/* * kmp_csupport.cpp -- kfront linkage support for OpenMP. */ //===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #define __KMP_IMP #include "omp.h" /* extern "C" declarations of user-visible routines */ #include "kmp.h" #include "kmp_error.h" #include "kmp_i18n.h" #include "kmp_itt.h" #include "kmp_lock.h" #include "kmp_stats.h" #include "ompt-specific.h" #define MAX_MESSAGE 512 // flags will be used in future, e.g. to implement openmp_strict library // restrictions /*! * @ingroup STARTUP_SHUTDOWN * @param loc in source location information * @param flags in for future use (currently ignored) * * Initialize the runtime library. This call is optional; if it is not made then * it will be implicitly called by attempts to use other library functions. */ void __kmpc_begin(ident_t *loc, kmp_int32 flags) { // By default __kmpc_begin() is no-op. char *env; if ((env = getenv("KMP_INITIAL_THREAD_BIND")) != NULL && __kmp_str_match_true(env)) { __kmp_middle_initialize(); KC_TRACE(10, ("__kmpc_begin: middle initialization called\n")); } else if (__kmp_ignore_mppbeg() == FALSE) { // By default __kmp_ignore_mppbeg() returns TRUE. __kmp_internal_begin(); KC_TRACE(10, ("__kmpc_begin: called\n")); } } /*! * @ingroup STARTUP_SHUTDOWN * @param loc source location information * * Shutdown the runtime library. This is also optional, and even if called will * not do anything unless the `KMP_IGNORE_MPPEND` environment variable is set to * zero. */ void __kmpc_end(ident_t *loc) { // By default, __kmp_ignore_mppend() returns TRUE which makes __kmpc_end() // call no-op. However, this can be overridden with KMP_IGNORE_MPPEND // environment variable. If KMP_IGNORE_MPPEND is 0, __kmp_ignore_mppend() // returns FALSE and __kmpc_end() will unregister this root (it can cause // library shut down). if (__kmp_ignore_mppend() == FALSE) { KC_TRACE(10, ("__kmpc_end: called\n")); KA_TRACE(30, ("__kmpc_end\n")); __kmp_internal_end_thread(-1); } #if KMP_OS_WINDOWS && OMPT_SUPPORT // Normal exit process on Windows does not allow worker threads of the final // parallel region to finish reporting their events, so shutting down the // library here fixes the issue at least for the cases where __kmpc_end() is // placed properly. if (ompt_enabled.enabled) __kmp_internal_end_library(__kmp_gtid_get_specific()); #endif } /*! @ingroup THREAD_STATES @param loc Source location information. @return The global thread index of the active thread. This function can be called in any context. If the runtime has ony been entered at the outermost level from a single (necessarily non-OpenMP*) thread, then the thread number is that which would be returned by omp_get_thread_num() in the outermost active parallel construct. (Or zero if there is no active parallel construct, since the master thread is necessarily thread zero). If multiple non-OpenMP threads all enter an OpenMP construct then this will be a unique thread identifier among all the threads created by the OpenMP runtime (but the value cannot be defined in terms of OpenMP thread ids returned by omp_get_thread_num()). */ kmp_int32 __kmpc_global_thread_num(ident_t *loc) { kmp_int32 gtid = __kmp_entry_gtid(); KC_TRACE(10, ("__kmpc_global_thread_num: T#%d\n", gtid)); return gtid; } /*! @ingroup THREAD_STATES @param loc Source location information. @return The number of threads under control of the OpenMP* runtime This function can be called in any context. It returns the total number of threads under the control of the OpenMP runtime. That is not a number that can be determined by any OpenMP standard calls, since the library may be called from more than one non-OpenMP thread, and this reflects the total over all such calls. Similarly the runtime maintains underlying threads even when they are not active (since the cost of creating and destroying OS threads is high), this call counts all such threads even if they are not waiting for work. */ kmp_int32 __kmpc_global_num_threads(ident_t *loc) { KC_TRACE(10, ("__kmpc_global_num_threads: num_threads = %d\n", __kmp_all_nth)); return TCR_4(__kmp_all_nth); } /*! @ingroup THREAD_STATES @param loc Source location information. @return The thread number of the calling thread in the innermost active parallel construct. */ kmp_int32 __kmpc_bound_thread_num(ident_t *loc) { KC_TRACE(10, ("__kmpc_bound_thread_num: called\n")); return __kmp_tid_from_gtid(__kmp_entry_gtid()); } /*! @ingroup THREAD_STATES @param loc Source location information. @return The number of threads in the innermost active parallel construct. */ kmp_int32 __kmpc_bound_num_threads(ident_t *loc) { KC_TRACE(10, ("__kmpc_bound_num_threads: called\n")); return __kmp_entry_thread()->th.th_team->t.t_nproc; } /*! * @ingroup DEPRECATED * @param loc location description * * This function need not be called. It always returns TRUE. */ kmp_int32 __kmpc_ok_to_fork(ident_t *loc) { #ifndef KMP_DEBUG return TRUE; #else const char *semi2; const char *semi3; int line_no; if (__kmp_par_range == 0) { return TRUE; } semi2 = loc->psource; if (semi2 == NULL) { return TRUE; } semi2 = strchr(semi2, ';'); if (semi2 == NULL) { return TRUE; } semi2 = strchr(semi2 + 1, ';'); if (semi2 == NULL) { return TRUE; } if (__kmp_par_range_filename[0]) { const char *name = semi2 - 1; while ((name > loc->psource) && (*name != '/') && (*name != ';')) { name--; } if ((*name == '/') || (*name == ';')) { name++; } if (strncmp(__kmp_par_range_filename, name, semi2 - name)) { return __kmp_par_range < 0; } } semi3 = strchr(semi2 + 1, ';'); if (__kmp_par_range_routine[0]) { if ((semi3 != NULL) && (semi3 > semi2) && (strncmp(__kmp_par_range_routine, semi2 + 1, semi3 - semi2 - 1))) { return __kmp_par_range < 0; } } if (KMP_SSCANF(semi3 + 1, "%d", &line_no) == 1) { if ((line_no >= __kmp_par_range_lb) && (line_no <= __kmp_par_range_ub)) { return __kmp_par_range > 0; } return __kmp_par_range < 0; } return TRUE; #endif /* KMP_DEBUG */ } /*! @ingroup THREAD_STATES @param loc Source location information. @return 1 if this thread is executing inside an active parallel region, zero if not. */ kmp_int32 __kmpc_in_parallel(ident_t *loc) { return __kmp_entry_thread()->th.th_root->r.r_active; } /*! @ingroup PARALLEL @param loc source location information @param global_tid global thread number @param num_threads number of threads requested for this parallel construct Set the number of threads to be used by the next fork spawned by this thread. This call is only required if the parallel construct has a `num_threads` clause. */ void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_threads) { KA_TRACE(20, ("__kmpc_push_num_threads: enter T#%d num_threads=%d\n", global_tid, num_threads)); __kmp_push_num_threads(loc, global_tid, num_threads); } void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid) { KA_TRACE(20, ("__kmpc_pop_num_threads: enter\n")); /* the num_threads are automatically popped */ } void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid, kmp_int32 proc_bind) { KA_TRACE(20, ("__kmpc_push_proc_bind: enter T#%d proc_bind=%d\n", global_tid, proc_bind)); __kmp_push_proc_bind(loc, global_tid, (kmp_proc_bind_t)proc_bind); } /*! @ingroup PARALLEL @param loc source location information @param argc total number of arguments in the ellipsis @param microtask pointer to callback routine consisting of outlined parallel construct @param ... pointers to shared variables that aren't global Do the actual fork and call the microtask in the relevant number of threads. */ void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro microtask, ...) { int gtid = __kmp_entry_gtid(); #if (KMP_STATS_ENABLED) // If we were in a serial region, then stop the serial timer, record // the event, and start parallel region timer stats_state_e previous_state = KMP_GET_THREAD_STATE(); if (previous_state == stats_state_e::SERIAL_REGION) { KMP_EXCHANGE_PARTITIONED_TIMER(OMP_parallel_overhead); } else { KMP_PUSH_PARTITIONED_TIMER(OMP_parallel_overhead); } int inParallel = __kmpc_in_parallel(loc); if (inParallel) { KMP_COUNT_BLOCK(OMP_NESTED_PARALLEL); } else { KMP_COUNT_BLOCK(OMP_PARALLEL); } #endif // maybe to save thr_state is enough here { va_list ap; va_start(ap, microtask); #if OMPT_SUPPORT ompt_frame_t *ompt_frame; if (ompt_enabled.enabled) { kmp_info_t *master_th = __kmp_threads[gtid]; kmp_team_t *parent_team = master_th->th.th_team; ompt_lw_taskteam_t *lwt = parent_team->t.ompt_serialized_team_info; if (lwt) ompt_frame = &(lwt->ompt_task_info.frame); else { int tid = __kmp_tid_from_gtid(gtid); ompt_frame = &( parent_team->t.t_implicit_task_taskdata[tid].ompt_task_info.frame); } ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); OMPT_STORE_RETURN_ADDRESS(gtid); } #endif #if INCLUDE_SSC_MARKS SSC_MARK_FORKING(); #endif __kmp_fork_call(loc, gtid, fork_context_intel, argc, VOLATILE_CAST(microtask_t) microtask, // "wrapped" task VOLATILE_CAST(launch_t) __kmp_invoke_task_func, /* TODO: revert workaround for Intel(R) 64 tracker #96 */ #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX &ap #else ap #endif ); #if INCLUDE_SSC_MARKS SSC_MARK_JOINING(); #endif __kmp_join_call(loc, gtid #if OMPT_SUPPORT , fork_context_intel #endif ); va_end(ap); } #if KMP_STATS_ENABLED if (previous_state == stats_state_e::SERIAL_REGION) { KMP_EXCHANGE_PARTITIONED_TIMER(OMP_serial); } else { KMP_POP_PARTITIONED_TIMER(); } #endif // KMP_STATS_ENABLED } /*! @ingroup PARALLEL @param loc source location information @param global_tid global thread number @param num_teams number of teams requested for the teams construct @param num_threads number of threads per team requested for the teams construct Set the number of teams to be used by the teams construct. This call is only required if the teams construct has a `num_teams` clause or a `thread_limit` clause (or both). */ void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams, kmp_int32 num_threads) { KA_TRACE(20, ("__kmpc_push_num_teams: enter T#%d num_teams=%d num_threads=%d\n", global_tid, num_teams, num_threads)); __kmp_push_num_teams(loc, global_tid, num_teams, num_threads); } /*! @ingroup PARALLEL @param loc source location information @param argc total number of arguments in the ellipsis @param microtask pointer to callback routine consisting of outlined teams construct @param ... pointers to shared variables that aren't global Do the actual fork and call the microtask in the relevant number of threads. */ void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro microtask, ...) { int gtid = __kmp_entry_gtid(); kmp_info_t *this_thr = __kmp_threads[gtid]; va_list ap; va_start(ap, microtask); #if KMP_STATS_ENABLED KMP_COUNT_BLOCK(OMP_TEAMS); stats_state_e previous_state = KMP_GET_THREAD_STATE(); if (previous_state == stats_state_e::SERIAL_REGION) { KMP_EXCHANGE_PARTITIONED_TIMER(OMP_teams_overhead); } else { KMP_PUSH_PARTITIONED_TIMER(OMP_teams_overhead); } #endif // remember teams entry point and nesting level this_thr->th.th_teams_microtask = microtask; this_thr->th.th_teams_level = this_thr->th.th_team->t.t_level; // AC: can be >0 on host #if OMPT_SUPPORT kmp_team_t *parent_team = this_thr->th.th_team; int tid = __kmp_tid_from_gtid(gtid); if (ompt_enabled.enabled) { parent_team->t.t_implicit_task_taskdata[tid] .ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); } OMPT_STORE_RETURN_ADDRESS(gtid); #endif // check if __kmpc_push_num_teams called, set default number of teams // otherwise if (this_thr->th.th_teams_size.nteams == 0) { __kmp_push_num_teams(loc, gtid, 0, 0); } KMP_DEBUG_ASSERT(this_thr->th.th_set_nproc >= 1); KMP_DEBUG_ASSERT(this_thr->th.th_teams_size.nteams >= 1); KMP_DEBUG_ASSERT(this_thr->th.th_teams_size.nth >= 1); __kmp_fork_call(loc, gtid, fork_context_intel, argc, VOLATILE_CAST(microtask_t) __kmp_teams_master, // "wrapped" task VOLATILE_CAST(launch_t) __kmp_invoke_teams_master, #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX &ap #else ap #endif ); __kmp_join_call(loc, gtid #if OMPT_SUPPORT , fork_context_intel #endif ); // Pop current CG root off list KMP_DEBUG_ASSERT(this_thr->th.th_cg_roots); kmp_cg_root_t *tmp = this_thr->th.th_cg_roots; this_thr->th.th_cg_roots = tmp->up; KA_TRACE(100, ("__kmpc_fork_teams: Thread %p popping node %p and moving up" " to node %p. cg_nthreads was %d\n", this_thr, tmp, this_thr->th.th_cg_roots, tmp->cg_nthreads)); KMP_DEBUG_ASSERT(tmp->cg_nthreads); int i = tmp->cg_nthreads--; if (i == 1) { // check is we are the last thread in CG (not always the case) __kmp_free(tmp); } // Restore current task's thread_limit from CG root KMP_DEBUG_ASSERT(this_thr->th.th_cg_roots); this_thr->th.th_current_task->td_icvs.thread_limit = this_thr->th.th_cg_roots->cg_thread_limit; this_thr->th.th_teams_microtask = NULL; this_thr->th.th_teams_level = 0; *(kmp_int64 *)(&this_thr->th.th_teams_size) = 0L; va_end(ap); #if KMP_STATS_ENABLED if (previous_state == stats_state_e::SERIAL_REGION) { KMP_EXCHANGE_PARTITIONED_TIMER(OMP_serial); } else { KMP_POP_PARTITIONED_TIMER(); } #endif // KMP_STATS_ENABLED } // I don't think this function should ever have been exported. // The __kmpc_ prefix was misapplied. I'm fairly certain that no generated // openmp code ever called it, but it's been exported from the RTL for so // long that I'm afraid to remove the definition. int __kmpc_invoke_task_func(int gtid) { return __kmp_invoke_task_func(gtid); } /*! @ingroup PARALLEL @param loc source location information @param global_tid global thread number Enter a serialized parallel construct. This interface is used to handle a conditional parallel region, like this, @code #pragma omp parallel if (condition) @endcode when the condition is false. */ void __kmpc_serialized_parallel(ident_t *loc, kmp_int32 global_tid) { // The implementation is now in kmp_runtime.cpp so that it can share static // functions with kmp_fork_call since the tasks to be done are similar in // each case. #if OMPT_SUPPORT OMPT_STORE_RETURN_ADDRESS(global_tid); #endif __kmp_serialized_parallel(loc, global_tid); } /*! @ingroup PARALLEL @param loc source location information @param global_tid global thread number Leave a serialized parallel construct. */ void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32 global_tid) { kmp_internal_control_t *top; kmp_info_t *this_thr; kmp_team_t *serial_team; KC_TRACE(10, ("__kmpc_end_serialized_parallel: called by T#%d\n", global_tid)); /* skip all this code for autopar serialized loops since it results in unacceptable overhead */ if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR)) return; // Not autopar code if (!TCR_4(__kmp_init_parallel)) __kmp_parallel_initialize(); __kmp_resume_if_soft_paused(); this_thr = __kmp_threads[global_tid]; serial_team = this_thr->th.th_serial_team; kmp_task_team_t *task_team = this_thr->th.th_task_team; // we need to wait for the proxy tasks before finishing the thread if (task_team != NULL && task_team->tt.tt_found_proxy_tasks) __kmp_task_team_wait(this_thr, serial_team USE_ITT_BUILD_ARG(NULL)); KMP_MB(); KMP_DEBUG_ASSERT(serial_team); KMP_ASSERT(serial_team->t.t_serialized); KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team); KMP_DEBUG_ASSERT(serial_team != this_thr->th.th_root->r.r_root_team); KMP_DEBUG_ASSERT(serial_team->t.t_threads); KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); #if OMPT_SUPPORT if (ompt_enabled.enabled && this_thr->th.ompt_thread_info.state != ompt_state_overhead) { OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame = ompt_data_none; if (ompt_enabled.ompt_callback_implicit_task) { ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( ompt_scope_end, NULL, OMPT_CUR_TASK_DATA(this_thr), 1, OMPT_CUR_TASK_INFO(this_thr)->thread_num, ompt_task_implicit); } // reset clear the task id only after unlinking the task ompt_data_t *parent_task_data; __ompt_get_task_info_internal(1, NULL, &parent_task_data, NULL, NULL, NULL); if (ompt_enabled.ompt_callback_parallel_end) { ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( &(serial_team->t.ompt_team_info.parallel_data), parent_task_data, ompt_parallel_invoker_program | ompt_parallel_team, OMPT_LOAD_RETURN_ADDRESS(global_tid)); } __ompt_lw_taskteam_unlink(this_thr); this_thr->th.ompt_thread_info.state = ompt_state_overhead; } #endif /* If necessary, pop the internal control stack values and replace the team * values */ top = serial_team->t.t_control_stack_top; if (top && top->serial_nesting_level == serial_team->t.t_serialized) { copy_icvs(&serial_team->t.t_threads[0]->th.th_current_task->td_icvs, top); serial_team->t.t_control_stack_top = top->next; __kmp_free(top); } // if( serial_team -> t.t_serialized > 1 ) serial_team->t.t_level--; /* pop dispatch buffers stack */ KMP_DEBUG_ASSERT(serial_team->t.t_dispatch->th_disp_buffer); { dispatch_private_info_t *disp_buffer = serial_team->t.t_dispatch->th_disp_buffer; serial_team->t.t_dispatch->th_disp_buffer = serial_team->t.t_dispatch->th_disp_buffer->next; __kmp_free(disp_buffer); } this_thr->th.th_def_allocator = serial_team->t.t_def_allocator; // restore --serial_team->t.t_serialized; if (serial_team->t.t_serialized == 0) { /* return to the parallel section */ #if KMP_ARCH_X86 || KMP_ARCH_X86_64 if (__kmp_inherit_fp_control && serial_team->t.t_fp_control_saved) { __kmp_clear_x87_fpu_status_word(); __kmp_load_x87_fpu_control_word(&serial_team->t.t_x87_fpu_control_word); __kmp_load_mxcsr(&serial_team->t.t_mxcsr); } #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ this_thr->th.th_team = serial_team->t.t_parent; this_thr->th.th_info.ds.ds_tid = serial_team->t.t_master_tid; /* restore values cached in the thread */ this_thr->th.th_team_nproc = serial_team->t.t_parent->t.t_nproc; /* JPH */ this_thr->th.th_team_master = serial_team->t.t_parent->t.t_threads[0]; /* JPH */ this_thr->th.th_team_serialized = this_thr->th.th_team->t.t_serialized; /* TODO the below shouldn't need to be adjusted for serialized teams */ this_thr->th.th_dispatch = &this_thr->th.th_team->t.t_dispatch[serial_team->t.t_master_tid]; __kmp_pop_current_task_from_thread(this_thr); KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 0); this_thr->th.th_current_task->td_flags.executing = 1; if (__kmp_tasking_mode != tskm_immediate_exec) { // Copy the task team from the new child / old parent team to the thread. this_thr->th.th_task_team = this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]; KA_TRACE(20, ("__kmpc_end_serialized_parallel: T#%d restoring task_team %p / " "team %p\n", global_tid, this_thr->th.th_task_team, this_thr->th.th_team)); } } else { if (__kmp_tasking_mode != tskm_immediate_exec) { KA_TRACE(20, ("__kmpc_end_serialized_parallel: T#%d decreasing nesting " "depth of serial team %p to %d\n", global_tid, serial_team, serial_team->t.t_serialized)); } } if (__kmp_env_consistency_check) __kmp_pop_parallel(global_tid, NULL); #if OMPT_SUPPORT if (ompt_enabled.enabled) this_thr->th.ompt_thread_info.state = ((this_thr->th.th_team_serialized) ? ompt_state_work_serial : ompt_state_work_parallel); #endif } /*! @ingroup SYNCHRONIZATION @param loc source location information. Execute flush. This is implemented as a full memory fence. (Though depending on the memory ordering convention obeyed by the compiler even that may not be necessary). */ void __kmpc_flush(ident_t *loc) { KC_TRACE(10, ("__kmpc_flush: called\n")); /* need explicit __mf() here since use volatile instead in library */ KMP_MB(); /* Flush all pending memory write invalidates. */ #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) #if KMP_MIC // fence-style instructions do not exist, but lock; xaddl $0,(%rsp) can be used. // We shouldn't need it, though, since the ABI rules require that // * If the compiler generates NGO stores it also generates the fence // * If users hand-code NGO stores they should insert the fence // therefore no incomplete unordered stores should be visible. #else // C74404 // This is to address non-temporal store instructions (sfence needed). // The clflush instruction is addressed either (mfence needed). // Probably the non-temporal load monvtdqa instruction should also be // addressed. // mfence is a SSE2 instruction. Do not execute it if CPU is not SSE2. if (!__kmp_cpuinfo.initialized) { __kmp_query_cpuid(&__kmp_cpuinfo); } if (!__kmp_cpuinfo.sse2) { // CPU cannot execute SSE2 instructions. } else { #if KMP_COMPILER_ICC _mm_mfence(); #elif KMP_COMPILER_MSVC MemoryBarrier(); #else __sync_synchronize(); #endif // KMP_COMPILER_ICC } #endif // KMP_MIC #elif (KMP_ARCH_ARM || KMP_ARCH_AARCH64 || KMP_ARCH_MIPS || KMP_ARCH_MIPS64 || \ KMP_ARCH_RISCV64) // Nothing to see here move along #elif KMP_ARCH_PPC64 // Nothing needed here (we have a real MB above). #if KMP_OS_CNK // The flushing thread needs to yield here; this prevents a // busy-waiting thread from saturating the pipeline. flush is // often used in loops like this: // while (!flag) { // #pragma omp flush(flag) // } // and adding the yield here is good for at least a 10x speedup // when running >2 threads per core (on the NAS LU benchmark). __kmp_yield(); #endif #else #error Unknown or unsupported architecture #endif #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.ompt_callback_flush) { ompt_callbacks.ompt_callback(ompt_callback_flush)( __ompt_get_thread_data_internal(), OMPT_GET_RETURN_ADDRESS(0)); } #endif } /* -------------------------------------------------------------------------- */ /*! @ingroup SYNCHRONIZATION @param loc source location information @param global_tid thread id. Execute a barrier. */ void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid) { KMP_COUNT_BLOCK(OMP_BARRIER); KC_TRACE(10, ("__kmpc_barrier: called T#%d\n", global_tid)); if (!TCR_4(__kmp_init_parallel)) __kmp_parallel_initialize(); __kmp_resume_if_soft_paused(); if (__kmp_env_consistency_check) { if (loc == 0) { KMP_WARNING(ConstructIdentInvalid); // ??? What does it mean for the user? } __kmp_check_barrier(global_tid, ct_barrier, loc); } #if OMPT_SUPPORT ompt_frame_t *ompt_frame; if (ompt_enabled.enabled) { __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); if (ompt_frame->enter_frame.ptr == NULL) ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); OMPT_STORE_RETURN_ADDRESS(global_tid); } #endif __kmp_threads[global_tid]->th.th_ident = loc; // TODO: explicit barrier_wait_id: // this function is called when 'barrier' directive is present or // implicit barrier at the end of a worksharing construct. // 1) better to add a per-thread barrier counter to a thread data structure // 2) set to 0 when a new team is created // 4) no sync is required __kmp_barrier(bs_plain_barrier, global_tid, FALSE, 0, NULL, NULL); #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled) { ompt_frame->enter_frame = ompt_data_none; } #endif } /* The BARRIER for a MASTER section is always explicit */ /*! @ingroup WORK_SHARING @param loc source location information. @param global_tid global thread number . @return 1 if this thread should execute the master block, 0 otherwise. */ kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid) { int status = 0; KC_TRACE(10, ("__kmpc_master: called T#%d\n", global_tid)); if (!TCR_4(__kmp_init_parallel)) __kmp_parallel_initialize(); __kmp_resume_if_soft_paused(); if (KMP_MASTER_GTID(global_tid)) { KMP_COUNT_BLOCK(OMP_MASTER); KMP_PUSH_PARTITIONED_TIMER(OMP_master); status = 1; } #if OMPT_SUPPORT && OMPT_OPTIONAL if (status) { if (ompt_enabled.ompt_callback_master) { kmp_info_t *this_thr = __kmp_threads[global_tid]; kmp_team_t *team = this_thr->th.th_team; int tid = __kmp_tid_from_gtid(global_tid); ompt_callbacks.ompt_callback(ompt_callback_master)( ompt_scope_begin, &(team->t.ompt_team_info.parallel_data), &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data), OMPT_GET_RETURN_ADDRESS(0)); } } #endif if (__kmp_env_consistency_check) { #if KMP_USE_DYNAMIC_LOCK if (status) __kmp_push_sync(global_tid, ct_master, loc, NULL, 0); else __kmp_check_sync(global_tid, ct_master, loc, NULL, 0); #else if (status) __kmp_push_sync(global_tid, ct_master, loc, NULL); else __kmp_check_sync(global_tid, ct_master, loc, NULL); #endif } return status; } /*! @ingroup WORK_SHARING @param loc source location information. @param global_tid global thread number . Mark the end of a master region. This should only be called by the thread that executes the master region. */ void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid) { KC_TRACE(10, ("__kmpc_end_master: called T#%d\n", global_tid)); KMP_DEBUG_ASSERT(KMP_MASTER_GTID(global_tid)); KMP_POP_PARTITIONED_TIMER(); #if OMPT_SUPPORT && OMPT_OPTIONAL kmp_info_t *this_thr = __kmp_threads[global_tid]; kmp_team_t *team = this_thr->th.th_team; if (ompt_enabled.ompt_callback_master) { int tid = __kmp_tid_from_gtid(global_tid); ompt_callbacks.ompt_callback(ompt_callback_master)( ompt_scope_end, &(team->t.ompt_team_info.parallel_data), &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data), OMPT_GET_RETURN_ADDRESS(0)); } #endif if (__kmp_env_consistency_check) { if (global_tid < 0) KMP_WARNING(ThreadIdentInvalid); if (KMP_MASTER_GTID(global_tid)) __kmp_pop_sync(global_tid, ct_master, loc); } } /*! @ingroup WORK_SHARING @param loc source location information. @param gtid global thread number. Start execution of an ordered construct. */ void __kmpc_ordered(ident_t *loc, kmp_int32 gtid) { int cid = 0; kmp_info_t *th; KMP_DEBUG_ASSERT(__kmp_init_serial); KC_TRACE(10, ("__kmpc_ordered: called T#%d\n", gtid)); if (!TCR_4(__kmp_init_parallel)) __kmp_parallel_initialize(); __kmp_resume_if_soft_paused(); #if USE_ITT_BUILD __kmp_itt_ordered_prep(gtid); // TODO: ordered_wait_id #endif /* USE_ITT_BUILD */ th = __kmp_threads[gtid]; #if OMPT_SUPPORT && OMPT_OPTIONAL kmp_team_t *team; ompt_wait_id_t lck; void *codeptr_ra; if (ompt_enabled.enabled) { OMPT_STORE_RETURN_ADDRESS(gtid); team = __kmp_team_from_gtid(gtid); lck = (ompt_wait_id_t)(uintptr_t)&team->t.t_ordered.dt.t_value; /* OMPT state update */ th->th.ompt_thread_info.wait_id = lck; th->th.ompt_thread_info.state = ompt_state_wait_ordered; /* OMPT event callback */ codeptr_ra = OMPT_LOAD_RETURN_ADDRESS(gtid); if (ompt_enabled.ompt_callback_mutex_acquire) { ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( ompt_mutex_ordered, omp_lock_hint_none, kmp_mutex_impl_spin, lck, codeptr_ra); } } #endif if (th->th.th_dispatch->th_deo_fcn != 0) (*th->th.th_dispatch->th_deo_fcn)(>id, &cid, loc); else __kmp_parallel_deo(>id, &cid, loc); #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled) { /* OMPT state update */ th->th.ompt_thread_info.state = ompt_state_work_parallel; th->th.ompt_thread_info.wait_id = 0; /* OMPT event callback */ if (ompt_enabled.ompt_callback_mutex_acquired) { ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( ompt_mutex_ordered, (ompt_wait_id_t)(uintptr_t)lck, codeptr_ra); } } #endif #if USE_ITT_BUILD __kmp_itt_ordered_start(gtid); #endif /* USE_ITT_BUILD */ } /*! @ingroup WORK_SHARING @param loc source location information. @param gtid global thread number. End execution of an ordered construct. */ void __kmpc_end_ordered(ident_t *loc, kmp_int32 gtid) { int cid = 0; kmp_info_t *th; KC_TRACE(10, ("__kmpc_end_ordered: called T#%d\n", gtid)); #if USE_ITT_BUILD __kmp_itt_ordered_end(gtid); // TODO: ordered_wait_id #endif /* USE_ITT_BUILD */ th = __kmp_threads[gtid]; if (th->th.th_dispatch->th_dxo_fcn != 0) (*th->th.th_dispatch->th_dxo_fcn)(>id, &cid, loc); else __kmp_parallel_dxo(>id, &cid, loc); #if OMPT_SUPPORT && OMPT_OPTIONAL OMPT_STORE_RETURN_ADDRESS(gtid); if (ompt_enabled.ompt_callback_mutex_released) { ompt_callbacks.ompt_callback(ompt_callback_mutex_released)( ompt_mutex_ordered, (ompt_wait_id_t)(uintptr_t)&__kmp_team_from_gtid(gtid) ->t.t_ordered.dt.t_value, OMPT_LOAD_RETURN_ADDRESS(gtid)); } #endif } #if KMP_USE_DYNAMIC_LOCK static __forceinline void __kmp_init_indirect_csptr(kmp_critical_name *crit, ident_t const *loc, kmp_int32 gtid, kmp_indirect_locktag_t tag) { // Pointer to the allocated indirect lock is written to crit, while indexing // is ignored. void *idx; kmp_indirect_lock_t **lck; lck = (kmp_indirect_lock_t **)crit; kmp_indirect_lock_t *ilk = __kmp_allocate_indirect_lock(&idx, gtid, tag); KMP_I_LOCK_FUNC(ilk, init)(ilk->lock); KMP_SET_I_LOCK_LOCATION(ilk, loc); KMP_SET_I_LOCK_FLAGS(ilk, kmp_lf_critical_section); KA_TRACE(20, ("__kmp_init_indirect_csptr: initialized indirect lock #%d\n", tag)); #if USE_ITT_BUILD __kmp_itt_critical_creating(ilk->lock, loc); #endif int status = KMP_COMPARE_AND_STORE_PTR(lck, nullptr, ilk); if (status == 0) { #if USE_ITT_BUILD __kmp_itt_critical_destroyed(ilk->lock); #endif // We don't really need to destroy the unclaimed lock here since it will be // cleaned up at program exit. // KMP_D_LOCK_FUNC(&idx, destroy)((kmp_dyna_lock_t *)&idx); } KMP_DEBUG_ASSERT(*lck != NULL); } // Fast-path acquire tas lock #define KMP_ACQUIRE_TAS_LOCK(lock, gtid) \ { \ kmp_tas_lock_t *l = (kmp_tas_lock_t *)lock; \ kmp_int32 tas_free = KMP_LOCK_FREE(tas); \ kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas); \ if (KMP_ATOMIC_LD_RLX(&l->lk.poll) != tas_free || \ !__kmp_atomic_compare_store_acq(&l->lk.poll, tas_free, tas_busy)) { \ kmp_uint32 spins; \ KMP_FSYNC_PREPARE(l); \ KMP_INIT_YIELD(spins); \ kmp_backoff_t backoff = __kmp_spin_backoff_params; \ do { \ if (TCR_4(__kmp_nth) > \ (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) { \ KMP_YIELD(TRUE); \ } else { \ KMP_YIELD_SPIN(spins); \ } \ __kmp_spin_backoff(&backoff); \ } while ( \ KMP_ATOMIC_LD_RLX(&l->lk.poll) != tas_free || \ !__kmp_atomic_compare_store_acq(&l->lk.poll, tas_free, tas_busy)); \ } \ KMP_FSYNC_ACQUIRED(l); \ } // Fast-path test tas lock #define KMP_TEST_TAS_LOCK(lock, gtid, rc) \ { \ kmp_tas_lock_t *l = (kmp_tas_lock_t *)lock; \ kmp_int32 tas_free = KMP_LOCK_FREE(tas); \ kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas); \ rc = KMP_ATOMIC_LD_RLX(&l->lk.poll) == tas_free && \ __kmp_atomic_compare_store_acq(&l->lk.poll, tas_free, tas_busy); \ } // Fast-path release tas lock #define KMP_RELEASE_TAS_LOCK(lock, gtid) \ { KMP_ATOMIC_ST_REL(&((kmp_tas_lock_t *)lock)->lk.poll, KMP_LOCK_FREE(tas)); } #if KMP_USE_FUTEX #include #include #ifndef FUTEX_WAIT #define FUTEX_WAIT 0 #endif #ifndef FUTEX_WAKE #define FUTEX_WAKE 1 #endif // Fast-path acquire futex lock #define KMP_ACQUIRE_FUTEX_LOCK(lock, gtid) \ { \ kmp_futex_lock_t *ftx = (kmp_futex_lock_t *)lock; \ kmp_int32 gtid_code = (gtid + 1) << 1; \ KMP_MB(); \ KMP_FSYNC_PREPARE(ftx); \ kmp_int32 poll_val; \ while ((poll_val = KMP_COMPARE_AND_STORE_RET32( \ &(ftx->lk.poll), KMP_LOCK_FREE(futex), \ KMP_LOCK_BUSY(gtid_code, futex))) != KMP_LOCK_FREE(futex)) { \ kmp_int32 cond = KMP_LOCK_STRIP(poll_val) & 1; \ if (!cond) { \ if (!KMP_COMPARE_AND_STORE_RET32(&(ftx->lk.poll), poll_val, \ poll_val | \ KMP_LOCK_BUSY(1, futex))) { \ continue; \ } \ poll_val |= KMP_LOCK_BUSY(1, futex); \ } \ kmp_int32 rc; \ if ((rc = syscall(__NR_futex, &(ftx->lk.poll), FUTEX_WAIT, poll_val, \ NULL, NULL, 0)) != 0) { \ continue; \ } \ gtid_code |= 1; \ } \ KMP_FSYNC_ACQUIRED(ftx); \ } // Fast-path test futex lock #define KMP_TEST_FUTEX_LOCK(lock, gtid, rc) \ { \ kmp_futex_lock_t *ftx = (kmp_futex_lock_t *)lock; \ if (KMP_COMPARE_AND_STORE_ACQ32(&(ftx->lk.poll), KMP_LOCK_FREE(futex), \ KMP_LOCK_BUSY(gtid + 1 << 1, futex))) { \ KMP_FSYNC_ACQUIRED(ftx); \ rc = TRUE; \ } else { \ rc = FALSE; \ } \ } // Fast-path release futex lock #define KMP_RELEASE_FUTEX_LOCK(lock, gtid) \ { \ kmp_futex_lock_t *ftx = (kmp_futex_lock_t *)lock; \ KMP_MB(); \ KMP_FSYNC_RELEASING(ftx); \ kmp_int32 poll_val = \ KMP_XCHG_FIXED32(&(ftx->lk.poll), KMP_LOCK_FREE(futex)); \ if (KMP_LOCK_STRIP(poll_val) & 1) { \ syscall(__NR_futex, &(ftx->lk.poll), FUTEX_WAKE, \ KMP_LOCK_BUSY(1, futex), NULL, NULL, 0); \ } \ KMP_MB(); \ KMP_YIELD_OVERSUB(); \ } #endif // KMP_USE_FUTEX #else // KMP_USE_DYNAMIC_LOCK static kmp_user_lock_p __kmp_get_critical_section_ptr(kmp_critical_name *crit, ident_t const *loc, kmp_int32 gtid) { kmp_user_lock_p *lck_pp = (kmp_user_lock_p *)crit; // Because of the double-check, the following load doesn't need to be volatile kmp_user_lock_p lck = (kmp_user_lock_p)TCR_PTR(*lck_pp); if (lck == NULL) { void *idx; // Allocate & initialize the lock. // Remember alloc'ed locks in table in order to free them in __kmp_cleanup() lck = __kmp_user_lock_allocate(&idx, gtid, kmp_lf_critical_section); __kmp_init_user_lock_with_checks(lck); __kmp_set_user_lock_location(lck, loc); #if USE_ITT_BUILD __kmp_itt_critical_creating(lck); // __kmp_itt_critical_creating() should be called *before* the first usage // of underlying lock. It is the only place where we can guarantee it. There // are chances the lock will destroyed with no usage, but it is not a // problem, because this is not real event seen by user but rather setting // name for object (lock). See more details in kmp_itt.h. #endif /* USE_ITT_BUILD */ // Use a cmpxchg instruction to slam the start of the critical section with // the lock pointer. If another thread beat us to it, deallocate the lock, // and use the lock that the other thread allocated. int status = KMP_COMPARE_AND_STORE_PTR(lck_pp, 0, lck); if (status == 0) { // Deallocate the lock and reload the value. #if USE_ITT_BUILD __kmp_itt_critical_destroyed(lck); // Let ITT know the lock is destroyed and the same memory location may be reused // for another purpose. #endif /* USE_ITT_BUILD */ __kmp_destroy_user_lock_with_checks(lck); __kmp_user_lock_free(&idx, gtid, lck); lck = (kmp_user_lock_p)TCR_PTR(*lck_pp); KMP_DEBUG_ASSERT(lck != NULL); } } return lck; } #endif // KMP_USE_DYNAMIC_LOCK /*! @ingroup WORK_SHARING @param loc source location information. @param global_tid global thread number . @param crit identity of the critical section. This could be a pointer to a lock associated with the critical section, or some other suitably unique value. Enter code protected by a `critical` construct. This function blocks until the executing thread can enter the critical section. */ void __kmpc_critical(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *crit) { #if KMP_USE_DYNAMIC_LOCK #if OMPT_SUPPORT && OMPT_OPTIONAL OMPT_STORE_RETURN_ADDRESS(global_tid); #endif // OMPT_SUPPORT __kmpc_critical_with_hint(loc, global_tid, crit, omp_lock_hint_none); #else KMP_COUNT_BLOCK(OMP_CRITICAL); #if OMPT_SUPPORT && OMPT_OPTIONAL ompt_state_t prev_state = ompt_state_undefined; ompt_thread_info_t ti; #endif kmp_user_lock_p lck; KC_TRACE(10, ("__kmpc_critical: called T#%d\n", global_tid)); // TODO: add THR_OVHD_STATE KMP_PUSH_PARTITIONED_TIMER(OMP_critical_wait); KMP_CHECK_USER_LOCK_INIT(); if ((__kmp_user_lock_kind == lk_tas) && (sizeof(lck->tas.lk.poll) <= OMP_CRITICAL_SIZE)) { lck = (kmp_user_lock_p)crit; } #if KMP_USE_FUTEX else if ((__kmp_user_lock_kind == lk_futex) && (sizeof(lck->futex.lk.poll) <= OMP_CRITICAL_SIZE)) { lck = (kmp_user_lock_p)crit; } #endif else { // ticket, queuing or drdpa lck = __kmp_get_critical_section_ptr(crit, loc, global_tid); } if (__kmp_env_consistency_check) __kmp_push_sync(global_tid, ct_critical, loc, lck); // since the critical directive binds to all threads, not just the current // team we have to check this even if we are in a serialized team. // also, even if we are the uber thread, we still have to conduct the lock, // as we have to contend with sibling threads. #if USE_ITT_BUILD __kmp_itt_critical_acquiring(lck); #endif /* USE_ITT_BUILD */ #if OMPT_SUPPORT && OMPT_OPTIONAL OMPT_STORE_RETURN_ADDRESS(gtid); void *codeptr_ra = NULL; if (ompt_enabled.enabled) { ti = __kmp_threads[global_tid]->th.ompt_thread_info; /* OMPT state update */ prev_state = ti.state; ti.wait_id = (ompt_wait_id_t)(uintptr_t)lck; ti.state = ompt_state_wait_critical; /* OMPT event callback */ codeptr_ra = OMPT_LOAD_RETURN_ADDRESS(gtid); if (ompt_enabled.ompt_callback_mutex_acquire) { ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( ompt_mutex_critical, omp_lock_hint_none, __ompt_get_mutex_impl_type(), (ompt_wait_id_t)(uintptr_t)lck, codeptr_ra); } } #endif // Value of 'crit' should be good for using as a critical_id of the critical // section directive. __kmp_acquire_user_lock_with_checks(lck, global_tid); #if USE_ITT_BUILD __kmp_itt_critical_acquired(lck); #endif /* USE_ITT_BUILD */ #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled) { /* OMPT state update */ ti.state = prev_state; ti.wait_id = 0; /* OMPT event callback */ if (ompt_enabled.ompt_callback_mutex_acquired) { ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( ompt_mutex_critical, (ompt_wait_id_t)(uintptr_t)lck, codeptr_ra); } } #endif KMP_POP_PARTITIONED_TIMER(); KMP_PUSH_PARTITIONED_TIMER(OMP_critical); KA_TRACE(15, ("__kmpc_critical: done T#%d\n", global_tid)); #endif // KMP_USE_DYNAMIC_LOCK } #if KMP_USE_DYNAMIC_LOCK // Converts the given hint to an internal lock implementation static __forceinline kmp_dyna_lockseq_t __kmp_map_hint_to_lock(uintptr_t hint) { #if KMP_USE_TSX #define KMP_TSX_LOCK(seq) lockseq_##seq #else #define KMP_TSX_LOCK(seq) __kmp_user_lock_seq #endif #if KMP_ARCH_X86 || KMP_ARCH_X86_64 #define KMP_CPUINFO_RTM (__kmp_cpuinfo.rtm) #else #define KMP_CPUINFO_RTM 0 #endif // Hints that do not require further logic if (hint & kmp_lock_hint_hle) return KMP_TSX_LOCK(hle); if (hint & kmp_lock_hint_rtm) return KMP_CPUINFO_RTM ? KMP_TSX_LOCK(rtm) : __kmp_user_lock_seq; if (hint & kmp_lock_hint_adaptive) return KMP_CPUINFO_RTM ? KMP_TSX_LOCK(adaptive) : __kmp_user_lock_seq; // Rule out conflicting hints first by returning the default lock if ((hint & omp_lock_hint_contended) && (hint & omp_lock_hint_uncontended)) return __kmp_user_lock_seq; if ((hint & omp_lock_hint_speculative) && (hint & omp_lock_hint_nonspeculative)) return __kmp_user_lock_seq; // Do not even consider speculation when it appears to be contended if (hint & omp_lock_hint_contended) return lockseq_queuing; // Uncontended lock without speculation if ((hint & omp_lock_hint_uncontended) && !(hint & omp_lock_hint_speculative)) return lockseq_tas; // HLE lock for speculation if (hint & omp_lock_hint_speculative) return KMP_TSX_LOCK(hle); return __kmp_user_lock_seq; } #if OMPT_SUPPORT && OMPT_OPTIONAL #if KMP_USE_DYNAMIC_LOCK static kmp_mutex_impl_t __ompt_get_mutex_impl_type(void *user_lock, kmp_indirect_lock_t *ilock = 0) { if (user_lock) { switch (KMP_EXTRACT_D_TAG(user_lock)) { case 0: break; #if KMP_USE_FUTEX case locktag_futex: return kmp_mutex_impl_queuing; #endif case locktag_tas: return kmp_mutex_impl_spin; #if KMP_USE_TSX case locktag_hle: return kmp_mutex_impl_speculative; #endif default: return kmp_mutex_impl_none; } ilock = KMP_LOOKUP_I_LOCK(user_lock); } KMP_ASSERT(ilock); switch (ilock->type) { #if KMP_USE_TSX case locktag_adaptive: case locktag_rtm: return kmp_mutex_impl_speculative; #endif case locktag_nested_tas: return kmp_mutex_impl_spin; #if KMP_USE_FUTEX case locktag_nested_futex: #endif case locktag_ticket: case locktag_queuing: case locktag_drdpa: case locktag_nested_ticket: case locktag_nested_queuing: case locktag_nested_drdpa: return kmp_mutex_impl_queuing; default: return kmp_mutex_impl_none; } } #else // For locks without dynamic binding static kmp_mutex_impl_t __ompt_get_mutex_impl_type() { switch (__kmp_user_lock_kind) { case lk_tas: return kmp_mutex_impl_spin; #if KMP_USE_FUTEX case lk_futex: #endif case lk_ticket: case lk_queuing: case lk_drdpa: return kmp_mutex_impl_queuing; #if KMP_USE_TSX case lk_hle: case lk_rtm: case lk_adaptive: return kmp_mutex_impl_speculative; #endif default: return kmp_mutex_impl_none; } } #endif // KMP_USE_DYNAMIC_LOCK #endif // OMPT_SUPPORT && OMPT_OPTIONAL /*! @ingroup WORK_SHARING @param loc source location information. @param global_tid global thread number. @param crit identity of the critical section. This could be a pointer to a lock associated with the critical section, or some other suitably unique value. @param hint the lock hint. Enter code protected by a `critical` construct with a hint. The hint value is used to suggest a lock implementation. This function blocks until the executing thread can enter the critical section unless the hint suggests use of speculative execution and the hardware supports it. */ void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *crit, uint32_t hint) { KMP_COUNT_BLOCK(OMP_CRITICAL); kmp_user_lock_p lck; #if OMPT_SUPPORT && OMPT_OPTIONAL ompt_state_t prev_state = ompt_state_undefined; ompt_thread_info_t ti; // This is the case, if called from __kmpc_critical: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); #endif KC_TRACE(10, ("__kmpc_critical: called T#%d\n", global_tid)); kmp_dyna_lock_t *lk = (kmp_dyna_lock_t *)crit; // Check if it is initialized. KMP_PUSH_PARTITIONED_TIMER(OMP_critical_wait); if (*lk == 0) { kmp_dyna_lockseq_t lckseq = __kmp_map_hint_to_lock(hint); if (KMP_IS_D_LOCK(lckseq)) { KMP_COMPARE_AND_STORE_ACQ32((volatile kmp_int32 *)crit, 0, KMP_GET_D_TAG(lckseq)); } else { __kmp_init_indirect_csptr(crit, loc, global_tid, KMP_GET_I_TAG(lckseq)); } } // Branch for accessing the actual lock object and set operation. This // branching is inevitable since this lock initialization does not follow the // normal dispatch path (lock table is not used). if (KMP_EXTRACT_D_TAG(lk) != 0) { lck = (kmp_user_lock_p)lk; if (__kmp_env_consistency_check) { __kmp_push_sync(global_tid, ct_critical, loc, lck, __kmp_map_hint_to_lock(hint)); } #if USE_ITT_BUILD __kmp_itt_critical_acquiring(lck); #endif #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled) { ti = __kmp_threads[global_tid]->th.ompt_thread_info; /* OMPT state update */ prev_state = ti.state; ti.wait_id = (ompt_wait_id_t)(uintptr_t)lck; ti.state = ompt_state_wait_critical; /* OMPT event callback */ if (ompt_enabled.ompt_callback_mutex_acquire) { ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( ompt_mutex_critical, (unsigned int)hint, __ompt_get_mutex_impl_type(crit), (ompt_wait_id_t)(uintptr_t)lck, codeptr); } } #endif #if KMP_USE_INLINED_TAS if (__kmp_user_lock_seq == lockseq_tas && !__kmp_env_consistency_check) { KMP_ACQUIRE_TAS_LOCK(lck, global_tid); } else #elif KMP_USE_INLINED_FUTEX if (__kmp_user_lock_seq == lockseq_futex && !__kmp_env_consistency_check) { KMP_ACQUIRE_FUTEX_LOCK(lck, global_tid); } else #endif { KMP_D_LOCK_FUNC(lk, set)(lk, global_tid); } } else { kmp_indirect_lock_t *ilk = *((kmp_indirect_lock_t **)lk); lck = ilk->lock; if (__kmp_env_consistency_check) { __kmp_push_sync(global_tid, ct_critical, loc, lck, __kmp_map_hint_to_lock(hint)); } #if USE_ITT_BUILD __kmp_itt_critical_acquiring(lck); #endif #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled) { ti = __kmp_threads[global_tid]->th.ompt_thread_info; /* OMPT state update */ prev_state = ti.state; ti.wait_id = (ompt_wait_id_t)(uintptr_t)lck; ti.state = ompt_state_wait_critical; /* OMPT event callback */ if (ompt_enabled.ompt_callback_mutex_acquire) { ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( ompt_mutex_critical, (unsigned int)hint, __ompt_get_mutex_impl_type(0, ilk), (ompt_wait_id_t)(uintptr_t)lck, codeptr); } } #endif KMP_I_LOCK_FUNC(ilk, set)(lck, global_tid); } KMP_POP_PARTITIONED_TIMER(); #if USE_ITT_BUILD __kmp_itt_critical_acquired(lck); #endif /* USE_ITT_BUILD */ #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled) { /* OMPT state update */ ti.state = prev_state; ti.wait_id = 0; /* OMPT event callback */ if (ompt_enabled.ompt_callback_mutex_acquired) { ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( ompt_mutex_critical, (ompt_wait_id_t)(uintptr_t)lck, codeptr); } } #endif KMP_PUSH_PARTITIONED_TIMER(OMP_critical); KA_TRACE(15, ("__kmpc_critical: done T#%d\n", global_tid)); } // __kmpc_critical_with_hint #endif // KMP_USE_DYNAMIC_LOCK /*! @ingroup WORK_SHARING @param loc source location information. @param global_tid global thread number . @param crit identity of the critical section. This could be a pointer to a lock associated with the critical section, or some other suitably unique value. Leave a critical section, releasing any lock that was held during its execution. */ void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *crit) { kmp_user_lock_p lck; KC_TRACE(10, ("__kmpc_end_critical: called T#%d\n", global_tid)); #if KMP_USE_DYNAMIC_LOCK if (KMP_IS_D_LOCK(__kmp_user_lock_seq)) { lck = (kmp_user_lock_p)crit; KMP_ASSERT(lck != NULL); if (__kmp_env_consistency_check) { __kmp_pop_sync(global_tid, ct_critical, loc); } #if USE_ITT_BUILD __kmp_itt_critical_releasing(lck); #endif #if KMP_USE_INLINED_TAS if (__kmp_user_lock_seq == lockseq_tas && !__kmp_env_consistency_check) { KMP_RELEASE_TAS_LOCK(lck, global_tid); } else #elif KMP_USE_INLINED_FUTEX if (__kmp_user_lock_seq == lockseq_futex && !__kmp_env_consistency_check) { KMP_RELEASE_FUTEX_LOCK(lck, global_tid); } else #endif { KMP_D_LOCK_FUNC(lck, unset)((kmp_dyna_lock_t *)lck, global_tid); } } else { kmp_indirect_lock_t *ilk = (kmp_indirect_lock_t *)TCR_PTR(*((kmp_indirect_lock_t **)crit)); KMP_ASSERT(ilk != NULL); lck = ilk->lock; if (__kmp_env_consistency_check) { __kmp_pop_sync(global_tid, ct_critical, loc); } #if USE_ITT_BUILD __kmp_itt_critical_releasing(lck); #endif KMP_I_LOCK_FUNC(ilk, unset)(lck, global_tid); } #else // KMP_USE_DYNAMIC_LOCK if ((__kmp_user_lock_kind == lk_tas) && (sizeof(lck->tas.lk.poll) <= OMP_CRITICAL_SIZE)) { lck = (kmp_user_lock_p)crit; } #if KMP_USE_FUTEX else if ((__kmp_user_lock_kind == lk_futex) && (sizeof(lck->futex.lk.poll) <= OMP_CRITICAL_SIZE)) { lck = (kmp_user_lock_p)crit; } #endif else { // ticket, queuing or drdpa lck = (kmp_user_lock_p)TCR_PTR(*((kmp_user_lock_p *)crit)); } KMP_ASSERT(lck != NULL); if (__kmp_env_consistency_check) __kmp_pop_sync(global_tid, ct_critical, loc); #if USE_ITT_BUILD __kmp_itt_critical_releasing(lck); #endif /* USE_ITT_BUILD */ // Value of 'crit' should be good for using as a critical_id of the critical // section directive. __kmp_release_user_lock_with_checks(lck, global_tid); #endif // KMP_USE_DYNAMIC_LOCK #if OMPT_SUPPORT && OMPT_OPTIONAL /* OMPT release event triggers after lock is released; place here to trigger * for all #if branches */ OMPT_STORE_RETURN_ADDRESS(global_tid); if (ompt_enabled.ompt_callback_mutex_released) { ompt_callbacks.ompt_callback(ompt_callback_mutex_released)( ompt_mutex_critical, (ompt_wait_id_t)(uintptr_t)lck, OMPT_LOAD_RETURN_ADDRESS(0)); } #endif KMP_POP_PARTITIONED_TIMER(); KA_TRACE(15, ("__kmpc_end_critical: done T#%d\n", global_tid)); } /*! @ingroup SYNCHRONIZATION @param loc source location information @param global_tid thread id. @return one if the thread should execute the master block, zero otherwise Start execution of a combined barrier and master. The barrier is executed inside this function. */ kmp_int32 __kmpc_barrier_master(ident_t *loc, kmp_int32 global_tid) { int status; KC_TRACE(10, ("__kmpc_barrier_master: called T#%d\n", global_tid)); if (!TCR_4(__kmp_init_parallel)) __kmp_parallel_initialize(); __kmp_resume_if_soft_paused(); if (__kmp_env_consistency_check) __kmp_check_barrier(global_tid, ct_barrier, loc); #if OMPT_SUPPORT ompt_frame_t *ompt_frame; if (ompt_enabled.enabled) { __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); if (ompt_frame->enter_frame.ptr == NULL) ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); OMPT_STORE_RETURN_ADDRESS(global_tid); } #endif #if USE_ITT_NOTIFY __kmp_threads[global_tid]->th.th_ident = loc; #endif status = __kmp_barrier(bs_plain_barrier, global_tid, TRUE, 0, NULL, NULL); #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled) { ompt_frame->enter_frame = ompt_data_none; } #endif return (status != 0) ? 0 : 1; } /*! @ingroup SYNCHRONIZATION @param loc source location information @param global_tid thread id. Complete the execution of a combined barrier and master. This function should only be called at the completion of the master code. Other threads will still be waiting at the barrier and this call releases them. */ void __kmpc_end_barrier_master(ident_t *loc, kmp_int32 global_tid) { KC_TRACE(10, ("__kmpc_end_barrier_master: called T#%d\n", global_tid)); __kmp_end_split_barrier(bs_plain_barrier, global_tid); } /*! @ingroup SYNCHRONIZATION @param loc source location information @param global_tid thread id. @return one if the thread should execute the master block, zero otherwise Start execution of a combined barrier and master(nowait) construct. The barrier is executed inside this function. There is no equivalent "end" function, since the */ kmp_int32 __kmpc_barrier_master_nowait(ident_t *loc, kmp_int32 global_tid) { kmp_int32 ret; KC_TRACE(10, ("__kmpc_barrier_master_nowait: called T#%d\n", global_tid)); if (!TCR_4(__kmp_init_parallel)) __kmp_parallel_initialize(); __kmp_resume_if_soft_paused(); if (__kmp_env_consistency_check) { if (loc == 0) { KMP_WARNING(ConstructIdentInvalid); // ??? What does it mean for the user? } __kmp_check_barrier(global_tid, ct_barrier, loc); } #if OMPT_SUPPORT ompt_frame_t *ompt_frame; if (ompt_enabled.enabled) { __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); if (ompt_frame->enter_frame.ptr == NULL) ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); OMPT_STORE_RETURN_ADDRESS(global_tid); } #endif #if USE_ITT_NOTIFY __kmp_threads[global_tid]->th.th_ident = loc; #endif __kmp_barrier(bs_plain_barrier, global_tid, FALSE, 0, NULL, NULL); #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled) { ompt_frame->enter_frame = ompt_data_none; } #endif ret = __kmpc_master(loc, global_tid); if (__kmp_env_consistency_check) { /* there's no __kmpc_end_master called; so the (stats) */ /* actions of __kmpc_end_master are done here */ if (global_tid < 0) { KMP_WARNING(ThreadIdentInvalid); } if (ret) { /* only one thread should do the pop since only */ /* one did the push (see __kmpc_master()) */ __kmp_pop_sync(global_tid, ct_master, loc); } } return (ret); } /* The BARRIER for a SINGLE process section is always explicit */ /*! @ingroup WORK_SHARING @param loc source location information @param global_tid global thread number @return One if this thread should execute the single construct, zero otherwise. Test whether to execute a single construct. There are no implicit barriers in the two "single" calls, rather the compiler should introduce an explicit barrier if it is required. */ kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid) { kmp_int32 rc = __kmp_enter_single(global_tid, loc, TRUE); if (rc) { // We are going to execute the single statement, so we should count it. KMP_COUNT_BLOCK(OMP_SINGLE); KMP_PUSH_PARTITIONED_TIMER(OMP_single); } #if OMPT_SUPPORT && OMPT_OPTIONAL kmp_info_t *this_thr = __kmp_threads[global_tid]; kmp_team_t *team = this_thr->th.th_team; int tid = __kmp_tid_from_gtid(global_tid); if (ompt_enabled.enabled) { if (rc) { if (ompt_enabled.ompt_callback_work) { ompt_callbacks.ompt_callback(ompt_callback_work)( ompt_work_single_executor, ompt_scope_begin, &(team->t.ompt_team_info.parallel_data), &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data), 1, OMPT_GET_RETURN_ADDRESS(0)); } } else { if (ompt_enabled.ompt_callback_work) { ompt_callbacks.ompt_callback(ompt_callback_work)( ompt_work_single_other, ompt_scope_begin, &(team->t.ompt_team_info.parallel_data), &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data), 1, OMPT_GET_RETURN_ADDRESS(0)); ompt_callbacks.ompt_callback(ompt_callback_work)( ompt_work_single_other, ompt_scope_end, &(team->t.ompt_team_info.parallel_data), &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data), 1, OMPT_GET_RETURN_ADDRESS(0)); } } } #endif return rc; } /*! @ingroup WORK_SHARING @param loc source location information @param global_tid global thread number Mark the end of a single construct. This function should only be called by the thread that executed the block of code protected by the `single` construct. */ void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid) { __kmp_exit_single(global_tid); KMP_POP_PARTITIONED_TIMER(); #if OMPT_SUPPORT && OMPT_OPTIONAL kmp_info_t *this_thr = __kmp_threads[global_tid]; kmp_team_t *team = this_thr->th.th_team; int tid = __kmp_tid_from_gtid(global_tid); if (ompt_enabled.ompt_callback_work) { ompt_callbacks.ompt_callback(ompt_callback_work)( ompt_work_single_executor, ompt_scope_end, &(team->t.ompt_team_info.parallel_data), &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data), 1, OMPT_GET_RETURN_ADDRESS(0)); } #endif } /*! @ingroup WORK_SHARING @param loc Source location @param global_tid Global thread id Mark the end of a statically scheduled loop. */ void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid) { KMP_POP_PARTITIONED_TIMER(); KE_TRACE(10, ("__kmpc_for_static_fini called T#%d\n", global_tid)); #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.ompt_callback_work) { ompt_work_t ompt_work_type = ompt_work_loop; ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL); ompt_task_info_t *task_info = __ompt_get_task_info_object(0); // Determine workshare type if (loc != NULL) { if ((loc->flags & KMP_IDENT_WORK_LOOP) != 0) { ompt_work_type = ompt_work_loop; } else if ((loc->flags & KMP_IDENT_WORK_SECTIONS) != 0) { ompt_work_type = ompt_work_sections; } else if ((loc->flags & KMP_IDENT_WORK_DISTRIBUTE) != 0) { ompt_work_type = ompt_work_distribute; } else { // use default set above. // a warning about this case is provided in __kmpc_for_static_init } KMP_DEBUG_ASSERT(ompt_work_type); } ompt_callbacks.ompt_callback(ompt_callback_work)( ompt_work_type, ompt_scope_end, &(team_info->parallel_data), &(task_info->task_data), 0, OMPT_GET_RETURN_ADDRESS(0)); } #endif if (__kmp_env_consistency_check) __kmp_pop_workshare(global_tid, ct_pdo, loc); } // User routines which take C-style arguments (call by value) // different from the Fortran equivalent routines void ompc_set_num_threads(int arg) { // !!!!! TODO: check the per-task binding __kmp_set_num_threads(arg, __kmp_entry_gtid()); } void ompc_set_dynamic(int flag) { kmp_info_t *thread; /* For the thread-private implementation of the internal controls */ thread = __kmp_entry_thread(); __kmp_save_internal_controls(thread); set__dynamic(thread, flag ? TRUE : FALSE); } void ompc_set_nested(int flag) { kmp_info_t *thread; /* For the thread-private internal controls implementation */ thread = __kmp_entry_thread(); __kmp_save_internal_controls(thread); set__max_active_levels(thread, flag ? __kmp_dflt_max_active_levels : 1); } void ompc_set_max_active_levels(int max_active_levels) { /* TO DO */ /* we want per-task implementation of this internal control */ /* For the per-thread internal controls implementation */ __kmp_set_max_active_levels(__kmp_entry_gtid(), max_active_levels); } void ompc_set_schedule(omp_sched_t kind, int modifier) { // !!!!! TODO: check the per-task binding __kmp_set_schedule(__kmp_entry_gtid(), (kmp_sched_t)kind, modifier); } int ompc_get_ancestor_thread_num(int level) { return __kmp_get_ancestor_thread_num(__kmp_entry_gtid(), level); } int ompc_get_team_size(int level) { return __kmp_get_team_size(__kmp_entry_gtid(), level); } /* OpenMP 5.0 Affinity Format API */ void ompc_set_affinity_format(char const *format) { if (!__kmp_init_serial) { __kmp_serial_initialize(); } __kmp_strncpy_truncate(__kmp_affinity_format, KMP_AFFINITY_FORMAT_SIZE, format, KMP_STRLEN(format) + 1); } size_t ompc_get_affinity_format(char *buffer, size_t size) { size_t format_size; if (!__kmp_init_serial) { __kmp_serial_initialize(); } format_size = KMP_STRLEN(__kmp_affinity_format); if (buffer && size) { __kmp_strncpy_truncate(buffer, size, __kmp_affinity_format, format_size + 1); } return format_size; } void ompc_display_affinity(char const *format) { int gtid; if (!TCR_4(__kmp_init_middle)) { __kmp_middle_initialize(); } gtid = __kmp_get_gtid(); __kmp_aux_display_affinity(gtid, format); } size_t ompc_capture_affinity(char *buffer, size_t buf_size, char const *format) { int gtid; size_t num_required; kmp_str_buf_t capture_buf; if (!TCR_4(__kmp_init_middle)) { __kmp_middle_initialize(); } gtid = __kmp_get_gtid(); __kmp_str_buf_init(&capture_buf); num_required = __kmp_aux_capture_affinity(gtid, format, &capture_buf); if (buffer && buf_size) { __kmp_strncpy_truncate(buffer, buf_size, capture_buf.str, capture_buf.used + 1); } __kmp_str_buf_free(&capture_buf); return num_required; } void kmpc_set_stacksize(int arg) { // __kmp_aux_set_stacksize initializes the library if needed __kmp_aux_set_stacksize(arg); } void kmpc_set_stacksize_s(size_t arg) { // __kmp_aux_set_stacksize initializes the library if needed __kmp_aux_set_stacksize(arg); } void kmpc_set_blocktime(int arg) { int gtid, tid; kmp_info_t *thread; gtid = __kmp_entry_gtid(); tid = __kmp_tid_from_gtid(gtid); thread = __kmp_thread_from_gtid(gtid); __kmp_aux_set_blocktime(arg, thread, tid); } void kmpc_set_library(int arg) { // __kmp_user_set_library initializes the library if needed __kmp_user_set_library((enum library_type)arg); } void kmpc_set_defaults(char const *str) { // __kmp_aux_set_defaults initializes the library if needed __kmp_aux_set_defaults(str, KMP_STRLEN(str)); } void kmpc_set_disp_num_buffers(int arg) { // ignore after initialization because some teams have already // allocated dispatch buffers if (__kmp_init_serial == 0 && arg > 0) __kmp_dispatch_num_buffers = arg; } int kmpc_set_affinity_mask_proc(int proc, void **mask) { #if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED return -1; #else if (!TCR_4(__kmp_init_middle)) { __kmp_middle_initialize(); } return __kmp_aux_set_affinity_mask_proc(proc, mask); #endif } int kmpc_unset_affinity_mask_proc(int proc, void **mask) { #if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED return -1; #else if (!TCR_4(__kmp_init_middle)) { __kmp_middle_initialize(); } return __kmp_aux_unset_affinity_mask_proc(proc, mask); #endif } int kmpc_get_affinity_mask_proc(int proc, void **mask) { #if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED return -1; #else if (!TCR_4(__kmp_init_middle)) { __kmp_middle_initialize(); } return __kmp_aux_get_affinity_mask_proc(proc, mask); #endif } /* -------------------------------------------------------------------------- */ /*! @ingroup THREADPRIVATE @param loc source location information @param gtid global thread number @param cpy_size size of the cpy_data buffer @param cpy_data pointer to data to be copied @param cpy_func helper function to call for copying data @param didit flag variable: 1=single thread; 0=not single thread __kmpc_copyprivate implements the interface for the private data broadcast needed for the copyprivate clause associated with a single region in an OpenMP* program (both C and Fortran). All threads participating in the parallel region call this routine. One of the threads (called the single thread) should have the didit variable set to 1 and all other threads should have that variable set to 0. All threads pass a pointer to a data buffer (cpy_data) that they have built. The OpenMP specification forbids the use of nowait on the single region when a copyprivate clause is present. However, @ref __kmpc_copyprivate implements a barrier internally to avoid race conditions, so the code generation for the single region should avoid generating a barrier after the call to @ref __kmpc_copyprivate. The gtid parameter is the global thread id for the current thread. The loc parameter is a pointer to source location information. Internal implementation: The single thread will first copy its descriptor address (cpy_data) to a team-private location, then the other threads will each call the function pointed to by the parameter cpy_func, which carries out the copy by copying the data using the cpy_data buffer. The cpy_func routine used for the copy and the contents of the data area defined by cpy_data and cpy_size may be built in any fashion that will allow the copy to be done. For instance, the cpy_data buffer can hold the actual data to be copied or it may hold a list of pointers to the data. The cpy_func routine must interpret the cpy_data buffer appropriately. The interface to cpy_func is as follows: @code void cpy_func( void *destination, void *source ) @endcode where void *destination is the cpy_data pointer for the thread being copied to and void *source is the cpy_data pointer for the thread being copied from. */ void __kmpc_copyprivate(ident_t *loc, kmp_int32 gtid, size_t cpy_size, void *cpy_data, void (*cpy_func)(void *, void *), kmp_int32 didit) { void **data_ptr; KC_TRACE(10, ("__kmpc_copyprivate: called T#%d\n", gtid)); KMP_MB(); data_ptr = &__kmp_team_from_gtid(gtid)->t.t_copypriv_data; if (__kmp_env_consistency_check) { if (loc == 0) { KMP_WARNING(ConstructIdentInvalid); } } // ToDo: Optimize the following two barriers into some kind of split barrier if (didit) *data_ptr = cpy_data; #if OMPT_SUPPORT ompt_frame_t *ompt_frame; if (ompt_enabled.enabled) { __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); if (ompt_frame->enter_frame.ptr == NULL) ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); OMPT_STORE_RETURN_ADDRESS(gtid); } #endif /* This barrier is not a barrier region boundary */ #if USE_ITT_NOTIFY __kmp_threads[gtid]->th.th_ident = loc; #endif __kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL); if (!didit) (*cpy_func)(cpy_data, *data_ptr); // Consider next barrier a user-visible barrier for barrier region boundaries // Nesting checks are already handled by the single construct checks #if OMPT_SUPPORT if (ompt_enabled.enabled) { OMPT_STORE_RETURN_ADDRESS(gtid); } #endif #if USE_ITT_NOTIFY __kmp_threads[gtid]->th.th_ident = loc; // TODO: check if it is needed (e.g. // tasks can overwrite the location) #endif __kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL); #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled) { ompt_frame->enter_frame = ompt_data_none; } #endif } /* -------------------------------------------------------------------------- */ #define INIT_LOCK __kmp_init_user_lock_with_checks #define INIT_NESTED_LOCK __kmp_init_nested_user_lock_with_checks #define ACQUIRE_LOCK __kmp_acquire_user_lock_with_checks #define ACQUIRE_LOCK_TIMED __kmp_acquire_user_lock_with_checks_timed #define ACQUIRE_NESTED_LOCK __kmp_acquire_nested_user_lock_with_checks #define ACQUIRE_NESTED_LOCK_TIMED \ __kmp_acquire_nested_user_lock_with_checks_timed #define RELEASE_LOCK __kmp_release_user_lock_with_checks #define RELEASE_NESTED_LOCK __kmp_release_nested_user_lock_with_checks #define TEST_LOCK __kmp_test_user_lock_with_checks #define TEST_NESTED_LOCK __kmp_test_nested_user_lock_with_checks #define DESTROY_LOCK __kmp_destroy_user_lock_with_checks #define DESTROY_NESTED_LOCK __kmp_destroy_nested_user_lock_with_checks // TODO: Make check abort messages use location info & pass it into // with_checks routines #if KMP_USE_DYNAMIC_LOCK // internal lock initializer static __forceinline void __kmp_init_lock_with_hint(ident_t *loc, void **lock, kmp_dyna_lockseq_t seq) { if (KMP_IS_D_LOCK(seq)) { KMP_INIT_D_LOCK(lock, seq); #if USE_ITT_BUILD __kmp_itt_lock_creating((kmp_user_lock_p)lock, NULL); #endif } else { KMP_INIT_I_LOCK(lock, seq); #if USE_ITT_BUILD kmp_indirect_lock_t *ilk = KMP_LOOKUP_I_LOCK(lock); __kmp_itt_lock_creating(ilk->lock, loc); #endif } } // internal nest lock initializer static __forceinline void __kmp_init_nest_lock_with_hint(ident_t *loc, void **lock, kmp_dyna_lockseq_t seq) { #if KMP_USE_TSX // Don't have nested lock implementation for speculative locks if (seq == lockseq_hle || seq == lockseq_rtm || seq == lockseq_adaptive) seq = __kmp_user_lock_seq; #endif switch (seq) { case lockseq_tas: seq = lockseq_nested_tas; break; #if KMP_USE_FUTEX case lockseq_futex: seq = lockseq_nested_futex; break; #endif case lockseq_ticket: seq = lockseq_nested_ticket; break; case lockseq_queuing: seq = lockseq_nested_queuing; break; case lockseq_drdpa: seq = lockseq_nested_drdpa; break; default: seq = lockseq_nested_queuing; } KMP_INIT_I_LOCK(lock, seq); #if USE_ITT_BUILD kmp_indirect_lock_t *ilk = KMP_LOOKUP_I_LOCK(lock); __kmp_itt_lock_creating(ilk->lock, loc); #endif } /* initialize the lock with a hint */ void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid, void **user_lock, uintptr_t hint) { KMP_DEBUG_ASSERT(__kmp_init_serial); if (__kmp_env_consistency_check && user_lock == NULL) { KMP_FATAL(LockIsUninitialized, "omp_init_lock_with_hint"); } __kmp_init_lock_with_hint(loc, user_lock, __kmp_map_hint_to_lock(hint)); #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.ompt_callback_lock_init) { ompt_callbacks.ompt_callback(ompt_callback_lock_init)( ompt_mutex_lock, (omp_lock_hint_t)hint, __ompt_get_mutex_impl_type(user_lock), (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } #endif } /* initialize the lock with a hint */ void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid, void **user_lock, uintptr_t hint) { KMP_DEBUG_ASSERT(__kmp_init_serial); if (__kmp_env_consistency_check && user_lock == NULL) { KMP_FATAL(LockIsUninitialized, "omp_init_nest_lock_with_hint"); } __kmp_init_nest_lock_with_hint(loc, user_lock, __kmp_map_hint_to_lock(hint)); #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.ompt_callback_lock_init) { ompt_callbacks.ompt_callback(ompt_callback_lock_init)( ompt_mutex_nest_lock, (omp_lock_hint_t)hint, __ompt_get_mutex_impl_type(user_lock), (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } #endif } #endif // KMP_USE_DYNAMIC_LOCK /* initialize the lock */ void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) { #if KMP_USE_DYNAMIC_LOCK KMP_DEBUG_ASSERT(__kmp_init_serial); if (__kmp_env_consistency_check && user_lock == NULL) { KMP_FATAL(LockIsUninitialized, "omp_init_lock"); } __kmp_init_lock_with_hint(loc, user_lock, __kmp_user_lock_seq); #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.ompt_callback_lock_init) { ompt_callbacks.ompt_callback(ompt_callback_lock_init)( ompt_mutex_lock, omp_lock_hint_none, __ompt_get_mutex_impl_type(user_lock), (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } #endif #else // KMP_USE_DYNAMIC_LOCK static char const *const func = "omp_init_lock"; kmp_user_lock_p lck; KMP_DEBUG_ASSERT(__kmp_init_serial); if (__kmp_env_consistency_check) { if (user_lock == NULL) { KMP_FATAL(LockIsUninitialized, func); } } KMP_CHECK_USER_LOCK_INIT(); if ((__kmp_user_lock_kind == lk_tas) && (sizeof(lck->tas.lk.poll) <= OMP_LOCK_T_SIZE)) { lck = (kmp_user_lock_p)user_lock; } #if KMP_USE_FUTEX else if ((__kmp_user_lock_kind == lk_futex) && (sizeof(lck->futex.lk.poll) <= OMP_LOCK_T_SIZE)) { lck = (kmp_user_lock_p)user_lock; } #endif else { lck = __kmp_user_lock_allocate(user_lock, gtid, 0); } INIT_LOCK(lck); __kmp_set_user_lock_location(lck, loc); #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.ompt_callback_lock_init) { ompt_callbacks.ompt_callback(ompt_callback_lock_init)( ompt_mutex_lock, omp_lock_hint_none, __ompt_get_mutex_impl_type(), (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } #endif #if USE_ITT_BUILD __kmp_itt_lock_creating(lck); #endif /* USE_ITT_BUILD */ #endif // KMP_USE_DYNAMIC_LOCK } // __kmpc_init_lock /* initialize the lock */ void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) { #if KMP_USE_DYNAMIC_LOCK KMP_DEBUG_ASSERT(__kmp_init_serial); if (__kmp_env_consistency_check && user_lock == NULL) { KMP_FATAL(LockIsUninitialized, "omp_init_nest_lock"); } __kmp_init_nest_lock_with_hint(loc, user_lock, __kmp_user_lock_seq); #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.ompt_callback_lock_init) { ompt_callbacks.ompt_callback(ompt_callback_lock_init)( ompt_mutex_nest_lock, omp_lock_hint_none, __ompt_get_mutex_impl_type(user_lock), (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } #endif #else // KMP_USE_DYNAMIC_LOCK static char const *const func = "omp_init_nest_lock"; kmp_user_lock_p lck; KMP_DEBUG_ASSERT(__kmp_init_serial); if (__kmp_env_consistency_check) { if (user_lock == NULL) { KMP_FATAL(LockIsUninitialized, func); } } KMP_CHECK_USER_LOCK_INIT(); if ((__kmp_user_lock_kind == lk_tas) && (sizeof(lck->tas.lk.poll) + sizeof(lck->tas.lk.depth_locked) <= OMP_NEST_LOCK_T_SIZE)) { lck = (kmp_user_lock_p)user_lock; } #if KMP_USE_FUTEX else if ((__kmp_user_lock_kind == lk_futex) && (sizeof(lck->futex.lk.poll) + sizeof(lck->futex.lk.depth_locked) <= OMP_NEST_LOCK_T_SIZE)) { lck = (kmp_user_lock_p)user_lock; } #endif else { lck = __kmp_user_lock_allocate(user_lock, gtid, 0); } INIT_NESTED_LOCK(lck); __kmp_set_user_lock_location(lck, loc); #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.ompt_callback_lock_init) { ompt_callbacks.ompt_callback(ompt_callback_lock_init)( ompt_mutex_nest_lock, omp_lock_hint_none, __ompt_get_mutex_impl_type(), (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } #endif #if USE_ITT_BUILD __kmp_itt_lock_creating(lck); #endif /* USE_ITT_BUILD */ #endif // KMP_USE_DYNAMIC_LOCK } // __kmpc_init_nest_lock void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) { #if KMP_USE_DYNAMIC_LOCK #if USE_ITT_BUILD kmp_user_lock_p lck; if (KMP_EXTRACT_D_TAG(user_lock) == 0) { lck = ((kmp_indirect_lock_t *)KMP_LOOKUP_I_LOCK(user_lock))->lock; } else { lck = (kmp_user_lock_p)user_lock; } __kmp_itt_lock_destroyed(lck); #endif #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.ompt_callback_lock_destroy) { kmp_user_lock_p lck; if (KMP_EXTRACT_D_TAG(user_lock) == 0) { lck = ((kmp_indirect_lock_t *)KMP_LOOKUP_I_LOCK(user_lock))->lock; } else { lck = (kmp_user_lock_p)user_lock; } ompt_callbacks.ompt_callback(ompt_callback_lock_destroy)( ompt_mutex_lock, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } #endif KMP_D_LOCK_FUNC(user_lock, destroy)((kmp_dyna_lock_t *)user_lock); #else kmp_user_lock_p lck; if ((__kmp_user_lock_kind == lk_tas) && (sizeof(lck->tas.lk.poll) <= OMP_LOCK_T_SIZE)) { lck = (kmp_user_lock_p)user_lock; } #if KMP_USE_FUTEX else if ((__kmp_user_lock_kind == lk_futex) && (sizeof(lck->futex.lk.poll) <= OMP_LOCK_T_SIZE)) { lck = (kmp_user_lock_p)user_lock; } #endif else { lck = __kmp_lookup_user_lock(user_lock, "omp_destroy_lock"); } #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.ompt_callback_lock_destroy) { ompt_callbacks.ompt_callback(ompt_callback_lock_destroy)( ompt_mutex_lock, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } #endif #if USE_ITT_BUILD __kmp_itt_lock_destroyed(lck); #endif /* USE_ITT_BUILD */ DESTROY_LOCK(lck); if ((__kmp_user_lock_kind == lk_tas) && (sizeof(lck->tas.lk.poll) <= OMP_LOCK_T_SIZE)) { ; } #if KMP_USE_FUTEX else if ((__kmp_user_lock_kind == lk_futex) && (sizeof(lck->futex.lk.poll) <= OMP_LOCK_T_SIZE)) { ; } #endif else { __kmp_user_lock_free(user_lock, gtid, lck); } #endif // KMP_USE_DYNAMIC_LOCK } // __kmpc_destroy_lock /* destroy the lock */ void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) { #if KMP_USE_DYNAMIC_LOCK #if USE_ITT_BUILD kmp_indirect_lock_t *ilk = KMP_LOOKUP_I_LOCK(user_lock); __kmp_itt_lock_destroyed(ilk->lock); #endif #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.ompt_callback_lock_destroy) { ompt_callbacks.ompt_callback(ompt_callback_lock_destroy)( ompt_mutex_nest_lock, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } #endif KMP_D_LOCK_FUNC(user_lock, destroy)((kmp_dyna_lock_t *)user_lock); #else // KMP_USE_DYNAMIC_LOCK kmp_user_lock_p lck; if ((__kmp_user_lock_kind == lk_tas) && (sizeof(lck->tas.lk.poll) + sizeof(lck->tas.lk.depth_locked) <= OMP_NEST_LOCK_T_SIZE)) { lck = (kmp_user_lock_p)user_lock; } #if KMP_USE_FUTEX else if ((__kmp_user_lock_kind == lk_futex) && (sizeof(lck->futex.lk.poll) + sizeof(lck->futex.lk.depth_locked) <= OMP_NEST_LOCK_T_SIZE)) { lck = (kmp_user_lock_p)user_lock; } #endif else { lck = __kmp_lookup_user_lock(user_lock, "omp_destroy_nest_lock"); } #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.ompt_callback_lock_destroy) { ompt_callbacks.ompt_callback(ompt_callback_lock_destroy)( ompt_mutex_nest_lock, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } #endif #if USE_ITT_BUILD __kmp_itt_lock_destroyed(lck); #endif /* USE_ITT_BUILD */ DESTROY_NESTED_LOCK(lck); if ((__kmp_user_lock_kind == lk_tas) && (sizeof(lck->tas.lk.poll) + sizeof(lck->tas.lk.depth_locked) <= OMP_NEST_LOCK_T_SIZE)) { ; } #if KMP_USE_FUTEX else if ((__kmp_user_lock_kind == lk_futex) && (sizeof(lck->futex.lk.poll) + sizeof(lck->futex.lk.depth_locked) <= OMP_NEST_LOCK_T_SIZE)) { ; } #endif else { __kmp_user_lock_free(user_lock, gtid, lck); } #endif // KMP_USE_DYNAMIC_LOCK } // __kmpc_destroy_nest_lock void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) { KMP_COUNT_BLOCK(OMP_set_lock); #if KMP_USE_DYNAMIC_LOCK int tag = KMP_EXTRACT_D_TAG(user_lock); #if USE_ITT_BUILD __kmp_itt_lock_acquiring( (kmp_user_lock_p) user_lock); // itt function will get to the right lock object. #endif #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.ompt_callback_mutex_acquire) { ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( ompt_mutex_lock, omp_lock_hint_none, __ompt_get_mutex_impl_type(user_lock), (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } #endif #if KMP_USE_INLINED_TAS if (tag == locktag_tas && !__kmp_env_consistency_check) { KMP_ACQUIRE_TAS_LOCK(user_lock, gtid); } else #elif KMP_USE_INLINED_FUTEX if (tag == locktag_futex && !__kmp_env_consistency_check) { KMP_ACQUIRE_FUTEX_LOCK(user_lock, gtid); } else #endif { __kmp_direct_set[tag]((kmp_dyna_lock_t *)user_lock, gtid); } #if USE_ITT_BUILD __kmp_itt_lock_acquired((kmp_user_lock_p)user_lock); #endif #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.ompt_callback_mutex_acquired) { ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( ompt_mutex_lock, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } #endif #else // KMP_USE_DYNAMIC_LOCK kmp_user_lock_p lck; if ((__kmp_user_lock_kind == lk_tas) && (sizeof(lck->tas.lk.poll) <= OMP_LOCK_T_SIZE)) { lck = (kmp_user_lock_p)user_lock; } #if KMP_USE_FUTEX else if ((__kmp_user_lock_kind == lk_futex) && (sizeof(lck->futex.lk.poll) <= OMP_LOCK_T_SIZE)) { lck = (kmp_user_lock_p)user_lock; } #endif else { lck = __kmp_lookup_user_lock(user_lock, "omp_set_lock"); } #if USE_ITT_BUILD __kmp_itt_lock_acquiring(lck); #endif /* USE_ITT_BUILD */ #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.ompt_callback_mutex_acquire) { ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( ompt_mutex_lock, omp_lock_hint_none, __ompt_get_mutex_impl_type(), (ompt_wait_id_t)(uintptr_t)lck, codeptr); } #endif ACQUIRE_LOCK(lck, gtid); #if USE_ITT_BUILD __kmp_itt_lock_acquired(lck); #endif /* USE_ITT_BUILD */ #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.ompt_callback_mutex_acquired) { ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( ompt_mutex_lock, (ompt_wait_id_t)(uintptr_t)lck, codeptr); } #endif #endif // KMP_USE_DYNAMIC_LOCK } void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) { #if KMP_USE_DYNAMIC_LOCK #if USE_ITT_BUILD __kmp_itt_lock_acquiring((kmp_user_lock_p)user_lock); #endif #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.enabled) { if (ompt_enabled.ompt_callback_mutex_acquire) { ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( ompt_mutex_nest_lock, omp_lock_hint_none, __ompt_get_mutex_impl_type(user_lock), (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } } #endif int acquire_status = KMP_D_LOCK_FUNC(user_lock, set)((kmp_dyna_lock_t *)user_lock, gtid); (void) acquire_status; #if USE_ITT_BUILD __kmp_itt_lock_acquired((kmp_user_lock_p)user_lock); #endif #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled) { if (acquire_status == KMP_LOCK_ACQUIRED_FIRST) { if (ompt_enabled.ompt_callback_mutex_acquired) { // lock_first ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( ompt_mutex_nest_lock, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } } else { if (ompt_enabled.ompt_callback_nest_lock) { // lock_next ompt_callbacks.ompt_callback(ompt_callback_nest_lock)( ompt_scope_begin, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } } } #endif #else // KMP_USE_DYNAMIC_LOCK int acquire_status; kmp_user_lock_p lck; if ((__kmp_user_lock_kind == lk_tas) && (sizeof(lck->tas.lk.poll) + sizeof(lck->tas.lk.depth_locked) <= OMP_NEST_LOCK_T_SIZE)) { lck = (kmp_user_lock_p)user_lock; } #if KMP_USE_FUTEX else if ((__kmp_user_lock_kind == lk_futex) && (sizeof(lck->futex.lk.poll) + sizeof(lck->futex.lk.depth_locked) <= OMP_NEST_LOCK_T_SIZE)) { lck = (kmp_user_lock_p)user_lock; } #endif else { lck = __kmp_lookup_user_lock(user_lock, "omp_set_nest_lock"); } #if USE_ITT_BUILD __kmp_itt_lock_acquiring(lck); #endif /* USE_ITT_BUILD */ #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.enabled) { if (ompt_enabled.ompt_callback_mutex_acquire) { ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( ompt_mutex_nest_lock, omp_lock_hint_none, __ompt_get_mutex_impl_type(), (ompt_wait_id_t)(uintptr_t)lck, codeptr); } } #endif ACQUIRE_NESTED_LOCK(lck, gtid, &acquire_status); #if USE_ITT_BUILD __kmp_itt_lock_acquired(lck); #endif /* USE_ITT_BUILD */ #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled) { if (acquire_status == KMP_LOCK_ACQUIRED_FIRST) { if (ompt_enabled.ompt_callback_mutex_acquired) { // lock_first ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( ompt_mutex_nest_lock, (ompt_wait_id_t)(uintptr_t)lck, codeptr); } } else { if (ompt_enabled.ompt_callback_nest_lock) { // lock_next ompt_callbacks.ompt_callback(ompt_callback_nest_lock)( ompt_scope_begin, (ompt_wait_id_t)(uintptr_t)lck, codeptr); } } } #endif #endif // KMP_USE_DYNAMIC_LOCK } void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) { #if KMP_USE_DYNAMIC_LOCK int tag = KMP_EXTRACT_D_TAG(user_lock); #if USE_ITT_BUILD __kmp_itt_lock_releasing((kmp_user_lock_p)user_lock); #endif #if KMP_USE_INLINED_TAS if (tag == locktag_tas && !__kmp_env_consistency_check) { KMP_RELEASE_TAS_LOCK(user_lock, gtid); } else #elif KMP_USE_INLINED_FUTEX if (tag == locktag_futex && !__kmp_env_consistency_check) { KMP_RELEASE_FUTEX_LOCK(user_lock, gtid); } else #endif { __kmp_direct_unset[tag]((kmp_dyna_lock_t *)user_lock, gtid); } #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.ompt_callback_mutex_released) { ompt_callbacks.ompt_callback(ompt_callback_mutex_released)( ompt_mutex_lock, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } #endif #else // KMP_USE_DYNAMIC_LOCK kmp_user_lock_p lck; /* Can't use serial interval since not block structured */ /* release the lock */ if ((__kmp_user_lock_kind == lk_tas) && (sizeof(lck->tas.lk.poll) <= OMP_LOCK_T_SIZE)) { #if KMP_OS_LINUX && \ (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) // "fast" path implemented to fix customer performance issue #if USE_ITT_BUILD __kmp_itt_lock_releasing((kmp_user_lock_p)user_lock); #endif /* USE_ITT_BUILD */ TCW_4(((kmp_user_lock_p)user_lock)->tas.lk.poll, 0); KMP_MB(); #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.ompt_callback_mutex_released) { ompt_callbacks.ompt_callback(ompt_callback_mutex_released)( ompt_mutex_lock, (ompt_wait_id_t)(uintptr_t)lck, codeptr); } #endif return; #else lck = (kmp_user_lock_p)user_lock; #endif } #if KMP_USE_FUTEX else if ((__kmp_user_lock_kind == lk_futex) && (sizeof(lck->futex.lk.poll) <= OMP_LOCK_T_SIZE)) { lck = (kmp_user_lock_p)user_lock; } #endif else { lck = __kmp_lookup_user_lock(user_lock, "omp_unset_lock"); } #if USE_ITT_BUILD __kmp_itt_lock_releasing(lck); #endif /* USE_ITT_BUILD */ RELEASE_LOCK(lck, gtid); #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.ompt_callback_mutex_released) { ompt_callbacks.ompt_callback(ompt_callback_mutex_released)( ompt_mutex_lock, (ompt_wait_id_t)(uintptr_t)lck, codeptr); } #endif #endif // KMP_USE_DYNAMIC_LOCK } /* release the lock */ void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) { #if KMP_USE_DYNAMIC_LOCK #if USE_ITT_BUILD __kmp_itt_lock_releasing((kmp_user_lock_p)user_lock); #endif int release_status = KMP_D_LOCK_FUNC(user_lock, unset)((kmp_dyna_lock_t *)user_lock, gtid); (void) release_status; #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.enabled) { if (release_status == KMP_LOCK_RELEASED) { if (ompt_enabled.ompt_callback_mutex_released) { // release_lock_last ompt_callbacks.ompt_callback(ompt_callback_mutex_released)( ompt_mutex_nest_lock, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } } else if (ompt_enabled.ompt_callback_nest_lock) { // release_lock_prev ompt_callbacks.ompt_callback(ompt_callback_nest_lock)( ompt_scope_end, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } } #endif #else // KMP_USE_DYNAMIC_LOCK kmp_user_lock_p lck; /* Can't use serial interval since not block structured */ if ((__kmp_user_lock_kind == lk_tas) && (sizeof(lck->tas.lk.poll) + sizeof(lck->tas.lk.depth_locked) <= OMP_NEST_LOCK_T_SIZE)) { #if KMP_OS_LINUX && \ (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) // "fast" path implemented to fix customer performance issue kmp_tas_lock_t *tl = (kmp_tas_lock_t *)user_lock; #if USE_ITT_BUILD __kmp_itt_lock_releasing((kmp_user_lock_p)user_lock); #endif /* USE_ITT_BUILD */ #if OMPT_SUPPORT && OMPT_OPTIONAL int release_status = KMP_LOCK_STILL_HELD; #endif if (--(tl->lk.depth_locked) == 0) { TCW_4(tl->lk.poll, 0); #if OMPT_SUPPORT && OMPT_OPTIONAL release_status = KMP_LOCK_RELEASED; #endif } KMP_MB(); #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.enabled) { if (release_status == KMP_LOCK_RELEASED) { if (ompt_enabled.ompt_callback_mutex_released) { // release_lock_last ompt_callbacks.ompt_callback(ompt_callback_mutex_released)( ompt_mutex_nest_lock, (ompt_wait_id_t)(uintptr_t)lck, codeptr); } } else if (ompt_enabled.ompt_callback_nest_lock) { // release_lock_previous ompt_callbacks.ompt_callback(ompt_callback_nest_lock)( ompt_mutex_scope_end, (ompt_wait_id_t)(uintptr_t)lck, codeptr); } } #endif return; #else lck = (kmp_user_lock_p)user_lock; #endif } #if KMP_USE_FUTEX else if ((__kmp_user_lock_kind == lk_futex) && (sizeof(lck->futex.lk.poll) + sizeof(lck->futex.lk.depth_locked) <= OMP_NEST_LOCK_T_SIZE)) { lck = (kmp_user_lock_p)user_lock; } #endif else { lck = __kmp_lookup_user_lock(user_lock, "omp_unset_nest_lock"); } #if USE_ITT_BUILD __kmp_itt_lock_releasing(lck); #endif /* USE_ITT_BUILD */ int release_status; release_status = RELEASE_NESTED_LOCK(lck, gtid); #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.enabled) { if (release_status == KMP_LOCK_RELEASED) { if (ompt_enabled.ompt_callback_mutex_released) { // release_lock_last ompt_callbacks.ompt_callback(ompt_callback_mutex_released)( ompt_mutex_nest_lock, (ompt_wait_id_t)(uintptr_t)lck, codeptr); } } else if (ompt_enabled.ompt_callback_nest_lock) { // release_lock_previous ompt_callbacks.ompt_callback(ompt_callback_nest_lock)( ompt_mutex_scope_end, (ompt_wait_id_t)(uintptr_t)lck, codeptr); } } #endif #endif // KMP_USE_DYNAMIC_LOCK } /* try to acquire the lock */ int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) { KMP_COUNT_BLOCK(OMP_test_lock); #if KMP_USE_DYNAMIC_LOCK int rc; int tag = KMP_EXTRACT_D_TAG(user_lock); #if USE_ITT_BUILD __kmp_itt_lock_acquiring((kmp_user_lock_p)user_lock); #endif #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.ompt_callback_mutex_acquire) { ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( ompt_mutex_lock, omp_lock_hint_none, __ompt_get_mutex_impl_type(user_lock), (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } #endif #if KMP_USE_INLINED_TAS if (tag == locktag_tas && !__kmp_env_consistency_check) { KMP_TEST_TAS_LOCK(user_lock, gtid, rc); } else #elif KMP_USE_INLINED_FUTEX if (tag == locktag_futex && !__kmp_env_consistency_check) { KMP_TEST_FUTEX_LOCK(user_lock, gtid, rc); } else #endif { rc = __kmp_direct_test[tag]((kmp_dyna_lock_t *)user_lock, gtid); } if (rc) { #if USE_ITT_BUILD __kmp_itt_lock_acquired((kmp_user_lock_p)user_lock); #endif #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.ompt_callback_mutex_acquired) { ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( ompt_mutex_lock, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } #endif return FTN_TRUE; } else { #if USE_ITT_BUILD __kmp_itt_lock_cancelled((kmp_user_lock_p)user_lock); #endif return FTN_FALSE; } #else // KMP_USE_DYNAMIC_LOCK kmp_user_lock_p lck; int rc; if ((__kmp_user_lock_kind == lk_tas) && (sizeof(lck->tas.lk.poll) <= OMP_LOCK_T_SIZE)) { lck = (kmp_user_lock_p)user_lock; } #if KMP_USE_FUTEX else if ((__kmp_user_lock_kind == lk_futex) && (sizeof(lck->futex.lk.poll) <= OMP_LOCK_T_SIZE)) { lck = (kmp_user_lock_p)user_lock; } #endif else { lck = __kmp_lookup_user_lock(user_lock, "omp_test_lock"); } #if USE_ITT_BUILD __kmp_itt_lock_acquiring(lck); #endif /* USE_ITT_BUILD */ #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.ompt_callback_mutex_acquire) { ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( ompt_mutex_lock, omp_lock_hint_none, __ompt_get_mutex_impl_type(), (ompt_wait_id_t)(uintptr_t)lck, codeptr); } #endif rc = TEST_LOCK(lck, gtid); #if USE_ITT_BUILD if (rc) { __kmp_itt_lock_acquired(lck); } else { __kmp_itt_lock_cancelled(lck); } #endif /* USE_ITT_BUILD */ #if OMPT_SUPPORT && OMPT_OPTIONAL if (rc && ompt_enabled.ompt_callback_mutex_acquired) { ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( ompt_mutex_lock, (ompt_wait_id_t)(uintptr_t)lck, codeptr); } #endif return (rc ? FTN_TRUE : FTN_FALSE); /* Can't use serial interval since not block structured */ #endif // KMP_USE_DYNAMIC_LOCK } /* try to acquire the lock */ int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) { #if KMP_USE_DYNAMIC_LOCK int rc; #if USE_ITT_BUILD __kmp_itt_lock_acquiring((kmp_user_lock_p)user_lock); #endif #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.ompt_callback_mutex_acquire) { ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( ompt_mutex_nest_lock, omp_lock_hint_none, __ompt_get_mutex_impl_type(user_lock), (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } #endif rc = KMP_D_LOCK_FUNC(user_lock, test)((kmp_dyna_lock_t *)user_lock, gtid); #if USE_ITT_BUILD if (rc) { __kmp_itt_lock_acquired((kmp_user_lock_p)user_lock); } else { __kmp_itt_lock_cancelled((kmp_user_lock_p)user_lock); } #endif #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled && rc) { if (rc == 1) { if (ompt_enabled.ompt_callback_mutex_acquired) { // lock_first ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( ompt_mutex_nest_lock, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } } else { if (ompt_enabled.ompt_callback_nest_lock) { // lock_next ompt_callbacks.ompt_callback(ompt_callback_nest_lock)( ompt_scope_begin, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr); } } } #endif return rc; #else // KMP_USE_DYNAMIC_LOCK kmp_user_lock_p lck; int rc; if ((__kmp_user_lock_kind == lk_tas) && (sizeof(lck->tas.lk.poll) + sizeof(lck->tas.lk.depth_locked) <= OMP_NEST_LOCK_T_SIZE)) { lck = (kmp_user_lock_p)user_lock; } #if KMP_USE_FUTEX else if ((__kmp_user_lock_kind == lk_futex) && (sizeof(lck->futex.lk.poll) + sizeof(lck->futex.lk.depth_locked) <= OMP_NEST_LOCK_T_SIZE)) { lck = (kmp_user_lock_p)user_lock; } #endif else { lck = __kmp_lookup_user_lock(user_lock, "omp_test_nest_lock"); } #if USE_ITT_BUILD __kmp_itt_lock_acquiring(lck); #endif /* USE_ITT_BUILD */ #if OMPT_SUPPORT && OMPT_OPTIONAL // This is the case, if called from omp_init_lock_with_hint: void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); if (!codeptr) codeptr = OMPT_GET_RETURN_ADDRESS(0); if (ompt_enabled.enabled) && ompt_enabled.ompt_callback_mutex_acquire) { ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( ompt_mutex_nest_lock, omp_lock_hint_none, __ompt_get_mutex_impl_type(), (ompt_wait_id_t)(uintptr_t)lck, codeptr); } #endif rc = TEST_NESTED_LOCK(lck, gtid); #if USE_ITT_BUILD if (rc) { __kmp_itt_lock_acquired(lck); } else { __kmp_itt_lock_cancelled(lck); } #endif /* USE_ITT_BUILD */ #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled && rc) { if (rc == 1) { if (ompt_enabled.ompt_callback_mutex_acquired) { // lock_first ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( ompt_mutex_nest_lock, (ompt_wait_id_t)(uintptr_t)lck, codeptr); } } else { if (ompt_enabled.ompt_callback_nest_lock) { // lock_next ompt_callbacks.ompt_callback(ompt_callback_nest_lock)( ompt_mutex_scope_begin, (ompt_wait_id_t)(uintptr_t)lck, codeptr); } } } #endif return rc; /* Can't use serial interval since not block structured */ #endif // KMP_USE_DYNAMIC_LOCK } // Interface to fast scalable reduce methods routines // keep the selected method in a thread local structure for cross-function // usage: will be used in __kmpc_end_reduce* functions; // another solution: to re-determine the method one more time in // __kmpc_end_reduce* functions (new prototype required then) // AT: which solution is better? #define __KMP_SET_REDUCTION_METHOD(gtid, rmethod) \ ((__kmp_threads[(gtid)]->th.th_local.packed_reduction_method) = (rmethod)) #define __KMP_GET_REDUCTION_METHOD(gtid) \ (__kmp_threads[(gtid)]->th.th_local.packed_reduction_method) // description of the packed_reduction_method variable: look at the macros in // kmp.h // used in a critical section reduce block static __forceinline void __kmp_enter_critical_section_reduce_block(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *crit) { // this lock was visible to a customer and to the threading profile tool as a // serial overhead span (although it's used for an internal purpose only) // why was it visible in previous implementation? // should we keep it visible in new reduce block? kmp_user_lock_p lck; #if KMP_USE_DYNAMIC_LOCK kmp_dyna_lock_t *lk = (kmp_dyna_lock_t *)crit; // Check if it is initialized. if (*lk == 0) { if (KMP_IS_D_LOCK(__kmp_user_lock_seq)) { KMP_COMPARE_AND_STORE_ACQ32((volatile kmp_int32 *)crit, 0, KMP_GET_D_TAG(__kmp_user_lock_seq)); } else { __kmp_init_indirect_csptr(crit, loc, global_tid, KMP_GET_I_TAG(__kmp_user_lock_seq)); } } // Branch for accessing the actual lock object and set operation. This // branching is inevitable since this lock initialization does not follow the // normal dispatch path (lock table is not used). if (KMP_EXTRACT_D_TAG(lk) != 0) { lck = (kmp_user_lock_p)lk; KMP_DEBUG_ASSERT(lck != NULL); if (__kmp_env_consistency_check) { __kmp_push_sync(global_tid, ct_critical, loc, lck, __kmp_user_lock_seq); } KMP_D_LOCK_FUNC(lk, set)(lk, global_tid); } else { kmp_indirect_lock_t *ilk = *((kmp_indirect_lock_t **)lk); lck = ilk->lock; KMP_DEBUG_ASSERT(lck != NULL); if (__kmp_env_consistency_check) { __kmp_push_sync(global_tid, ct_critical, loc, lck, __kmp_user_lock_seq); } KMP_I_LOCK_FUNC(ilk, set)(lck, global_tid); } #else // KMP_USE_DYNAMIC_LOCK // We know that the fast reduction code is only emitted by Intel compilers // with 32 byte critical sections. If there isn't enough space, then we // have to use a pointer. if (__kmp_base_user_lock_size <= INTEL_CRITICAL_SIZE) { lck = (kmp_user_lock_p)crit; } else { lck = __kmp_get_critical_section_ptr(crit, loc, global_tid); } KMP_DEBUG_ASSERT(lck != NULL); if (__kmp_env_consistency_check) __kmp_push_sync(global_tid, ct_critical, loc, lck); __kmp_acquire_user_lock_with_checks(lck, global_tid); #endif // KMP_USE_DYNAMIC_LOCK } // used in a critical section reduce block static __forceinline void __kmp_end_critical_section_reduce_block(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *crit) { kmp_user_lock_p lck; #if KMP_USE_DYNAMIC_LOCK if (KMP_IS_D_LOCK(__kmp_user_lock_seq)) { lck = (kmp_user_lock_p)crit; if (__kmp_env_consistency_check) __kmp_pop_sync(global_tid, ct_critical, loc); KMP_D_LOCK_FUNC(lck, unset)((kmp_dyna_lock_t *)lck, global_tid); } else { kmp_indirect_lock_t *ilk = (kmp_indirect_lock_t *)TCR_PTR(*((kmp_indirect_lock_t **)crit)); if (__kmp_env_consistency_check) __kmp_pop_sync(global_tid, ct_critical, loc); KMP_I_LOCK_FUNC(ilk, unset)(ilk->lock, global_tid); } #else // KMP_USE_DYNAMIC_LOCK // We know that the fast reduction code is only emitted by Intel compilers // with 32 byte critical sections. If there isn't enough space, then we have // to use a pointer. if (__kmp_base_user_lock_size > 32) { lck = *((kmp_user_lock_p *)crit); KMP_ASSERT(lck != NULL); } else { lck = (kmp_user_lock_p)crit; } if (__kmp_env_consistency_check) __kmp_pop_sync(global_tid, ct_critical, loc); __kmp_release_user_lock_with_checks(lck, global_tid); #endif // KMP_USE_DYNAMIC_LOCK } // __kmp_end_critical_section_reduce_block static __forceinline int __kmp_swap_teams_for_teams_reduction(kmp_info_t *th, kmp_team_t **team_p, int *task_state) { kmp_team_t *team; // Check if we are inside the teams construct? if (th->th.th_teams_microtask) { *team_p = team = th->th.th_team; if (team->t.t_level == th->th.th_teams_level) { // This is reduction at teams construct. KMP_DEBUG_ASSERT(!th->th.th_info.ds.ds_tid); // AC: check that tid == 0 // Let's swap teams temporarily for the reduction. th->th.th_info.ds.ds_tid = team->t.t_master_tid; th->th.th_team = team->t.t_parent; th->th.th_team_nproc = th->th.th_team->t.t_nproc; th->th.th_task_team = th->th.th_team->t.t_task_team[0]; *task_state = th->th.th_task_state; th->th.th_task_state = 0; return 1; } } return 0; } static __forceinline void __kmp_restore_swapped_teams(kmp_info_t *th, kmp_team_t *team, int task_state) { // Restore thread structure swapped in __kmp_swap_teams_for_teams_reduction. th->th.th_info.ds.ds_tid = 0; th->th.th_team = team; th->th.th_team_nproc = team->t.t_nproc; th->th.th_task_team = team->t.t_task_team[task_state]; th->th.th_task_state = task_state; } /* 2.a.i. Reduce Block without a terminating barrier */ /*! @ingroup SYNCHRONIZATION @param loc source location information @param global_tid global thread number @param num_vars number of items (variables) to be reduced @param reduce_size size of data in bytes to be reduced @param reduce_data pointer to data to be reduced @param reduce_func callback function providing reduction operation on two operands and returning result of reduction in lhs_data @param lck pointer to the unique lock data structure @result 1 for the master thread, 0 for all other team threads, 2 for all team threads if atomic reduction needed The nowait version is used for a reduce clause with the nowait argument. */ kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck) { KMP_COUNT_BLOCK(REDUCE_nowait); int retval = 0; PACKED_REDUCTION_METHOD_T packed_reduction_method; kmp_info_t *th; kmp_team_t *team; int teams_swapped = 0, task_state; KA_TRACE(10, ("__kmpc_reduce_nowait() enter: called T#%d\n", global_tid)); // why do we need this initialization here at all? // Reduction clause can not be used as a stand-alone directive. // do not call __kmp_serial_initialize(), it will be called by // __kmp_parallel_initialize() if needed // possible detection of false-positive race by the threadchecker ??? if (!TCR_4(__kmp_init_parallel)) __kmp_parallel_initialize(); __kmp_resume_if_soft_paused(); // check correctness of reduce block nesting #if KMP_USE_DYNAMIC_LOCK if (__kmp_env_consistency_check) __kmp_push_sync(global_tid, ct_reduce, loc, NULL, 0); #else if (__kmp_env_consistency_check) __kmp_push_sync(global_tid, ct_reduce, loc, NULL); #endif th = __kmp_thread_from_gtid(global_tid); teams_swapped = __kmp_swap_teams_for_teams_reduction(th, &team, &task_state); // packed_reduction_method value will be reused by __kmp_end_reduce* function, // the value should be kept in a variable // the variable should be either a construct-specific or thread-specific // property, not a team specific property // (a thread can reach the next reduce block on the next construct, reduce // method may differ on the next construct) // an ident_t "loc" parameter could be used as a construct-specific property // (what if loc == 0?) // (if both construct-specific and team-specific variables were shared, // then unness extra syncs should be needed) // a thread-specific variable is better regarding two issues above (next // construct and extra syncs) // a thread-specific "th_local.reduction_method" variable is used currently // each thread executes 'determine' and 'set' lines (no need to execute by one // thread, to avoid unness extra syncs) packed_reduction_method = __kmp_determine_reduction_method( loc, global_tid, num_vars, reduce_size, reduce_data, reduce_func, lck); __KMP_SET_REDUCTION_METHOD(global_tid, packed_reduction_method); OMPT_REDUCTION_DECL(th, global_tid); if (packed_reduction_method == critical_reduce_block) { OMPT_REDUCTION_BEGIN; __kmp_enter_critical_section_reduce_block(loc, global_tid, lck); retval = 1; } else if (packed_reduction_method == empty_reduce_block) { OMPT_REDUCTION_BEGIN; // usage: if team size == 1, no synchronization is required ( Intel // platforms only ) retval = 1; } else if (packed_reduction_method == atomic_reduce_block) { retval = 2; // all threads should do this pop here (because __kmpc_end_reduce_nowait() // won't be called by the code gen) // (it's not quite good, because the checking block has been closed by // this 'pop', // but atomic operation has not been executed yet, will be executed // slightly later, literally on next instruction) if (__kmp_env_consistency_check) __kmp_pop_sync(global_tid, ct_reduce, loc); } else if (TEST_REDUCTION_METHOD(packed_reduction_method, tree_reduce_block)) { // AT: performance issue: a real barrier here // AT: (if master goes slow, other threads are blocked here waiting for the // master to come and release them) // AT: (it's not what a customer might expect specifying NOWAIT clause) // AT: (specifying NOWAIT won't result in improvement of performance, it'll // be confusing to a customer) // AT: another implementation of *barrier_gather*nowait() (or some other design) // might go faster and be more in line with sense of NOWAIT // AT: TO DO: do epcc test and compare times // this barrier should be invisible to a customer and to the threading profile // tool (it's neither a terminating barrier nor customer's code, it's // used for an internal purpose) #if OMPT_SUPPORT // JP: can this barrier potentially leed to task scheduling? // JP: as long as there is a barrier in the implementation, OMPT should and // will provide the barrier events // so we set-up the necessary frame/return addresses. ompt_frame_t *ompt_frame; if (ompt_enabled.enabled) { __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); if (ompt_frame->enter_frame.ptr == NULL) ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); OMPT_STORE_RETURN_ADDRESS(global_tid); } #endif #if USE_ITT_NOTIFY __kmp_threads[global_tid]->th.th_ident = loc; #endif retval = __kmp_barrier(UNPACK_REDUCTION_BARRIER(packed_reduction_method), global_tid, FALSE, reduce_size, reduce_data, reduce_func); retval = (retval != 0) ? (0) : (1); #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled) { ompt_frame->enter_frame = ompt_data_none; } #endif // all other workers except master should do this pop here // ( none of other workers will get to __kmpc_end_reduce_nowait() ) if (__kmp_env_consistency_check) { if (retval == 0) { __kmp_pop_sync(global_tid, ct_reduce, loc); } } } else { // should never reach this block KMP_ASSERT(0); // "unexpected method" } if (teams_swapped) { __kmp_restore_swapped_teams(th, team, task_state); } KA_TRACE( 10, ("__kmpc_reduce_nowait() exit: called T#%d: method %08x, returns %08x\n", global_tid, packed_reduction_method, retval)); return retval; } /*! @ingroup SYNCHRONIZATION @param loc source location information @param global_tid global thread id. @param lck pointer to the unique lock data structure Finish the execution of a reduce nowait. */ void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck) { PACKED_REDUCTION_METHOD_T packed_reduction_method; KA_TRACE(10, ("__kmpc_end_reduce_nowait() enter: called T#%d\n", global_tid)); packed_reduction_method = __KMP_GET_REDUCTION_METHOD(global_tid); OMPT_REDUCTION_DECL(__kmp_thread_from_gtid(global_tid), global_tid); if (packed_reduction_method == critical_reduce_block) { __kmp_end_critical_section_reduce_block(loc, global_tid, lck); OMPT_REDUCTION_END; } else if (packed_reduction_method == empty_reduce_block) { // usage: if team size == 1, no synchronization is required ( on Intel // platforms only ) OMPT_REDUCTION_END; } else if (packed_reduction_method == atomic_reduce_block) { // neither master nor other workers should get here // (code gen does not generate this call in case 2: atomic reduce block) // actually it's better to remove this elseif at all; // after removal this value will checked by the 'else' and will assert } else if (TEST_REDUCTION_METHOD(packed_reduction_method, tree_reduce_block)) { // only master gets here // OMPT: tree reduction is annotated in the barrier code } else { // should never reach this block KMP_ASSERT(0); // "unexpected method" } if (__kmp_env_consistency_check) __kmp_pop_sync(global_tid, ct_reduce, loc); KA_TRACE(10, ("__kmpc_end_reduce_nowait() exit: called T#%d: method %08x\n", global_tid, packed_reduction_method)); return; } /* 2.a.ii. Reduce Block with a terminating barrier */ /*! @ingroup SYNCHRONIZATION @param loc source location information @param global_tid global thread number @param num_vars number of items (variables) to be reduced @param reduce_size size of data in bytes to be reduced @param reduce_data pointer to data to be reduced @param reduce_func callback function providing reduction operation on two operands and returning result of reduction in lhs_data @param lck pointer to the unique lock data structure @result 1 for the master thread, 0 for all other team threads, 2 for all team threads if atomic reduction needed A blocking reduce that includes an implicit barrier. */ kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck) { KMP_COUNT_BLOCK(REDUCE_wait); int retval = 0; PACKED_REDUCTION_METHOD_T packed_reduction_method; kmp_info_t *th; kmp_team_t *team; int teams_swapped = 0, task_state; KA_TRACE(10, ("__kmpc_reduce() enter: called T#%d\n", global_tid)); // why do we need this initialization here at all? // Reduction clause can not be a stand-alone directive. // do not call __kmp_serial_initialize(), it will be called by // __kmp_parallel_initialize() if needed // possible detection of false-positive race by the threadchecker ??? if (!TCR_4(__kmp_init_parallel)) __kmp_parallel_initialize(); __kmp_resume_if_soft_paused(); // check correctness of reduce block nesting #if KMP_USE_DYNAMIC_LOCK if (__kmp_env_consistency_check) __kmp_push_sync(global_tid, ct_reduce, loc, NULL, 0); #else if (__kmp_env_consistency_check) __kmp_push_sync(global_tid, ct_reduce, loc, NULL); #endif th = __kmp_thread_from_gtid(global_tid); teams_swapped = __kmp_swap_teams_for_teams_reduction(th, &team, &task_state); packed_reduction_method = __kmp_determine_reduction_method( loc, global_tid, num_vars, reduce_size, reduce_data, reduce_func, lck); __KMP_SET_REDUCTION_METHOD(global_tid, packed_reduction_method); OMPT_REDUCTION_DECL(th, global_tid); if (packed_reduction_method == critical_reduce_block) { OMPT_REDUCTION_BEGIN; __kmp_enter_critical_section_reduce_block(loc, global_tid, lck); retval = 1; } else if (packed_reduction_method == empty_reduce_block) { OMPT_REDUCTION_BEGIN; // usage: if team size == 1, no synchronization is required ( Intel // platforms only ) retval = 1; } else if (packed_reduction_method == atomic_reduce_block) { retval = 2; } else if (TEST_REDUCTION_METHOD(packed_reduction_method, tree_reduce_block)) { // case tree_reduce_block: // this barrier should be visible to a customer and to the threading profile // tool (it's a terminating barrier on constructs if NOWAIT not specified) #if OMPT_SUPPORT ompt_frame_t *ompt_frame; if (ompt_enabled.enabled) { __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); if (ompt_frame->enter_frame.ptr == NULL) ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); OMPT_STORE_RETURN_ADDRESS(global_tid); } #endif #if USE_ITT_NOTIFY __kmp_threads[global_tid]->th.th_ident = loc; // needed for correct notification of frames #endif retval = __kmp_barrier(UNPACK_REDUCTION_BARRIER(packed_reduction_method), global_tid, TRUE, reduce_size, reduce_data, reduce_func); retval = (retval != 0) ? (0) : (1); #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled) { ompt_frame->enter_frame = ompt_data_none; } #endif // all other workers except master should do this pop here // ( none of other workers except master will enter __kmpc_end_reduce() ) if (__kmp_env_consistency_check) { if (retval == 0) { // 0: all other workers; 1: master __kmp_pop_sync(global_tid, ct_reduce, loc); } } } else { // should never reach this block KMP_ASSERT(0); // "unexpected method" } if (teams_swapped) { __kmp_restore_swapped_teams(th, team, task_state); } KA_TRACE(10, ("__kmpc_reduce() exit: called T#%d: method %08x, returns %08x\n", global_tid, packed_reduction_method, retval)); return retval; } /*! @ingroup SYNCHRONIZATION @param loc source location information @param global_tid global thread id. @param lck pointer to the unique lock data structure Finish the execution of a blocking reduce. The lck pointer must be the same as that used in the corresponding start function. */ void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck) { PACKED_REDUCTION_METHOD_T packed_reduction_method; kmp_info_t *th; kmp_team_t *team; int teams_swapped = 0, task_state; KA_TRACE(10, ("__kmpc_end_reduce() enter: called T#%d\n", global_tid)); th = __kmp_thread_from_gtid(global_tid); teams_swapped = __kmp_swap_teams_for_teams_reduction(th, &team, &task_state); packed_reduction_method = __KMP_GET_REDUCTION_METHOD(global_tid); // this barrier should be visible to a customer and to the threading profile // tool (it's a terminating barrier on constructs if NOWAIT not specified) OMPT_REDUCTION_DECL(th, global_tid); if (packed_reduction_method == critical_reduce_block) { __kmp_end_critical_section_reduce_block(loc, global_tid, lck); OMPT_REDUCTION_END; // TODO: implicit barrier: should be exposed #if OMPT_SUPPORT ompt_frame_t *ompt_frame; if (ompt_enabled.enabled) { __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); if (ompt_frame->enter_frame.ptr == NULL) ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); OMPT_STORE_RETURN_ADDRESS(global_tid); } #endif #if USE_ITT_NOTIFY __kmp_threads[global_tid]->th.th_ident = loc; #endif __kmp_barrier(bs_plain_barrier, global_tid, FALSE, 0, NULL, NULL); #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled) { ompt_frame->enter_frame = ompt_data_none; } #endif } else if (packed_reduction_method == empty_reduce_block) { OMPT_REDUCTION_END; // usage: if team size==1, no synchronization is required (Intel platforms only) // TODO: implicit barrier: should be exposed #if OMPT_SUPPORT ompt_frame_t *ompt_frame; if (ompt_enabled.enabled) { __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); if (ompt_frame->enter_frame.ptr == NULL) ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); OMPT_STORE_RETURN_ADDRESS(global_tid); } #endif #if USE_ITT_NOTIFY __kmp_threads[global_tid]->th.th_ident = loc; #endif __kmp_barrier(bs_plain_barrier, global_tid, FALSE, 0, NULL, NULL); #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled) { ompt_frame->enter_frame = ompt_data_none; } #endif } else if (packed_reduction_method == atomic_reduce_block) { #if OMPT_SUPPORT ompt_frame_t *ompt_frame; if (ompt_enabled.enabled) { __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); if (ompt_frame->enter_frame.ptr == NULL) ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); OMPT_STORE_RETURN_ADDRESS(global_tid); } #endif // TODO: implicit barrier: should be exposed #if USE_ITT_NOTIFY __kmp_threads[global_tid]->th.th_ident = loc; #endif __kmp_barrier(bs_plain_barrier, global_tid, FALSE, 0, NULL, NULL); #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled) { ompt_frame->enter_frame = ompt_data_none; } #endif } else if (TEST_REDUCTION_METHOD(packed_reduction_method, tree_reduce_block)) { // only master executes here (master releases all other workers) __kmp_end_split_barrier(UNPACK_REDUCTION_BARRIER(packed_reduction_method), global_tid); } else { // should never reach this block KMP_ASSERT(0); // "unexpected method" } if (teams_swapped) { __kmp_restore_swapped_teams(th, team, task_state); } if (__kmp_env_consistency_check) __kmp_pop_sync(global_tid, ct_reduce, loc); KA_TRACE(10, ("__kmpc_end_reduce() exit: called T#%d: method %08x\n", global_tid, packed_reduction_method)); return; } #undef __KMP_GET_REDUCTION_METHOD #undef __KMP_SET_REDUCTION_METHOD /* end of interface to fast scalable reduce routines */ kmp_uint64 __kmpc_get_taskid() { kmp_int32 gtid; kmp_info_t *thread; gtid = __kmp_get_gtid(); if (gtid < 0) { return 0; } thread = __kmp_thread_from_gtid(gtid); return thread->th.th_current_task->td_task_id; } // __kmpc_get_taskid kmp_uint64 __kmpc_get_parent_taskid() { kmp_int32 gtid; kmp_info_t *thread; kmp_taskdata_t *parent_task; gtid = __kmp_get_gtid(); if (gtid < 0) { return 0; } thread = __kmp_thread_from_gtid(gtid); parent_task = thread->th.th_current_task->td_parent; return (parent_task == NULL ? 0 : parent_task->td_task_id); } // __kmpc_get_parent_taskid /*! @ingroup WORK_SHARING @param loc source location information. @param gtid global thread number. @param num_dims number of associated doacross loops. @param dims info on loops bounds. Initialize doacross loop information. Expect compiler send us inclusive bounds, e.g. for(i=2;i<9;i+=2) lo=2, up=8, st=2. */ void __kmpc_doacross_init(ident_t *loc, int gtid, int num_dims, const struct kmp_dim *dims) { int j, idx; kmp_int64 last, trace_count; kmp_info_t *th = __kmp_threads[gtid]; kmp_team_t *team = th->th.th_team; kmp_uint32 *flags; kmp_disp_t *pr_buf = th->th.th_dispatch; dispatch_shared_info_t *sh_buf; KA_TRACE( 20, ("__kmpc_doacross_init() enter: called T#%d, num dims %d, active %d\n", gtid, num_dims, !team->t.t_serialized)); KMP_DEBUG_ASSERT(dims != NULL); KMP_DEBUG_ASSERT(num_dims > 0); if (team->t.t_serialized) { KA_TRACE(20, ("__kmpc_doacross_init() exit: serialized team\n")); return; // no dependencies if team is serialized } KMP_DEBUG_ASSERT(team->t.t_nproc > 1); idx = pr_buf->th_doacross_buf_idx++; // Increment index of shared buffer for // the next loop sh_buf = &team->t.t_disp_buffer[idx % __kmp_dispatch_num_buffers]; // Save bounds info into allocated private buffer KMP_DEBUG_ASSERT(pr_buf->th_doacross_info == NULL); pr_buf->th_doacross_info = (kmp_int64 *)__kmp_thread_malloc( th, sizeof(kmp_int64) * (4 * num_dims + 1)); KMP_DEBUG_ASSERT(pr_buf->th_doacross_info != NULL); pr_buf->th_doacross_info[0] = (kmp_int64)num_dims; // first element is number of dimensions // Save also address of num_done in order to access it later without knowing // the buffer index pr_buf->th_doacross_info[1] = (kmp_int64)&sh_buf->doacross_num_done; pr_buf->th_doacross_info[2] = dims[0].lo; pr_buf->th_doacross_info[3] = dims[0].up; pr_buf->th_doacross_info[4] = dims[0].st; last = 5; for (j = 1; j < num_dims; ++j) { kmp_int64 range_length; // To keep ranges of all dimensions but the first dims[0] if (dims[j].st == 1) { // most common case // AC: should we care of ranges bigger than LLONG_MAX? (not for now) range_length = dims[j].up - dims[j].lo + 1; } else { if (dims[j].st > 0) { KMP_DEBUG_ASSERT(dims[j].up > dims[j].lo); range_length = (kmp_uint64)(dims[j].up - dims[j].lo) / dims[j].st + 1; } else { // negative increment KMP_DEBUG_ASSERT(dims[j].lo > dims[j].up); range_length = (kmp_uint64)(dims[j].lo - dims[j].up) / (-dims[j].st) + 1; } } pr_buf->th_doacross_info[last++] = range_length; pr_buf->th_doacross_info[last++] = dims[j].lo; pr_buf->th_doacross_info[last++] = dims[j].up; pr_buf->th_doacross_info[last++] = dims[j].st; } // Compute total trip count. // Start with range of dims[0] which we don't need to keep in the buffer. if (dims[0].st == 1) { // most common case trace_count = dims[0].up - dims[0].lo + 1; } else if (dims[0].st > 0) { KMP_DEBUG_ASSERT(dims[0].up > dims[0].lo); trace_count = (kmp_uint64)(dims[0].up - dims[0].lo) / dims[0].st + 1; } else { // negative increment KMP_DEBUG_ASSERT(dims[0].lo > dims[0].up); trace_count = (kmp_uint64)(dims[0].lo - dims[0].up) / (-dims[0].st) + 1; } for (j = 1; j < num_dims; ++j) { trace_count *= pr_buf->th_doacross_info[4 * j + 1]; // use kept ranges } KMP_DEBUG_ASSERT(trace_count > 0); // Check if shared buffer is not occupied by other loop (idx - // __kmp_dispatch_num_buffers) if (idx != sh_buf->doacross_buf_idx) { // Shared buffer is occupied, wait for it to be free __kmp_wait_4((volatile kmp_uint32 *)&sh_buf->doacross_buf_idx, idx, __kmp_eq_4, NULL); } #if KMP_32_BIT_ARCH // Check if we are the first thread. After the CAS the first thread gets 0, // others get 1 if initialization is in progress, allocated pointer otherwise. // Treat pointer as volatile integer (value 0 or 1) until memory is allocated. flags = (kmp_uint32 *)KMP_COMPARE_AND_STORE_RET32( (volatile kmp_int32 *)&sh_buf->doacross_flags, NULL, 1); #else flags = (kmp_uint32 *)KMP_COMPARE_AND_STORE_RET64( (volatile kmp_int64 *)&sh_buf->doacross_flags, NULL, 1LL); #endif if (flags == NULL) { // we are the first thread, allocate the array of flags size_t size = trace_count / 8 + 8; // in bytes, use single bit per iteration flags = (kmp_uint32 *)__kmp_thread_calloc(th, size, 1); KMP_MB(); sh_buf->doacross_flags = flags; } else if (flags == (kmp_uint32 *)1) { #if KMP_32_BIT_ARCH // initialization is still in progress, need to wait while (*(volatile kmp_int32 *)&sh_buf->doacross_flags == 1) #else while (*(volatile kmp_int64 *)&sh_buf->doacross_flags == 1LL) #endif KMP_YIELD(TRUE); KMP_MB(); } else { KMP_MB(); } KMP_DEBUG_ASSERT(sh_buf->doacross_flags > (kmp_uint32 *)1); // check ptr value pr_buf->th_doacross_flags = sh_buf->doacross_flags; // save private copy in order to not // touch shared buffer on each iteration KA_TRACE(20, ("__kmpc_doacross_init() exit: T#%d\n", gtid)); } void __kmpc_doacross_wait(ident_t *loc, int gtid, const kmp_int64 *vec) { kmp_int32 shft, num_dims, i; kmp_uint32 flag; kmp_int64 iter_number; // iteration number of "collapsed" loop nest kmp_info_t *th = __kmp_threads[gtid]; kmp_team_t *team = th->th.th_team; kmp_disp_t *pr_buf; kmp_int64 lo, up, st; KA_TRACE(20, ("__kmpc_doacross_wait() enter: called T#%d\n", gtid)); if (team->t.t_serialized) { KA_TRACE(20, ("__kmpc_doacross_wait() exit: serialized team\n")); return; // no dependencies if team is serialized } // calculate sequential iteration number and check out-of-bounds condition pr_buf = th->th.th_dispatch; KMP_DEBUG_ASSERT(pr_buf->th_doacross_info != NULL); num_dims = pr_buf->th_doacross_info[0]; lo = pr_buf->th_doacross_info[2]; up = pr_buf->th_doacross_info[3]; st = pr_buf->th_doacross_info[4]; #if OMPT_SUPPORT && OMPT_OPTIONAL ompt_dependence_t deps[num_dims]; #endif if (st == 1) { // most common case if (vec[0] < lo || vec[0] > up) { KA_TRACE(20, ("__kmpc_doacross_wait() exit: T#%d iter %lld is out of " "bounds [%lld,%lld]\n", gtid, vec[0], lo, up)); return; } iter_number = vec[0] - lo; } else if (st > 0) { if (vec[0] < lo || vec[0] > up) { KA_TRACE(20, ("__kmpc_doacross_wait() exit: T#%d iter %lld is out of " "bounds [%lld,%lld]\n", gtid, vec[0], lo, up)); return; } iter_number = (kmp_uint64)(vec[0] - lo) / st; } else { // negative increment if (vec[0] > lo || vec[0] < up) { KA_TRACE(20, ("__kmpc_doacross_wait() exit: T#%d iter %lld is out of " "bounds [%lld,%lld]\n", gtid, vec[0], lo, up)); return; } iter_number = (kmp_uint64)(lo - vec[0]) / (-st); } #if OMPT_SUPPORT && OMPT_OPTIONAL deps[0].variable.value = iter_number; deps[0].dependence_type = ompt_dependence_type_sink; #endif for (i = 1; i < num_dims; ++i) { kmp_int64 iter, ln; kmp_int32 j = i * 4; ln = pr_buf->th_doacross_info[j + 1]; lo = pr_buf->th_doacross_info[j + 2]; up = pr_buf->th_doacross_info[j + 3]; st = pr_buf->th_doacross_info[j + 4]; if (st == 1) { if (vec[i] < lo || vec[i] > up) { KA_TRACE(20, ("__kmpc_doacross_wait() exit: T#%d iter %lld is out of " "bounds [%lld,%lld]\n", gtid, vec[i], lo, up)); return; } iter = vec[i] - lo; } else if (st > 0) { if (vec[i] < lo || vec[i] > up) { KA_TRACE(20, ("__kmpc_doacross_wait() exit: T#%d iter %lld is out of " "bounds [%lld,%lld]\n", gtid, vec[i], lo, up)); return; } iter = (kmp_uint64)(vec[i] - lo) / st; } else { // st < 0 if (vec[i] > lo || vec[i] < up) { KA_TRACE(20, ("__kmpc_doacross_wait() exit: T#%d iter %lld is out of " "bounds [%lld,%lld]\n", gtid, vec[i], lo, up)); return; } iter = (kmp_uint64)(lo - vec[i]) / (-st); } iter_number = iter + ln * iter_number; #if OMPT_SUPPORT && OMPT_OPTIONAL deps[i].variable.value = iter; deps[i].dependence_type = ompt_dependence_type_sink; #endif } shft = iter_number % 32; // use 32-bit granularity iter_number >>= 5; // divided by 32 flag = 1 << shft; while ((flag & pr_buf->th_doacross_flags[iter_number]) == 0) { KMP_YIELD(TRUE); } KMP_MB(); #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.ompt_callback_dependences) { ompt_callbacks.ompt_callback(ompt_callback_dependences)( &(OMPT_CUR_TASK_INFO(th)->task_data), deps, num_dims); } #endif KA_TRACE(20, ("__kmpc_doacross_wait() exit: T#%d wait for iter %lld completed\n", gtid, (iter_number << 5) + shft)); } void __kmpc_doacross_post(ident_t *loc, int gtid, const kmp_int64 *vec) { kmp_int32 shft, num_dims, i; kmp_uint32 flag; kmp_int64 iter_number; // iteration number of "collapsed" loop nest kmp_info_t *th = __kmp_threads[gtid]; kmp_team_t *team = th->th.th_team; kmp_disp_t *pr_buf; kmp_int64 lo, st; KA_TRACE(20, ("__kmpc_doacross_post() enter: called T#%d\n", gtid)); if (team->t.t_serialized) { KA_TRACE(20, ("__kmpc_doacross_post() exit: serialized team\n")); return; // no dependencies if team is serialized } // calculate sequential iteration number (same as in "wait" but no // out-of-bounds checks) pr_buf = th->th.th_dispatch; KMP_DEBUG_ASSERT(pr_buf->th_doacross_info != NULL); num_dims = pr_buf->th_doacross_info[0]; lo = pr_buf->th_doacross_info[2]; st = pr_buf->th_doacross_info[4]; #if OMPT_SUPPORT && OMPT_OPTIONAL ompt_dependence_t deps[num_dims]; #endif if (st == 1) { // most common case iter_number = vec[0] - lo; } else if (st > 0) { iter_number = (kmp_uint64)(vec[0] - lo) / st; } else { // negative increment iter_number = (kmp_uint64)(lo - vec[0]) / (-st); } #if OMPT_SUPPORT && OMPT_OPTIONAL deps[0].variable.value = iter_number; deps[0].dependence_type = ompt_dependence_type_source; #endif for (i = 1; i < num_dims; ++i) { kmp_int64 iter, ln; kmp_int32 j = i * 4; ln = pr_buf->th_doacross_info[j + 1]; lo = pr_buf->th_doacross_info[j + 2]; st = pr_buf->th_doacross_info[j + 4]; if (st == 1) { iter = vec[i] - lo; } else if (st > 0) { iter = (kmp_uint64)(vec[i] - lo) / st; } else { // st < 0 iter = (kmp_uint64)(lo - vec[i]) / (-st); } iter_number = iter + ln * iter_number; #if OMPT_SUPPORT && OMPT_OPTIONAL deps[i].variable.value = iter; deps[i].dependence_type = ompt_dependence_type_source; #endif } #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.ompt_callback_dependences) { ompt_callbacks.ompt_callback(ompt_callback_dependences)( &(OMPT_CUR_TASK_INFO(th)->task_data), deps, num_dims); } #endif shft = iter_number % 32; // use 32-bit granularity iter_number >>= 5; // divided by 32 flag = 1 << shft; KMP_MB(); if ((flag & pr_buf->th_doacross_flags[iter_number]) == 0) KMP_TEST_THEN_OR32(&pr_buf->th_doacross_flags[iter_number], flag); KA_TRACE(20, ("__kmpc_doacross_post() exit: T#%d iter %lld posted\n", gtid, (iter_number << 5) + shft)); } void __kmpc_doacross_fini(ident_t *loc, int gtid) { kmp_int32 num_done; kmp_info_t *th = __kmp_threads[gtid]; kmp_team_t *team = th->th.th_team; kmp_disp_t *pr_buf = th->th.th_dispatch; KA_TRACE(20, ("__kmpc_doacross_fini() enter: called T#%d\n", gtid)); if (team->t.t_serialized) { KA_TRACE(20, ("__kmpc_doacross_fini() exit: serialized team %p\n", team)); return; // nothing to do } num_done = KMP_TEST_THEN_INC32((kmp_int32 *)pr_buf->th_doacross_info[1]) + 1; if (num_done == th->th.th_team_nproc) { // we are the last thread, need to free shared resources int idx = pr_buf->th_doacross_buf_idx - 1; dispatch_shared_info_t *sh_buf = &team->t.t_disp_buffer[idx % __kmp_dispatch_num_buffers]; KMP_DEBUG_ASSERT(pr_buf->th_doacross_info[1] == (kmp_int64)&sh_buf->doacross_num_done); KMP_DEBUG_ASSERT(num_done == sh_buf->doacross_num_done); KMP_DEBUG_ASSERT(idx == sh_buf->doacross_buf_idx); __kmp_thread_free(th, CCAST(kmp_uint32 *, sh_buf->doacross_flags)); sh_buf->doacross_flags = NULL; sh_buf->doacross_num_done = 0; sh_buf->doacross_buf_idx += __kmp_dispatch_num_buffers; // free buffer for future re-use } // free private resources (need to keep buffer index forever) pr_buf->th_doacross_flags = NULL; __kmp_thread_free(th, (void *)pr_buf->th_doacross_info); pr_buf->th_doacross_info = NULL; KA_TRACE(20, ("__kmpc_doacross_fini() exit: T#%d\n", gtid)); } /* omp_alloc/omp_free only defined for C/C++, not for Fortran */ void *omp_alloc(size_t size, omp_allocator_handle_t allocator) { return __kmpc_alloc(__kmp_entry_gtid(), size, allocator); } void omp_free(void *ptr, omp_allocator_handle_t allocator) { __kmpc_free(__kmp_entry_gtid(), ptr, allocator); } int __kmpc_get_target_offload(void) { if (!__kmp_init_serial) { __kmp_serial_initialize(); } return __kmp_target_offload; } int __kmpc_pause_resource(kmp_pause_status_t level) { if (!__kmp_init_serial) { return 1; // Can't pause if runtime is not initialized } return __kmp_pause_resource(level); }