//===- AggressiveInstCombine.cpp ------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the aggressive expression pattern combiner classes. // Currently, it handles expression patterns for: // * Truncate instruction // //===----------------------------------------------------------------------===// #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h" #include "AggressiveInstCombineInternal.h" #include "llvm-c/Initialization.h" #include "llvm-c/Transforms/AggressiveInstCombine.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/PatternMatch.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Transforms/Utils/Local.h" using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "aggressive-instcombine" namespace { /// Contains expression pattern combiner logic. /// This class provides both the logic to combine expression patterns and /// combine them. It differs from InstCombiner class in that each pattern /// combiner runs only once as opposed to InstCombine's multi-iteration, /// which allows pattern combiner to have higher complexity than the O(1) /// required by the instruction combiner. class AggressiveInstCombinerLegacyPass : public FunctionPass { public: static char ID; // Pass identification, replacement for typeid AggressiveInstCombinerLegacyPass() : FunctionPass(ID) { initializeAggressiveInstCombinerLegacyPassPass( *PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override; /// Run all expression pattern optimizations on the given /p F function. /// /// \param F function to optimize. /// \returns true if the IR is changed. bool runOnFunction(Function &F) override; }; } // namespace /// Match a pattern for a bitwise rotate operation that partially guards /// against undefined behavior by branching around the rotation when the shift /// amount is 0. static bool foldGuardedRotateToFunnelShift(Instruction &I) { if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2) return false; // As with the one-use checks below, this is not strictly necessary, but we // are being cautious to avoid potential perf regressions on targets that // do not actually have a rotate instruction (where the funnel shift would be // expanded back into math/shift/logic ops). if (!isPowerOf2_32(I.getType()->getScalarSizeInBits())) return false; // Match V to funnel shift left/right and capture the source operand and // shift amount in X and Y. auto matchRotate = [](Value *V, Value *&X, Value *&Y) { Value *L0, *L1, *R0, *R1; unsigned Width = V->getType()->getScalarSizeInBits(); auto Sub = m_Sub(m_SpecificInt(Width), m_Value(R1)); // rotate_left(X, Y) == (X << Y) | (X >> (Width - Y)) auto RotL = m_OneUse( m_c_Or(m_Shl(m_Value(L0), m_Value(L1)), m_LShr(m_Value(R0), Sub))); if (RotL.match(V) && L0 == R0 && L1 == R1) { X = L0; Y = L1; return Intrinsic::fshl; } // rotate_right(X, Y) == (X >> Y) | (X << (Width - Y)) auto RotR = m_OneUse( m_c_Or(m_LShr(m_Value(L0), m_Value(L1)), m_Shl(m_Value(R0), Sub))); if (RotR.match(V) && L0 == R0 && L1 == R1) { X = L0; Y = L1; return Intrinsic::fshr; } return Intrinsic::not_intrinsic; }; // One phi operand must be a rotate operation, and the other phi operand must // be the source value of that rotate operation: // phi [ rotate(RotSrc, RotAmt), RotBB ], [ RotSrc, GuardBB ] PHINode &Phi = cast(I); Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1); Value *RotSrc, *RotAmt; Intrinsic::ID IID = matchRotate(P0, RotSrc, RotAmt); if (IID == Intrinsic::not_intrinsic || RotSrc != P1) { IID = matchRotate(P1, RotSrc, RotAmt); if (IID == Intrinsic::not_intrinsic || RotSrc != P0) return false; assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) && "Pattern must match funnel shift left or right"); } // The incoming block with our source operand must be the "guard" block. // That must contain a cmp+branch to avoid the rotate when the shift amount // is equal to 0. The other incoming block is the block with the rotate. BasicBlock *GuardBB = Phi.getIncomingBlock(RotSrc == P1); BasicBlock *RotBB = Phi.getIncomingBlock(RotSrc != P1); Instruction *TermI = GuardBB->getTerminator(); ICmpInst::Predicate Pred; BasicBlock *PhiBB = Phi.getParent(); if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(RotAmt), m_ZeroInt()), m_SpecificBB(PhiBB), m_SpecificBB(RotBB)))) return false; if (Pred != CmpInst::ICMP_EQ) return false; // We matched a variation of this IR pattern: // GuardBB: // %cmp = icmp eq i32 %RotAmt, 0 // br i1 %cmp, label %PhiBB, label %RotBB // RotBB: // %sub = sub i32 32, %RotAmt // %shr = lshr i32 %X, %sub // %shl = shl i32 %X, %RotAmt // %rot = or i32 %shr, %shl // br label %PhiBB // PhiBB: // %cond = phi i32 [ %rot, %RotBB ], [ %X, %GuardBB ] // --> // llvm.fshl.i32(i32 %X, i32 %RotAmt) IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt()); Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType()); Phi.replaceAllUsesWith(Builder.CreateCall(F, {RotSrc, RotSrc, RotAmt})); return true; } /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain /// of 'and' ops, then we also need to capture the fact that we saw an /// "and X, 1", so that's an extra return value for that case. struct MaskOps { Value *Root; APInt Mask; bool MatchAndChain; bool FoundAnd1; MaskOps(unsigned BitWidth, bool MatchAnds) : Root(nullptr), Mask(APInt::getNullValue(BitWidth)), MatchAndChain(MatchAnds), FoundAnd1(false) {} }; /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a /// chain of 'and' or 'or' instructions looking for shift ops of a common source /// value. Examples: /// or (or (or X, (X >> 3)), (X >> 5)), (X >> 8) /// returns { X, 0x129 } /// and (and (X >> 1), 1), (X >> 4) /// returns { X, 0x12 } static bool matchAndOrChain(Value *V, MaskOps &MOps) { Value *Op0, *Op1; if (MOps.MatchAndChain) { // Recurse through a chain of 'and' operands. This requires an extra check // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere // in the chain to know that all of the high bits are cleared. if (match(V, m_And(m_Value(Op0), m_One()))) { MOps.FoundAnd1 = true; return matchAndOrChain(Op0, MOps); } if (match(V, m_And(m_Value(Op0), m_Value(Op1)))) return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps); } else { // Recurse through a chain of 'or' operands. if (match(V, m_Or(m_Value(Op0), m_Value(Op1)))) return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps); } // We need a shift-right or a bare value representing a compare of bit 0 of // the original source operand. Value *Candidate; uint64_t BitIndex = 0; if (!match(V, m_LShr(m_Value(Candidate), m_ConstantInt(BitIndex)))) Candidate = V; // Initialize result source operand. if (!MOps.Root) MOps.Root = Candidate; // The shift constant is out-of-range? This code hasn't been simplified. if (BitIndex >= MOps.Mask.getBitWidth()) return false; // Fill in the mask bit derived from the shift constant. MOps.Mask.setBit(BitIndex); return MOps.Root == Candidate; } /// Match patterns that correspond to "any-bits-set" and "all-bits-set". /// These will include a chain of 'or' or 'and'-shifted bits from a /// common source value: /// and (or (lshr X, C), ...), 1 --> (X & CMask) != 0 /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns /// that differ only with a final 'not' of the result. We expect that final /// 'not' to be folded with the compare that we create here (invert predicate). static bool foldAnyOrAllBitsSet(Instruction &I) { // The 'any-bits-set' ('or' chain) pattern is simpler to match because the // final "and X, 1" instruction must be the final op in the sequence. bool MatchAllBitsSet; if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value()))) MatchAllBitsSet = true; else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One()))) MatchAllBitsSet = false; else return false; MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet); if (MatchAllBitsSet) { if (!matchAndOrChain(cast(&I), MOps) || !MOps.FoundAnd1) return false; } else { if (!matchAndOrChain(cast(&I)->getOperand(0), MOps)) return false; } // The pattern was found. Create a masked compare that replaces all of the // shift and logic ops. IRBuilder<> Builder(&I); Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask); Value *And = Builder.CreateAnd(MOps.Root, Mask); Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask) : Builder.CreateIsNotNull(And); Value *Zext = Builder.CreateZExt(Cmp, I.getType()); I.replaceAllUsesWith(Zext); return true; } // Try to recognize below function as popcount intrinsic. // This is the "best" algorithm from // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel // Also used in TargetLowering::expandCTPOP(). // // int popcount(unsigned int i) { // i = i - ((i >> 1) & 0x55555555); // i = (i & 0x33333333) + ((i >> 2) & 0x33333333); // i = ((i + (i >> 4)) & 0x0F0F0F0F); // return (i * 0x01010101) >> 24; // } static bool tryToRecognizePopCount(Instruction &I) { if (I.getOpcode() != Instruction::LShr) return false; Type *Ty = I.getType(); if (!Ty->isIntOrIntVectorTy()) return false; unsigned Len = Ty->getScalarSizeInBits(); // FIXME: fix Len == 8 and other irregular type lengths. if (!(Len <= 128 && Len > 8 && Len % 8 == 0)) return false; APInt Mask55 = APInt::getSplat(Len, APInt(8, 0x55)); APInt Mask33 = APInt::getSplat(Len, APInt(8, 0x33)); APInt Mask0F = APInt::getSplat(Len, APInt(8, 0x0F)); APInt Mask01 = APInt::getSplat(Len, APInt(8, 0x01)); APInt MaskShift = APInt(Len, Len - 8); Value *Op0 = I.getOperand(0); Value *Op1 = I.getOperand(1); Value *MulOp0; // Matching "(i * 0x01010101...) >> 24". if ((match(Op0, m_Mul(m_Value(MulOp0), m_SpecificInt(Mask01)))) && match(Op1, m_SpecificInt(MaskShift))) { Value *ShiftOp0; // Matching "((i + (i >> 4)) & 0x0F0F0F0F...)". if (match(MulOp0, m_And(m_c_Add(m_LShr(m_Value(ShiftOp0), m_SpecificInt(4)), m_Deferred(ShiftOp0)), m_SpecificInt(Mask0F)))) { Value *AndOp0; // Matching "(i & 0x33333333...) + ((i >> 2) & 0x33333333...)". if (match(ShiftOp0, m_c_Add(m_And(m_Value(AndOp0), m_SpecificInt(Mask33)), m_And(m_LShr(m_Deferred(AndOp0), m_SpecificInt(2)), m_SpecificInt(Mask33))))) { Value *Root, *SubOp1; // Matching "i - ((i >> 1) & 0x55555555...)". if (match(AndOp0, m_Sub(m_Value(Root), m_Value(SubOp1))) && match(SubOp1, m_And(m_LShr(m_Specific(Root), m_SpecificInt(1)), m_SpecificInt(Mask55)))) { LLVM_DEBUG(dbgs() << "Recognized popcount intrinsic\n"); IRBuilder<> Builder(&I); Function *Func = Intrinsic::getDeclaration( I.getModule(), Intrinsic::ctpop, I.getType()); I.replaceAllUsesWith(Builder.CreateCall(Func, {Root})); return true; } } } } return false; } /// This is the entry point for folds that could be implemented in regular /// InstCombine, but they are separated because they are not expected to /// occur frequently and/or have more than a constant-length pattern match. static bool foldUnusualPatterns(Function &F, DominatorTree &DT) { bool MadeChange = false; for (BasicBlock &BB : F) { // Ignore unreachable basic blocks. if (!DT.isReachableFromEntry(&BB)) continue; // Do not delete instructions under here and invalidate the iterator. // Walk the block backwards for efficiency. We're matching a chain of // use->defs, so we're more likely to succeed by starting from the bottom. // Also, we want to avoid matching partial patterns. // TODO: It would be more efficient if we removed dead instructions // iteratively in this loop rather than waiting until the end. for (Instruction &I : make_range(BB.rbegin(), BB.rend())) { MadeChange |= foldAnyOrAllBitsSet(I); MadeChange |= foldGuardedRotateToFunnelShift(I); MadeChange |= tryToRecognizePopCount(I); } } // We're done with transforms, so remove dead instructions. if (MadeChange) for (BasicBlock &BB : F) SimplifyInstructionsInBlock(&BB); return MadeChange; } /// This is the entry point for all transforms. Pass manager differences are /// handled in the callers of this function. static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) { bool MadeChange = false; const DataLayout &DL = F.getParent()->getDataLayout(); TruncInstCombine TIC(TLI, DL, DT); MadeChange |= TIC.run(F); MadeChange |= foldUnusualPatterns(F, DT); return MadeChange; } void AggressiveInstCombinerLegacyPass::getAnalysisUsage( AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); } bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) { auto &TLI = getAnalysis().getTLI(F); auto &DT = getAnalysis().getDomTree(); return runImpl(F, TLI, DT); } PreservedAnalyses AggressiveInstCombinePass::run(Function &F, FunctionAnalysisManager &AM) { auto &TLI = AM.getResult(F); auto &DT = AM.getResult(F); if (!runImpl(F, TLI, DT)) { // No changes, all analyses are preserved. return PreservedAnalyses::all(); } // Mark all the analyses that instcombine updates as preserved. PreservedAnalyses PA; PA.preserveSet(); PA.preserve(); PA.preserve(); return PA; } char AggressiveInstCombinerLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass, "aggressive-instcombine", "Combine pattern based expressions", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine", "Combine pattern based expressions", false, false) // Initialization Routines void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) { initializeAggressiveInstCombinerLegacyPassPass(Registry); } void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) { initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R)); } FunctionPass *llvm::createAggressiveInstCombinerPass() { return new AggressiveInstCombinerLegacyPass(); } void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) { unwrap(PM)->add(createAggressiveInstCombinerPass()); }