$src2), (VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src1, timm:$src2)>; } let Predicates = [UseAVX, OptForSize] in { def : Pat<(X86any_VRndScale (loadf32 addr:$src1), timm:$src2), (VROUNDSSm (f32 (IMPLICIT_DEF)), addr:$src1, timm:$src2)>; def : Pat<(X86any_VRndScale (loadf64 addr:$src1), timm:$src2), (VROUNDSDm (f64 (IMPLICIT_DEF)), addr:$src1, timm:$src2)>; } let ExeDomain = SSEPackedSingle in defm ROUNDPS : sse41_fp_unop_p<0x08, "roundps", f128mem, VR128, v4f32, memopv4f32, X86any_VRndScale, SchedWriteFRnd.XMM>; let ExeDomain = SSEPackedDouble in defm ROUNDPD : sse41_fp_unop_p<0x09, "roundpd", f128mem, VR128, v2f64, memopv2f64, X86any_VRndScale, SchedWriteFRnd.XMM>; defm ROUND : sse41_fp_unop_s<0x0A, 0x0B, "round", SchedWriteFRnd.Scl>; let Constraints = "$src1 = $dst" in defm ROUND : sse41_fp_binop_s<0x0A, 0x0B, "round", SchedWriteFRnd.Scl, v4f32, v2f64, X86RndScales>; let Predicates = [UseSSE41] in { def : Pat<(X86any_VRndScale FR32:$src1, timm:$src2), (ROUNDSSr FR32:$src1, timm:$src2)>; def : Pat<(X86any_VRndScale FR64:$src1, timm:$src2), (ROUNDSDr FR64:$src1, timm:$src2)>; } let Predicates = [UseSSE41, OptForSize] in { def : Pat<(X86any_VRndScale (loadf32 addr:$src1), timm:$src2), (ROUNDSSm addr:$src1, timm:$src2)>; def : Pat<(X86any_VRndScale (loadf64 addr:$src1), timm:$src2), (ROUNDSDm addr:$src1, timm:$src2)>; } //===----------------------------------------------------------------------===// // SSE4.1 - Packed Bit Test //===----------------------------------------------------------------------===// // ptest instruction we'll lower to this in X86ISelLowering primarily from // the intel intrinsic that corresponds to this. let Defs = [EFLAGS], Predicates = [HasAVX] in { def VPTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2), "vptest\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86ptest VR128:$src1, (v2i64 VR128:$src2)))]>, Sched<[SchedWriteVecTest.XMM]>, VEX, VEX_WIG; def VPTESTrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2), "vptest\t{$src2, $src1|$src1, $src2}", [(set EFLAGS,(X86ptest VR128:$src1, (loadv2i64 addr:$src2)))]>, Sched<[SchedWriteVecTest.XMM.Folded, SchedWriteVecTest.XMM.ReadAfterFold]>, VEX, VEX_WIG; def VPTESTYrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR256:$src1, VR256:$src2), "vptest\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86ptest VR256:$src1, (v4i64 VR256:$src2)))]>, Sched<[SchedWriteVecTest.YMM]>, VEX, VEX_L, VEX_WIG; def VPTESTYrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR256:$src1, i256mem:$src2), "vptest\t{$src2, $src1|$src1, $src2}", [(set EFLAGS,(X86ptest VR256:$src1, (loadv4i64 addr:$src2)))]>, Sched<[SchedWriteVecTest.YMM.Folded, SchedWriteVecTest.YMM.ReadAfterFold]>, VEX, VEX_L, VEX_WIG; } let Defs = [EFLAGS] in { def PTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2), "ptest\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86ptest VR128:$src1, (v2i64 VR128:$src2)))]>, Sched<[SchedWriteVecTest.XMM]>; def PTESTrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2), "ptest\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86ptest VR128:$src1, (memopv2i64 addr:$src2)))]>, Sched<[SchedWriteVecTest.XMM.Folded, SchedWriteVecTest.XMM.ReadAfterFold]>; } // The bit test instructions below are AVX only multiclass avx_bittest opc, string OpcodeStr, RegisterClass RC, X86MemOperand x86memop, PatFrag mem_frag, ValueType vt, X86FoldableSchedWrite sched> { def rr : SS48I, Sched<[sched]>, VEX; def rm : SS48I, Sched<[sched.Folded, sched.ReadAfterFold]>, VEX; } let Defs = [EFLAGS], Predicates = [HasAVX] in { let ExeDomain = SSEPackedSingle in { defm VTESTPS : avx_bittest<0x0E, "vtestps", VR128, f128mem, loadv4f32, v4f32, SchedWriteFTest.XMM>; defm VTESTPSY : avx_bittest<0x0E, "vtestps", VR256, f256mem, loadv8f32, v8f32, SchedWriteFTest.YMM>, VEX_L; } let ExeDomain = SSEPackedDouble in { defm VTESTPD : avx_bittest<0x0F, "vtestpd", VR128, f128mem, loadv2f64, v2f64, SchedWriteFTest.XMM>; defm VTESTPDY : avx_bittest<0x0F, "vtestpd", VR256, f256mem, loadv4f64, v4f64, SchedWriteFTest.YMM>, VEX_L; } } //===----------------------------------------------------------------------===// // SSE4.1 - Misc Instructions //===----------------------------------------------------------------------===// let Defs = [EFLAGS], Predicates = [HasPOPCNT] in { def POPCNT16rr : I<0xB8, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "popcnt{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (ctpop GR16:$src)), (implicit EFLAGS)]>, Sched<[WritePOPCNT]>, OpSize16, XS; def POPCNT16rm : I<0xB8, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "popcnt{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (ctpop (loadi16 addr:$src))), (implicit EFLAGS)]>, Sched<[WritePOPCNT.Folded]>, OpSize16, XS; def POPCNT32rr : I<0xB8, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "popcnt{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (ctpop GR32:$src)), (implicit EFLAGS)]>, Sched<[WritePOPCNT]>, OpSize32, XS; def POPCNT32rm : I<0xB8, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "popcnt{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (ctpop (loadi32 addr:$src))), (implicit EFLAGS)]>, Sched<[WritePOPCNT.Folded]>, OpSize32, XS; def POPCNT64rr : RI<0xB8, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), "popcnt{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (ctpop GR64:$src)), (implicit EFLAGS)]>, Sched<[WritePOPCNT]>, XS; def POPCNT64rm : RI<0xB8, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "popcnt{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (ctpop (loadi64 addr:$src))), (implicit EFLAGS)]>, Sched<[WritePOPCNT.Folded]>, XS; } // SS41I_unop_rm_int_v16 - SSE 4.1 unary operator whose type is v8i16. multiclass SS41I_unop_rm_int_v16 opc, string OpcodeStr, SDNode OpNode, PatFrag ld_frag, X86FoldableSchedWrite Sched> { def rr : SS48I, Sched<[Sched]>; def rm : SS48I, Sched<[Sched.Folded]>; } // PHMIN has the same profile as PSAD, thus we use the same scheduling // model, although the naming is misleading. let Predicates = [HasAVX] in defm VPHMINPOSUW : SS41I_unop_rm_int_v16<0x41, "vphminposuw", X86phminpos, load, WritePHMINPOS>, VEX, VEX_WIG; defm PHMINPOSUW : SS41I_unop_rm_int_v16<0x41, "phminposuw", X86phminpos, memop, WritePHMINPOS>; /// SS48I_binop_rm - Simple SSE41 binary operator. multiclass SS48I_binop_rm opc, string OpcodeStr, SDNode OpNode, ValueType OpVT, RegisterClass RC, PatFrag memop_frag, X86MemOperand x86memop, X86FoldableSchedWrite sched, bit Is2Addr = 1> { let isCommutable = 1 in def rr : SS48I, Sched<[sched]>; def rm : SS48I, Sched<[sched.Folded, sched.ReadAfterFold]>; } let Predicates = [HasAVX, NoVLX] in { defm VPMINSD : SS48I_binop_rm<0x39, "vpminsd", smin, v4i32, VR128, load, i128mem, SchedWriteVecALU.XMM, 0>, VEX_4V, VEX_WIG; defm VPMINUD : SS48I_binop_rm<0x3B, "vpminud", umin, v4i32, VR128, load, i128mem, SchedWriteVecALU.XMM, 0>, VEX_4V, VEX_WIG; defm VPMAXSD : SS48I_binop_rm<0x3D, "vpmaxsd", smax, v4i32, VR128, load, i128mem, SchedWriteVecALU.XMM, 0>, VEX_4V, VEX_WIG; defm VPMAXUD : SS48I_binop_rm<0x3F, "vpmaxud", umax, v4i32, VR128, load, i128mem, SchedWriteVecALU.XMM, 0>, VEX_4V, VEX_WIG; defm VPMULDQ : SS48I_binop_rm<0x28, "vpmuldq", X86pmuldq, v2i64, VR128, load, i128mem, SchedWriteVecIMul.XMM, 0>, VEX_4V, VEX_WIG; } let Predicates = [HasAVX, NoVLX_Or_NoBWI] in { defm VPMINSB : SS48I_binop_rm<0x38, "vpminsb", smin, v16i8, VR128, load, i128mem, SchedWriteVecALU.XMM, 0>, VEX_4V, VEX_WIG; defm VPMINUW : SS48I_binop_rm<0x3A, "vpminuw", umin, v8i16, VR128, load, i128mem, SchedWriteVecALU.XMM, 0>, VEX_4V, VEX_WIG; defm VPMAXSB : SS48I_binop_rm<0x3C, "vpmaxsb", smax, v16i8, VR128, load, i128mem, SchedWriteVecALU.XMM, 0>, VEX_4V, VEX_WIG; defm VPMAXUW : SS48I_binop_rm<0x3E, "vpmaxuw", umax, v8i16, VR128, load, i128mem, SchedWriteVecALU.XMM, 0>, VEX_4V, VEX_WIG; } let Predicates = [HasAVX2, NoVLX] in { defm VPMINSDY : SS48I_binop_rm<0x39, "vpminsd", smin, v8i32, VR256, load, i256mem, SchedWriteVecALU.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; defm VPMINUDY : SS48I_binop_rm<0x3B, "vpminud", umin, v8i32, VR256, load, i256mem, SchedWriteVecALU.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; defm VPMAXSDY : SS48I_binop_rm<0x3D, "vpmaxsd", smax, v8i32, VR256, load, i256mem, SchedWriteVecALU.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; defm VPMAXUDY : SS48I_binop_rm<0x3F, "vpmaxud", umax, v8i32, VR256, load, i256mem, SchedWriteVecALU.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; defm VPMULDQY : SS48I_binop_rm<0x28, "vpmuldq", X86pmuldq, v4i64, VR256, load, i256mem, SchedWriteVecIMul.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; } let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in { defm VPMINSBY : SS48I_binop_rm<0x38, "vpminsb", smin, v32i8, VR256, load, i256mem, SchedWriteVecALU.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; defm VPMINUWY : SS48I_binop_rm<0x3A, "vpminuw", umin, v16i16, VR256, load, i256mem, SchedWriteVecALU.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; defm VPMAXSBY : SS48I_binop_rm<0x3C, "vpmaxsb", smax, v32i8, VR256, load, i256mem, SchedWriteVecALU.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; defm VPMAXUWY : SS48I_binop_rm<0x3E, "vpmaxuw", umax, v16i16, VR256, load, i256mem, SchedWriteVecALU.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; } let Constraints = "$src1 = $dst" in { defm PMINSB : SS48I_binop_rm<0x38, "pminsb", smin, v16i8, VR128, memop, i128mem, SchedWriteVecALU.XMM, 1>; defm PMINSD : SS48I_binop_rm<0x39, "pminsd", smin, v4i32, VR128, memop, i128mem, SchedWriteVecALU.XMM, 1>; defm PMINUD : SS48I_binop_rm<0x3B, "pminud", umin, v4i32, VR128, memop, i128mem, SchedWriteVecALU.XMM, 1>; defm PMINUW : SS48I_binop_rm<0x3A, "pminuw", umin, v8i16, VR128, memop, i128mem, SchedWriteVecALU.XMM, 1>; defm PMAXSB : SS48I_binop_rm<0x3C, "pmaxsb", smax, v16i8, VR128, memop, i128mem, SchedWriteVecALU.XMM, 1>; defm PMAXSD : SS48I_binop_rm<0x3D, "pmaxsd", smax, v4i32, VR128, memop, i128mem, SchedWriteVecALU.XMM, 1>; defm PMAXUD : SS48I_binop_rm<0x3F, "pmaxud", umax, v4i32, VR128, memop, i128mem, SchedWriteVecALU.XMM, 1>; defm PMAXUW : SS48I_binop_rm<0x3E, "pmaxuw", umax, v8i16, VR128, memop, i128mem, SchedWriteVecALU.XMM, 1>; defm PMULDQ : SS48I_binop_rm<0x28, "pmuldq", X86pmuldq, v2i64, VR128, memop, i128mem, SchedWriteVecIMul.XMM, 1>; } let Predicates = [HasAVX, NoVLX] in defm VPMULLD : SS48I_binop_rm<0x40, "vpmulld", mul, v4i32, VR128, load, i128mem, SchedWritePMULLD.XMM, 0>, VEX_4V, VEX_WIG; let Predicates = [HasAVX] in defm VPCMPEQQ : SS48I_binop_rm<0x29, "vpcmpeqq", X86pcmpeq, v2i64, VR128, load, i128mem, SchedWriteVecALU.XMM, 0>, VEX_4V, VEX_WIG; let Predicates = [HasAVX2, NoVLX] in defm VPMULLDY : SS48I_binop_rm<0x40, "vpmulld", mul, v8i32, VR256, load, i256mem, SchedWritePMULLD.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; let Predicates = [HasAVX2] in defm VPCMPEQQY : SS48I_binop_rm<0x29, "vpcmpeqq", X86pcmpeq, v4i64, VR256, load, i256mem, SchedWriteVecALU.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; let Constraints = "$src1 = $dst" in { defm PMULLD : SS48I_binop_rm<0x40, "pmulld", mul, v4i32, VR128, memop, i128mem, SchedWritePMULLD.XMM, 1>; defm PCMPEQQ : SS48I_binop_rm<0x29, "pcmpeqq", X86pcmpeq, v2i64, VR128, memop, i128mem, SchedWriteVecALU.XMM, 1>; } /// SS41I_binop_rmi_int - SSE 4.1 binary operator with 8-bit immediate multiclass SS41I_binop_rmi_int opc, string OpcodeStr, Intrinsic IntId, RegisterClass RC, PatFrag memop_frag, X86MemOperand x86memop, bit Is2Addr, X86FoldableSchedWrite sched> { let isCommutable = 1 in def rri : SS4AIi8, Sched<[sched]>; def rmi : SS4AIi8, Sched<[sched.Folded, sched.ReadAfterFold]>; } /// SS41I_binop_rmi - SSE 4.1 binary operator with 8-bit immediate multiclass SS41I_binop_rmi opc, string OpcodeStr, SDNode OpNode, ValueType OpVT, RegisterClass RC, PatFrag memop_frag, X86MemOperand x86memop, bit Is2Addr, X86FoldableSchedWrite sched> { let isCommutable = 1 in def rri : SS4AIi8, Sched<[sched]>; def rmi : SS4AIi8, Sched<[sched.Folded, sched.ReadAfterFold]>; } def BlendCommuteImm2 : SDNodeXFormgetZExtValue() & 0x03; return getI8Imm(Imm ^ 0x03, SDLoc(N)); }]>; def BlendCommuteImm4 : SDNodeXFormgetZExtValue() & 0x0f; return getI8Imm(Imm ^ 0x0f, SDLoc(N)); }]>; def BlendCommuteImm8 : SDNodeXFormgetZExtValue() & 0xff; return getI8Imm(Imm ^ 0xff, SDLoc(N)); }]>; // Turn a 4-bit blendi immediate to 8-bit for use with pblendw. def BlendScaleImm4 : SDNodeXFormgetZExtValue(); uint8_t NewImm = 0; for (unsigned i = 0; i != 4; ++i) { if (Imm & (1 << i)) NewImm |= 0x3 << (i * 2); } return getI8Imm(NewImm, SDLoc(N)); }]>; // Turn a 2-bit blendi immediate to 8-bit for use with pblendw. def BlendScaleImm2 : SDNodeXFormgetZExtValue(); uint8_t NewImm = 0; for (unsigned i = 0; i != 2; ++i) { if (Imm & (1 << i)) NewImm |= 0xf << (i * 4); } return getI8Imm(NewImm, SDLoc(N)); }]>; // Turn a 2-bit blendi immediate to 4-bit for use with pblendd. def BlendScaleImm2to4 : SDNodeXFormgetZExtValue(); uint8_t NewImm = 0; for (unsigned i = 0; i != 2; ++i) { if (Imm & (1 << i)) NewImm |= 0x3 << (i * 2); } return getI8Imm(NewImm, SDLoc(N)); }]>; // Turn a 4-bit blendi immediate to 8-bit for use with pblendw and invert it. def BlendScaleCommuteImm4 : SDNodeXFormgetZExtValue(); uint8_t NewImm = 0; for (unsigned i = 0; i != 4; ++i) { if (Imm & (1 << i)) NewImm |= 0x3 << (i * 2); } return getI8Imm(NewImm ^ 0xff, SDLoc(N)); }]>; // Turn a 2-bit blendi immediate to 8-bit for use with pblendw and invert it. def BlendScaleCommuteImm2 : SDNodeXFormgetZExtValue(); uint8_t NewImm = 0; for (unsigned i = 0; i != 2; ++i) { if (Imm & (1 << i)) NewImm |= 0xf << (i * 4); } return getI8Imm(NewImm ^ 0xff, SDLoc(N)); }]>; // Turn a 2-bit blendi immediate to 4-bit for use with pblendd and invert it. def BlendScaleCommuteImm2to4 : SDNodeXFormgetZExtValue(); uint8_t NewImm = 0; for (unsigned i = 0; i != 2; ++i) { if (Imm & (1 << i)) NewImm |= 0x3 << (i * 2); } return getI8Imm(NewImm ^ 0xf, SDLoc(N)); }]>; let Predicates = [HasAVX] in { let isCommutable = 0 in { defm VMPSADBW : SS41I_binop_rmi_int<0x42, "vmpsadbw", int_x86_sse41_mpsadbw, VR128, load, i128mem, 0, SchedWriteMPSAD.XMM>, VEX_4V, VEX_WIG; } let Uses = [MXCSR], mayRaiseFPException = 1 in { let ExeDomain = SSEPackedSingle in defm VDPPS : SS41I_binop_rmi_int<0x40, "vdpps", int_x86_sse41_dpps, VR128, load, f128mem, 0, SchedWriteDPPS.XMM>, VEX_4V, VEX_WIG; let ExeDomain = SSEPackedDouble in defm VDPPD : SS41I_binop_rmi_int<0x41, "vdppd", int_x86_sse41_dppd, VR128, load, f128mem, 0, SchedWriteDPPD.XMM>, VEX_4V, VEX_WIG; let ExeDomain = SSEPackedSingle in defm VDPPSY : SS41I_binop_rmi_int<0x40, "vdpps", int_x86_avx_dp_ps_256, VR256, load, i256mem, 0, SchedWriteDPPS.YMM>, VEX_4V, VEX_L, VEX_WIG; } } let Predicates = [HasAVX2] in { let isCommutable = 0 in { defm VMPSADBWY : SS41I_binop_rmi_int<0x42, "vmpsadbw", int_x86_avx2_mpsadbw, VR256, load, i256mem, 0, SchedWriteMPSAD.YMM>, VEX_4V, VEX_L, VEX_WIG; } } let Constraints = "$src1 = $dst" in { let isCommutable = 0 in { defm MPSADBW : SS41I_binop_rmi_int<0x42, "mpsadbw", int_x86_sse41_mpsadbw, VR128, memop, i128mem, 1, SchedWriteMPSAD.XMM>; } let ExeDomain = SSEPackedSingle in defm DPPS : SS41I_binop_rmi_int<0x40, "dpps", int_x86_sse41_dpps, VR128, memop, f128mem, 1, SchedWriteDPPS.XMM>, SIMD_EXC; let ExeDomain = SSEPackedDouble in defm DPPD : SS41I_binop_rmi_int<0x41, "dppd", int_x86_sse41_dppd, VR128, memop, f128mem, 1, SchedWriteDPPD.XMM>, SIMD_EXC; } /// SS41I_blend_rmi - SSE 4.1 blend with 8-bit immediate multiclass SS41I_blend_rmi opc, string OpcodeStr, SDNode OpNode, ValueType OpVT, RegisterClass RC, PatFrag memop_frag, X86MemOperand x86memop, bit Is2Addr, Domain d, X86FoldableSchedWrite sched, SDNodeXForm commuteXForm> { let ExeDomain = d, Constraints = !if(Is2Addr, "$src1 = $dst", "") in { let isCommutable = 1 in def rri : SS4AIi8, Sched<[sched]>; def rmi : SS4AIi8, Sched<[sched.Folded, sched.ReadAfterFold]>; } // Pattern to commute if load is in first source. def : Pat<(OpVT (OpNode (memop_frag addr:$src2), RC:$src1, timm:$src3)), (!cast(NAME#"rmi") RC:$src1, addr:$src2, (commuteXForm timm:$src3))>; } let Predicates = [HasAVX] in { defm VBLENDPS : SS41I_blend_rmi<0x0C, "vblendps", X86Blendi, v4f32, VR128, load, f128mem, 0, SSEPackedSingle, SchedWriteFBlend.XMM, BlendCommuteImm4>, VEX_4V, VEX_WIG; defm VBLENDPSY : SS41I_blend_rmi<0x0C, "vblendps", X86Blendi, v8f32, VR256, load, f256mem, 0, SSEPackedSingle, SchedWriteFBlend.YMM, BlendCommuteImm8>, VEX_4V, VEX_L, VEX_WIG; defm VBLENDPD : SS41I_blend_rmi<0x0D, "vblendpd", X86Blendi, v2f64, VR128, load, f128mem, 0, SSEPackedDouble, SchedWriteFBlend.XMM, BlendCommuteImm2>, VEX_4V, VEX_WIG; defm VBLENDPDY : SS41I_blend_rmi<0x0D, "vblendpd", X86Blendi, v4f64, VR256, load, f256mem, 0, SSEPackedDouble, SchedWriteFBlend.YMM, BlendCommuteImm4>, VEX_4V, VEX_L, VEX_WIG; defm VPBLENDW : SS41I_blend_rmi<0x0E, "vpblendw", X86Blendi, v8i16, VR128, load, i128mem, 0, SSEPackedInt, SchedWriteBlend.XMM, BlendCommuteImm8>, VEX_4V, VEX_WIG; } let Predicates = [HasAVX2] in { defm VPBLENDWY : SS41I_blend_rmi<0x0E, "vpblendw", X86Blendi, v16i16, VR256, load, i256mem, 0, SSEPackedInt, SchedWriteBlend.YMM, BlendCommuteImm8>, VEX_4V, VEX_L, VEX_WIG; } // Emulate vXi32/vXi64 blends with vXf32/vXf64 or pblendw. // ExecutionDomainFixPass will cleanup domains later on. let Predicates = [HasAVX1Only] in { def : Pat<(X86Blendi (v4i64 VR256:$src1), (v4i64 VR256:$src2), timm:$src3), (VBLENDPDYrri VR256:$src1, VR256:$src2, timm:$src3)>; def : Pat<(X86Blendi VR256:$src1, (loadv4i64 addr:$src2), timm:$src3), (VBLENDPDYrmi VR256:$src1, addr:$src2, timm:$src3)>; def : Pat<(X86Blendi (loadv4i64 addr:$src2), VR256:$src1, timm:$src3), (VBLENDPDYrmi VR256:$src1, addr:$src2, (BlendCommuteImm4 timm:$src3))>; // Use pblendw for 128-bit integer to keep it in the integer domain and prevent // it from becoming movsd via commuting under optsize. def : Pat<(X86Blendi (v2i64 VR128:$src1), (v2i64 VR128:$src2), timm:$src3), (VPBLENDWrri VR128:$src1, VR128:$src2, (BlendScaleImm2 timm:$src3))>; def : Pat<(X86Blendi VR128:$src1, (loadv2i64 addr:$src2), timm:$src3), (VPBLENDWrmi VR128:$src1, addr:$src2, (BlendScaleImm2 timm:$src3))>; def : Pat<(X86Blendi (loadv2i64 addr:$src2), VR128:$src1, timm:$src3), (VPBLENDWrmi VR128:$src1, addr:$src2, (BlendScaleCommuteImm2 timm:$src3))>; def : Pat<(X86Blendi (v8i32 VR256:$src1), (v8i32 VR256:$src2), timm:$src3), (VBLENDPSYrri VR256:$src1, VR256:$src2, timm:$src3)>; def : Pat<(X86Blendi VR256:$src1, (loadv8i32 addr:$src2), timm:$src3), (VBLENDPSYrmi VR256:$src1, addr:$src2, timm:$src3)>; def : Pat<(X86Blendi (loadv8i32 addr:$src2), VR256:$src1, timm:$src3), (VBLENDPSYrmi VR256:$src1, addr:$src2, (BlendCommuteImm8 timm:$src3))>; // Use pblendw for 128-bit integer to keep it in the integer domain and prevent // it from becoming movss via commuting under optsize. def : Pat<(X86Blendi (v4i32 VR128:$src1), (v4i32 VR128:$src2), timm:$src3), (VPBLENDWrri VR128:$src1, VR128:$src2, (BlendScaleImm4 timm:$src3))>; def : Pat<(X86Blendi VR128:$src1, (loadv4i32 addr:$src2), timm:$src3), (VPBLENDWrmi VR128:$src1, addr:$src2, (BlendScaleImm4 timm:$src3))>; def : Pat<(X86Blendi (loadv4i32 addr:$src2), VR128:$src1, timm:$src3), (VPBLENDWrmi VR128:$src1, addr:$src2, (BlendScaleCommuteImm4 timm:$src3))>; } defm BLENDPS : SS41I_blend_rmi<0x0C, "blendps", X86Blendi, v4f32, VR128, memop, f128mem, 1, SSEPackedSingle, SchedWriteFBlend.XMM, BlendCommuteImm4>; defm BLENDPD : SS41I_blend_rmi<0x0D, "blendpd", X86Blendi, v2f64, VR128, memop, f128mem, 1, SSEPackedDouble, SchedWriteFBlend.XMM, BlendCommuteImm2>; defm PBLENDW : SS41I_blend_rmi<0x0E, "pblendw", X86Blendi, v8i16, VR128, memop, i128mem, 1, SSEPackedInt, SchedWriteBlend.XMM, BlendCommuteImm8>; let Predicates = [UseSSE41] in { // Use pblendw for 128-bit integer to keep it in the integer domain and prevent // it from becoming movss via commuting under optsize. def : Pat<(X86Blendi (v2i64 VR128:$src1), (v2i64 VR128:$src2), timm:$src3), (PBLENDWrri VR128:$src1, VR128:$src2, (BlendScaleImm2 timm:$src3))>; def : Pat<(X86Blendi VR128:$src1, (memopv2i64 addr:$src2), timm:$src3), (PBLENDWrmi VR128:$src1, addr:$src2, (BlendScaleImm2 timm:$src3))>; def : Pat<(X86Blendi (memopv2i64 addr:$src2), VR128:$src1, timm:$src3), (PBLENDWrmi VR128:$src1, addr:$src2, (BlendScaleCommuteImm2 timm:$src3))>; def : Pat<(X86Blendi (v4i32 VR128:$src1), (v4i32 VR128:$src2), timm:$src3), (PBLENDWrri VR128:$src1, VR128:$src2, (BlendScaleImm4 timm:$src3))>; def : Pat<(X86Blendi VR128:$src1, (memopv4i32 addr:$src2), timm:$src3), (PBLENDWrmi VR128:$src1, addr:$src2, (BlendScaleImm4 timm:$src3))>; def : Pat<(X86Blendi (memopv4i32 addr:$src2), VR128:$src1, timm:$src3), (PBLENDWrmi VR128:$src1, addr:$src2, (BlendScaleCommuteImm4 timm:$src3))>; } // For insertion into the zero index (low half) of a 256-bit vector, it is // more efficient to generate a blend with immediate instead of an insert*128. let Predicates = [HasAVX] in { def : Pat<(insert_subvector (v4f64 VR256:$src1), (v2f64 VR128:$src2), (iPTR 0)), (VBLENDPDYrri VR256:$src1, (INSERT_SUBREG (v4f64 (IMPLICIT_DEF)), VR128:$src2, sub_xmm), 0x3)>; def : Pat<(insert_subvector (v8f32 VR256:$src1), (v4f32 VR128:$src2), (iPTR 0)), (VBLENDPSYrri VR256:$src1, (INSERT_SUBREG (v8f32 (IMPLICIT_DEF)), VR128:$src2, sub_xmm), 0xf)>; def : Pat<(insert_subvector (loadv4f64 addr:$src2), (v2f64 VR128:$src1), (iPTR 0)), (VBLENDPDYrmi (INSERT_SUBREG (v4f64 (IMPLICIT_DEF)), VR128:$src1, sub_xmm), addr:$src2, 0xc)>; def : Pat<(insert_subvector (loadv8f32 addr:$src2), (v4f32 VR128:$src1), (iPTR 0)), (VBLENDPSYrmi (INSERT_SUBREG (v8f32 (IMPLICIT_DEF)), VR128:$src1, sub_xmm), addr:$src2, 0xf0)>; } /// SS41I_quaternary_vx - AVX SSE 4.1 with 4 operators multiclass SS41I_quaternary_avx opc, string OpcodeStr, RegisterClass RC, X86MemOperand x86memop, ValueType VT, PatFrag mem_frag, SDNode OpNode, X86FoldableSchedWrite sched> { def rr : Ii8Reg, TAPD, VEX_4V, Sched<[sched]>; def rm : Ii8Reg, TAPD, VEX_4V, Sched<[sched.Folded, sched.ReadAfterFold, // x86memop:$src2 ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault, // RC::$src3 sched.ReadAfterFold]>; } let Predicates = [HasAVX] in { let ExeDomain = SSEPackedDouble in { defm VBLENDVPD : SS41I_quaternary_avx<0x4B, "vblendvpd", VR128, f128mem, v2f64, loadv2f64, X86Blendv, SchedWriteFVarBlend.XMM>; defm VBLENDVPDY : SS41I_quaternary_avx<0x4B, "vblendvpd", VR256, f256mem, v4f64, loadv4f64, X86Blendv, SchedWriteFVarBlend.YMM>, VEX_L; } // ExeDomain = SSEPackedDouble let ExeDomain = SSEPackedSingle in { defm VBLENDVPS : SS41I_quaternary_avx<0x4A, "vblendvps", VR128, f128mem, v4f32, loadv4f32, X86Blendv, SchedWriteFVarBlend.XMM>; defm VBLENDVPSY : SS41I_quaternary_avx<0x4A, "vblendvps", VR256, f256mem, v8f32, loadv8f32, X86Blendv, SchedWriteFVarBlend.YMM>, VEX_L; } // ExeDomain = SSEPackedSingle defm VPBLENDVB : SS41I_quaternary_avx<0x4C, "vpblendvb", VR128, i128mem, v16i8, loadv16i8, X86Blendv, SchedWriteVarBlend.XMM>; } let Predicates = [HasAVX2] in { defm VPBLENDVBY : SS41I_quaternary_avx<0x4C, "vpblendvb", VR256, i256mem, v32i8, loadv32i8, X86Blendv, SchedWriteVarBlend.YMM>, VEX_L; } let Predicates = [HasAVX] in { def : Pat<(v4i32 (X86Blendv (v4i32 VR128:$mask), (v4i32 VR128:$src1), (v4i32 VR128:$src2))), (VBLENDVPSrr VR128:$src2, VR128:$src1, VR128:$mask)>; def : Pat<(v2i64 (X86Blendv (v2i64 VR128:$mask), (v2i64 VR128:$src1), (v2i64 VR128:$src2))), (VBLENDVPDrr VR128:$src2, VR128:$src1, VR128:$mask)>; def : Pat<(v8i32 (X86Blendv (v8i32 VR256:$mask), (v8i32 VR256:$src1), (v8i32 VR256:$src2))), (VBLENDVPSYrr VR256:$src2, VR256:$src1, VR256:$mask)>; def : Pat<(v4i64 (X86Blendv (v4i64 VR256:$mask), (v4i64 VR256:$src1), (v4i64 VR256:$src2))), (VBLENDVPDYrr VR256:$src2, VR256:$src1, VR256:$mask)>; } // Prefer a movss or movsd over a blendps when optimizing for size. these were // changed to use blends because blends have better throughput on sandybridge // and haswell, but movs[s/d] are 1-2 byte shorter instructions. let Predicates = [HasAVX, OptForSpeed] in { def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))), (VBLENDPSrri (v4f32 (V_SET0)), VR128:$src, (i8 1))>; def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))), (VPBLENDWrri (v4i32 (V_SET0)), VR128:$src, (i8 3))>; def : Pat<(v4f32 (X86Movss VR128:$src1, VR128:$src2)), (VBLENDPSrri VR128:$src1, VR128:$src2, (i8 1))>; def : Pat<(v4f32 (X86Movss VR128:$src1, (loadv4f32 addr:$src2))), (VBLENDPSrmi VR128:$src1, addr:$src2, (i8 1))>; def : Pat<(v4f32 (X86Movss (loadv4f32 addr:$src2), VR128:$src1)), (VBLENDPSrmi VR128:$src1, addr:$src2, (i8 0xe))>; def : Pat<(v2f64 (X86Movsd VR128:$src1, VR128:$src2)), (VBLENDPDrri VR128:$src1, VR128:$src2, (i8 1))>; def : Pat<(v2f64 (X86Movsd VR128:$src1, (loadv2f64 addr:$src2))), (VBLENDPDrmi VR128:$src1, addr:$src2, (i8 1))>; def : Pat<(v2f64 (X86Movsd (loadv2f64 addr:$src2), VR128:$src1)), (VBLENDPDrmi VR128:$src1, addr:$src2, (i8 2))>; // Move low f32 and clear high bits. def : Pat<(v8f32 (X86vzmovl (v8f32 VR256:$src))), (SUBREG_TO_REG (i32 0), (v4f32 (VBLENDPSrri (v4f32 (V_SET0)), (v4f32 (EXTRACT_SUBREG (v8f32 VR256:$src), sub_xmm)), (i8 1))), sub_xmm)>; def : Pat<(v8i32 (X86vzmovl (v8i32 VR256:$src))), (SUBREG_TO_REG (i32 0), (v4i32 (VPBLENDWrri (v4i32 (V_SET0)), (v4i32 (EXTRACT_SUBREG (v8i32 VR256:$src), sub_xmm)), (i8 3))), sub_xmm)>; } // Prefer a movss or movsd over a blendps when optimizing for size. these were // changed to use blends because blends have better throughput on sandybridge // and haswell, but movs[s/d] are 1-2 byte shorter instructions. let Predicates = [UseSSE41, OptForSpeed] in { // With SSE41 we can use blends for these patterns. def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))), (BLENDPSrri (v4f32 (V_SET0)), VR128:$src, (i8 1))>; def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))), (PBLENDWrri (v4i32 (V_SET0)), VR128:$src, (i8 3))>; def : Pat<(v4f32 (X86Movss VR128:$src1, VR128:$src2)), (BLENDPSrri VR128:$src1, VR128:$src2, (i8 1))>; def : Pat<(v4f32 (X86Movss VR128:$src1, (memopv4f32 addr:$src2))), (BLENDPSrmi VR128:$src1, addr:$src2, (i8 1))>; def : Pat<(v4f32 (X86Movss (memopv4f32 addr:$src2), VR128:$src1)), (BLENDPSrmi VR128:$src1, addr:$src2, (i8 0xe))>; def : Pat<(v2f64 (X86Movsd VR128:$src1, VR128:$src2)), (BLENDPDrri VR128:$src1, VR128:$src2, (i8 1))>; def : Pat<(v2f64 (X86Movsd VR128:$src1, (memopv2f64 addr:$src2))), (BLENDPDrmi VR128:$src1, addr:$src2, (i8 1))>; def : Pat<(v2f64 (X86Movsd (memopv2f64 addr:$src2), VR128:$src1)), (BLENDPDrmi VR128:$src1, addr:$src2, (i8 2))>; } /// SS41I_ternary - SSE 4.1 ternary operator let Uses = [XMM0], Constraints = "$src1 = $dst" in { multiclass SS41I_ternary opc, string OpcodeStr, ValueType VT, PatFrag mem_frag, X86MemOperand x86memop, SDNode OpNode, X86FoldableSchedWrite sched> { def rr0 : SS48I, Sched<[sched]>; def rm0 : SS48I, Sched<[sched.Folded, sched.ReadAfterFold]>; } } let ExeDomain = SSEPackedDouble in defm BLENDVPD : SS41I_ternary<0x15, "blendvpd", v2f64, memopv2f64, f128mem, X86Blendv, SchedWriteFVarBlend.XMM>; let ExeDomain = SSEPackedSingle in defm BLENDVPS : SS41I_ternary<0x14, "blendvps", v4f32, memopv4f32, f128mem, X86Blendv, SchedWriteFVarBlend.XMM>; defm PBLENDVB : SS41I_ternary<0x10, "pblendvb", v16i8, memopv16i8, i128mem, X86Blendv, SchedWriteVarBlend.XMM>; // Aliases with the implicit xmm0 argument def : InstAlias<"blendvpd\t{$src2, $dst|$dst, $src2}", (BLENDVPDrr0 VR128:$dst, VR128:$src2), 0>; def : InstAlias<"blendvpd\t{$src2, $dst|$dst, $src2}", (BLENDVPDrm0 VR128:$dst, f128mem:$src2), 0>; def : InstAlias<"blendvps\t{$src2, $dst|$dst, $src2}", (BLENDVPSrr0 VR128:$dst, VR128:$src2), 0>; def : InstAlias<"blendvps\t{$src2, $dst|$dst, $src2}", (BLENDVPSrm0 VR128:$dst, f128mem:$src2), 0>; def : InstAlias<"pblendvb\t{$src2, $dst|$dst, $src2}", (PBLENDVBrr0 VR128:$dst, VR128:$src2), 0>; def : InstAlias<"pblendvb\t{$src2, $dst|$dst, $src2}", (PBLENDVBrm0 VR128:$dst, i128mem:$src2), 0>; let Predicates = [UseSSE41] in { def : Pat<(v4i32 (X86Blendv (v4i32 XMM0), (v4i32 VR128:$src1), (v4i32 VR128:$src2))), (BLENDVPSrr0 VR128:$src2, VR128:$src1)>; def : Pat<(v2i64 (X86Blendv (v2i64 XMM0), (v2i64 VR128:$src1), (v2i64 VR128:$src2))), (BLENDVPDrr0 VR128:$src2, VR128:$src1)>; } let AddedComplexity = 400 in { // Prefer non-temporal versions let Predicates = [HasAVX, NoVLX] in def VMOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "vmovntdqa\t{$src, $dst|$dst, $src}", []>, Sched<[SchedWriteVecMoveLSNT.XMM.RM]>, VEX, VEX_WIG; let Predicates = [HasAVX2, NoVLX] in def VMOVNTDQAYrm : SS48I<0x2A, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src), "vmovntdqa\t{$src, $dst|$dst, $src}", []>, Sched<[SchedWriteVecMoveLSNT.YMM.RM]>, VEX, VEX_L, VEX_WIG; def MOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movntdqa\t{$src, $dst|$dst, $src}", []>, Sched<[SchedWriteVecMoveLSNT.XMM.RM]>; let Predicates = [HasAVX2, NoVLX] in { def : Pat<(v8f32 (alignednontemporalload addr:$src)), (VMOVNTDQAYrm addr:$src)>; def : Pat<(v4f64 (alignednontemporalload addr:$src)), (VMOVNTDQAYrm addr:$src)>; def : Pat<(v4i64 (alignednontemporalload addr:$src)), (VMOVNTDQAYrm addr:$src)>; def : Pat<(v8i32 (alignednontemporalload addr:$src)), (VMOVNTDQAYrm addr:$src)>; def : Pat<(v16i16 (alignednontemporalload addr:$src)), (VMOVNTDQAYrm addr:$src)>; def : Pat<(v32i8 (alignednontemporalload addr:$src)), (VMOVNTDQAYrm addr:$src)>; } let Predicates = [HasAVX, NoVLX] in { def : Pat<(v4f32 (alignednontemporalload addr:$src)), (VMOVNTDQArm addr:$src)>; def : Pat<(v2f64 (alignednontemporalload addr:$src)), (VMOVNTDQArm addr:$src)>; def : Pat<(v2i64 (alignednontemporalload addr:$src)), (VMOVNTDQArm addr:$src)>; def : Pat<(v4i32 (alignednontemporalload addr:$src)), (VMOVNTDQArm addr:$src)>; def : Pat<(v8i16 (alignednontemporalload addr:$src)), (VMOVNTDQArm addr:$src)>; def : Pat<(v16i8 (alignednontemporalload addr:$src)), (VMOVNTDQArm addr:$src)>; } let Predicates = [UseSSE41] in { def : Pat<(v4f32 (alignednontemporalload addr:$src)), (MOVNTDQArm addr:$src)>; def : Pat<(v2f64 (alignednontemporalload addr:$src)), (MOVNTDQArm addr:$src)>; def : Pat<(v2i64 (alignednontemporalload addr:$src)), (MOVNTDQArm addr:$src)>; def : Pat<(v4i32 (alignednontemporalload addr:$src)), (MOVNTDQArm addr:$src)>; def : Pat<(v8i16 (alignednontemporalload addr:$src)), (MOVNTDQArm addr:$src)>; def : Pat<(v16i8 (alignednontemporalload addr:$src)), (MOVNTDQArm addr:$src)>; } } // AddedComplexity //===----------------------------------------------------------------------===// // SSE4.2 - Compare Instructions //===----------------------------------------------------------------------===// /// SS42I_binop_rm - Simple SSE 4.2 binary operator multiclass SS42I_binop_rm opc, string OpcodeStr, SDNode OpNode, ValueType OpVT, RegisterClass RC, PatFrag memop_frag, X86MemOperand x86memop, X86FoldableSchedWrite sched, bit Is2Addr = 1> { def rr : SS428I, Sched<[sched]>; def rm : SS428I, Sched<[sched.Folded, sched.ReadAfterFold]>; } let Predicates = [HasAVX] in defm VPCMPGTQ : SS42I_binop_rm<0x37, "vpcmpgtq", X86pcmpgt, v2i64, VR128, load, i128mem, SchedWriteVecALU.XMM, 0>, VEX_4V, VEX_WIG; let Predicates = [HasAVX2] in defm VPCMPGTQY : SS42I_binop_rm<0x37, "vpcmpgtq", X86pcmpgt, v4i64, VR256, load, i256mem, SchedWriteVecALU.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; let Constraints = "$src1 = $dst" in defm PCMPGTQ : SS42I_binop_rm<0x37, "pcmpgtq", X86pcmpgt, v2i64, VR128, memop, i128mem, SchedWriteVecALU.XMM>; //===----------------------------------------------------------------------===// // SSE4.2 - String/text Processing Instructions //===----------------------------------------------------------------------===// multiclass pcmpistrm_SS42AI { def rr : SS42AI<0x62, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2, u8imm:$src3), !strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"), []>, Sched<[WritePCmpIStrM]>; let mayLoad = 1 in def rm :SS42AI<0x62, MRMSrcMem, (outs), (ins VR128:$src1, i128mem:$src2, u8imm:$src3), !strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"), []>, Sched<[WritePCmpIStrM.Folded, WritePCmpIStrM.ReadAfterFold]>; } let Defs = [XMM0, EFLAGS], hasSideEffects = 0 in { let Predicates = [HasAVX] in defm VPCMPISTRM : pcmpistrm_SS42AI<"vpcmpistrm">, VEX; defm PCMPISTRM : pcmpistrm_SS42AI<"pcmpistrm"> ; } multiclass SS42AI_pcmpestrm { def rr : SS42AI<0x60, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src3, u8imm:$src5), !strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"), []>, Sched<[WritePCmpEStrM]>; let mayLoad = 1 in def rm : SS42AI<0x60, MRMSrcMem, (outs), (ins VR128:$src1, i128mem:$src3, u8imm:$src5), !strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"), []>, Sched<[WritePCmpEStrM.Folded, WritePCmpEStrM.ReadAfterFold]>; } let Defs = [XMM0, EFLAGS], Uses = [EAX, EDX], hasSideEffects = 0 in { let Predicates = [HasAVX] in defm VPCMPESTRM : SS42AI_pcmpestrm<"vpcmpestrm">, VEX; defm PCMPESTRM : SS42AI_pcmpestrm<"pcmpestrm">; } multiclass SS42AI_pcmpistri { def rr : SS42AI<0x63, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2, u8imm:$src3), !strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"), []>, Sched<[WritePCmpIStrI]>; let mayLoad = 1 in def rm : SS42AI<0x63, MRMSrcMem, (outs), (ins VR128:$src1, i128mem:$src2, u8imm:$src3), !strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"), []>, Sched<[WritePCmpIStrI.Folded, WritePCmpIStrI.ReadAfterFold]>; } let Defs = [ECX, EFLAGS], hasSideEffects = 0 in { let Predicates = [HasAVX] in defm VPCMPISTRI : SS42AI_pcmpistri<"vpcmpistri">, VEX; defm PCMPISTRI : SS42AI_pcmpistri<"pcmpistri">; } multiclass SS42AI_pcmpestri { def rr : SS42AI<0x61, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src3, u8imm:$src5), !strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"), []>, Sched<[WritePCmpEStrI]>; let mayLoad = 1 in def rm : SS42AI<0x61, MRMSrcMem, (outs), (ins VR128:$src1, i128mem:$src3, u8imm:$src5), !strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"), []>, Sched<[WritePCmpEStrI.Folded, WritePCmpEStrI.ReadAfterFold]>; } let Defs = [ECX, EFLAGS], Uses = [EAX, EDX], hasSideEffects = 0 in { let Predicates = [HasAVX] in defm VPCMPESTRI : SS42AI_pcmpestri<"vpcmpestri">, VEX; defm PCMPESTRI : SS42AI_pcmpestri<"pcmpestri">; } //===----------------------------------------------------------------------===// // SSE4.2 - CRC Instructions //===----------------------------------------------------------------------===// // No CRC instructions have AVX equivalents // crc intrinsic instruction // This set of instructions are only rm, the only difference is the size // of r and m. class SS42I_crc32r opc, string asm, RegisterClass RCOut, RegisterClass RCIn, SDPatternOperator Int> : SS42FI, Sched<[WriteCRC32]>; class SS42I_crc32m opc, string asm, RegisterClass RCOut, X86MemOperand x86memop, SDPatternOperator Int> : SS42FI, Sched<[WriteCRC32.Folded, WriteCRC32.ReadAfterFold]>; let Constraints = "$src1 = $dst" in { def CRC32r32m8 : SS42I_crc32m<0xF0, "crc32{b}", GR32, i8mem, int_x86_sse42_crc32_32_8>; def CRC32r32r8 : SS42I_crc32r<0xF0, "crc32{b}", GR32, GR8, int_x86_sse42_crc32_32_8>; def CRC32r32m16 : SS42I_crc32m<0xF1, "crc32{w}", GR32, i16mem, int_x86_sse42_crc32_32_16>, OpSize16; def CRC32r32r16 : SS42I_crc32r<0xF1, "crc32{w}", GR32, GR16, int_x86_sse42_crc32_32_16>, OpSize16; def CRC32r32m32 : SS42I_crc32m<0xF1, "crc32{l}", GR32, i32mem, int_x86_sse42_crc32_32_32>, OpSize32; def CRC32r32r32 : SS42I_crc32r<0xF1, "crc32{l}", GR32, GR32, int_x86_sse42_crc32_32_32>, OpSize32; def CRC32r64m64 : SS42I_crc32m<0xF1, "crc32{q}", GR64, i64mem, int_x86_sse42_crc32_64_64>, REX_W; def CRC32r64r64 : SS42I_crc32r<0xF1, "crc32{q}", GR64, GR64, int_x86_sse42_crc32_64_64>, REX_W; let hasSideEffects = 0 in { let mayLoad = 1 in def CRC32r64m8 : SS42I_crc32m<0xF0, "crc32{b}", GR64, i8mem, null_frag>, REX_W; def CRC32r64r8 : SS42I_crc32r<0xF0, "crc32{b}", GR64, GR8, null_frag>, REX_W; } } //===----------------------------------------------------------------------===// // SHA-NI Instructions //===----------------------------------------------------------------------===// // FIXME: Is there a better scheduler class for SHA than WriteVecIMul? multiclass SHAI_binop Opc, string OpcodeStr, Intrinsic IntId, X86FoldableSchedWrite sched, bit UsesXMM0 = 0> { def rr : I, T8, Sched<[sched]>; def rm : I, T8, Sched<[sched.Folded, sched.ReadAfterFold]>; } let Constraints = "$src1 = $dst", Predicates = [HasSHA] in { def SHA1RNDS4rri : Ii8<0xCC, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, u8imm:$src3), "sha1rnds4\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set VR128:$dst, (int_x86_sha1rnds4 VR128:$src1, VR128:$src2, (i8 timm:$src3)))]>, TA, Sched<[SchedWriteVecIMul.XMM]>; def SHA1RNDS4rmi : Ii8<0xCC, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2, u8imm:$src3), "sha1rnds4\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set VR128:$dst, (int_x86_sha1rnds4 VR128:$src1, (memop addr:$src2), (i8 timm:$src3)))]>, TA, Sched<[SchedWriteVecIMul.XMM.Folded, SchedWriteVecIMul.XMM.ReadAfterFold]>; defm SHA1NEXTE : SHAI_binop<0xC8, "sha1nexte", int_x86_sha1nexte, SchedWriteVecIMul.XMM>; defm SHA1MSG1 : SHAI_binop<0xC9, "sha1msg1", int_x86_sha1msg1, SchedWriteVecIMul.XMM>; defm SHA1MSG2 : SHAI_binop<0xCA, "sha1msg2", int_x86_sha1msg2, SchedWriteVecIMul.XMM>; let Uses=[XMM0] in defm SHA256RNDS2 : SHAI_binop<0xCB, "sha256rnds2", int_x86_sha256rnds2, SchedWriteVecIMul.XMM, 1>; defm SHA256MSG1 : SHAI_binop<0xCC, "sha256msg1", int_x86_sha256msg1, SchedWriteVecIMul.XMM>; defm SHA256MSG2 : SHAI_binop<0xCD, "sha256msg2", int_x86_sha256msg2, SchedWriteVecIMul.XMM>; } // Aliases with explicit %xmm0 def : InstAlias<"sha256rnds2\t{$src2, $dst|$dst, $src2}", (SHA256RNDS2rr VR128:$dst, VR128:$src2), 0>; def : InstAlias<"sha256rnds2\t{$src2, $dst|$dst, $src2}", (SHA256RNDS2rm VR128:$dst, i128mem:$src2), 0>; //===----------------------------------------------------------------------===// // AES-NI Instructions //===----------------------------------------------------------------------===// multiclass AESI_binop_rm_int opc, string OpcodeStr, Intrinsic IntId, PatFrag ld_frag, bit Is2Addr = 0, RegisterClass RC = VR128, X86MemOperand MemOp = i128mem> { let AsmString = OpcodeStr## !if(Is2Addr, "\t{$src2, $dst|$dst, $src2}", "\t{$src2, $src1, $dst|$dst, $src1, $src2}") in { def rr : AES8I, Sched<[WriteAESDecEnc]>; def rm : AES8I, Sched<[WriteAESDecEnc.Folded, WriteAESDecEnc.ReadAfterFold]>; } } // Perform One Round of an AES Encryption/Decryption Flow let Predicates = [HasAVX, NoVLX_Or_NoVAES, HasAES] in { defm VAESENC : AESI_binop_rm_int<0xDC, "vaesenc", int_x86_aesni_aesenc, load>, VEX_4V, VEX_WIG; defm VAESENCLAST : AESI_binop_rm_int<0xDD, "vaesenclast", int_x86_aesni_aesenclast, load>, VEX_4V, VEX_WIG; defm VAESDEC : AESI_binop_rm_int<0xDE, "vaesdec", int_x86_aesni_aesdec, load>, VEX_4V, VEX_WIG; defm VAESDECLAST : AESI_binop_rm_int<0xDF, "vaesdeclast", int_x86_aesni_aesdeclast, load>, VEX_4V, VEX_WIG; } let Predicates = [NoVLX, HasVAES] in { defm VAESENCY : AESI_binop_rm_int<0xDC, "vaesenc", int_x86_aesni_aesenc_256, load, 0, VR256, i256mem>, VEX_4V, VEX_L, VEX_WIG; defm VAESENCLASTY : AESI_binop_rm_int<0xDD, "vaesenclast", int_x86_aesni_aesenclast_256, load, 0, VR256, i256mem>, VEX_4V, VEX_L, VEX_WIG; defm VAESDECY : AESI_binop_rm_int<0xDE, "vaesdec", int_x86_aesni_aesdec_256, load, 0, VR256, i256mem>, VEX_4V, VEX_L, VEX_WIG; defm VAESDECLASTY : AESI_binop_rm_int<0xDF, "vaesdeclast", int_x86_aesni_aesdeclast_256, load, 0, VR256, i256mem>, VEX_4V, VEX_L, VEX_WIG; } let Constraints = "$src1 = $dst" in { defm AESENC : AESI_binop_rm_int<0xDC, "aesenc", int_x86_aesni_aesenc, memop, 1>; defm AESENCLAST : AESI_binop_rm_int<0xDD, "aesenclast", int_x86_aesni_aesenclast, memop, 1>; defm AESDEC : AESI_binop_rm_int<0xDE, "aesdec", int_x86_aesni_aesdec, memop, 1>; defm AESDECLAST : AESI_binop_rm_int<0xDF, "aesdeclast", int_x86_aesni_aesdeclast, memop, 1>; } // Perform the AES InvMixColumn Transformation let Predicates = [HasAVX, HasAES] in { def VAESIMCrr : AES8I<0xDB, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1), "vaesimc\t{$src1, $dst|$dst, $src1}", [(set VR128:$dst, (int_x86_aesni_aesimc VR128:$src1))]>, Sched<[WriteAESIMC]>, VEX, VEX_WIG; def VAESIMCrm : AES8I<0xDB, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src1), "vaesimc\t{$src1, $dst|$dst, $src1}", [(set VR128:$dst, (int_x86_aesni_aesimc (load addr:$src1)))]>, Sched<[WriteAESIMC.Folded]>, VEX, VEX_WIG; } def AESIMCrr : AES8I<0xDB, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1), "aesimc\t{$src1, $dst|$dst, $src1}", [(set VR128:$dst, (int_x86_aesni_aesimc VR128:$src1))]>, Sched<[WriteAESIMC]>; def AESIMCrm : AES8I<0xDB, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src1), "aesimc\t{$src1, $dst|$dst, $src1}", [(set VR128:$dst, (int_x86_aesni_aesimc (memop addr:$src1)))]>, Sched<[WriteAESIMC.Folded]>; // AES Round Key Generation Assist let Predicates = [HasAVX, HasAES] in { def VAESKEYGENASSIST128rr : AESAI<0xDF, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, u8imm:$src2), "vaeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (int_x86_aesni_aeskeygenassist VR128:$src1, timm:$src2))]>, Sched<[WriteAESKeyGen]>, VEX, VEX_WIG; def VAESKEYGENASSIST128rm : AESAI<0xDF, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src1, u8imm:$src2), "vaeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (int_x86_aesni_aeskeygenassist (load addr:$src1), timm:$src2))]>, Sched<[WriteAESKeyGen.Folded]>, VEX, VEX_WIG; } def AESKEYGENASSIST128rr : AESAI<0xDF, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, u8imm:$src2), "aeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (int_x86_aesni_aeskeygenassist VR128:$src1, timm:$src2))]>, Sched<[WriteAESKeyGen]>; def AESKEYGENASSIST128rm : AESAI<0xDF, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src1, u8imm:$src2), "aeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (int_x86_aesni_aeskeygenassist (memop addr:$src1), timm:$src2))]>, Sched<[WriteAESKeyGen.Folded]>; //===----------------------------------------------------------------------===// // PCLMUL Instructions //===----------------------------------------------------------------------===// // Immediate transform to help with commuting. def PCLMULCommuteImm : SDNodeXFormgetZExtValue(); return getI8Imm((uint8_t)((Imm >> 4) | (Imm << 4)), SDLoc(N)); }]>; // SSE carry-less Multiplication instructions let Predicates = [NoAVX, HasPCLMUL] in { let Constraints = "$src1 = $dst" in { let isCommutable = 1 in def PCLMULQDQrr : PCLMULIi8<0x44, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, u8imm:$src3), "pclmulqdq\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set VR128:$dst, (int_x86_pclmulqdq VR128:$src1, VR128:$src2, timm:$src3))]>, Sched<[WriteCLMul]>; def PCLMULQDQrm : PCLMULIi8<0x44, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2, u8imm:$src3), "pclmulqdq\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set VR128:$dst, (int_x86_pclmulqdq VR128:$src1, (memop addr:$src2), timm:$src3))]>, Sched<[WriteCLMul.Folded, WriteCLMul.ReadAfterFold]>; } // Constraints = "$src1 = $dst" def : Pat<(int_x86_pclmulqdq (memop addr:$src2), VR128:$src1, (i8 timm:$src3)), (PCLMULQDQrm VR128:$src1, addr:$src2, (PCLMULCommuteImm timm:$src3))>; } // Predicates = [NoAVX, HasPCLMUL] // SSE aliases foreach HI = ["hq","lq"] in foreach LO = ["hq","lq"] in { def : InstAlias<"pclmul" # HI # LO # "dq\t{$src, $dst|$dst, $src}", (PCLMULQDQrr VR128:$dst, VR128:$src, !add(!shl(!eq(LO,"hq"),4),!eq(HI,"hq"))), 0>; def : InstAlias<"pclmul" # HI # LO # "dq\t{$src, $dst|$dst, $src}", (PCLMULQDQrm VR128:$dst, i128mem:$src, !add(!shl(!eq(LO,"hq"),4),!eq(HI,"hq"))), 0>; } // AVX carry-less Multiplication instructions multiclass vpclmulqdq { let isCommutable = 1 in def rr : PCLMULIi8<0x44, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, u8imm:$src3), "vpclmulqdq\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", [(set RC:$dst, (IntId RC:$src1, RC:$src2, timm:$src3))]>, Sched<[WriteCLMul]>; def rm : PCLMULIi8<0x44, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, MemOp:$src2, u8imm:$src3), "vpclmulqdq\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", [(set RC:$dst, (IntId RC:$src1, (LdFrag addr:$src2), timm:$src3))]>, Sched<[WriteCLMul.Folded, WriteCLMul.ReadAfterFold]>; // We can commute a load in the first operand by swapping the sources and // rotating the immediate. def : Pat<(IntId (LdFrag addr:$src2), RC:$src1, (i8 timm:$src3)), (!cast(NAME#"rm") RC:$src1, addr:$src2, (PCLMULCommuteImm timm:$src3))>; } let Predicates = [HasAVX, NoVLX_Or_NoVPCLMULQDQ, HasPCLMUL] in defm VPCLMULQDQ : vpclmulqdq, VEX_4V, VEX_WIG; let Predicates = [NoVLX, HasVPCLMULQDQ] in defm VPCLMULQDQY : vpclmulqdq, VEX_4V, VEX_L, VEX_WIG; multiclass vpclmulqdq_aliases_impl { def : InstAlias<"vpclmul"##Hi##Lo##"dq\t{$src2, $src1, $dst|$dst, $src1, $src2}", (!cast(InstStr # "rr") RC:$dst, RC:$src1, RC:$src2, !add(!shl(!eq(Lo,"hq"),4),!eq(Hi,"hq"))), 0>; def : InstAlias<"vpclmul"##Hi##Lo##"dq\t{$src2, $src1, $dst|$dst, $src1, $src2}", (!cast(InstStr # "rm") RC:$dst, RC:$src1, MemOp:$src2, !add(!shl(!eq(Lo,"hq"),4),!eq(Hi,"hq"))), 0>; } multiclass vpclmulqdq_aliases { defm : vpclmulqdq_aliases_impl; defm : vpclmulqdq_aliases_impl; defm : vpclmulqdq_aliases_impl; defm : vpclmulqdq_aliases_impl; } // AVX aliases defm : vpclmulqdq_aliases<"VPCLMULQDQ", VR128, i128mem>; defm : vpclmulqdq_aliases<"VPCLMULQDQY", VR256, i256mem>; //===----------------------------------------------------------------------===// // SSE4A Instructions //===----------------------------------------------------------------------===// let Predicates = [HasSSE4A] in { let ExeDomain = SSEPackedInt in { let Constraints = "$src = $dst" in { def EXTRQI : Ii8<0x78, MRMXr, (outs VR128:$dst), (ins VR128:$src, u8imm:$len, u8imm:$idx), "extrq\t{$idx, $len, $src|$src, $len, $idx}", [(set VR128:$dst, (X86extrqi VR128:$src, timm:$len, timm:$idx))]>, PD, Sched<[SchedWriteVecALU.XMM]>; def EXTRQ : I<0x79, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src, VR128:$mask), "extrq\t{$mask, $src|$src, $mask}", [(set VR128:$dst, (int_x86_sse4a_extrq VR128:$src, VR128:$mask))]>, PD, Sched<[SchedWriteVecALU.XMM]>; def INSERTQI : Ii8<0x78, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src, VR128:$src2, u8imm:$len, u8imm:$idx), "insertq\t{$idx, $len, $src2, $src|$src, $src2, $len, $idx}", [(set VR128:$dst, (X86insertqi VR128:$src, VR128:$src2, timm:$len, timm:$idx))]>, XD, Sched<[SchedWriteVecALU.XMM]>; def INSERTQ : I<0x79, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src, VR128:$mask), "insertq\t{$mask, $src|$src, $mask}", [(set VR128:$dst, (int_x86_sse4a_insertq VR128:$src, VR128:$mask))]>, XD, Sched<[SchedWriteVecALU.XMM]>; } } // ExeDomain = SSEPackedInt // Non-temporal (unaligned) scalar stores. let AddedComplexity = 400 in { // Prefer non-temporal versions let hasSideEffects = 0, mayStore = 1, SchedRW = [SchedWriteFMoveLSNT.Scl.MR] in { def MOVNTSS : I<0x2B, MRMDestMem, (outs), (ins f32mem:$dst, VR128:$src), "movntss\t{$src, $dst|$dst, $src}", []>, XS; def MOVNTSD : I<0x2B, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movntsd\t{$src, $dst|$dst, $src}", []>, XD; } // SchedRW def : Pat<(nontemporalstore FR32:$src, addr:$dst), (MOVNTSS addr:$dst, (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)))>; def : Pat<(nontemporalstore FR64:$src, addr:$dst), (MOVNTSD addr:$dst, (v2f64 (COPY_TO_REGCLASS FR64:$src, VR128)))>; } // AddedComplexity } // HasSSE4A //===----------------------------------------------------------------------===// // AVX Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // VBROADCAST - Load from memory and broadcast to all elements of the // destination operand // class avx_broadcast_rm opc, string OpcodeStr, RegisterClass RC, X86MemOperand x86memop, ValueType VT, PatFrag bcast_frag, SchedWrite Sched> : AVX8I, Sched<[Sched]>, VEX; // AVX2 adds register forms class avx2_broadcast_rr opc, string OpcodeStr, RegisterClass RC, ValueType ResVT, ValueType OpVT, SchedWrite Sched> : AVX28I, Sched<[Sched]>, VEX; let ExeDomain = SSEPackedSingle, Predicates = [HasAVX, NoVLX] in { def VBROADCASTSSrm : avx_broadcast_rm<0x18, "vbroadcastss", VR128, f32mem, v4f32, X86VBroadcastld32, SchedWriteFShuffle.XMM.Folded>; def VBROADCASTSSYrm : avx_broadcast_rm<0x18, "vbroadcastss", VR256, f32mem, v8f32, X86VBroadcastld32, SchedWriteFShuffle.XMM.Folded>, VEX_L; } let ExeDomain = SSEPackedDouble, Predicates = [HasAVX, NoVLX] in def VBROADCASTSDYrm : avx_broadcast_rm<0x19, "vbroadcastsd", VR256, f64mem, v4f64, X86VBroadcastld64, SchedWriteFShuffle.XMM.Folded>, VEX_L; let ExeDomain = SSEPackedSingle, Predicates = [HasAVX2, NoVLX] in { def VBROADCASTSSrr : avx2_broadcast_rr<0x18, "vbroadcastss", VR128, v4f32, v4f32, SchedWriteFShuffle.XMM>; def VBROADCASTSSYrr : avx2_broadcast_rr<0x18, "vbroadcastss", VR256, v8f32, v4f32, WriteFShuffle256>, VEX_L; } let ExeDomain = SSEPackedDouble, Predicates = [HasAVX2, NoVLX] in def VBROADCASTSDYrr : avx2_broadcast_rr<0x19, "vbroadcastsd", VR256, v4f64, v2f64, WriteFShuffle256>, VEX_L; //===----------------------------------------------------------------------===// // VBROADCAST*128 - Load from memory and broadcast 128-bit vector to both // halves of a 256-bit vector. // let mayLoad = 1, hasSideEffects = 0, Predicates = [HasAVX2] in def VBROADCASTI128 : AVX8I<0x5A, MRMSrcMem, (outs VR256:$dst), (ins i128mem:$src), "vbroadcasti128\t{$src, $dst|$dst, $src}", []>, Sched<[WriteShuffleLd]>, VEX, VEX_L; let mayLoad = 1, hasSideEffects = 0, Predicates = [HasAVX], ExeDomain = SSEPackedSingle in def VBROADCASTF128 : AVX8I<0x1A, MRMSrcMem, (outs VR256:$dst), (ins f128mem:$src), "vbroadcastf128\t{$src, $dst|$dst, $src}", []>, Sched<[SchedWriteFShuffle.XMM.Folded]>, VEX, VEX_L; let Predicates = [HasAVX, NoVLX] in { def : Pat<(v4f64 (X86SubVBroadcast (loadv2f64 addr:$src))), (VBROADCASTF128 addr:$src)>; def : Pat<(v8f32 (X86SubVBroadcast (loadv4f32 addr:$src))), (VBROADCASTF128 addr:$src)>; } // NOTE: We're using FP instructions here, but execution domain fixing can // convert to integer when profitable. let Predicates = [HasAVX, NoVLX] in { def : Pat<(v4i64 (X86SubVBroadcast (loadv2i64 addr:$src))), (VBROADCASTF128 addr:$src)>; def : Pat<(v8i32 (X86SubVBroadcast (loadv4i32 addr:$src))), (VBROADCASTF128 addr:$src)>; def : Pat<(v16i16 (X86SubVBroadcast (loadv8i16 addr:$src))), (VBROADCASTF128 addr:$src)>; def : Pat<(v32i8 (X86SubVBroadcast (loadv16i8 addr:$src))), (VBROADCASTF128 addr:$src)>; } //===----------------------------------------------------------------------===// // VINSERTF128 - Insert packed floating-point values // let hasSideEffects = 0, ExeDomain = SSEPackedSingle in { def VINSERTF128rr : AVXAIi8<0x18, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src1, VR128:$src2, u8imm:$src3), "vinsertf128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", []>, Sched<[WriteFShuffle256]>, VEX_4V, VEX_L; let mayLoad = 1 in def VINSERTF128rm : AVXAIi8<0x18, MRMSrcMem, (outs VR256:$dst), (ins VR256:$src1, f128mem:$src2, u8imm:$src3), "vinsertf128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", []>, Sched<[WriteFShuffle256.Folded, WriteFShuffle256.ReadAfterFold]>, VEX_4V, VEX_L; } // To create a 256-bit all ones value, we should produce VCMPTRUEPS // with YMM register containing zero. // FIXME: Avoid producing vxorps to clear the fake inputs. let Predicates = [HasAVX1Only] in { def : Pat<(v8i32 immAllOnesV), (VCMPPSYrri (AVX_SET0), (AVX_SET0), 0xf)>; } multiclass vinsert_lowering { def : Pat<(vinsert128_insert:$ins (To VR256:$src1), (From VR128:$src2), (iPTR imm)), (!cast(InstrStr#rr) VR256:$src1, VR128:$src2, (INSERT_get_vinsert128_imm VR256:$ins))>; def : Pat<(vinsert128_insert:$ins (To VR256:$src1), (From (memop_frag addr:$src2)), (iPTR imm)), (!cast(InstrStr#rm) VR256:$src1, addr:$src2, (INSERT_get_vinsert128_imm VR256:$ins))>; } let Predicates = [HasAVX, NoVLX] in { defm : vinsert_lowering<"VINSERTF128", v4f32, v8f32, loadv4f32>; defm : vinsert_lowering<"VINSERTF128", v2f64, v4f64, loadv2f64>; } let Predicates = [HasAVX1Only] in { defm : vinsert_lowering<"VINSERTF128", v2i64, v4i64, loadv2i64>; defm : vinsert_lowering<"VINSERTF128", v4i32, v8i32, loadv4i32>; defm : vinsert_lowering<"VINSERTF128", v8i16, v16i16, loadv8i16>; defm : vinsert_lowering<"VINSERTF128", v16i8, v32i8, loadv16i8>; } //===----------------------------------------------------------------------===// // VEXTRACTF128 - Extract packed floating-point values // let hasSideEffects = 0, ExeDomain = SSEPackedSingle in { def VEXTRACTF128rr : AVXAIi8<0x19, MRMDestReg, (outs VR128:$dst), (ins VR256:$src1, u8imm:$src2), "vextractf128\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, Sched<[WriteFShuffle256]>, VEX, VEX_L; let mayStore = 1 in def VEXTRACTF128mr : AVXAIi8<0x19, MRMDestMem, (outs), (ins f128mem:$dst, VR256:$src1, u8imm:$src2), "vextractf128\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, Sched<[WriteFStoreX]>, VEX, VEX_L; } multiclass vextract_lowering { def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)), (To (!cast(InstrStr#rr) (From VR256:$src1), (EXTRACT_get_vextract128_imm VR128:$ext)))>; def : Pat<(store (To (vextract128_extract:$ext (From VR256:$src1), (iPTR imm))), addr:$dst), (!cast(InstrStr#mr) addr:$dst, VR256:$src1, (EXTRACT_get_vextract128_imm VR128:$ext))>; } // AVX1 patterns let Predicates = [HasAVX, NoVLX] in { defm : vextract_lowering<"VEXTRACTF128", v8f32, v4f32>; defm : vextract_lowering<"VEXTRACTF128", v4f64, v2f64>; } let Predicates = [HasAVX1Only] in { defm : vextract_lowering<"VEXTRACTF128", v4i64, v2i64>; defm : vextract_lowering<"VEXTRACTF128", v8i32, v4i32>; defm : vextract_lowering<"VEXTRACTF128", v16i16, v8i16>; defm : vextract_lowering<"VEXTRACTF128", v32i8, v16i8>; } //===----------------------------------------------------------------------===// // VMASKMOV - Conditional SIMD Packed Loads and Stores // multiclass avx_movmask_rm opc_rm, bits<8> opc_mr, string OpcodeStr, Intrinsic IntLd, Intrinsic IntLd256, Intrinsic IntSt, Intrinsic IntSt256, X86SchedWriteMaskMove schedX, X86SchedWriteMaskMove schedY> { def rm : AVX8I, VEX_4V, Sched<[schedX.RM]>; def Yrm : AVX8I, VEX_4V, VEX_L, Sched<[schedY.RM]>; def mr : AVX8I, VEX_4V, Sched<[schedX.MR]>; def Ymr : AVX8I, VEX_4V, VEX_L, Sched<[schedY.MR]>; } let ExeDomain = SSEPackedSingle in defm VMASKMOVPS : avx_movmask_rm<0x2C, 0x2E, "vmaskmovps", int_x86_avx_maskload_ps, int_x86_avx_maskload_ps_256, int_x86_avx_maskstore_ps, int_x86_avx_maskstore_ps_256, WriteFMaskMove32, WriteFMaskMove32Y>; let ExeDomain = SSEPackedDouble in defm VMASKMOVPD : avx_movmask_rm<0x2D, 0x2F, "vmaskmovpd", int_x86_avx_maskload_pd, int_x86_avx_maskload_pd_256, int_x86_avx_maskstore_pd, int_x86_avx_maskstore_pd_256, WriteFMaskMove64, WriteFMaskMove64Y>; //===----------------------------------------------------------------------===// // VPERMIL - Permute Single and Double Floating-Point Values // multiclass avx_permil opc_rm, bits<8> opc_rmi, string OpcodeStr, RegisterClass RC, X86MemOperand x86memop_f, X86MemOperand x86memop_i, ValueType f_vt, ValueType i_vt, X86FoldableSchedWrite sched, X86FoldableSchedWrite varsched> { let Predicates = [HasAVX, NoVLX] in { def rr : AVX8I, VEX_4V, Sched<[varsched]>; def rm : AVX8I, VEX_4V, Sched<[varsched.Folded, sched.ReadAfterFold]>; def ri : AVXAIi8, VEX, Sched<[sched]>; def mi : AVXAIi8, VEX, Sched<[sched.Folded]>; }// Predicates = [HasAVX, NoVLX] } let ExeDomain = SSEPackedSingle in { defm VPERMILPS : avx_permil<0x0C, 0x04, "vpermilps", VR128, f128mem, i128mem, v4f32, v4i32, SchedWriteFShuffle.XMM, SchedWriteFVarShuffle.XMM>; defm VPERMILPSY : avx_permil<0x0C, 0x04, "vpermilps", VR256, f256mem, i256mem, v8f32, v8i32, SchedWriteFShuffle.YMM, SchedWriteFVarShuffle.YMM>, VEX_L; } let ExeDomain = SSEPackedDouble in { defm VPERMILPD : avx_permil<0x0D, 0x05, "vpermilpd", VR128, f128mem, i128mem, v2f64, v2i64, SchedWriteFShuffle.XMM, SchedWriteFVarShuffle.XMM>; defm VPERMILPDY : avx_permil<0x0D, 0x05, "vpermilpd", VR256, f256mem, i256mem, v4f64, v4i64, SchedWriteFShuffle.YMM, SchedWriteFVarShuffle.YMM>, VEX_L; } //===----------------------------------------------------------------------===// // VPERM2F128 - Permute Floating-Point Values in 128-bit chunks // let ExeDomain = SSEPackedSingle in { let isCommutable = 1 in def VPERM2F128rr : AVXAIi8<0x06, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src1, VR256:$src2, u8imm:$src3), "vperm2f128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", [(set VR256:$dst, (v4f64 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 timm:$src3))))]>, VEX_4V, VEX_L, Sched<[WriteFShuffle256]>; def VPERM2F128rm : AVXAIi8<0x06, MRMSrcMem, (outs VR256:$dst), (ins VR256:$src1, f256mem:$src2, u8imm:$src3), "vperm2f128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", [(set VR256:$dst, (X86VPerm2x128 VR256:$src1, (loadv4f64 addr:$src2), (i8 timm:$src3)))]>, VEX_4V, VEX_L, Sched<[WriteFShuffle256.Folded, WriteFShuffle256.ReadAfterFold]>; } // Immediate transform to help with commuting. def Perm2XCommuteImm : SDNodeXFormgetZExtValue() ^ 0x22, SDLoc(N)); }]>; let Predicates = [HasAVX] in { // Pattern with load in other operand. def : Pat<(v4f64 (X86VPerm2x128 (loadv4f64 addr:$src2), VR256:$src1, (i8 timm:$imm))), (VPERM2F128rm VR256:$src1, addr:$src2, (Perm2XCommuteImm timm:$imm))>; } let Predicates = [HasAVX1Only] in { def : Pat<(v4i64 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 timm:$imm))), (VPERM2F128rr VR256:$src1, VR256:$src2, timm:$imm)>; def : Pat<(v4i64 (X86VPerm2x128 VR256:$src1, (loadv4i64 addr:$src2), (i8 timm:$imm))), (VPERM2F128rm VR256:$src1, addr:$src2, timm:$imm)>; // Pattern with load in other operand. def : Pat<(v4i64 (X86VPerm2x128 (loadv4i64 addr:$src2), VR256:$src1, (i8 timm:$imm))), (VPERM2F128rm VR256:$src1, addr:$src2, (Perm2XCommuteImm timm:$imm))>; } //===----------------------------------------------------------------------===// // VZERO - Zero YMM registers // Note: These instruction do not affect the YMM16-YMM31. // let SchedRW = [WriteSystem] in { let Defs = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7, YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15] in { // Zero All YMM registers def VZEROALL : I<0x77, RawFrm, (outs), (ins), "vzeroall", [(int_x86_avx_vzeroall)]>, PS, VEX, VEX_L, Requires<[HasAVX]>, VEX_WIG; // Zero Upper bits of YMM registers def VZEROUPPER : I<0x77, RawFrm, (outs), (ins), "vzeroupper", [(int_x86_avx_vzeroupper)]>, PS, VEX, Requires<[HasAVX]>, VEX_WIG; } // Defs } // SchedRW //===----------------------------------------------------------------------===// // Half precision conversion instructions // multiclass f16c_ph2ps { def rr : I<0x13, MRMSrcReg, (outs RC:$dst), (ins VR128:$src), "vcvtph2ps\t{$src, $dst|$dst, $src}", [(set RC:$dst, (X86cvtph2ps VR128:$src))]>, T8PD, VEX, Sched<[sched]>; let hasSideEffects = 0, mayLoad = 1 in def rm : I<0x13, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src), "vcvtph2ps\t{$src, $dst|$dst, $src}", [(set RC:$dst, (X86cvtph2ps (loadv8i16 addr:$src)))]>, T8PD, VEX, Sched<[sched.Folded]>; } multiclass f16c_ps2ph { def rr : Ii8<0x1D, MRMDestReg, (outs VR128:$dst), (ins RC:$src1, i32u8imm:$src2), "vcvtps2ph\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (X86cvtps2ph RC:$src1, timm:$src2))]>, TAPD, VEX, Sched<[RR]>; let hasSideEffects = 0, mayStore = 1 in def mr : Ii8<0x1D, MRMDestMem, (outs), (ins x86memop:$dst, RC:$src1, i32u8imm:$src2), "vcvtps2ph\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, TAPD, VEX, Sched<[MR]>; } let Predicates = [HasF16C, NoVLX] in { defm VCVTPH2PS : f16c_ph2ps, SIMD_EXC; defm VCVTPH2PSY : f16c_ph2ps, VEX_L, SIMD_EXC; defm VCVTPS2PH : f16c_ps2ph, SIMD_EXC; defm VCVTPS2PHY : f16c_ps2ph, VEX_L, SIMD_EXC; // Pattern match vcvtph2ps of a scalar i64 load. def : Pat<(v4f32 (X86cvtph2ps (bc_v8i16 (v2i64 (X86vzload64 addr:$src))))), (VCVTPH2PSrm addr:$src)>; def : Pat<(v4f32 (X86cvtph2ps (bc_v8i16 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (VCVTPH2PSrm addr:$src)>; def : Pat<(store (f64 (extractelt (bc_v2f64 (v8i16 (X86cvtps2ph VR128:$src1, timm:$src2))), (iPTR 0))), addr:$dst), (VCVTPS2PHmr addr:$dst, VR128:$src1, timm:$src2)>; def : Pat<(store (i64 (extractelt (bc_v2i64 (v8i16 (X86cvtps2ph VR128:$src1, timm:$src2))), (iPTR 0))), addr:$dst), (VCVTPS2PHmr addr:$dst, VR128:$src1, timm:$src2)>; def : Pat<(store (v8i16 (X86cvtps2ph VR256:$src1, timm:$src2)), addr:$dst), (VCVTPS2PHYmr addr:$dst, VR256:$src1, timm:$src2)>; } // Patterns for matching conversions from float to half-float and vice versa. let Predicates = [HasF16C, NoVLX] in { // Use MXCSR.RC for rounding instead of explicitly specifying the default // rounding mode (Nearest-Even, encoded as 0). Both are equivalent in the // configurations we support (the default). However, falling back to MXCSR is // more consistent with other instructions, which are always controlled by it. // It's encoded as 0b100. def : Pat<(fp_to_f16 FR32:$src), (i16 (EXTRACT_SUBREG (VMOVPDI2DIrr (v8i16 (VCVTPS2PHrr (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)), 4))), sub_16bit))>; def : Pat<(f16_to_fp GR16:$src), (f32 (COPY_TO_REGCLASS (v4f32 (VCVTPH2PSrr (v4i32 (COPY_TO_REGCLASS (MOVSX32rr16 GR16:$src), VR128)))), FR32)) >; def : Pat<(f16_to_fp (i16 (fp_to_f16 FR32:$src))), (f32 (COPY_TO_REGCLASS (v4f32 (VCVTPH2PSrr (v8i16 (VCVTPS2PHrr (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)), 4)))), FR32)) >; } //===----------------------------------------------------------------------===// // AVX2 Instructions //===----------------------------------------------------------------------===// /// AVX2_blend_rmi - AVX2 blend with 8-bit immediate multiclass AVX2_blend_rmi opc, string OpcodeStr, SDNode OpNode, ValueType OpVT, X86FoldableSchedWrite sched, RegisterClass RC, X86MemOperand x86memop, SDNodeXForm commuteXForm> { let isCommutable = 1 in def rri : AVX2AIi8, Sched<[sched]>, VEX_4V; def rmi : AVX2AIi8, Sched<[sched.Folded, sched.ReadAfterFold]>, VEX_4V; // Pattern to commute if load is in first source. def : Pat<(OpVT (OpNode (load addr:$src2), RC:$src1, timm:$src3)), (!cast(NAME#"rmi") RC:$src1, addr:$src2, (commuteXForm timm:$src3))>; } let Predicates = [HasAVX2] in { defm VPBLENDD : AVX2_blend_rmi<0x02, "vpblendd", X86Blendi, v4i32, SchedWriteBlend.XMM, VR128, i128mem, BlendCommuteImm4>; defm VPBLENDDY : AVX2_blend_rmi<0x02, "vpblendd", X86Blendi, v8i32, SchedWriteBlend.YMM, VR256, i256mem, BlendCommuteImm8>, VEX_L; def : Pat<(X86Blendi (v4i64 VR256:$src1), (v4i64 VR256:$src2), timm:$src3), (VPBLENDDYrri VR256:$src1, VR256:$src2, (BlendScaleImm4 timm:$src3))>; def : Pat<(X86Blendi VR256:$src1, (loadv4i64 addr:$src2), timm:$src3), (VPBLENDDYrmi VR256:$src1, addr:$src2, (BlendScaleImm4 timm:$src3))>; def : Pat<(X86Blendi (loadv4i64 addr:$src2), VR256:$src1, timm:$src3), (VPBLENDDYrmi VR256:$src1, addr:$src2, (BlendScaleCommuteImm4 timm:$src3))>; def : Pat<(X86Blendi (v2i64 VR128:$src1), (v2i64 VR128:$src2), timm:$src3), (VPBLENDDrri VR128:$src1, VR128:$src2, (BlendScaleImm2to4 timm:$src3))>; def : Pat<(X86Blendi VR128:$src1, (loadv2i64 addr:$src2), timm:$src3), (VPBLENDDrmi VR128:$src1, addr:$src2, (BlendScaleImm2to4 timm:$src3))>; def : Pat<(X86Blendi (loadv2i64 addr:$src2), VR128:$src1, timm:$src3), (VPBLENDDrmi VR128:$src1, addr:$src2, (BlendScaleCommuteImm2to4 timm:$src3))>; } // For insertion into the zero index (low half) of a 256-bit vector, it is // more efficient to generate a blend with immediate instead of an insert*128. // NOTE: We're using FP instructions here, but exeuction domain fixing should // take care of using integer instructions when profitable. let Predicates = [HasAVX] in { def : Pat<(insert_subvector (v8i32 VR256:$src1), (v4i32 VR128:$src2), (iPTR 0)), (VBLENDPSYrri VR256:$src1, (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128:$src2, sub_xmm), 0xf)>; def : Pat<(insert_subvector (v4i64 VR256:$src1), (v2i64 VR128:$src2), (iPTR 0)), (VBLENDPSYrri VR256:$src1, (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128:$src2, sub_xmm), 0xf)>; def : Pat<(insert_subvector (v16i16 VR256:$src1), (v8i16 VR128:$src2), (iPTR 0)), (VBLENDPSYrri VR256:$src1, (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128:$src2, sub_xmm), 0xf)>; def : Pat<(insert_subvector (v32i8 VR256:$src1), (v16i8 VR128:$src2), (iPTR 0)), (VBLENDPSYrri VR256:$src1, (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128:$src2, sub_xmm), 0xf)>; def : Pat<(insert_subvector (loadv8i32 addr:$src2), (v4i32 VR128:$src1), (iPTR 0)), (VBLENDPSYrmi (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128:$src1, sub_xmm), addr:$src2, 0xf0)>; def : Pat<(insert_subvector (loadv4i64 addr:$src2), (v2i64 VR128:$src1), (iPTR 0)), (VBLENDPSYrmi (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128:$src1, sub_xmm), addr:$src2, 0xf0)>; def : Pat<(insert_subvector (loadv16i16 addr:$src2), (v8i16 VR128:$src1), (iPTR 0)), (VBLENDPSYrmi (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128:$src1, sub_xmm), addr:$src2, 0xf0)>; def : Pat<(insert_subvector (loadv32i8 addr:$src2), (v16i8 VR128:$src1), (iPTR 0)), (VBLENDPSYrmi (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128:$src1, sub_xmm), addr:$src2, 0xf0)>; } //===----------------------------------------------------------------------===// // VPBROADCAST - Load from memory and broadcast to all elements of the // destination operand // multiclass avx2_broadcast opc, string OpcodeStr, X86MemOperand x86memop, PatFrag bcast_frag, ValueType OpVT128, ValueType OpVT256, Predicate prd> { let Predicates = [HasAVX2, prd] in { def rr : AVX28I, Sched<[SchedWriteShuffle.XMM]>, VEX; def rm : AVX28I, Sched<[SchedWriteShuffle.XMM.Folded]>, VEX; def Yrr : AVX28I, Sched<[WriteShuffle256]>, VEX, VEX_L; def Yrm : AVX28I, Sched<[SchedWriteShuffle.XMM.Folded]>, VEX, VEX_L; // Provide aliases for broadcast from the same register class that // automatically does the extract. def : Pat<(OpVT256 (X86VBroadcast (OpVT256 VR256:$src))), (!cast(NAME#"Yrr") (OpVT128 (EXTRACT_SUBREG (OpVT256 VR256:$src),sub_xmm)))>; } } defm VPBROADCASTB : avx2_broadcast<0x78, "vpbroadcastb", i8mem, X86VBroadcastld8, v16i8, v32i8, NoVLX_Or_NoBWI>; defm VPBROADCASTW : avx2_broadcast<0x79, "vpbroadcastw", i16mem, X86VBroadcastld16, v8i16, v16i16, NoVLX_Or_NoBWI>; defm VPBROADCASTD : avx2_broadcast<0x58, "vpbroadcastd", i32mem, X86VBroadcastld32, v4i32, v8i32, NoVLX>; defm VPBROADCASTQ : avx2_broadcast<0x59, "vpbroadcastq", i64mem, X86VBroadcastld64, v2i64, v4i64, NoVLX>; let Predicates = [HasAVX2, NoVLX] in { // 32-bit targets will fail to load a i64 directly but can use ZEXT_LOAD. def : Pat<(v2i64 (X86VBroadcast (v2i64 (X86vzload64 addr:$src)))), (VPBROADCASTQrm addr:$src)>; def : Pat<(v4i64 (X86VBroadcast (v2i64 (X86vzload64 addr:$src)))), (VPBROADCASTQYrm addr:$src)>; // FIXME this is to handle aligned extloads from i8/i16. def : Pat<(v4i32 (X86VBroadcast (loadi32 addr:$src))), (VPBROADCASTDrm addr:$src)>; def : Pat<(v8i32 (X86VBroadcast (loadi32 addr:$src))), (VPBROADCASTDYrm addr:$src)>; } let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in { // loadi16 is tricky to fold, because !isTypeDesirableForOp, justifiably. // This means we'll encounter truncated i32 loads; match that here. def : Pat<(v8i16 (X86VBroadcast (i16 (trunc (i32 (load addr:$src)))))), (VPBROADCASTWrm addr:$src)>; def : Pat<(v16i16 (X86VBroadcast (i16 (trunc (i32 (load addr:$src)))))), (VPBROADCASTWYrm addr:$src)>; def : Pat<(v8i16 (X86VBroadcast (i16 (trunc (i32 (extloadi16 addr:$src)))))), (VPBROADCASTWrm addr:$src)>; def : Pat<(v8i16 (X86VBroadcast (i16 (trunc (i32 (zextloadi16 addr:$src)))))), (VPBROADCASTWrm addr:$src)>; def : Pat<(v16i16 (X86VBroadcast (i16 (trunc (i32 (extloadi16 addr:$src)))))), (VPBROADCASTWYrm addr:$src)>; def : Pat<(v16i16 (X86VBroadcast (i16 (trunc (i32 (zextloadi16 addr:$src)))))), (VPBROADCASTWYrm addr:$src)>; // FIXME this is to handle aligned extloads from i8. def : Pat<(v8i16 (X86VBroadcast (loadi16 addr:$src))), (VPBROADCASTWrm addr:$src)>; def : Pat<(v16i16 (X86VBroadcast (loadi16 addr:$src))), (VPBROADCASTWYrm addr:$src)>; } let Predicates = [HasAVX2, NoVLX] in { // Provide fallback in case the load node that is used in the patterns above // is used by additional users, which prevents the pattern selection. def : Pat<(v4f32 (X86VBroadcast FR32:$src)), (VBROADCASTSSrr (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)))>; def : Pat<(v8f32 (X86VBroadcast FR32:$src)), (VBROADCASTSSYrr (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)))>; def : Pat<(v4f64 (X86VBroadcast FR64:$src)), (VBROADCASTSDYrr (v2f64 (COPY_TO_REGCLASS FR64:$src, VR128)))>; } let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in { def : Pat<(v16i8 (X86VBroadcast GR8:$src)), (VPBROADCASTBrr (VMOVDI2PDIrr (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src, sub_8bit))))>; def : Pat<(v32i8 (X86VBroadcast GR8:$src)), (VPBROADCASTBYrr (VMOVDI2PDIrr (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src, sub_8bit))))>; def : Pat<(v8i16 (X86VBroadcast GR16:$src)), (VPBROADCASTWrr (VMOVDI2PDIrr (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit))))>; def : Pat<(v16i16 (X86VBroadcast GR16:$src)), (VPBROADCASTWYrr (VMOVDI2PDIrr (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit))))>; } let Predicates = [HasAVX2, NoVLX] in { def : Pat<(v4i32 (X86VBroadcast GR32:$src)), (VPBROADCASTDrr (VMOVDI2PDIrr GR32:$src))>; def : Pat<(v8i32 (X86VBroadcast GR32:$src)), (VPBROADCASTDYrr (VMOVDI2PDIrr GR32:$src))>; def : Pat<(v2i64 (X86VBroadcast GR64:$src)), (VPBROADCASTQrr (VMOV64toPQIrr GR64:$src))>; def : Pat<(v4i64 (X86VBroadcast GR64:$src)), (VPBROADCASTQYrr (VMOV64toPQIrr GR64:$src))>; } // AVX1 broadcast patterns let Predicates = [HasAVX1Only] in { def : Pat<(v8i32 (X86VBroadcastld32 addr:$src)), (VBROADCASTSSYrm addr:$src)>; def : Pat<(v4i64 (X86VBroadcastld64 addr:$src)), (VBROADCASTSDYrm addr:$src)>; def : Pat<(v4i32 (X86VBroadcastld32 addr:$src)), (VBROADCASTSSrm addr:$src)>; } // Provide fallback in case the load node that is used in the patterns above // is used by additional users, which prevents the pattern selection. let Predicates = [HasAVX, NoVLX] in { // 128bit broadcasts: def : Pat<(v2f64 (X86VBroadcast f64:$src)), (VMOVDDUPrr (v2f64 (COPY_TO_REGCLASS FR64:$src, VR128)))>; def : Pat<(v2f64 (X86VBroadcastld64 addr:$src)), (VMOVDDUPrm addr:$src)>; def : Pat<(v2f64 (X86VBroadcast v2f64:$src)), (VMOVDDUPrr VR128:$src)>; def : Pat<(v2f64 (X86VBroadcast (v2f64 (simple_load addr:$src)))), (VMOVDDUPrm addr:$src)>; def : Pat<(v2f64 (X86VBroadcast (v2f64 (X86vzload64 addr:$src)))), (VMOVDDUPrm addr:$src)>; } let Predicates = [HasAVX1Only] in { def : Pat<(v4f32 (X86VBroadcast FR32:$src)), (VPERMILPSri (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)), 0)>; def : Pat<(v8f32 (X86VBroadcast FR32:$src)), (VINSERTF128rr (INSERT_SUBREG (v8f32 (IMPLICIT_DEF)), (v4f32 (VPERMILPSri (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)), 0)), sub_xmm), (v4f32 (VPERMILPSri (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)), 0)), 1)>; def : Pat<(v4f64 (X86VBroadcast FR64:$src)), (VINSERTF128rr (INSERT_SUBREG (v4f64 (IMPLICIT_DEF)), (v2f64 (VMOVDDUPrr (v2f64 (COPY_TO_REGCLASS FR64:$src, VR128)))), sub_xmm), (v2f64 (VMOVDDUPrr (v2f64 (COPY_TO_REGCLASS FR64:$src, VR128)))), 1)>; def : Pat<(v4i32 (X86VBroadcast GR32:$src)), (VPSHUFDri (VMOVDI2PDIrr GR32:$src), 0)>; def : Pat<(v8i32 (X86VBroadcast GR32:$src)), (VINSERTF128rr (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), (v4i32 (VPSHUFDri (VMOVDI2PDIrr GR32:$src), 0)), sub_xmm), (v4i32 (VPSHUFDri (VMOVDI2PDIrr GR32:$src), 0)), 1)>; def : Pat<(v4i64 (X86VBroadcast GR64:$src)), (VINSERTF128rr (INSERT_SUBREG (v4i64 (IMPLICIT_DEF)), (v4i32 (VPSHUFDri (VMOV64toPQIrr GR64:$src), 0x44)), sub_xmm), (v4i32 (VPSHUFDri (VMOV64toPQIrr GR64:$src), 0x44)), 1)>; def : Pat<(v2i64 (X86VBroadcast i64:$src)), (VPSHUFDri (VMOV64toPQIrr GR64:$src), 0x44)>; def : Pat<(v2i64 (X86VBroadcastld64 addr:$src)), (VMOVDDUPrm addr:$src)>; } //===----------------------------------------------------------------------===// // VPERM - Permute instructions // multiclass avx2_perm opc, string OpcodeStr, ValueType OpVT, X86FoldableSchedWrite Sched, X86MemOperand memOp> { let Predicates = [HasAVX2, NoVLX] in { def Yrr : AVX28I, Sched<[Sched]>, VEX_4V, VEX_L; def Yrm : AVX28I, Sched<[Sched.Folded, Sched.ReadAfterFold]>, VEX_4V, VEX_L; } } defm VPERMD : avx2_perm<0x36, "vpermd", v8i32, WriteVarShuffle256, i256mem>; let ExeDomain = SSEPackedSingle in defm VPERMPS : avx2_perm<0x16, "vpermps", v8f32, WriteFVarShuffle256, f256mem>; multiclass avx2_perm_imm opc, string OpcodeStr, PatFrag mem_frag, ValueType OpVT, X86FoldableSchedWrite Sched, X86MemOperand memOp> { let Predicates = [HasAVX2, NoVLX] in { def Yri : AVX2AIi8, Sched<[Sched]>, VEX, VEX_L; def Ymi : AVX2AIi8, Sched<[Sched.Folded, Sched.ReadAfterFold]>, VEX, VEX_L; } } defm VPERMQ : avx2_perm_imm<0x00, "vpermq", loadv4i64, v4i64, WriteShuffle256, i256mem>, VEX_W; let ExeDomain = SSEPackedDouble in defm VPERMPD : avx2_perm_imm<0x01, "vpermpd", loadv4f64, v4f64, WriteFShuffle256, f256mem>, VEX_W; //===----------------------------------------------------------------------===// // VPERM2I128 - Permute Floating-Point Values in 128-bit chunks // let isCommutable = 1 in def VPERM2I128rr : AVX2AIi8<0x46, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src1, VR256:$src2, u8imm:$src3), "vperm2i128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", [(set VR256:$dst, (v4i64 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 timm:$src3))))]>, Sched<[WriteShuffle256]>, VEX_4V, VEX_L; def VPERM2I128rm : AVX2AIi8<0x46, MRMSrcMem, (outs VR256:$dst), (ins VR256:$src1, f256mem:$src2, u8imm:$src3), "vperm2i128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", [(set VR256:$dst, (X86VPerm2x128 VR256:$src1, (loadv4i64 addr:$src2), (i8 timm:$src3)))]>, Sched<[WriteShuffle256.Folded, WriteShuffle256.ReadAfterFold]>, VEX_4V, VEX_L; let Predicates = [HasAVX2] in def : Pat<(v4i64 (X86VPerm2x128 (loadv4i64 addr:$src2), VR256:$src1, (i8 timm:$imm))), (VPERM2I128rm VR256:$src1, addr:$src2, (Perm2XCommuteImm timm:$imm))>; //===----------------------------------------------------------------------===// // VINSERTI128 - Insert packed integer values // let hasSideEffects = 0 in { def VINSERTI128rr : AVX2AIi8<0x38, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src1, VR128:$src2, u8imm:$src3), "vinserti128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", []>, Sched<[WriteShuffle256]>, VEX_4V, VEX_L; let mayLoad = 1 in def VINSERTI128rm : AVX2AIi8<0x38, MRMSrcMem, (outs VR256:$dst), (ins VR256:$src1, i128mem:$src2, u8imm:$src3), "vinserti128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", []>, Sched<[WriteShuffle256.Folded, WriteShuffle256.ReadAfterFold]>, VEX_4V, VEX_L; } let Predicates = [HasAVX2, NoVLX] in { defm : vinsert_lowering<"VINSERTI128", v2i64, v4i64, loadv2i64>; defm : vinsert_lowering<"VINSERTI128", v4i32, v8i32, loadv4i32>; defm : vinsert_lowering<"VINSERTI128", v8i16, v16i16, loadv8i16>; defm : vinsert_lowering<"VINSERTI128", v16i8, v32i8, loadv16i8>; } //===----------------------------------------------------------------------===// // VEXTRACTI128 - Extract packed integer values // def VEXTRACTI128rr : AVX2AIi8<0x39, MRMDestReg, (outs VR128:$dst), (ins VR256:$src1, u8imm:$src2), "vextracti128\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, Sched<[WriteShuffle256]>, VEX, VEX_L; let hasSideEffects = 0, mayStore = 1 in def VEXTRACTI128mr : AVX2AIi8<0x39, MRMDestMem, (outs), (ins i128mem:$dst, VR256:$src1, u8imm:$src2), "vextracti128\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, Sched<[SchedWriteVecMoveLS.XMM.MR]>, VEX, VEX_L; let Predicates = [HasAVX2, NoVLX] in { defm : vextract_lowering<"VEXTRACTI128", v4i64, v2i64>; defm : vextract_lowering<"VEXTRACTI128", v8i32, v4i32>; defm : vextract_lowering<"VEXTRACTI128", v16i16, v8i16>; defm : vextract_lowering<"VEXTRACTI128", v32i8, v16i8>; } //===----------------------------------------------------------------------===// // VPMASKMOV - Conditional SIMD Integer Packed Loads and Stores // multiclass avx2_pmovmask { def rm : AVX28I<0x8c, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set VR128:$dst, (IntLd128 addr:$src2, VR128:$src1))]>, VEX_4V, Sched<[WriteVecMaskedLoad]>; def Yrm : AVX28I<0x8c, MRMSrcMem, (outs VR256:$dst), (ins VR256:$src1, i256mem:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set VR256:$dst, (IntLd256 addr:$src2, VR256:$src1))]>, VEX_4V, VEX_L, Sched<[WriteVecMaskedLoadY]>; def mr : AVX28I<0x8e, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src1, VR128:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(IntSt128 addr:$dst, VR128:$src1, VR128:$src2)]>, VEX_4V, Sched<[WriteVecMaskedStore]>; def Ymr : AVX28I<0x8e, MRMDestMem, (outs), (ins i256mem:$dst, VR256:$src1, VR256:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(IntSt256 addr:$dst, VR256:$src1, VR256:$src2)]>, VEX_4V, VEX_L, Sched<[WriteVecMaskedStoreY]>; } defm VPMASKMOVD : avx2_pmovmask<"vpmaskmovd", int_x86_avx2_maskload_d, int_x86_avx2_maskload_d_256, int_x86_avx2_maskstore_d, int_x86_avx2_maskstore_d_256>; defm VPMASKMOVQ : avx2_pmovmask<"vpmaskmovq", int_x86_avx2_maskload_q, int_x86_avx2_maskload_q_256, int_x86_avx2_maskstore_q, int_x86_avx2_maskstore_q_256>, VEX_W; multiclass maskmov_lowering { // masked store def: Pat<(masked_store (VT RC:$src), addr:$ptr, (MaskVT RC:$mask)), (!cast(InstrStr#"mr") addr:$ptr, RC:$mask, RC:$src)>; // masked load def: Pat<(VT (masked_load addr:$ptr, (MaskVT RC:$mask), undef)), (!cast(InstrStr#"rm") RC:$mask, addr:$ptr)>; def: Pat<(VT (masked_load addr:$ptr, (MaskVT RC:$mask), (VT immAllZerosV))), (!cast(InstrStr#"rm") RC:$mask, addr:$ptr)>; } let Predicates = [HasAVX] in { defm : maskmov_lowering<"VMASKMOVPS", VR128, v4f32, v4i32>; defm : maskmov_lowering<"VMASKMOVPD", VR128, v2f64, v2i64>; defm : maskmov_lowering<"VMASKMOVPSY", VR256, v8f32, v8i32>; defm : maskmov_lowering<"VMASKMOVPDY", VR256, v4f64, v4i64>; } let Predicates = [HasAVX1Only] in { // load/store i32/i64 not supported use ps/pd version defm : maskmov_lowering<"VMASKMOVPSY", VR256, v8i32, v8i32>; defm : maskmov_lowering<"VMASKMOVPDY", VR256, v4i64, v4i64>; defm : maskmov_lowering<"VMASKMOVPS", VR128, v4i32, v4i32>; defm : maskmov_lowering<"VMASKMOVPD", VR128, v2i64, v2i64>; } let Predicates = [HasAVX2] in { defm : maskmov_lowering<"VPMASKMOVDY", VR256, v8i32, v8i32>; defm : maskmov_lowering<"VPMASKMOVQY", VR256, v4i64, v4i64>; defm : maskmov_lowering<"VPMASKMOVD", VR128, v4i32, v4i32>; defm : maskmov_lowering<"VPMASKMOVQ", VR128, v2i64, v2i64>; } //===----------------------------------------------------------------------===// // SubVector Broadcasts // Provide fallback in case the load node that is used in the patterns above // is used by additional users, which prevents the pattern selection. let Predicates = [HasAVX, NoVLX] in { def : Pat<(v4f64 (X86SubVBroadcast (v2f64 VR128:$src))), (VINSERTF128rr (INSERT_SUBREG (v4f64 (IMPLICIT_DEF)), VR128:$src, sub_xmm), (v2f64 VR128:$src), 1)>; def : Pat<(v8f32 (X86SubVBroadcast (v4f32 VR128:$src))), (VINSERTF128rr (INSERT_SUBREG (v8f32 (IMPLICIT_DEF)), VR128:$src, sub_xmm), (v4f32 VR128:$src), 1)>; } // NOTE: We're using FP instructions here, but execution domain fixing can // convert to integer when profitable. let Predicates = [HasAVX, NoVLX] in { def : Pat<(v4i64 (X86SubVBroadcast (v2i64 VR128:$src))), (VINSERTF128rr (INSERT_SUBREG (v4i64 (IMPLICIT_DEF)), VR128:$src, sub_xmm), (v2i64 VR128:$src), 1)>; def : Pat<(v8i32 (X86SubVBroadcast (v4i32 VR128:$src))), (VINSERTF128rr (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128:$src, sub_xmm), (v4i32 VR128:$src), 1)>; def : Pat<(v16i16 (X86SubVBroadcast (v8i16 VR128:$src))), (VINSERTF128rr (INSERT_SUBREG (v16i16 (IMPLICIT_DEF)), VR128:$src, sub_xmm), (v8i16 VR128:$src), 1)>; def : Pat<(v32i8 (X86SubVBroadcast (v16i8 VR128:$src))), (VINSERTF128rr (INSERT_SUBREG (v32i8 (IMPLICIT_DEF)), VR128:$src, sub_xmm), (v16i8 VR128:$src), 1)>; } //===----------------------------------------------------------------------===// // Variable Bit Shifts // multiclass avx2_var_shift opc, string OpcodeStr, SDNode OpNode, ValueType vt128, ValueType vt256> { def rr : AVX28I, VEX_4V, Sched<[SchedWriteVarVecShift.XMM]>; def rm : AVX28I, VEX_4V, Sched<[SchedWriteVarVecShift.XMM.Folded, SchedWriteVarVecShift.XMM.ReadAfterFold]>; def Yrr : AVX28I, VEX_4V, VEX_L, Sched<[SchedWriteVarVecShift.YMM]>; def Yrm : AVX28I, VEX_4V, VEX_L, Sched<[SchedWriteVarVecShift.YMM.Folded, SchedWriteVarVecShift.YMM.ReadAfterFold]>; } let Predicates = [HasAVX2, NoVLX] in { defm VPSLLVD : avx2_var_shift<0x47, "vpsllvd", X86vshlv, v4i32, v8i32>; defm VPSLLVQ : avx2_var_shift<0x47, "vpsllvq", X86vshlv, v2i64, v4i64>, VEX_W; defm VPSRLVD : avx2_var_shift<0x45, "vpsrlvd", X86vsrlv, v4i32, v8i32>; defm VPSRLVQ : avx2_var_shift<0x45, "vpsrlvq", X86vsrlv, v2i64, v4i64>, VEX_W; defm VPSRAVD : avx2_var_shift<0x46, "vpsravd", X86vsrav, v4i32, v8i32>; } //===----------------------------------------------------------------------===// // VGATHER - GATHER Operations // FIXME: Improve scheduling of gather instructions. multiclass avx2_gather opc, string OpcodeStr, ValueType VTx, ValueType VTy, PatFrag GatherNode128, PatFrag GatherNode256, RegisterClass RC256, X86MemOperand memop128, X86MemOperand memop256, ValueType MTx = VTx, ValueType MTy = VTy> { def rm : AVX28I, VEX, Sched<[WriteLoad]>; def Yrm : AVX28I, VEX, VEX_L, Sched<[WriteLoad]>; } let Predicates = [HasAVX2] in { let mayLoad = 1, hasSideEffects = 0, Constraints = "@earlyclobber $dst,@earlyclobber $mask_wb, $src1 = $dst, $mask = $mask_wb" in { defm VPGATHERDQ : avx2_gather<0x90, "vpgatherdq", v2i64, v4i64, mgatherv4i32, mgatherv4i32, VR256, vx128mem, vx256mem>, VEX_W; defm VPGATHERQQ : avx2_gather<0x91, "vpgatherqq", v2i64, v4i64, mgatherv2i64, mgatherv4i64, VR256, vx128mem, vy256mem>, VEX_W; defm VPGATHERDD : avx2_gather<0x90, "vpgatherdd", v4i32, v8i32, mgatherv4i32, mgatherv8i32, VR256, vx128mem, vy256mem>; defm VPGATHERQD : avx2_gather<0x91, "vpgatherqd", v4i32, v4i32, mgatherv2i64, mgatherv4i64, VR128, vx64mem, vy128mem>; let ExeDomain = SSEPackedDouble in { defm VGATHERDPD : avx2_gather<0x92, "vgatherdpd", v2f64, v4f64, mgatherv4i32, mgatherv4i32, VR256, vx128mem, vx256mem, v2i64, v4i64>, VEX_W; defm VGATHERQPD : avx2_gather<0x93, "vgatherqpd", v2f64, v4f64, mgatherv2i64, mgatherv4i64, VR256, vx128mem, vy256mem, v2i64, v4i64>, VEX_W; } let ExeDomain = SSEPackedSingle in { defm VGATHERDPS : avx2_gather<0x92, "vgatherdps", v4f32, v8f32, mgatherv4i32, mgatherv8i32, VR256, vx128mem, vy256mem, v4i32, v8i32>; defm VGATHERQPS : avx2_gather<0x93, "vgatherqps", v4f32, v4f32, mgatherv2i64, mgatherv4i64, VR128, vx64mem, vy128mem, v4i32, v4i32>; } } } //===----------------------------------------------------------------------===// // GFNI instructions //===----------------------------------------------------------------------===// multiclass GF2P8MULB_rm { let ExeDomain = SSEPackedInt, AsmString = !if(Is2Addr, OpcodeStr##"\t{$src2, $dst|$dst, $src2}", OpcodeStr##"\t{$src2, $src1, $dst|$dst, $src1, $src2}") in { let isCommutable = 1 in def rr : PDI<0xCF, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), "", [(set RC:$dst, (OpVT (X86GF2P8mulb RC:$src1, RC:$src2)))]>, Sched<[SchedWriteVecALU.XMM]>, T8PD; def rm : PDI<0xCF, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, X86MemOp:$src2), "", [(set RC:$dst, (OpVT (X86GF2P8mulb RC:$src1, (MemOpFrag addr:$src2))))]>, Sched<[SchedWriteVecALU.XMM.Folded, SchedWriteVecALU.XMM.ReadAfterFold]>, T8PD; } } multiclass GF2P8AFFINE_rmi Op, string OpStr, ValueType OpVT, SDNode OpNode, RegisterClass RC, PatFrag MemOpFrag, X86MemOperand X86MemOp, bit Is2Addr = 0> { let AsmString = !if(Is2Addr, OpStr##"\t{$src3, $src2, $dst|$dst, $src2, $src3}", OpStr##"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}") in { def rri : Ii8, Sched<[SchedWriteVecALU.XMM]>; def rmi : Ii8, Sched<[SchedWriteVecALU.XMM.Folded, SchedWriteVecALU.XMM.ReadAfterFold]>; } } multiclass GF2P8AFFINE_common Op, string OpStr, SDNode OpNode> { let Constraints = "$src1 = $dst", Predicates = [HasGFNI, UseSSE2] in defm NAME : GF2P8AFFINE_rmi; let Predicates = [HasGFNI, HasAVX, NoVLX_Or_NoBWI] in { defm V##NAME : GF2P8AFFINE_rmi, VEX_4V, VEX_W; defm V##NAME##Y : GF2P8AFFINE_rmi, VEX_4V, VEX_L, VEX_W; } } // GF2P8MULB let Constraints = "$src1 = $dst", Predicates = [HasGFNI, UseSSE2] in defm GF2P8MULB : GF2P8MULB_rm<"gf2p8mulb", v16i8, VR128, memop, i128mem, 1>; let Predicates = [HasGFNI, HasAVX, NoVLX_Or_NoBWI] in { defm VGF2P8MULB : GF2P8MULB_rm<"vgf2p8mulb", v16i8, VR128, load, i128mem>, VEX_4V; defm VGF2P8MULBY : GF2P8MULB_rm<"vgf2p8mulb", v32i8, VR256, load, i256mem>, VEX_4V, VEX_L; } // GF2P8AFFINEINVQB, GF2P8AFFINEQB let isCommutable = 0 in { defm GF2P8AFFINEINVQB : GF2P8AFFINE_common<0xCF, "gf2p8affineinvqb", X86GF2P8affineinvqb>, TAPD; defm GF2P8AFFINEQB : GF2P8AFFINE_common<0xCE, "gf2p8affineqb", X86GF2P8affineqb>, TAPD; }