//===- CodeMoverUtils.cpp - CodeMover Utilities ----------------------------==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This family of functions perform movements on basic blocks, and instructions // contained within a function. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/CodeMoverUtils.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/DependenceAnalysis.h" #include "llvm/Analysis/PostDominators.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Dominators.h" using namespace llvm; #define DEBUG_TYPE "codemover-utils" STATISTIC(HasDependences, "Cannot move across instructions that has memory dependences"); STATISTIC(MayThrowException, "Cannot move across instructions that may throw"); STATISTIC(NotControlFlowEquivalent, "Instructions are not control flow equivalent"); STATISTIC(NotMovedPHINode, "Movement of PHINodes are not supported"); STATISTIC(NotMovedTerminator, "Movement of Terminator are not supported"); bool llvm::isControlFlowEquivalent(const Instruction &I0, const Instruction &I1, const DominatorTree &DT, const PostDominatorTree &PDT) { return isControlFlowEquivalent(*I0.getParent(), *I1.getParent(), DT, PDT); } bool llvm::isControlFlowEquivalent(const BasicBlock &BB0, const BasicBlock &BB1, const DominatorTree &DT, const PostDominatorTree &PDT) { if (&BB0 == &BB1) return true; return ((DT.dominates(&BB0, &BB1) && PDT.dominates(&BB1, &BB0)) || (PDT.dominates(&BB0, &BB1) && DT.dominates(&BB1, &BB0))); } static bool reportInvalidCandidate(const Instruction &I, llvm::Statistic &Stat) { ++Stat; LLVM_DEBUG(dbgs() << "Unable to move instruction: " << I << ". " << Stat.getDesc()); return false; } /// Collect all instructions in between \p StartInst and \p EndInst, and store /// them in \p InBetweenInsts. static void collectInstructionsInBetween(Instruction &StartInst, const Instruction &EndInst, SmallPtrSetImpl &InBetweenInsts) { assert(InBetweenInsts.empty() && "Expecting InBetweenInsts to be empty"); /// Get the next instructions of \p I, and push them to \p WorkList. auto getNextInsts = [](Instruction &I, SmallPtrSetImpl &WorkList) { if (Instruction *NextInst = I.getNextNode()) WorkList.insert(NextInst); else { assert(I.isTerminator() && "Expecting a terminator instruction"); for (BasicBlock *Succ : successors(&I)) WorkList.insert(&Succ->front()); } }; SmallPtrSet WorkList; getNextInsts(StartInst, WorkList); while (!WorkList.empty()) { Instruction *CurInst = *WorkList.begin(); WorkList.erase(CurInst); if (CurInst == &EndInst) continue; if (!InBetweenInsts.insert(CurInst).second) continue; getNextInsts(*CurInst, WorkList); } } bool llvm::isSafeToMoveBefore(Instruction &I, Instruction &InsertPoint, const DominatorTree &DT, const PostDominatorTree &PDT, DependenceInfo &DI) { // Cannot move itself before itself. if (&I == &InsertPoint) return false; // Not moved. if (I.getNextNode() == &InsertPoint) return true; if (isa(I) || isa(InsertPoint)) return reportInvalidCandidate(I, NotMovedPHINode); if (I.isTerminator()) return reportInvalidCandidate(I, NotMovedTerminator); // TODO remove this limitation. if (!isControlFlowEquivalent(I, InsertPoint, DT, PDT)) return reportInvalidCandidate(I, NotControlFlowEquivalent); // As I and InsertPoint are control flow equivalent, if I dominates // InsertPoint, then I comes before InsertPoint. const bool MoveForward = DT.dominates(&I, &InsertPoint); if (MoveForward) { // When I is being moved forward, we need to make sure the InsertPoint // dominates every users. Or else, a user may be using an undefined I. for (const Use &U : I.uses()) if (auto *UserInst = dyn_cast(U.getUser())) if (UserInst != &InsertPoint && !DT.dominates(&InsertPoint, U)) return false; } else { // When I is being moved backward, we need to make sure all its opernads // dominates the InsertPoint. Or else, an operand may be undefined for I. for (const Value *Op : I.operands()) if (auto *OpInst = dyn_cast(Op)) if (&InsertPoint == OpInst || !DT.dominates(OpInst, &InsertPoint)) return false; } Instruction &StartInst = (MoveForward ? I : InsertPoint); Instruction &EndInst = (MoveForward ? InsertPoint : I); SmallPtrSet InstsToCheck; collectInstructionsInBetween(StartInst, EndInst, InstsToCheck); if (!MoveForward) InstsToCheck.insert(&InsertPoint); // Check if there exists instructions which may throw, may synchonize, or may // never return, from I to InsertPoint. if (!isSafeToSpeculativelyExecute(&I)) if (std::any_of(InstsToCheck.begin(), InstsToCheck.end(), [](Instruction *I) { if (I->mayThrow()) return true; const CallBase *CB = dyn_cast(I); if (!CB) return false; if (!CB->hasFnAttr(Attribute::WillReturn)) return true; if (!CB->hasFnAttr(Attribute::NoSync)) return true; return false; })) { return reportInvalidCandidate(I, MayThrowException); } // Check if I has any output/flow/anti dependences with instructions from \p // StartInst to \p EndInst. if (std::any_of(InstsToCheck.begin(), InstsToCheck.end(), [&DI, &I](Instruction *CurInst) { auto DepResult = DI.depends(&I, CurInst, true); if (DepResult && (DepResult->isOutput() || DepResult->isFlow() || DepResult->isAnti())) return true; return false; })) return reportInvalidCandidate(I, HasDependences); return true; } void llvm::moveInstsBottomUp(BasicBlock &FromBB, BasicBlock &ToBB, const DominatorTree &DT, const PostDominatorTree &PDT, DependenceInfo &DI) { for (auto It = ++FromBB.rbegin(); It != FromBB.rend();) { Instruction *MovePos = ToBB.getFirstNonPHIOrDbg(); Instruction &I = *It; // Increment the iterator before modifying FromBB. ++It; if (isSafeToMoveBefore(I, *MovePos, DT, PDT, DI)) I.moveBefore(MovePos); } }