//===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file provides a LoopVectorizationPlanner class. /// InnerLoopVectorizer vectorizes loops which contain only one basic /// LoopVectorizationPlanner - drives the vectorization process after having /// passed Legality checks. /// The planner builds and optimizes the Vectorization Plans which record the /// decisions how to vectorize the given loop. In particular, represent the /// control-flow of the vectorized version, the replication of instructions that /// are to be scalarized, and interleave access groups. /// /// Also provides a VPlan-based builder utility analogous to IRBuilder. /// It provides an instruction-level API for generating VPInstructions while /// abstracting away the Recipe manipulation details. //===----------------------------------------------------------------------===// #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H #include "VPlan.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" namespace llvm { class LoopVectorizationLegality; class LoopVectorizationCostModel; class PredicatedScalarEvolution; /// VPlan-based builder utility analogous to IRBuilder. class VPBuilder { VPBasicBlock *BB = nullptr; VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator(); VPInstruction *createInstruction(unsigned Opcode, ArrayRef Operands) { VPInstruction *Instr = new VPInstruction(Opcode, Operands); if (BB) BB->insert(Instr, InsertPt); return Instr; } VPInstruction *createInstruction(unsigned Opcode, std::initializer_list Operands) { return createInstruction(Opcode, ArrayRef(Operands)); } public: VPBuilder() {} /// Clear the insertion point: created instructions will not be inserted into /// a block. void clearInsertionPoint() { BB = nullptr; InsertPt = VPBasicBlock::iterator(); } VPBasicBlock *getInsertBlock() const { return BB; } VPBasicBlock::iterator getInsertPoint() const { return InsertPt; } /// InsertPoint - A saved insertion point. class VPInsertPoint { VPBasicBlock *Block = nullptr; VPBasicBlock::iterator Point; public: /// Creates a new insertion point which doesn't point to anything. VPInsertPoint() = default; /// Creates a new insertion point at the given location. VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint) : Block(InsertBlock), Point(InsertPoint) {} /// Returns true if this insert point is set. bool isSet() const { return Block != nullptr; } VPBasicBlock *getBlock() const { return Block; } VPBasicBlock::iterator getPoint() const { return Point; } }; /// Sets the current insert point to a previously-saved location. void restoreIP(VPInsertPoint IP) { if (IP.isSet()) setInsertPoint(IP.getBlock(), IP.getPoint()); else clearInsertionPoint(); } /// This specifies that created VPInstructions should be appended to the end /// of the specified block. void setInsertPoint(VPBasicBlock *TheBB) { assert(TheBB && "Attempting to set a null insert point"); BB = TheBB; InsertPt = BB->end(); } /// This specifies that created instructions should be inserted at the /// specified point. void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) { BB = TheBB; InsertPt = IP; } /// Insert and return the specified instruction. VPInstruction *insert(VPInstruction *I) const { BB->insert(I, InsertPt); return I; } /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as /// its underlying Instruction. VPValue *createNaryOp(unsigned Opcode, ArrayRef Operands, Instruction *Inst = nullptr) { VPInstruction *NewVPInst = createInstruction(Opcode, Operands); NewVPInst->setUnderlyingValue(Inst); return NewVPInst; } VPValue *createNaryOp(unsigned Opcode, std::initializer_list Operands, Instruction *Inst = nullptr) { return createNaryOp(Opcode, ArrayRef(Operands), Inst); } VPValue *createNot(VPValue *Operand) { return createInstruction(VPInstruction::Not, {Operand}); } VPValue *createAnd(VPValue *LHS, VPValue *RHS) { return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}); } VPValue *createOr(VPValue *LHS, VPValue *RHS) { return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}); } //===--------------------------------------------------------------------===// // RAII helpers. //===--------------------------------------------------------------------===// /// RAII object that stores the current insertion point and restores it when /// the object is destroyed. class InsertPointGuard { VPBuilder &Builder; VPBasicBlock *Block; VPBasicBlock::iterator Point; public: InsertPointGuard(VPBuilder &B) : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {} InsertPointGuard(const InsertPointGuard &) = delete; InsertPointGuard &operator=(const InsertPointGuard &) = delete; ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); } }; }; /// TODO: The following VectorizationFactor was pulled out of /// LoopVectorizationCostModel class. LV also deals with /// VectorizerParams::VectorizationFactor and VectorizationCostTy. /// We need to streamline them. /// Information about vectorization costs struct VectorizationFactor { // Vector width with best cost unsigned Width; // Cost of the loop with that width unsigned Cost; // Width 1 means no vectorization, cost 0 means uncomputed cost. static VectorizationFactor Disabled() { return {1, 0}; } bool operator==(const VectorizationFactor &rhs) const { return Width == rhs.Width && Cost == rhs.Cost; } }; /// Planner drives the vectorization process after having passed /// Legality checks. class LoopVectorizationPlanner { /// The loop that we evaluate. Loop *OrigLoop; /// Loop Info analysis. LoopInfo *LI; /// Target Library Info. const TargetLibraryInfo *TLI; /// Target Transform Info. const TargetTransformInfo *TTI; /// The legality analysis. LoopVectorizationLegality *Legal; /// The profitability analysis. LoopVectorizationCostModel &CM; /// The interleaved access analysis. InterleavedAccessInfo &IAI; PredicatedScalarEvolution &PSE; SmallVector VPlans; /// This class is used to enable the VPlan to invoke a method of ILV. This is /// needed until the method is refactored out of ILV and becomes reusable. struct VPCallbackILV : public VPCallback { InnerLoopVectorizer &ILV; VPCallbackILV(InnerLoopVectorizer &ILV) : ILV(ILV) {} Value *getOrCreateVectorValues(Value *V, unsigned Part) override; Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance) override; }; /// A builder used to construct the current plan. VPBuilder Builder; unsigned BestVF = 0; unsigned BestUF = 0; public: LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, LoopVectorizationLegality *Legal, LoopVectorizationCostModel &CM, InterleavedAccessInfo &IAI, PredicatedScalarEvolution &PSE) : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), IAI(IAI), PSE(PSE) {} /// Plan how to best vectorize, return the best VF and its cost, or None if /// vectorization and interleaving should be avoided up front. Optional plan(unsigned UserVF, unsigned UserIC); /// Use the VPlan-native path to plan how to best vectorize, return the best /// VF and its cost. VectorizationFactor planInVPlanNativePath(unsigned UserVF); /// Finalize the best decision and dispose of all other VPlans. void setBestPlan(unsigned VF, unsigned UF); /// Generate the IR code for the body of the vectorized loop according to the /// best selected VPlan. void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT); void printPlans(raw_ostream &O) { for (const auto &Plan : VPlans) O << *Plan; } /// Test a \p Predicate on a \p Range of VF's. Return the value of applying /// \p Predicate on Range.Start, possibly decreasing Range.End such that the /// returned value holds for the entire \p Range. static bool getDecisionAndClampRange(const std::function &Predicate, VFRange &Range); protected: /// Collect the instructions from the original loop that would be trivially /// dead in the vectorized loop if generated. void collectTriviallyDeadInstructions( SmallPtrSetImpl &DeadInstructions); /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, /// according to the information gathered by Legal when it checked if it is /// legal to vectorize the loop. void buildVPlans(unsigned MinVF, unsigned MaxVF); private: /// Build a VPlan according to the information gathered by Legal. \return a /// VPlan for vectorization factors \p Range.Start and up to \p Range.End /// exclusive, possibly decreasing \p Range.End. VPlanPtr buildVPlan(VFRange &Range); /// Build a VPlan using VPRecipes according to the information gather by /// Legal. This method is only used for the legacy inner loop vectorizer. VPlanPtr buildVPlanWithVPRecipes( VFRange &Range, SmallPtrSetImpl &NeedDef, SmallPtrSetImpl &DeadInstructions, const DenseMap &SinkAfter); /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, /// according to the information gathered by Legal when it checked if it is /// legal to vectorize the loop. This method creates VPlans using VPRecipes. void buildVPlansWithVPRecipes(unsigned MinVF, unsigned MaxVF); }; } // namespace llvm #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H