//===- utils/TableGen/X86EVEX2VEXTablesEmitter.cpp - X86 backend-*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// This tablegen backend is responsible for emitting the X86 backend EVEX2VEX /// compression tables. /// //===----------------------------------------------------------------------===// #include "CodeGenTarget.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/TableGenBackend.h" using namespace llvm; namespace { class X86EVEX2VEXTablesEmitter { RecordKeeper &Records; CodeGenTarget Target; // Hold all non-masked & non-broadcasted EVEX encoded instructions std::vector EVEXInsts; // Hold all VEX encoded instructions. Divided into groups with same opcodes // to make the search more efficient std::map> VEXInsts; typedef std::pair Entry; // Represent both compress tables std::vector EVEX2VEX128; std::vector EVEX2VEX256; public: X86EVEX2VEXTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {} // run - Output X86 EVEX2VEX tables. void run(raw_ostream &OS); private: // Prints the given table as a C++ array of type // X86EvexToVexCompressTableEntry void printTable(const std::vector &Table, raw_ostream &OS); }; void X86EVEX2VEXTablesEmitter::printTable(const std::vector &Table, raw_ostream &OS) { StringRef Size = (Table == EVEX2VEX128) ? "128" : "256"; OS << "// X86 EVEX encoded instructions that have a VEX " << Size << " encoding\n" << "// (table format: ).\n" << "static const X86EvexToVexCompressTableEntry X86EvexToVex" << Size << "CompressTable[] = {\n" << " // EVEX scalar with corresponding VEX.\n"; // Print all entries added to the table for (auto Pair : Table) { OS << " { X86::" << Pair.first->TheDef->getName() << ", X86::" << Pair.second->TheDef->getName() << " },\n"; } OS << "};\n\n"; } // Return true if the 2 BitsInits are equal // Calculates the integer value residing BitsInit object static inline uint64_t getValueFromBitsInit(const BitsInit *B) { uint64_t Value = 0; for (unsigned i = 0, e = B->getNumBits(); i != e; ++i) { if (BitInit *Bit = dyn_cast(B->getBit(i))) Value |= uint64_t(Bit->getValue()) << i; else PrintFatalError("Invalid VectSize bit"); } return Value; } // Function object - Operator() returns true if the given VEX instruction // matches the EVEX instruction of this object. class IsMatch { const CodeGenInstruction *EVEXInst; public: IsMatch(const CodeGenInstruction *EVEXInst) : EVEXInst(EVEXInst) {} bool operator()(const CodeGenInstruction *VEXInst) { Record *RecE = EVEXInst->TheDef; Record *RecV = VEXInst->TheDef; bool EVEX_W = RecE->getValueAsBit("HasVEX_W"); bool VEX_W = RecV->getValueAsBit("HasVEX_W"); bool VEX_WIG = RecV->getValueAsBit("IgnoresVEX_W"); bool EVEX_WIG = RecE->getValueAsBit("IgnoresVEX_W"); bool EVEX_W1_VEX_W0 = RecE->getValueAsBit("EVEX_W1_VEX_W0"); if (RecV->getValueAsDef("OpEnc")->getName().str() != "EncVEX" || RecV->getValueAsBit("isCodeGenOnly") != RecE->getValueAsBit("isCodeGenOnly") || // VEX/EVEX fields RecV->getValueAsDef("OpPrefix") != RecE->getValueAsDef("OpPrefix") || RecV->getValueAsDef("OpMap") != RecE->getValueAsDef("OpMap") || RecV->getValueAsBit("hasVEX_4V") != RecE->getValueAsBit("hasVEX_4V") || RecV->getValueAsBit("hasEVEX_L2") != RecE->getValueAsBit("hasEVEX_L2") || RecV->getValueAsBit("hasVEX_L") != RecE->getValueAsBit("hasVEX_L") || // Match is allowed if either is VEX_WIG, or they match, or EVEX // is VEX_W1X and VEX is VEX_W0. (!(VEX_WIG || (!EVEX_WIG && EVEX_W == VEX_W) || (EVEX_W1_VEX_W0 && EVEX_W && !VEX_W))) || // Instruction's format RecV->getValueAsDef("Form") != RecE->getValueAsDef("Form")) return false; // This is needed for instructions with intrinsic version (_Int). // Where the only difference is the size of the operands. // For example: VUCOMISDZrm and Int_VUCOMISDrm // Also for instructions that their EVEX version was upgraded to work with // k-registers. For example VPCMPEQBrm (xmm output register) and // VPCMPEQBZ128rm (k register output register). for (unsigned i = 0, e = EVEXInst->Operands.size(); i < e; i++) { Record *OpRec1 = EVEXInst->Operands[i].Rec; Record *OpRec2 = VEXInst->Operands[i].Rec; if (OpRec1 == OpRec2) continue; if (isRegisterOperand(OpRec1) && isRegisterOperand(OpRec2)) { if (getRegOperandSize(OpRec1) != getRegOperandSize(OpRec2)) return false; } else if (isMemoryOperand(OpRec1) && isMemoryOperand(OpRec2)) { return false; } else if (isImmediateOperand(OpRec1) && isImmediateOperand(OpRec2)) { if (OpRec1->getValueAsDef("Type") != OpRec2->getValueAsDef("Type")) { return false; } } else return false; } return true; } private: static inline bool isRegisterOperand(const Record *Rec) { return Rec->isSubClassOf("RegisterClass") || Rec->isSubClassOf("RegisterOperand"); } static inline bool isMemoryOperand(const Record *Rec) { return Rec->isSubClassOf("Operand") && Rec->getValueAsString("OperandType") == "OPERAND_MEMORY"; } static inline bool isImmediateOperand(const Record *Rec) { return Rec->isSubClassOf("Operand") && Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE"; } static inline unsigned int getRegOperandSize(const Record *RegRec) { if (RegRec->isSubClassOf("RegisterClass")) return RegRec->getValueAsInt("Alignment"); if (RegRec->isSubClassOf("RegisterOperand")) return RegRec->getValueAsDef("RegClass")->getValueAsInt("Alignment"); llvm_unreachable("Register operand's size not known!"); } }; void X86EVEX2VEXTablesEmitter::run(raw_ostream &OS) { emitSourceFileHeader("X86 EVEX2VEX tables", OS); ArrayRef NumberedInstructions = Target.getInstructionsByEnumValue(); for (const CodeGenInstruction *Inst : NumberedInstructions) { // Filter non-X86 instructions. if (!Inst->TheDef->isSubClassOf("X86Inst")) continue; // Add VEX encoded instructions to one of VEXInsts vectors according to // it's opcode. if (Inst->TheDef->getValueAsDef("OpEnc")->getName() == "EncVEX") { uint64_t Opcode = getValueFromBitsInit(Inst->TheDef-> getValueAsBitsInit("Opcode")); VEXInsts[Opcode].push_back(Inst); } // Add relevant EVEX encoded instructions to EVEXInsts else if (Inst->TheDef->getValueAsDef("OpEnc")->getName() == "EncEVEX" && !Inst->TheDef->getValueAsBit("hasEVEX_K") && !Inst->TheDef->getValueAsBit("hasEVEX_B") && !Inst->TheDef->getValueAsBit("hasEVEX_L2") && !Inst->TheDef->getValueAsBit("notEVEX2VEXConvertible")) EVEXInsts.push_back(Inst); } for (const CodeGenInstruction *EVEXInst : EVEXInsts) { uint64_t Opcode = getValueFromBitsInit(EVEXInst->TheDef-> getValueAsBitsInit("Opcode")); // For each EVEX instruction look for a VEX match in the appropriate vector // (instructions with the same opcode) using function object IsMatch. // Allow EVEX2VEXOverride to explicitly specify a match. const CodeGenInstruction *VEXInst = nullptr; if (!EVEXInst->TheDef->isValueUnset("EVEX2VEXOverride")) { StringRef AltInstStr = EVEXInst->TheDef->getValueAsString("EVEX2VEXOverride"); Record *AltInstRec = Records.getDef(AltInstStr); assert(AltInstRec && "EVEX2VEXOverride instruction not found!"); VEXInst = &Target.getInstruction(AltInstRec); } else { auto Match = llvm::find_if(VEXInsts[Opcode], IsMatch(EVEXInst)); if (Match != VEXInsts[Opcode].end()) VEXInst = *Match; } if (!VEXInst) continue; // In case a match is found add new entry to the appropriate table if (EVEXInst->TheDef->getValueAsBit("hasVEX_L")) EVEX2VEX256.push_back(std::make_pair(EVEXInst, VEXInst)); // {0,1} else EVEX2VEX128.push_back(std::make_pair(EVEXInst, VEXInst)); // {0,0} } // Print both tables printTable(EVEX2VEX128, OS); printTable(EVEX2VEX256, OS); } } namespace llvm { void EmitX86EVEX2VEXTables(RecordKeeper &RK, raw_ostream &OS) { X86EVEX2VEXTablesEmitter(RK).run(OS); } }