//===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// /// This file provides internal interfaces used to implement the InstCombine. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H #include "llvm/ADT/ArrayRef.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/TargetFolder.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Argument.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Use.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" #include "llvm/Transforms/Utils/Local.h" #include #include #define DEBUG_TYPE "instcombine" using namespace llvm::PatternMatch; namespace llvm { class APInt; class AssumptionCache; class BlockFrequencyInfo; class DataLayout; class DominatorTree; class GEPOperator; class GlobalVariable; class LoopInfo; class OptimizationRemarkEmitter; class ProfileSummaryInfo; class TargetLibraryInfo; class User; /// Assign a complexity or rank value to LLVM Values. This is used to reduce /// the amount of pattern matching needed for compares and commutative /// instructions. For example, if we have: /// icmp ugt X, Constant /// or /// xor (add X, Constant), cast Z /// /// We do not have to consider the commuted variants of these patterns because /// canonicalization based on complexity guarantees the above ordering. /// /// This routine maps IR values to various complexity ranks: /// 0 -> undef /// 1 -> Constants /// 2 -> Other non-instructions /// 3 -> Arguments /// 4 -> Cast and (f)neg/not instructions /// 5 -> Other instructions static inline unsigned getComplexity(Value *V) { if (isa(V)) { if (isa(V) || match(V, m_Neg(m_Value())) || match(V, m_Not(m_Value())) || match(V, m_FNeg(m_Value()))) return 4; return 5; } if (isa(V)) return 3; return isa(V) ? (isa(V) ? 0 : 1) : 2; } /// Predicate canonicalization reduces the number of patterns that need to be /// matched by other transforms. For example, we may swap the operands of a /// conditional branch or select to create a compare with a canonical (inverted) /// predicate which is then more likely to be matched with other values. static inline bool isCanonicalPredicate(CmpInst::Predicate Pred) { switch (Pred) { case CmpInst::ICMP_NE: case CmpInst::ICMP_ULE: case CmpInst::ICMP_SLE: case CmpInst::ICMP_UGE: case CmpInst::ICMP_SGE: // TODO: There are 16 FCMP predicates. Should others be (not) canonical? case CmpInst::FCMP_ONE: case CmpInst::FCMP_OLE: case CmpInst::FCMP_OGE: return false; default: return true; } } /// Return the source operand of a potentially bitcasted value while optionally /// checking if it has one use. If there is no bitcast or the one use check is /// not met, return the input value itself. static inline Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) { if (auto *BitCast = dyn_cast(V)) if (!OneUseOnly || BitCast->hasOneUse()) return BitCast->getOperand(0); // V is not a bitcast or V has more than one use and OneUseOnly is true. return V; } /// Add one to a Constant static inline Constant *AddOne(Constant *C) { return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); } /// Subtract one from a Constant static inline Constant *SubOne(Constant *C) { return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1)); } /// Return true if the specified value is free to invert (apply ~ to). /// This happens in cases where the ~ can be eliminated. If WillInvertAllUses /// is true, work under the assumption that the caller intends to remove all /// uses of V and only keep uses of ~V. static inline bool IsFreeToInvert(Value *V, bool WillInvertAllUses) { // ~(~(X)) -> X. if (match(V, m_Not(m_Value()))) return true; // Constants can be considered to be not'ed values. if (isa(V)) return true; // A vector of constant integers can be inverted easily. if (V->getType()->isVectorTy() && isa(V)) { unsigned NumElts = V->getType()->getVectorNumElements(); for (unsigned i = 0; i != NumElts; ++i) { Constant *Elt = cast(V)->getAggregateElement(i); if (!Elt) return false; if (isa(Elt)) continue; if (!isa(Elt)) return false; } return true; } // Compares can be inverted if all of their uses are being modified to use the // ~V. if (isa(V)) return WillInvertAllUses; // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1 // - Constant) - A` if we are willing to invert all of the uses. if (BinaryOperator *BO = dyn_cast(V)) if (BO->getOpcode() == Instruction::Add || BO->getOpcode() == Instruction::Sub) if (isa(BO->getOperand(0)) || isa(BO->getOperand(1))) return WillInvertAllUses; // Selects with invertible operands are freely invertible if (match(V, m_Select(m_Value(), m_Not(m_Value()), m_Not(m_Value())))) return WillInvertAllUses; return false; } /// Some binary operators require special handling to avoid poison and undefined /// behavior. If a constant vector has undef elements, replace those undefs with /// identity constants if possible because those are always safe to execute. /// If no identity constant exists, replace undef with some other safe constant. static inline Constant *getSafeVectorConstantForBinop( BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant) { assert(In->getType()->isVectorTy() && "Not expecting scalars here"); Type *EltTy = In->getType()->getVectorElementType(); auto *SafeC = ConstantExpr::getBinOpIdentity(Opcode, EltTy, IsRHSConstant); if (!SafeC) { // TODO: Should this be available as a constant utility function? It is // similar to getBinOpAbsorber(). if (IsRHSConstant) { switch (Opcode) { case Instruction::SRem: // X % 1 = 0 case Instruction::URem: // X %u 1 = 0 SafeC = ConstantInt::get(EltTy, 1); break; case Instruction::FRem: // X % 1.0 (doesn't simplify, but it is safe) SafeC = ConstantFP::get(EltTy, 1.0); break; default: llvm_unreachable("Only rem opcodes have no identity constant for RHS"); } } else { switch (Opcode) { case Instruction::Shl: // 0 << X = 0 case Instruction::LShr: // 0 >>u X = 0 case Instruction::AShr: // 0 >> X = 0 case Instruction::SDiv: // 0 / X = 0 case Instruction::UDiv: // 0 /u X = 0 case Instruction::SRem: // 0 % X = 0 case Instruction::URem: // 0 %u X = 0 case Instruction::Sub: // 0 - X (doesn't simplify, but it is safe) case Instruction::FSub: // 0.0 - X (doesn't simplify, but it is safe) case Instruction::FDiv: // 0.0 / X (doesn't simplify, but it is safe) case Instruction::FRem: // 0.0 % X = 0 SafeC = Constant::getNullValue(EltTy); break; default: llvm_unreachable("Expected to find identity constant for opcode"); } } } assert(SafeC && "Must have safe constant for binop"); unsigned NumElts = In->getType()->getVectorNumElements(); SmallVector Out(NumElts); for (unsigned i = 0; i != NumElts; ++i) { Constant *C = In->getAggregateElement(i); Out[i] = isa(C) ? SafeC : C; } return ConstantVector::get(Out); } /// The core instruction combiner logic. /// /// This class provides both the logic to recursively visit instructions and /// combine them. class LLVM_LIBRARY_VISIBILITY InstCombiner : public InstVisitor { // FIXME: These members shouldn't be public. public: /// A worklist of the instructions that need to be simplified. InstCombineWorklist &Worklist; /// An IRBuilder that automatically inserts new instructions into the /// worklist. using BuilderTy = IRBuilder; BuilderTy &Builder; private: // Mode in which we are running the combiner. const bool MinimizeSize; /// Enable combines that trigger rarely but are costly in compiletime. const bool ExpensiveCombines; AliasAnalysis *AA; // Required analyses. AssumptionCache &AC; TargetLibraryInfo &TLI; DominatorTree &DT; const DataLayout &DL; const SimplifyQuery SQ; OptimizationRemarkEmitter &ORE; BlockFrequencyInfo *BFI; ProfileSummaryInfo *PSI; // Optional analyses. When non-null, these can both be used to do better // combining and will be updated to reflect any changes. LoopInfo *LI; bool MadeIRChange = false; public: InstCombiner(InstCombineWorklist &Worklist, BuilderTy &Builder, bool MinimizeSize, bool ExpensiveCombines, AliasAnalysis *AA, AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, const DataLayout &DL, LoopInfo *LI) : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize), ExpensiveCombines(ExpensiveCombines), AA(AA), AC(AC), TLI(TLI), DT(DT), DL(DL), SQ(DL, &TLI, &DT, &AC), ORE(ORE), BFI(BFI), PSI(PSI), LI(LI) {} /// Run the combiner over the entire worklist until it is empty. /// /// \returns true if the IR is changed. bool run(); AssumptionCache &getAssumptionCache() const { return AC; } const DataLayout &getDataLayout() const { return DL; } DominatorTree &getDominatorTree() const { return DT; } LoopInfo *getLoopInfo() const { return LI; } TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; } // Visitation implementation - Implement instruction combining for different // instruction types. The semantics are as follows: // Return Value: // null - No change was made // I - Change was made, I is still valid, I may be dead though // otherwise - Change was made, replace I with returned instruction // Instruction *visitFNeg(UnaryOperator &I); Instruction *visitAdd(BinaryOperator &I); Instruction *visitFAdd(BinaryOperator &I); Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty); Instruction *visitSub(BinaryOperator &I); Instruction *visitFSub(BinaryOperator &I); Instruction *visitMul(BinaryOperator &I); Instruction *visitFMul(BinaryOperator &I); Instruction *visitURem(BinaryOperator &I); Instruction *visitSRem(BinaryOperator &I); Instruction *visitFRem(BinaryOperator &I); bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I); Instruction *commonRemTransforms(BinaryOperator &I); Instruction *commonIRemTransforms(BinaryOperator &I); Instruction *commonDivTransforms(BinaryOperator &I); Instruction *commonIDivTransforms(BinaryOperator &I); Instruction *visitUDiv(BinaryOperator &I); Instruction *visitSDiv(BinaryOperator &I); Instruction *visitFDiv(BinaryOperator &I); Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted); Instruction *visitAnd(BinaryOperator &I); Instruction *visitOr(BinaryOperator &I); Instruction *visitXor(BinaryOperator &I); Instruction *visitShl(BinaryOperator &I); Instruction *visitAShr(BinaryOperator &I); Instruction *visitLShr(BinaryOperator &I); Instruction *commonShiftTransforms(BinaryOperator &I); Instruction *visitFCmpInst(FCmpInst &I); Instruction *visitICmpInst(ICmpInst &I); Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1, BinaryOperator &I); Instruction *commonCastTransforms(CastInst &CI); Instruction *commonPointerCastTransforms(CastInst &CI); Instruction *visitTrunc(TruncInst &CI); Instruction *visitZExt(ZExtInst &CI); Instruction *visitSExt(SExtInst &CI); Instruction *visitFPTrunc(FPTruncInst &CI); Instruction *visitFPExt(CastInst &CI); Instruction *visitFPToUI(FPToUIInst &FI); Instruction *visitFPToSI(FPToSIInst &FI); Instruction *visitUIToFP(CastInst &CI); Instruction *visitSIToFP(CastInst &CI); Instruction *visitPtrToInt(PtrToIntInst &CI); Instruction *visitIntToPtr(IntToPtrInst &CI); Instruction *visitBitCast(BitCastInst &CI); Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI); Instruction *FoldItoFPtoI(Instruction &FI); Instruction *visitSelectInst(SelectInst &SI); Instruction *visitCallInst(CallInst &CI); Instruction *visitInvokeInst(InvokeInst &II); Instruction *visitCallBrInst(CallBrInst &CBI); Instruction *SliceUpIllegalIntegerPHI(PHINode &PN); Instruction *visitPHINode(PHINode &PN); Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP); Instruction *visitAllocaInst(AllocaInst &AI); Instruction *visitAllocSite(Instruction &FI); Instruction *visitFree(CallInst &FI); Instruction *visitLoadInst(LoadInst &LI); Instruction *visitStoreInst(StoreInst &SI); Instruction *visitAtomicRMWInst(AtomicRMWInst &SI); Instruction *visitBranchInst(BranchInst &BI); Instruction *visitFenceInst(FenceInst &FI); Instruction *visitSwitchInst(SwitchInst &SI); Instruction *visitReturnInst(ReturnInst &RI); Instruction *visitInsertValueInst(InsertValueInst &IV); Instruction *visitInsertElementInst(InsertElementInst &IE); Instruction *visitExtractElementInst(ExtractElementInst &EI); Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI); Instruction *visitExtractValueInst(ExtractValueInst &EV); Instruction *visitLandingPadInst(LandingPadInst &LI); Instruction *visitVAStartInst(VAStartInst &I); Instruction *visitVACopyInst(VACopyInst &I); /// Specify what to return for unhandled instructions. Instruction *visitInstruction(Instruction &I) { return nullptr; } /// True when DB dominates all uses of DI except UI. /// UI must be in the same block as DI. /// The routine checks that the DI parent and DB are different. bool dominatesAllUses(const Instruction *DI, const Instruction *UI, const BasicBlock *DB) const; /// Try to replace select with select operand SIOpd in SI-ICmp sequence. bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp, const unsigned SIOpd); /// Try to replace instruction \p I with value \p V which are pointers /// in different address space. /// \return true if successful. bool replacePointer(Instruction &I, Value *V); private: bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const; bool shouldChangeType(Type *From, Type *To) const; Value *dyn_castNegVal(Value *V) const; Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset, SmallVectorImpl &NewIndices); /// Classify whether a cast is worth optimizing. /// /// This is a helper to decide whether the simplification of /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed. /// /// \param CI The cast we are interested in. /// /// \return true if this cast actually results in any code being generated and /// if it cannot already be eliminated by some other transformation. bool shouldOptimizeCast(CastInst *CI); /// Try to optimize a sequence of instructions checking if an operation /// on LHS and RHS overflows. /// /// If this overflow check is done via one of the overflow check intrinsics, /// then CtxI has to be the call instruction calling that intrinsic. If this /// overflow check is done by arithmetic followed by a compare, then CtxI has /// to be the arithmetic instruction. /// /// If a simplification is possible, stores the simplified result of the /// operation in OperationResult and result of the overflow check in /// OverflowResult, and return true. If no simplification is possible, /// returns false. bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, Instruction &CtxI, Value *&OperationResult, Constant *&OverflowResult); Instruction *visitCallBase(CallBase &Call); Instruction *tryOptimizeCall(CallInst *CI); bool transformConstExprCastCall(CallBase &Call); Instruction *transformCallThroughTrampoline(CallBase &Call, IntrinsicInst &Tramp); Value *simplifyMaskedLoad(IntrinsicInst &II); Instruction *simplifyMaskedStore(IntrinsicInst &II); Instruction *simplifyMaskedGather(IntrinsicInst &II); Instruction *simplifyMaskedScatter(IntrinsicInst &II); /// Transform (zext icmp) to bitwise / integer operations in order to /// eliminate it. /// /// \param ICI The icmp of the (zext icmp) pair we are interested in. /// \parem CI The zext of the (zext icmp) pair we are interested in. /// \param DoTransform Pass false to just test whether the given (zext icmp) /// would be transformed. Pass true to actually perform the transformation. /// /// \return null if the transformation cannot be performed. If the /// transformation can be performed the new instruction that replaces the /// (zext icmp) pair will be returned (if \p DoTransform is false the /// unmodified \p ICI will be returned in this case). Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, bool DoTransform = true); Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI); bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS, const Instruction &CxtI) const { return computeOverflowForSignedAdd(LHS, RHS, &CxtI) == OverflowResult::NeverOverflows; } bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS, const Instruction &CxtI) const { return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) == OverflowResult::NeverOverflows; } bool willNotOverflowAdd(const Value *LHS, const Value *RHS, const Instruction &CxtI, bool IsSigned) const { return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI) : willNotOverflowUnsignedAdd(LHS, RHS, CxtI); } bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS, const Instruction &CxtI) const { return computeOverflowForSignedSub(LHS, RHS, &CxtI) == OverflowResult::NeverOverflows; } bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS, const Instruction &CxtI) const { return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) == OverflowResult::NeverOverflows; } bool willNotOverflowSub(const Value *LHS, const Value *RHS, const Instruction &CxtI, bool IsSigned) const { return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI) : willNotOverflowUnsignedSub(LHS, RHS, CxtI); } bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS, const Instruction &CxtI) const { return computeOverflowForSignedMul(LHS, RHS, &CxtI) == OverflowResult::NeverOverflows; } bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS, const Instruction &CxtI) const { return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) == OverflowResult::NeverOverflows; } bool willNotOverflowMul(const Value *LHS, const Value *RHS, const Instruction &CxtI, bool IsSigned) const { return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI) : willNotOverflowUnsignedMul(LHS, RHS, CxtI); } bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS, const Value *RHS, const Instruction &CxtI, bool IsSigned) const { switch (Opcode) { case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned); case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned); case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned); default: llvm_unreachable("Unexpected opcode for overflow query"); } } Value *EmitGEPOffset(User *GEP); Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN); Instruction *foldCastedBitwiseLogic(BinaryOperator &I); Instruction *narrowBinOp(TruncInst &Trunc); Instruction *narrowMaskedBinOp(BinaryOperator &And); Instruction *narrowMathIfNoOverflow(BinaryOperator &I); Instruction *narrowRotate(TruncInst &Trunc); Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN); /// Determine if a pair of casts can be replaced by a single cast. /// /// \param CI1 The first of a pair of casts. /// \param CI2 The second of a pair of casts. /// /// \return 0 if the cast pair cannot be eliminated, otherwise returns an /// Instruction::CastOps value for a cast that can replace the pair, casting /// CI1->getSrcTy() to CI2->getDstTy(). /// /// \see CastInst::isEliminableCastPair Instruction::CastOps isEliminableCastPair(const CastInst *CI1, const CastInst *CI2); Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI); Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI); Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS); /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp). /// NOTE: Unlike most of instcombine, this returns a Value which should /// already be inserted into the function. Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd); Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS, bool JoinedByAnd, Instruction &CxtI); Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D); Value *getSelectCondition(Value *A, Value *B); Instruction *foldIntrinsicWithOverflowCommon(IntrinsicInst *II); public: /// Inserts an instruction \p New before instruction \p Old /// /// Also adds the new instruction to the worklist and returns \p New so that /// it is suitable for use as the return from the visitation patterns. Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) { assert(New && !New->getParent() && "New instruction already inserted into a basic block!"); BasicBlock *BB = Old.getParent(); BB->getInstList().insert(Old.getIterator(), New); // Insert inst Worklist.Add(New); return New; } /// Same as InsertNewInstBefore, but also sets the debug loc. Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) { New->setDebugLoc(Old.getDebugLoc()); return InsertNewInstBefore(New, Old); } /// A combiner-aware RAUW-like routine. /// /// This method is to be used when an instruction is found to be dead, /// replaceable with another preexisting expression. Here we add all uses of /// I to the worklist, replace all uses of I with the new value, then return /// I, so that the inst combiner will know that I was modified. Instruction *replaceInstUsesWith(Instruction &I, Value *V) { // If there are no uses to replace, then we return nullptr to indicate that // no changes were made to the program. if (I.use_empty()) return nullptr; Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist. // If we are replacing the instruction with itself, this must be in a // segment of unreachable code, so just clobber the instruction. if (&I == V) V = UndefValue::get(I.getType()); LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n" << " with " << *V << '\n'); I.replaceAllUsesWith(V); return &I; } /// Creates a result tuple for an overflow intrinsic \p II with a given /// \p Result and a constant \p Overflow value. Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result, Constant *Overflow) { Constant *V[] = {UndefValue::get(Result->getType()), Overflow}; StructType *ST = cast(II->getType()); Constant *Struct = ConstantStruct::get(ST, V); return InsertValueInst::Create(Struct, Result, 0); } /// Create and insert the idiom we use to indicate a block is unreachable /// without having to rewrite the CFG from within InstCombine. void CreateNonTerminatorUnreachable(Instruction *InsertAt) { auto &Ctx = InsertAt->getContext(); new StoreInst(ConstantInt::getTrue(Ctx), UndefValue::get(Type::getInt1PtrTy(Ctx)), InsertAt); } /// Combiner aware instruction erasure. /// /// When dealing with an instruction that has side effects or produces a void /// value, we can't rely on DCE to delete the instruction. Instead, visit /// methods should return the value returned by this function. Instruction *eraseInstFromFunction(Instruction &I) { LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n'); assert(I.use_empty() && "Cannot erase instruction that is used!"); salvageDebugInfo(I); // Make sure that we reprocess all operands now that we reduced their // use counts. if (I.getNumOperands() < 8) { for (Use &Operand : I.operands()) if (auto *Inst = dyn_cast(Operand)) Worklist.Add(Inst); } Worklist.Remove(&I); I.eraseFromParent(); MadeIRChange = true; return nullptr; // Don't do anything with FI } void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, const Instruction *CxtI) const { llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT); } KnownBits computeKnownBits(const Value *V, unsigned Depth, const Instruction *CxtI) const { return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT); } bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false, unsigned Depth = 0, const Instruction *CxtI = nullptr) { return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT); } bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0, const Instruction *CxtI = nullptr) const { return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT); } unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0, const Instruction *CxtI = nullptr) const { return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT); } OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, const Instruction *CxtI) const { return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT); } OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, const Instruction *CxtI) const { return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT); } OverflowResult computeOverflowForUnsignedAdd(const Value *LHS, const Value *RHS, const Instruction *CxtI) const { return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT); } OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS, const Instruction *CxtI) const { return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT); } OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const Instruction *CxtI) const { return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT); } OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const Instruction *CxtI) const { return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT); } OverflowResult computeOverflow( Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, Instruction *CxtI) const; /// Maximum size of array considered when transforming. uint64_t MaxArraySizeForCombine; private: /// Performs a few simplifications for operators which are associative /// or commutative. bool SimplifyAssociativeOrCommutative(BinaryOperator &I); /// Tries to simplify binary operations which some other binary /// operation distributes over. /// /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)" /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A /// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified /// value, or null if it didn't simplify. Value *SimplifyUsingDistributiveLaws(BinaryOperator &I); /// Tries to simplify add operations using the definition of remainder. /// /// The definition of remainder is X % C = X - (X / C ) * C. The add /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to /// X % (C0 * C1) Value *SimplifyAddWithRemainder(BinaryOperator &I); // Binary Op helper for select operations where the expression can be // efficiently reorganized. Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS, Value *RHS); /// This tries to simplify binary operations by factorizing out common terms /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *, Value *, Value *, Value *); /// Match a select chain which produces one of three values based on whether /// the LHS is less than, equal to, or greater than RHS respectively. /// Return true if we matched a three way compare idiom. The LHS, RHS, Less, /// Equal and Greater values are saved in the matching process and returned to /// the caller. bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS, ConstantInt *&Less, ConstantInt *&Equal, ConstantInt *&Greater); /// Attempts to replace V with a simpler value based on the demanded /// bits. Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known, unsigned Depth, Instruction *CxtI); bool SimplifyDemandedBits(Instruction *I, unsigned Op, const APInt &DemandedMask, KnownBits &Known, unsigned Depth = 0); /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne /// bits. It also tries to handle simplifications that can be done based on /// DemandedMask, but without modifying the Instruction. Value *SimplifyMultipleUseDemandedBits(Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth, Instruction *CxtI); /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence. Value *simplifyShrShlDemandedBits( Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known); /// Tries to simplify operands to an integer instruction based on its /// demanded bits. bool SimplifyDemandedInstructionBits(Instruction &Inst); Value *simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II, APInt DemandedElts, int DmaskIdx = -1); Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &UndefElts, unsigned Depth = 0); /// Canonicalize the position of binops relative to shufflevector. Instruction *foldVectorBinop(BinaryOperator &Inst); /// Given a binary operator, cast instruction, or select which has a PHI node /// as operand #0, see if we can fold the instruction into the PHI (which is /// only possible if all operands to the PHI are constants). Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN); /// Given an instruction with a select as one operand and a constant as the /// other operand, try to fold the binary operator into the select arguments. /// This also works for Cast instructions, which obviously do not have a /// second operand. Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI); /// This is a convenience wrapper function for the above two functions. Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I); Instruction *foldAddWithConstant(BinaryOperator &Add); /// Try to rotate an operation below a PHI node, using PHI nodes for /// its operands. Instruction *FoldPHIArgOpIntoPHI(PHINode &PN); Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN); Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN); Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN); Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN); /// If an integer typed PHI has only one use which is an IntToPtr operation, /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise /// insert a new pointer typed PHI and replace the original one. Instruction *FoldIntegerTypedPHI(PHINode &PN); /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the /// folded operation. void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN); Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, ICmpInst::Predicate Cond, Instruction &I); Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca, const Value *Other); Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI, ConstantInt *AndCst = nullptr); Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, Constant *RHSC); Instruction *foldICmpAddOpConst(Value *X, const APInt &C, ICmpInst::Predicate Pred); Instruction *foldICmpWithCastAndCast(ICmpInst &ICI); Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp); Instruction *foldICmpWithDominatingICmp(ICmpInst &Cmp); Instruction *foldICmpWithConstant(ICmpInst &Cmp); Instruction *foldICmpInstWithConstant(ICmpInst &Cmp); Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp); Instruction *foldICmpBinOp(ICmpInst &Cmp); Instruction *foldICmpEquality(ICmpInst &Cmp); Instruction *foldICmpWithZero(ICmpInst &Cmp); Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select, ConstantInt *C); Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc, const APInt &C); Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And, const APInt &C); Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor, const APInt &C); Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, const APInt &C); Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul, const APInt &C); Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl, const APInt &C); Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr, const APInt &C); Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv, const APInt &C); Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div, const APInt &C); Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub, const APInt &C); Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add, const APInt &C); Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And, const APInt &C1); Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, const APInt &C1, const APInt &C2); Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1, const APInt &C2); Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1, const APInt &C2); Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, BinaryOperator *BO, const APInt &C); Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II, const APInt &C); Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II, const APInt &C); // Helpers of visitSelectInst(). Instruction *foldSelectExtConst(SelectInst &Sel); Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI); Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *); Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1, Value *A, Value *B, Instruction &Outer, SelectPatternFlavor SPF2, Value *C); Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI); Instruction *OptAndOp(BinaryOperator *Op, ConstantInt *OpRHS, ConstantInt *AndRHS, BinaryOperator &TheAnd); Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi, bool isSigned, bool Inside); Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI); bool mergeStoreIntoSuccessor(StoreInst &SI); /// Given an 'or' instruction, check to see if it is part of a bswap idiom. /// If so, return the equivalent bswap intrinsic. Instruction *matchBSwap(BinaryOperator &Or); Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI); Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI); Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned); /// Returns a value X such that Val = X * Scale, or null if none. /// /// If the multiplication is known not to overflow then NoSignedWrap is set. Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap); }; } // end namespace llvm #undef DEBUG_TYPE #endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H