/* * refclock_wwv - clock driver for NIST WWV/H time/frequency station */ #ifdef HAVE_CONFIG_H #include #endif #if defined(REFCLOCK) && defined(CLOCK_WWV) #include "ntpd.h" #include "ntp_io.h" #include "ntp_refclock.h" #include "ntp_calendar.h" #include "ntp_stdlib.h" #include "audio.h" #include #include #include #ifdef HAVE_SYS_IOCTL_H # include #endif /* HAVE_SYS_IOCTL_H */ #define ICOM 1 #ifdef ICOM #include "icom.h" #endif /* ICOM */ /* * Audio WWV/H demodulator/decoder * * This driver synchronizes the computer time using data encoded in * radio transmissions from NIST time/frequency stations WWV in Boulder, * CO, and WWVH in Kauai, HI. Transmissions are made continuously on * 2.5, 5, 10, 15 and 20 MHz in AM mode. An ordinary shortwave receiver * can be tuned manually to one of these frequencies or, in the case of * ICOM receivers, the receiver can be tuned automatically using this * program as propagation conditions change throughout the day and * night. * * The driver receives, demodulates and decodes the radio signals when * connected to the audio codec of a workstation running Solaris, SunOS * FreeBSD or Linux, and with a little help, other workstations with * similar codecs or sound cards. In this implementation, only one audio * driver and codec can be supported on a single machine. * * The demodulation and decoding algorithms used in this driver are * based on those developed for the TAPR DSP93 development board and the * TI 320C25 digital signal processor described in: Mills, D.L. A * precision radio clock for WWV transmissions. Electrical Engineering * Report 97-8-1, University of Delaware, August 1997, 25 pp., available * from www.eecis.udel.edu/~mills/reports.htm. The algorithms described * in this report have been modified somewhat to improve performance * under weak signal conditions and to provide an automatic station * identification feature. * * The ICOM code is normally compiled in the driver. It isn't used, * unless the mode keyword on the server configuration command specifies * a nonzero ICOM ID select code. The C-IV trace is turned on if the * debug level is greater than one. */ /* * Interface definitions */ #define DEVICE_AUDIO "/dev/audio" /* audio device name */ #define AUDIO_BUFSIZ 320 /* audio buffer size (50 ms) */ #define PRECISION (-10) /* precision assumed (about 1 ms) */ #define DESCRIPTION "WWV/H Audio Demodulator/Decoder" /* WRU */ #define SECOND 8000 /* second epoch (sample rate) (Hz) */ #define MINUTE (SECOND * 60) /* minute epoch */ #define OFFSET 128 /* companded sample offset */ #define SIZE 256 /* decompanding table size */ #define MAXSIG 6000. /* max signal level reference */ #define MAXCLP 100 /* max clips above reference per s */ #define MAXSNR 30. /* max SNR reference */ #define DGAIN 20. /* data channel gain reference */ #define SGAIN 10. /* sync channel gain reference */ #define MAXFREQ 1. /* max frequency tolerance (125 PPM) */ #define PI 3.1415926535 /* the real thing */ #define DATSIZ (170 * MS) /* data matched filter size */ #define SYNSIZ (800 * MS) /* minute sync matched filter size */ #define MAXERR 30 /* max data bit errors in minute */ #define NCHAN 5 /* number of radio channels */ #define AUDIO_PHI 5e-6 /* dispersion growth factor */ #ifdef IRIG_SUCKS #define WIGGLE 11 /* wiggle filter length */ #endif /* IRIG_SUCKS */ /* * General purpose status bits (status) * * SELV and/or SELH are set when WWV or WWVH has been heard and cleared * on signal loss. SSYNC is set when the second sync pulse has been * acquired and cleared by signal loss. MSYNC is set when the minute * sync pulse has been acquired. DSYNC is set when a digit reaches the * threshold and INSYNC is set when all nine digits have reached the * threshold. The MSYNC, DSYNC and INSYNC bits are cleared only by * timeout, upon which the driver starts over from scratch. * * DGATE is set if a data bit is invalid and BGATE is set if a BCD digit * bit is invalid. SFLAG is set when during seconds 59, 0 and 1 while * probing alternate frequencies. LEPDAY is set when SECWAR of the * timecode is set on 30 June or 31 December. LEPSEC is set during the * last minute of the day when LEPDAY is set. At the end of this minute * the driver inserts second 60 in the seconds state machine and the * minute sync slips a second. The SLOSS and SJITR bits are for monitor * only. */ #define MSYNC 0x0001 /* minute epoch sync */ #define SSYNC 0x0002 /* second epoch sync */ #define DSYNC 0x0004 /* minute units sync */ #define INSYNC 0x0008 /* clock synchronized */ #define FGATE 0x0010 /* frequency gate */ #define DGATE 0x0020 /* data bit error */ #define BGATE 0x0040 /* BCD digit bit error */ #define SFLAG 0x1000 /* probe flag */ #define LEPDAY 0x2000 /* leap second day */ #define LEPSEC 0x4000 /* leap second minute */ /* * Station scoreboard bits * * These are used to establish the signal quality for each of the five * frequencies and two stations. */ #define SYNCNG 0x0001 /* sync or SNR below threshold */ #define DATANG 0x0002 /* data or SNR below threshold */ #define ERRRNG 0x0004 /* data error */ #define SELV 0x0100 /* WWV station select */ #define SELH 0x0200 /* WWVH station select */ /* * Alarm status bits (alarm) * * These bits indicate various alarm conditions, which are decoded to * form the quality character included in the timecode. If not tracking * second sync, the SYNERR alarm is raised. The data error counter is * incremented for each invalid data bit. If too many data bit errors * are encountered in one minute, the MODERR alarm is raised. The DECERR * alarm is raised if a maximum likelihood digit fails to compare with * the current clock digit. If the probability of any miscellaneous bit * or any digit falls below the threshold, the SYMERR alarm is raised. */ #define DECERR 1 /* BCD digit compare error */ #define SYMERR 2 /* low bit or digit probability */ #define MODERR 4 /* too many data bit errors */ #define SYNERR 8 /* not synchronized to station */ /* * Watchcat timeouts (watch) * * If these timeouts expire, the status bits are mashed to zero and the * driver starts from scratch. Suitably more refined procedures may be * developed in future. All these are in minutes. */ #define ACQSN 5 /* station acquisition timeout */ #define DIGIT 30 /* minute unit digit timeout */ #define HOLD 30 /* reachable timeout */ #define PANIC (2 * 1440) /* panic timeout */ /* * Thresholds. These establish the minimum signal level, minimum SNR and * maximum jitter thresholds which establish the error and false alarm * rates of the driver. The values defined here may be on the * adventurous side in the interest of the highest sensitivity. */ #define MTHR 13. /* acquisition signal gate (percent) */ #define TTHR 50. /* tracking signal gate (percent) */ #define ATHR 2000. /* acquisition amplitude threshold */ #define ASNR 6. /* acquisition SNR threshold (dB) */ #define AWND 20. /* acquisition jitter threshold (ms) */ #define AMIN 3 /* min bit count */ #define AMAX 6 /* max bit count */ #define QTHR 2000 /* QSY sync threshold */ #define QSNR 20. /* QSY sync SNR threshold (dB) */ #define XTHR 1000. /* QSY data threshold */ #define XSNR 10. /* QSY data SNR threshold (dB) */ #define STHR 500 /* second sync amplitude threshold */ #define SSNR 10. /* second sync SNR threshold */ #define SCMP 10 /* second sync compare threshold */ #define DTHR 1000 /* bit amplitude threshold */ #define DSNR 10. /* bit SNR threshold (dB) */ #define BTHR 1000 /* digit amplitude threshold */ #define BSNR 3. /* digit likelihood threshold (dB) */ #define BCMP 5 /* digit compare threshold */ /* * Tone frequency definitions. The increments are for 4.5-deg sine * table. */ #define MS (SECOND / 1000) /* samples per millisecond */ #define IN100 ((100 * 80) / SECOND) /* 100 Hz increment */ #define IN1000 ((1000 * 80) / SECOND) /* 1000 Hz increment */ #define IN1200 ((1200 * 80) / SECOND) /* 1200 Hz increment */ /* * Acquisition and tracking time constants. Usually powers of 2. */ #define MINAVG 8 /* min time constant */ #define MAXAVG 1024 /* max time constant */ #define TCONST 16 /* data bit/digit time constant */ /* * Miscellaneous status bits (misc) * * These bits correspond to designated bits in the WWV/H timecode. The * bit probabilities are exponentially averaged over several minutes and * processed by a integrator and threshold. */ #define DUT1 0x01 /* 56 DUT .1 */ #define DUT2 0x02 /* 57 DUT .2 */ #define DUT4 0x04 /* 58 DUT .4 */ #define DUTS 0x08 /* 50 DUT sign */ #define DST1 0x10 /* 55 DST1 leap warning */ #define DST2 0x20 /* 2 DST2 DST1 delayed one day */ #define SECWAR 0x40 /* 3 leap second warning */ /* * The on-time synchronization point for the driver is the second epoch * sync pulse produced by the FIR matched filters. As the 5-ms delay of * these filters is compensated, the program delay is 1.1 ms due to the * 600-Hz IIR bandpass filter. The measured receiver delay is 4.7 ms and * the codec delay less than 0.2 ms. The additional propagation delay * specific to each receiver location can be programmed in the fudge * time1 and time2 values for WWV and WWVH, respectively. */ #define PDELAY (.0011 + .0047 + .0002) /* net system delay (s) */ /* * Table of sine values at 4.5-degree increments. This is used by the * synchronous matched filter demodulators. The integral of sine-squared * over one complete cycle is PI, so the table is normallized by 1 / PI. */ double sintab[] = { 0.000000e+00, 2.497431e-02, 4.979464e-02, 7.430797e-02, /* 0-3 */ 9.836316e-02, 1.218119e-01, 1.445097e-01, 1.663165e-01, /* 4-7 */ 1.870979e-01, 2.067257e-01, 2.250791e-01, 2.420447e-01, /* 8-11 */ 2.575181e-01, 2.714038e-01, 2.836162e-01, 2.940800e-01, /* 12-15 */ 3.027307e-01, 3.095150e-01, 3.143910e-01, 3.173286e-01, /* 16-19 */ 3.183099e-01, 3.173286e-01, 3.143910e-01, 3.095150e-01, /* 20-23 */ 3.027307e-01, 2.940800e-01, 2.836162e-01, 2.714038e-01, /* 24-27 */ 2.575181e-01, 2.420447e-01, 2.250791e-01, 2.067257e-01, /* 28-31 */ 1.870979e-01, 1.663165e-01, 1.445097e-01, 1.218119e-01, /* 32-35 */ 9.836316e-02, 7.430797e-02, 4.979464e-02, 2.497431e-02, /* 36-39 */ -0.000000e+00, -2.497431e-02, -4.979464e-02, -7.430797e-02, /* 40-43 */ -9.836316e-02, -1.218119e-01, -1.445097e-01, -1.663165e-01, /* 44-47 */ -1.870979e-01, -2.067257e-01, -2.250791e-01, -2.420447e-01, /* 48-51 */ -2.575181e-01, -2.714038e-01, -2.836162e-01, -2.940800e-01, /* 52-55 */ -3.027307e-01, -3.095150e-01, -3.143910e-01, -3.173286e-01, /* 56-59 */ -3.183099e-01, -3.173286e-01, -3.143910e-01, -3.095150e-01, /* 60-63 */ -3.027307e-01, -2.940800e-01, -2.836162e-01, -2.714038e-01, /* 64-67 */ -2.575181e-01, -2.420447e-01, -2.250791e-01, -2.067257e-01, /* 68-71 */ -1.870979e-01, -1.663165e-01, -1.445097e-01, -1.218119e-01, /* 72-75 */ -9.836316e-02, -7.430797e-02, -4.979464e-02, -2.497431e-02, /* 76-79 */ 0.000000e+00}; /* 80 */ /* * Decoder operations at the end of each second are driven by a state * machine. The transition matrix consists of a dispatch table indexed * by second number. Each entry in the table contains a case switch * number and argument. */ struct progx { int sw; /* case switch number */ int arg; /* argument */ }; /* * Case switch numbers */ #define IDLE 0 /* no operation */ #define COEF 1 /* BCD bit */ #define COEF2 2 /* BCD bit ignored */ #define DECIM9 3 /* BCD digit 0-9 */ #define DECIM6 4 /* BCD digit 0-6 */ #define DECIM3 5 /* BCD digit 0-3 */ #define DECIM2 6 /* BCD digit 0-2 */ #define MSCBIT 7 /* miscellaneous bit */ #define MSC20 8 /* miscellaneous bit */ #define MSC21 9 /* QSY probe channel */ #define MIN1 10 /* minute */ #define MIN2 11 /* leap second */ #define SYNC2 12 /* QSY data channel */ #define SYNC3 13 /* QSY data channel */ /* * Offsets in decoding matrix */ #define MN 0 /* minute digits (2) */ #define HR 2 /* hour digits (2) */ #define DA 4 /* day digits (3) */ #define YR 7 /* year digits (2) */ struct progx progx[] = { {SYNC2, 0}, /* 0 latch sync max */ {SYNC3, 0}, /* 1 QSY data channel */ {MSCBIT, DST2}, /* 2 dst2 */ {MSCBIT, SECWAR}, /* 3 lw */ {COEF, 0}, /* 4 1 year units */ {COEF, 1}, /* 5 2 */ {COEF, 2}, /* 6 4 */ {COEF, 3}, /* 7 8 */ {DECIM9, YR}, /* 8 */ {IDLE, 0}, /* 9 p1 */ {COEF, 0}, /* 10 1 minute units */ {COEF, 1}, /* 11 2 */ {COEF, 2}, /* 12 4 */ {COEF, 3}, /* 13 8 */ {DECIM9, MN}, /* 14 */ {COEF, 0}, /* 15 10 minute tens */ {COEF, 1}, /* 16 20 */ {COEF, 2}, /* 17 40 */ {COEF2, 3}, /* 18 80 (not used) */ {DECIM6, MN + 1}, /* 19 p2 */ {COEF, 0}, /* 20 1 hour units */ {COEF, 1}, /* 21 2 */ {COEF, 2}, /* 22 4 */ {COEF, 3}, /* 23 8 */ {DECIM9, HR}, /* 24 */ {COEF, 0}, /* 25 10 hour tens */ {COEF, 1}, /* 26 20 */ {COEF2, 2}, /* 27 40 (not used) */ {COEF2, 3}, /* 28 80 (not used) */ {DECIM2, HR + 1}, /* 29 p3 */ {COEF, 0}, /* 30 1 day units */ {COEF, 1}, /* 31 2 */ {COEF, 2}, /* 32 4 */ {COEF, 3}, /* 33 8 */ {DECIM9, DA}, /* 34 */ {COEF, 0}, /* 35 10 day tens */ {COEF, 1}, /* 36 20 */ {COEF, 2}, /* 37 40 */ {COEF, 3}, /* 38 80 */ {DECIM9, DA + 1}, /* 39 p4 */ {COEF, 0}, /* 40 100 day hundreds */ {COEF, 1}, /* 41 200 */ {COEF2, 2}, /* 42 400 (not used) */ {COEF2, 3}, /* 43 800 (not used) */ {DECIM3, DA + 2}, /* 44 */ {IDLE, 0}, /* 45 */ {IDLE, 0}, /* 46 */ {IDLE, 0}, /* 47 */ {IDLE, 0}, /* 48 */ {IDLE, 0}, /* 49 p5 */ {MSCBIT, DUTS}, /* 50 dut+- */ {COEF, 0}, /* 51 10 year tens */ {COEF, 1}, /* 52 20 */ {COEF, 2}, /* 53 40 */ {COEF, 3}, /* 54 80 */ {MSC20, DST1}, /* 55 dst1 */ {MSCBIT, DUT1}, /* 56 0.1 dut */ {MSCBIT, DUT2}, /* 57 0.2 */ {MSC21, DUT4}, /* 58 0.4 QSY probe channel */ {MIN1, 0}, /* 59 p6 latch sync min */ {MIN2, 0} /* 60 leap second */ }; /* * BCD coefficients for maximum likelihood digit decode */ #define P15 1. /* max positive number */ #define N15 -1. /* max negative number */ /* * Digits 0-9 */ #define P9 (P15 / 4) /* mark (+1) */ #define N9 (N15 / 4) /* space (-1) */ double bcd9[][4] = { {N9, N9, N9, N9}, /* 0 */ {P9, N9, N9, N9}, /* 1 */ {N9, P9, N9, N9}, /* 2 */ {P9, P9, N9, N9}, /* 3 */ {N9, N9, P9, N9}, /* 4 */ {P9, N9, P9, N9}, /* 5 */ {N9, P9, P9, N9}, /* 6 */ {P9, P9, P9, N9}, /* 7 */ {N9, N9, N9, P9}, /* 8 */ {P9, N9, N9, P9}, /* 9 */ {0, 0, 0, 0} /* backstop */ }; /* * Digits 0-6 (minute tens) */ #define P6 (P15 / 3) /* mark (+1) */ #define N6 (N15 / 3) /* space (-1) */ double bcd6[][4] = { {N6, N6, N6, 0}, /* 0 */ {P6, N6, N6, 0}, /* 1 */ {N6, P6, N6, 0}, /* 2 */ {P6, P6, N6, 0}, /* 3 */ {N6, N6, P6, 0}, /* 4 */ {P6, N6, P6, 0}, /* 5 */ {N6, P6, P6, 0}, /* 6 */ {0, 0, 0, 0} /* backstop */ }; /* * Digits 0-3 (day hundreds) */ #define P3 (P15 / 2) /* mark (+1) */ #define N3 (N15 / 2) /* space (-1) */ double bcd3[][4] = { {N3, N3, 0, 0}, /* 0 */ {P3, N3, 0, 0}, /* 1 */ {N3, P3, 0, 0}, /* 2 */ {P3, P3, 0, 0}, /* 3 */ {0, 0, 0, 0} /* backstop */ }; /* * Digits 0-2 (hour tens) */ #define P2 (P15 / 2) /* mark (+1) */ #define N2 (N15 / 2) /* space (-1) */ double bcd2[][4] = { {N2, N2, 0, 0}, /* 0 */ {P2, N2, 0, 0}, /* 1 */ {N2, P2, 0, 0}, /* 2 */ {0, 0, 0, 0} /* backstop */ }; /* * DST decode (DST2 DST1) for prettyprint */ char dstcod[] = { 'S', /* 00 standard time */ 'I', /* 01 set clock ahead at 0200 local */ 'O', /* 10 set clock back at 0200 local */ 'D' /* 11 daylight time */ }; /* * The decoding matrix consists of nine row vectors, one for each digit * of the timecode. The digits are stored from least to most significant * order. The maximum likelihood timecode is formed from the digits * corresponding to the maximum likelihood values reading in the * opposite order: yy ddd hh:mm. */ struct decvec { int radix; /* radix (3, 4, 6, 10) */ int digit; /* current clock digit */ int mldigit; /* maximum likelihood digit */ int phase; /* maximum likelihood digit phase */ int count; /* match count */ double digprb; /* max digit probability */ double digsnr; /* likelihood function (dB) */ double like[10]; /* likelihood integrator 0-9 */ }; /* * The station structure is used to acquire the minute pulse from WWV * and/or WWVH. These stations are distinguished by the frequency used * for the second and minute sync pulses, 1000 Hz for WWV and 1200 Hz * for WWVH. Other than frequency, the format is the same. */ struct sync { double epoch; /* accumulated epoch differences */ double maxamp; /* sync max envelope (square) */ double noiamp; /* sync noise envelope (square) */ long pos; /* max amplitude position */ long lastpos; /* last max position */ long mepoch; /* minute synch epoch */ double amp; /* sync amplitude (I, Q squares) */ double synamp; /* sync max envelope at 800 ms */ double synmax; /* sync envelope at 0 s */ double synmin; /* sync envelope at 59, 1 s */ double synsnr; /* sync signal SNR */ int count; /* bit counter */ char refid[5]; /* reference identifier */ int select; /* select bits */ int reach; /* reachability register */ }; /* * The channel structure is used to mitigate between channels. */ struct chan { int gain; /* audio gain */ double sigamp; /* data max envelope (square) */ double noiamp; /* data noise envelope (square) */ double datsnr; /* data signal SNR */ struct sync wwv; /* wwv station */ struct sync wwvh; /* wwvh station */ }; /* * WWV unit control structure */ struct wwvunit { l_fp timestamp; /* audio sample timestamp */ l_fp tick; /* audio sample increment */ double phase, freq; /* logical clock phase and frequency */ double monitor; /* audio monitor point */ int fd_icom; /* ICOM file descriptor */ int errflg; /* error flags */ int watch; /* watchcat */ /* * Audio codec variables */ double comp[SIZE]; /* decompanding table */ int port; /* codec port */ int gain; /* codec gain */ int mongain; /* codec monitor gain */ int clipcnt; /* sample clipped count */ #ifdef IRIG_SUCKS l_fp wigwag; /* wiggle accumulator */ int wp; /* wiggle filter pointer */ l_fp wiggle[WIGGLE]; /* wiggle filter */ l_fp wigbot[WIGGLE]; /* wiggle bottom fisher*/ #endif /* IRIG_SUCKS */ /* * Variables used to establish basic system timing */ int avgint; /* master time constant */ int tepoch; /* sync epoch median */ int yepoch; /* sync epoch */ int repoch; /* buffered sync epoch */ double epomax; /* second sync amplitude */ double eposnr; /* second sync SNR */ double irig; /* data I channel amplitude */ double qrig; /* data Q channel amplitude */ int datapt; /* 100 Hz ramp */ double datpha; /* 100 Hz VFO control */ int rphase; /* second sample counter */ long mphase; /* minute sample counter */ /* * Variables used to mitigate which channel to use */ struct chan mitig[NCHAN]; /* channel data */ struct sync *sptr; /* station pointer */ int dchan; /* data channel */ int schan; /* probe channel */ int achan; /* active channel */ /* * Variables used by the clock state machine */ struct decvec decvec[9]; /* decoding matrix */ int rsec; /* seconds counter */ int digcnt; /* count of digits synchronized */ /* * Variables used to estimate signal levels and bit/digit * probabilities */ double sigsig; /* data max signal */ double sigamp; /* data max envelope (square) */ double noiamp; /* data noise envelope (square) */ double datsnr; /* data SNR (dB) */ /* * Variables used to establish status and alarm conditions */ int status; /* status bits */ int alarm; /* alarm flashers */ int misc; /* miscellaneous timecode bits */ int errcnt; /* data bit error counter */ int errbit; /* data bit errors in minute */ }; /* * Function prototypes */ static int wwv_start P((int, struct peer *)); static void wwv_shutdown P((int, struct peer *)); static void wwv_receive P((struct recvbuf *)); static void wwv_poll P((int, struct peer *)); /* * More function prototypes */ static void wwv_epoch P((struct peer *)); static void wwv_rf P((struct peer *, double)); static void wwv_endpoc P((struct peer *, int)); static void wwv_rsec P((struct peer *, double)); static void wwv_qrz P((struct peer *, struct sync *, double, int)); static void wwv_corr4 P((struct peer *, struct decvec *, double [], double [][4])); static void wwv_gain P((struct peer *)); static void wwv_tsec P((struct wwvunit *)); static double wwv_data P((struct wwvunit *, double)); static int timecode P((struct wwvunit *, char *)); static double wwv_snr P((double, double)); static int carry P((struct decvec *)); static void wwv_newchan P((struct peer *)); static void wwv_newgame P((struct peer *)); static double wwv_metric P((struct sync *)); #ifdef ICOM static int wwv_qsy P((struct peer *, int)); #endif /* ICOM */ static double qsy[NCHAN] = {2.5, 5, 10, 15, 20}; /* frequencies (MHz) */ /* * Transfer vector */ struct refclock refclock_wwv = { wwv_start, /* start up driver */ wwv_shutdown, /* shut down driver */ wwv_poll, /* transmit poll message */ noentry, /* not used (old wwv_control) */ noentry, /* initialize driver (not used) */ noentry, /* not used (old wwv_buginfo) */ NOFLAGS /* not used */ }; /* * wwv_start - open the devices and initialize data for processing */ static int wwv_start( int unit, /* instance number (used by PCM) */ struct peer *peer /* peer structure pointer */ ) { struct refclockproc *pp; struct wwvunit *up; #ifdef ICOM int temp; #endif /* ICOM */ /* * Local variables */ int fd; /* file descriptor */ int i; /* index */ double step; /* codec adjustment */ /* * Open audio device */ fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit); if (fd < 0) return (0); #ifdef DEBUG if (debug) audio_show(); #endif /* * Allocate and initialize unit structure */ if (!(up = (struct wwvunit *)emalloc(sizeof(struct wwvunit)))) { close(fd); return (0); } memset(up, 0, sizeof(struct wwvunit)); pp = peer->procptr; pp->unitptr = (caddr_t)up; pp->io.clock_recv = wwv_receive; pp->io.srcclock = (caddr_t)peer; pp->io.datalen = 0; pp->io.fd = fd; if (!io_addclock(&pp->io)) { close(fd); free(up); return (0); } /* * Initialize miscellaneous variables */ peer->precision = PRECISION; pp->clockdesc = DESCRIPTION; /* * The companded samples are encoded sign-magnitude. The table * contains all the 256 values in the interest of speed. */ up->comp[0] = up->comp[OFFSET] = 0.; up->comp[1] = 1; up->comp[OFFSET + 1] = -1.; up->comp[2] = 3; up->comp[OFFSET + 2] = -3.; step = 2.; for (i = 3; i < OFFSET; i++) { up->comp[i] = up->comp[i - 1] + step; up->comp[OFFSET + i] = -up->comp[i]; if (i % 16 == 0) step *= 2.; } DTOLFP(1. / SECOND, &up->tick); /* * Initialize the decoding matrix with the radix for each digit * position. */ up->decvec[MN].radix = 10; /* minutes */ up->decvec[MN + 1].radix = 6; up->decvec[HR].radix = 10; /* hours */ up->decvec[HR + 1].radix = 3; up->decvec[DA].radix = 10; /* days */ up->decvec[DA + 1].radix = 10; up->decvec[DA + 2].radix = 4; up->decvec[YR].radix = 10; /* years */ up->decvec[YR + 1].radix = 10; wwv_newgame(peer); up->schan = up->achan = 3; /* * Initialize autotune if available. Start out at 15 MHz. Note * that the ICOM select code must be less than 128, so the high * order bit can be used to select the line speed. */ #ifdef ICOM temp = 0; #ifdef DEBUG if (debug > 1) temp = P_TRACE; #endif if (peer->ttl != 0) { if (peer->ttl & 0x80) up->fd_icom = icom_init("/dev/icom", B1200, temp); else up->fd_icom = icom_init("/dev/icom", B9600, temp); } if (up->fd_icom > 0) { if ((temp = wwv_qsy(peer, up->schan)) != 0) { NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT) msyslog(LOG_NOTICE, "icom: radio not found"); up->errflg = CEVNT_FAULT; close(up->fd_icom); up->fd_icom = 0; } else { NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT) msyslog(LOG_NOTICE, "icom: autotune enabled"); } } #endif /* ICOM */ return (1); } /* * wwv_shutdown - shut down the clock */ static void wwv_shutdown( int unit, /* instance number (not used) */ struct peer *peer /* peer structure pointer */ ) { struct refclockproc *pp; struct wwvunit *up; pp = peer->procptr; up = (struct wwvunit *)pp->unitptr; io_closeclock(&pp->io); if (up->fd_icom > 0) close(up->fd_icom); free(up); } /* * wwv_receive - receive data from the audio device * * This routine reads input samples and adjusts the logical clock to * track the A/D sample clock by dropping or duplicating codec samples. * It also controls the A/D signal level with an AGC loop to mimimize * quantization noise and avoid overload. */ static void wwv_receive( struct recvbuf *rbufp /* receive buffer structure pointer */ ) { struct peer *peer; struct refclockproc *pp; struct wwvunit *up; /* * Local variables */ double sample; /* codec sample */ u_char *dpt; /* buffer pointer */ int bufcnt; /* buffer counter */ l_fp ltemp; peer = (struct peer *)rbufp->recv_srcclock; pp = peer->procptr; up = (struct wwvunit *)pp->unitptr; /* * Main loop - read until there ain't no more. Note codec * samples are bit-inverted. */ DTOLFP((double)rbufp->recv_length / SECOND, <emp); L_SUB(&rbufp->recv_time, <emp); up->timestamp = rbufp->recv_time; dpt = rbufp->recv_buffer; for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) { sample = up->comp[~*dpt++ & 0xff]; /* * Clip noise spikes greater than MAXSIG. If no clips, * increase the gain a tad; if the clips are too high, * decrease a tad. */ if (sample > MAXSIG) { sample = MAXSIG; up->clipcnt++; } else if (sample < -MAXSIG) { sample = -MAXSIG; up->clipcnt++; } /* * Variable frequency oscillator. The codec oscillator * runs at the nominal rate of 8000 samples per second, * or 125 us per sample. A frequency change of one unit * results in either duplicating or deleting one sample * per second, which results in a frequency change of * 125 PPM. */ up->phase += up->freq / SECOND; if (up->phase >= .5) { up->phase -= 1.; } else if (up->phase < -.5) { up->phase += 1.; wwv_rf(peer, sample); wwv_rf(peer, sample); } else { wwv_rf(peer, sample); } L_ADD(&up->timestamp, &up->tick); } /* * Set the input port and monitor gain for the next buffer. */ if (pp->sloppyclockflag & CLK_FLAG2) up->port = 2; else up->port = 1; if (pp->sloppyclockflag & CLK_FLAG3) up->mongain = MONGAIN; else up->mongain = 0; } /* * wwv_poll - called by the transmit procedure * * This routine keeps track of status. If no offset samples have been * processed during a poll interval, a timeout event is declared. If * errors have have occurred during the interval, they are reported as * well. Once the clock is set, it always appears reachable, unless * reset by watchdog timeout. */ static void wwv_poll( int unit, /* instance number (not used) */ struct peer *peer /* peer structure pointer */ ) { struct refclockproc *pp; struct wwvunit *up; pp = peer->procptr; up = (struct wwvunit *)pp->unitptr; if (pp->coderecv == pp->codeproc) up->errflg = CEVNT_TIMEOUT; if (up->errflg) refclock_report(peer, up->errflg); up->errflg = 0; pp->polls++; } /* * wwv_rf - process signals and demodulate to baseband * * This routine grooms and filters decompanded raw audio samples. The * output signals include the 100-Hz baseband data signal in quadrature * form, plus the epoch index of the second sync signal and the second * index of the minute sync signal. * * There are two 1-s ramps used by this program. Both count the 8000 * logical clock samples spanning exactly one second. The epoch ramp * counts the samples starting at an arbitrary time. The rphase ramp * counts the samples starting at the 5-ms second sync pulse found * during the epoch ramp. * * There are two 1-m ramps used by this program. The mphase ramp counts * the 480,000 logical clock samples spanning exactly one minute and * starting at an arbitrary time. The rsec ramp counts the 60 seconds of * the minute starting at the 800-ms minute sync pulse found during the * mphase ramp. The rsec ramp drives the seconds state machine to * determine the bits and digits of the timecode. * * Demodulation operations are based on three synthesized quadrature * sinusoids: 100 Hz for the data signal, 1000 Hz for the WWV sync * signal and 1200 Hz for the WWVH sync signal. These drive synchronous * matched filters for the data signal (170 ms at 100 Hz), WWV minute * sync signal (800 ms at 1000 Hz) and WWVH minute sync signal (800 ms * at 1200 Hz). Two additional matched filters are switched in * as required for the WWV second sync signal (5 ms at 1000 Hz) and * WWVH second sync signal (5 ms at 1200 Hz). */ static void wwv_rf( struct peer *peer, /* peerstructure pointer */ double isig /* input signal */ ) { struct refclockproc *pp; struct wwvunit *up; struct sync *sp; static double lpf[5]; /* 150-Hz lpf delay line */ double data; /* lpf output */ static double bpf[9]; /* 1000/1200-Hz bpf delay line */ double syncx; /* bpf output */ static double mf[41]; /* 1000/1200-Hz mf delay line */ double mfsync; /* mf output */ static int iptr; /* data channel pointer */ static double ibuf[DATSIZ]; /* data I channel delay line */ static double qbuf[DATSIZ]; /* data Q channel delay line */ static int jptr; /* sync channel pointer */ static double cibuf[SYNSIZ]; /* wwv I channel delay line */ static double cqbuf[SYNSIZ]; /* wwv Q channel delay line */ static double ciamp; /* wwv I channel amplitude */ static double cqamp; /* wwv Q channel amplitude */ static int csinptr; /* wwv channel phase */ static double hibuf[SYNSIZ]; /* wwvh I channel delay line */ static double hqbuf[SYNSIZ]; /* wwvh Q channel delay line */ static double hiamp; /* wwvh I channel amplitude */ static double hqamp; /* wwvh Q channel amplitude */ static int hsinptr; /* wwvh channels phase */ static double epobuf[SECOND]; /* epoch sync comb filter */ static double epomax; /* epoch sync amplitude buffer */ static int epopos; /* epoch sync position buffer */ static int iniflg; /* initialization flag */ int epoch; /* comb filter index */ int pdelay; /* propagation delay (samples) */ double dtemp; int i; pp = peer->procptr; up = (struct wwvunit *)pp->unitptr; if (!iniflg) { iniflg = 1; memset((char *)lpf, 0, sizeof(lpf)); memset((char *)bpf, 0, sizeof(bpf)); memset((char *)mf, 0, sizeof(mf)); memset((char *)ibuf, 0, sizeof(ibuf)); memset((char *)qbuf, 0, sizeof(qbuf)); memset((char *)cibuf, 0, sizeof(cibuf)); memset((char *)cqbuf, 0, sizeof(cqbuf)); memset((char *)hibuf, 0, sizeof(hibuf)); memset((char *)hqbuf, 0, sizeof(hqbuf)); memset((char *)epobuf, 0, sizeof(epobuf)); } /* * Baseband data demodulation. The 100-Hz subcarrier is * extracted using a 150-Hz IIR lowpass filter. This attenuates * the 1000/1200-Hz sync signals, as well as the 440-Hz and * 600-Hz tones and most of the noise and voice modulation * components. * * Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB * passband ripple, -50 dB stopband ripple. */ data = (lpf[4] = lpf[3]) * 8.360961e-01; data += (lpf[3] = lpf[2]) * -3.481740e+00; data += (lpf[2] = lpf[1]) * 5.452988e+00; data += (lpf[1] = lpf[0]) * -3.807229e+00; lpf[0] = isig - data; data = lpf[0] * 3.281435e-03 + lpf[1] * -1.149947e-02 + lpf[2] * 1.654858e-02 + lpf[3] * -1.149947e-02 + lpf[4] * 3.281435e-03; /* * The I and Q quadrature data signals are produced by * multiplying the filtered signal by 100-Hz sine and cosine * signals, respectively. The data signals are demodulated by * 170-ms synchronous matched filters to produce the amplitude * and phase signals used by the decoder. */ i = up->datapt; up->datapt = (up->datapt + IN100) % 80; dtemp = sintab[i] * data / DATSIZ * DGAIN; up->irig -= ibuf[iptr]; ibuf[iptr] = dtemp; up->irig += dtemp; i = (i + 20) % 80; dtemp = sintab[i] * data / DATSIZ * DGAIN; up->qrig -= qbuf[iptr]; qbuf[iptr] = dtemp; up->qrig += dtemp; iptr = (iptr + 1) % DATSIZ; /* * Baseband sync demodulation. The 1000/1200 sync signals are * extracted using a 600-Hz IIR bandpass filter. This removes * the 100-Hz data subcarrier, as well as the 440-Hz and 600-Hz * tones and most of the noise and voice modulation components. * * Matlab 4th-order IIR elliptic, 800-1400 Hz bandpass, 0.2 dB * passband ripple, -50 dB stopband ripple. */ syncx = (bpf[8] = bpf[7]) * 4.897278e-01; syncx += (bpf[7] = bpf[6]) * -2.765914e+00; syncx += (bpf[6] = bpf[5]) * 8.110921e+00; syncx += (bpf[5] = bpf[4]) * -1.517732e+01; syncx += (bpf[4] = bpf[3]) * 1.975197e+01; syncx += (bpf[3] = bpf[2]) * -1.814365e+01; syncx += (bpf[2] = bpf[1]) * 1.159783e+01; syncx += (bpf[1] = bpf[0]) * -4.735040e+00; bpf[0] = isig - syncx; syncx = bpf[0] * 8.203628e-03 + bpf[1] * -2.375732e-02 + bpf[2] * 3.353214e-02 + bpf[3] * -4.080258e-02 + bpf[4] * 4.605479e-02 + bpf[5] * -4.080258e-02 + bpf[6] * 3.353214e-02 + bpf[7] * -2.375732e-02 + bpf[8] * 8.203628e-03; /* * The I and Q quadrature minute sync signals are produced by * multiplying the filtered signal by 1000-Hz (WWV) and 1200-Hz * (WWVH) sine and cosine signals, respectively. The resulting * signals are demodulated by 800-ms synchronous matched filters * to synchronize the second and minute and to detect which one * (or both) the WWV or WWVH signal is present. * * Note the master timing ramps, which run continuously. The * minute counter (mphase) counts the samples in the minute, * while the second counter (epoch) counts the samples in the * second. */ up->mphase = (up->mphase + 1) % MINUTE; epoch = up->mphase % SECOND; i = csinptr; csinptr = (csinptr + IN1000) % 80; dtemp = sintab[i] * syncx / SYNSIZ * SGAIN; ciamp = ciamp - cibuf[jptr] + dtemp; cibuf[jptr] = dtemp; i = (i + 20) % 80; dtemp = sintab[i] * syncx / SYNSIZ * SGAIN; cqamp = cqamp - cqbuf[jptr] + dtemp; cqbuf[jptr] = dtemp; sp = &up->mitig[up->schan].wwv; dtemp = ciamp * ciamp + cqamp * cqamp; sp->amp = dtemp; if (!(up->status & MSYNC)) wwv_qrz(peer, sp, dtemp, (int)(pp->fudgetime1 * SECOND)); i = hsinptr; hsinptr = (hsinptr + IN1200) % 80; dtemp = sintab[i] * syncx / SYNSIZ * SGAIN; hiamp = hiamp - hibuf[jptr] + dtemp; hibuf[jptr] = dtemp; i = (i + 20) % 80; dtemp = sintab[i] * syncx / SYNSIZ * SGAIN; hqamp = hqamp - hqbuf[jptr] + dtemp; hqbuf[jptr] = dtemp; sp = &up->mitig[up->schan].wwvh; dtemp = hiamp * hiamp + hqamp * hqamp; sp->amp = dtemp; if (!(up->status & MSYNC)) wwv_qrz(peer, sp, dtemp, (int)(pp->fudgetime2 * SECOND)); jptr = (jptr + 1) % SYNSIZ; /* * The following section is called once per minute. It does * housekeeping and timeout functions and empties the dustbins. */ if (up->mphase == 0) { up->watch++; if (!(up->status & MSYNC)) { /* * If minute sync has not been acquired before * timeout, or if no signal is heard, the * program cycles to the next frequency and * tries again. */ wwv_newchan(peer); if (!(up->status & (SELV | SELH)) || up->watch > ACQSN) { wwv_newgame(peer); #ifdef ICOM if (up->fd_icom > 0) { up->schan = (up->schan + 1) % NCHAN; wwv_qsy(peer, up->schan); } #endif /* ICOM */ } } else { /* * If the leap bit is set, set the minute epoch * back one second so the station processes * don't miss a beat. */ if (up->status & LEPSEC) { up->mphase -= SECOND; if (up->mphase < 0) up->mphase += MINUTE; } } } /* * When the channel metric reaches threshold and the second * counter matches the minute epoch within the second, the * driver has synchronized to the station. The second number is * the remaining seconds until the next minute epoch, while the * sync epoch is zero. Watch out for the first second; if * already synchronized to the second, the buffered sync epoch * must be set. */ if (up->status & MSYNC) { wwv_epoch(peer); } else if ((sp = up->sptr) != NULL) { struct chan *cp; if (sp->count >= AMIN && epoch == sp->mepoch % SECOND) { up->rsec = 60 - sp->mepoch / SECOND; up->rphase = 0; up->status |= MSYNC; up->watch = 0; if (!(up->status & SSYNC)) up->repoch = up->yepoch = epoch; else up->repoch = up->yepoch; for (i = 0; i < NCHAN; i++) { cp = &up->mitig[i]; cp->wwv.count = cp->wwv.reach = 0; cp->wwvh.count = cp->wwvh.reach = 0; } } } /* * The second sync pulse is extracted using 5-ms (40 sample) FIR * matched filters at 1000 Hz for WWV or 1200 Hz for WWVH. This * pulse is used for the most precise synchronization, since if * provides a resolution of one sample (125 us). The filters run * only if the station has been reliably determined. */ if (up->status & SELV) { pdelay = (int)(pp->fudgetime1 * SECOND); /* * WWV FIR matched filter, five cycles of 1000-Hz * sinewave. */ mf[40] = mf[39]; mfsync = (mf[39] = mf[38]) * 4.224514e-02; mfsync += (mf[38] = mf[37]) * 5.974365e-02; mfsync += (mf[37] = mf[36]) * 4.224514e-02; mf[36] = mf[35]; mfsync += (mf[35] = mf[34]) * -4.224514e-02; mfsync += (mf[34] = mf[33]) * -5.974365e-02; mfsync += (mf[33] = mf[32]) * -4.224514e-02; mf[32] = mf[31]; mfsync += (mf[31] = mf[30]) * 4.224514e-02; mfsync += (mf[30] = mf[29]) * 5.974365e-02; mfsync += (mf[29] = mf[28]) * 4.224514e-02; mf[28] = mf[27]; mfsync += (mf[27] = mf[26]) * -4.224514e-02; mfsync += (mf[26] = mf[25]) * -5.974365e-02; mfsync += (mf[25] = mf[24]) * -4.224514e-02; mf[24] = mf[23]; mfsync += (mf[23] = mf[22]) * 4.224514e-02; mfsync += (mf[22] = mf[21]) * 5.974365e-02; mfsync += (mf[21] = mf[20]) * 4.224514e-02; mf[20] = mf[19]; mfsync += (mf[19] = mf[18]) * -4.224514e-02; mfsync += (mf[18] = mf[17]) * -5.974365e-02; mfsync += (mf[17] = mf[16]) * -4.224514e-02; mf[16] = mf[15]; mfsync += (mf[15] = mf[14]) * 4.224514e-02; mfsync += (mf[14] = mf[13]) * 5.974365e-02; mfsync += (mf[13] = mf[12]) * 4.224514e-02; mf[12] = mf[11]; mfsync += (mf[11] = mf[10]) * -4.224514e-02; mfsync += (mf[10] = mf[9]) * -5.974365e-02; mfsync += (mf[9] = mf[8]) * -4.224514e-02; mf[8] = mf[7]; mfsync += (mf[7] = mf[6]) * 4.224514e-02; mfsync += (mf[6] = mf[5]) * 5.974365e-02; mfsync += (mf[5] = mf[4]) * 4.224514e-02; mf[4] = mf[3]; mfsync += (mf[3] = mf[2]) * -4.224514e-02; mfsync += (mf[2] = mf[1]) * -5.974365e-02; mfsync += (mf[1] = mf[0]) * -4.224514e-02; mf[0] = syncx; } else if (up->status & SELH) { pdelay = (int)(pp->fudgetime2 * SECOND); /* * WWVH FIR matched filter, six cycles of 1200-Hz * sinewave. */ mf[40] = mf[39]; mfsync = (mf[39] = mf[38]) * 4.833363e-02; mfsync += (mf[38] = mf[37]) * 5.681959e-02; mfsync += (mf[37] = mf[36]) * 1.846180e-02; mfsync += (mf[36] = mf[35]) * -3.511644e-02; mfsync += (mf[35] = mf[34]) * -5.974365e-02; mfsync += (mf[34] = mf[33]) * -3.511644e-02; mfsync += (mf[33] = mf[32]) * 1.846180e-02; mfsync += (mf[32] = mf[31]) * 5.681959e-02; mfsync += (mf[31] = mf[30]) * 4.833363e-02; mf[30] = mf[29]; mfsync += (mf[29] = mf[28]) * -4.833363e-02; mfsync += (mf[28] = mf[27]) * -5.681959e-02; mfsync += (mf[27] = mf[26]) * -1.846180e-02; mfsync += (mf[26] = mf[25]) * 3.511644e-02; mfsync += (mf[25] = mf[24]) * 5.974365e-02; mfsync += (mf[24] = mf[23]) * 3.511644e-02; mfsync += (mf[23] = mf[22]) * -1.846180e-02; mfsync += (mf[22] = mf[21]) * -5.681959e-02; mfsync += (mf[21] = mf[20]) * -4.833363e-02; mf[20] = mf[19]; mfsync += (mf[19] = mf[18]) * 4.833363e-02; mfsync += (mf[18] = mf[17]) * 5.681959e-02; mfsync += (mf[17] = mf[16]) * 1.846180e-02; mfsync += (mf[16] = mf[15]) * -3.511644e-02; mfsync += (mf[15] = mf[14]) * -5.974365e-02; mfsync += (mf[14] = mf[13]) * -3.511644e-02; mfsync += (mf[13] = mf[12]) * 1.846180e-02; mfsync += (mf[12] = mf[11]) * 5.681959e-02; mfsync += (mf[11] = mf[10]) * 4.833363e-02; mf[10] = mf[9]; mfsync += (mf[9] = mf[8]) * -4.833363e-02; mfsync += (mf[8] = mf[7]) * -5.681959e-02; mfsync += (mf[7] = mf[6]) * -1.846180e-02; mfsync += (mf[6] = mf[5]) * 3.511644e-02; mfsync += (mf[5] = mf[4]) * 5.974365e-02; mfsync += (mf[4] = mf[3]) * 3.511644e-02; mfsync += (mf[3] = mf[2]) * -1.846180e-02; mfsync += (mf[2] = mf[1]) * -5.681959e-02; mfsync += (mf[1] = mf[0]) * -4.833363e-02; mf[0] = syncx; } else { mfsync = 0; pdelay = 0; } /* * Enhance the seconds sync pulse using a 1-s (8000-sample) comb * filter. Correct for the FIR matched filter delay, which is 5 * ms for both the WWV and WWVH filters, and also for the * propagation delay. Once each second look for second sync. If * not in minute sync, fiddle the codec gain. Note the SNR is * computed from the maximum sample and the two samples 6 ms * before and 6 ms after it, so if we slip more than a cycle the * SNR should plummet. */ dtemp = (epobuf[epoch] += (mfsync - epobuf[epoch]) / up->avgint); if (dtemp > epomax) { epomax = dtemp; epopos = epoch; } if (epoch == 0) { int k, j; up->epomax = epomax; k = epopos - 6 * MS; if (k < 0) k += SECOND; j = epopos + 6 * MS; if (j >= SECOND) i -= SECOND; up->eposnr = wwv_snr(epomax, max(abs(epobuf[k]), abs(epobuf[j]))); epopos -= pdelay + 5 * MS; if (epopos < 0) epopos += SECOND; wwv_endpoc(peer, epopos); if (!(up->status & SSYNC)) up->alarm |= SYNERR; epomax = 0; if (!(up->status & MSYNC)) wwv_gain(peer); } } /* * wwv_qrz - identify and acquire WWV/WWVH minute sync pulse * * This routine implements a virtual station process used to acquire * minute sync and to mitigate among the ten frequency and station * combinations. During minute sync acquisition the process probes each * frequency in turn for the minute pulse from either station, which * involves searching through the entire minute of samples. After * finding a candidate, the process searches only the seconds before and * after the candidate for the signal and all other seconds for the * noise. * * Students of radar receiver technology will discover this algorithm * amounts to a range gate discriminator. The discriminator requires * that the peak minute pulse amplitude be at least 2000 and the SNR be * at least 6 dB. In addition after finding a candidate, The peak second * pulse amplitude must be at least 2000, the SNR at least 6 dB and the * difference between the current and previous epoch must be less than * 7.5 ms, which corresponds to a frequency error of 125 PPM.. A compare * counter keeps track of the number of successive intervals which * satisfy these criteria. * * Note that, while the minute pulse is found by by the discriminator, * the actual value is determined from the second epoch. The assumption * is that the discriminator peak occurs about 800 ms into the second, * so the timing is retarted to the previous second epoch. */ static void wwv_qrz( struct peer *peer, /* peer structure pointer */ struct sync *sp, /* sync channel structure */ double syncx, /* bandpass filtered sync signal */ int pdelay /* propagation delay (samples) */ ) { struct refclockproc *pp; struct wwvunit *up; char tbuf[80]; /* monitor buffer */ double snr; /* on-pulse/off-pulse ratio (dB) */ long epoch, fpoch; int isgood; pp = peer->procptr; up = (struct wwvunit *)pp->unitptr; /* * Find the sample with peak energy, which defines the minute * epoch. If a sample has been found with good amplitude, * accumulate the noise squares for all except the second before * and after that position. */ isgood = up->epomax > STHR && up->eposnr > SSNR; if (isgood) { fpoch = up->mphase % SECOND - up->tepoch; if (fpoch < 0) fpoch += SECOND; } else { fpoch = pdelay + SYNSIZ; } epoch = up->mphase - fpoch; if (epoch < 0) epoch += MINUTE; if (syncx > sp->maxamp) { sp->maxamp = syncx; sp->pos = epoch; } if (abs((epoch - sp->lastpos) % MINUTE) > SECOND) sp->noiamp += syncx; /* * At the end of the minute, determine the epoch of the * sync pulse, as well as the SNR and difference between * the current and previous epoch, which represents the * intrinsic frequency error plus jitter. */ if (up->mphase == 0) { sp->synmax = sqrt(sp->maxamp); sp->synmin = sqrt(sp->noiamp / (MINUTE - 2 * SECOND)); epoch = (sp->pos - sp->lastpos) % MINUTE; /* * If not yet in minute sync, we have to do a little * dance to find a valid minute sync pulse, emphasis * valid. */ snr = wwv_snr(sp->synmax, sp->synmin); isgood = isgood && sp->synmax > ATHR && snr > ASNR; switch (sp->count) { /* * In state 0 the station was not heard during the * previous probe. Look for the biggest blip greater * than the amplitude threshold in the minute and assume * that the minute sync pulse. We're fishing here, since * the range gate has not yet been determined. If found, * bump to state 1. */ case 0: if (sp->synmax >= ATHR) sp->count++; break; /* * In state 1 a candidate blip has been found and the * next minute has been searched for another blip. If * none are found acceptable, drop back to state 0 and * hunt some more. Otherwise, a legitimate minute pulse * may have been found, so bump to state 2. */ case 1: if (!isgood) { sp->count = 0; break; } sp->count++; break; /* * In states 2 and above, continue to groom samples as * before and drop back to state 0 if the groom fails. * If it succeeds, set the epoch and bump to the next * state until reaching the threshold, if ever. */ default: if (!isgood || abs(epoch) > AWND * MS) { sp->count = 0; break; } sp->mepoch = sp->pos; sp->count++; break; } if (pp->sloppyclockflag & CLK_FLAG4) { sprintf(tbuf, "wwv8 %d %3d %s %d %5.0f %5.1f %5ld %5d %ld", up->port, up->gain, sp->refid, sp->count, sp->synmax, snr, sp->pos, up->tepoch, epoch); record_clock_stats(&peer->srcadr, tbuf); #ifdef DEBUG if (debug) printf("%s\n", tbuf); #endif } sp->lastpos = sp->pos; sp->maxamp = sp->noiamp = 0; } } /* * wwv_endpoc - identify and acquire second sync pulse * * This routine is called at the end of the second sync interval. It * determines the second sync epoch position within the interval and * disciplines the sample clock using a frequency-lock loop (FLL). * * Second sync is determined in the RF input routine as the maximum * over all 8000 samples in the second comb filter. To assure accurate * and reliable time and frequency discipline, this routine performs a * great deal of heavy-handed heuristic data filtering and grooming. * * Note that, since the minute sync pulse is very wide (800 ms), precise * minute sync epoch acquisition requires at least a rough estimate of * the second sync pulse (5 ms). This becomes more important in choppy * conditions at the lower frequencies at night, since sferics and * cochannel crude can badly distort the minute pulse. */ static void wwv_endpoc( struct peer *peer, /* peer structure pointer */ int epopos /* epoch max position */ ) { struct refclockproc *pp; struct wwvunit *up; static int epoch_mf[3]; /* epoch median filter */ static int xepoch; /* last second epoch */ static int zepoch; /* last averaging interval epoch */ static int syncnt; /* run length counter */ static int maxrun; /* longest run length */ static int mepoch; /* longest run epoch */ static int avgcnt; /* averaging interval counter */ static int avginc; /* averaging ratchet */ static int iniflg; /* initialization flag */ char tbuf[80]; /* monitor buffer */ double dtemp; int tmp2; pp = peer->procptr; up = (struct wwvunit *)pp->unitptr; if (!iniflg) { iniflg = 1; memset((char *)epoch_mf, 0, sizeof(epoch_mf)); } /* * A three-stage median filter is used to help denoise the * second sync pulse. The median sample becomes the candidate * epoch. */ epoch_mf[2] = epoch_mf[1]; epoch_mf[1] = epoch_mf[0]; epoch_mf[0] = epopos; if (epoch_mf[0] > epoch_mf[1]) { if (epoch_mf[1] > epoch_mf[2]) up->tepoch = epoch_mf[1]; /* 0 1 2 */ else if (epoch_mf[2] > epoch_mf[0]) up->tepoch = epoch_mf[0]; /* 2 0 1 */ else up->tepoch = epoch_mf[2]; /* 0 2 1 */ } else { if (epoch_mf[1] < epoch_mf[2]) up->tepoch = epoch_mf[1]; /* 2 1 0 */ else if (epoch_mf[2] < epoch_mf[0]) up->tepoch = epoch_mf[0]; /* 1 0 2 */ else up->tepoch = epoch_mf[2]; /* 1 2 0 */ } /* * If the signal amplitude or SNR fall below thresholds or if no * stations are heard, dim the second sync lamp and start over. */ if (!(up->status & (SELV | SELH)) || up->epomax < STHR || up->eposnr < SSNR) { up->status &= ~(SSYNC | FGATE); avgcnt = syncnt = maxrun = 0; return; } avgcnt++; /* * If the epoch candidate is the same as the last one, increment * the compare counter. If not, save the length and epoch of the * current run for use later and reset the counter. */ tmp2 = (up->tepoch - xepoch) % SECOND; if (tmp2 == 0) { syncnt++; } else { if (maxrun > 0 && mepoch == xepoch) { maxrun += syncnt; } else if (syncnt > maxrun) { maxrun = syncnt; mepoch = xepoch; } syncnt = 0; } if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status & (SSYNC | MSYNC))) { sprintf(tbuf, "wwv1 %04x %5.0f %5.1f %5d %5d %4d %4d", up->status, up->epomax, up->eposnr, up->tepoch, tmp2, avgcnt, syncnt); record_clock_stats(&peer->srcadr, tbuf); #ifdef DEBUG if (debug) printf("%s\n", tbuf); #endif /* DEBUG */ } /* * The sample clock frequency is disciplined using a first order * feedback loop with time constant consistent with the Allan * intercept of typical computer clocks. * * The frequency update is calculated from the epoch change in * 125-us units divided by the averaging interval in seconds. * The averaging interval affects other receiver functions, * including the the 1000/1200-Hz comb filter and codec clock * loop. It also affects the 100-Hz subcarrier loop and the bit * and digit comparison counter thresholds. */ if (avgcnt < up->avgint) { xepoch = up->tepoch; return; } /* * During the averaging interval the longest run of identical * epoches is determined. If the longest run is at least 10 * seconds, the SSYNC bit is lit and the value becomes the * reference epoch for the next interval. If not, the second * synd lamp is dark and flashers set. */ if (maxrun > 0 && mepoch == xepoch) { maxrun += syncnt; } else if (syncnt > maxrun) { maxrun = syncnt; mepoch = xepoch; } xepoch = up->tepoch; if (maxrun > SCMP) { up->status |= SSYNC; up->yepoch = mepoch; } else { up->status &= ~SSYNC; } /* * If the epoch change over the averaging interval is less than * 1 ms, the frequency is adjusted, but clamped at +-125 PPM. If * greater than 1 ms, the counter is decremented. If the epoch * change is less than 0.5 ms, the counter is incremented. If * the counter increments to +3, the averaging interval is * doubled and the counter set to zero; if it increments to -3, * the interval is halved and the counter set to zero. * * Here be spooks. From careful observations, the epoch * sometimes makes a long run of identical samples, then takes a * lurch due apparently to lost interrupts or spooks. If this * happens, the epoch change times the maximum run length will * be greater than the averaging interval, so the lurch should * be believed but the frequency left alone. Really intricate * here. */ if (maxrun == 0) mepoch = up->tepoch; dtemp = (mepoch - zepoch) % SECOND; if (up->status & FGATE) { if (abs(dtemp) < MAXFREQ * MINAVG) { if (maxrun * abs(mepoch - zepoch) < avgcnt) { up->freq += dtemp / avgcnt; if (up->freq > MAXFREQ) up->freq = MAXFREQ; else if (up->freq < -MAXFREQ) up->freq = -MAXFREQ; } if (abs(dtemp) < MAXFREQ * MINAVG / 2) { if (avginc < 3) { avginc++; } else { if (up->avgint < MAXAVG) { up->avgint <<= 1; avginc = 0; } } } } else { if (avginc > -3) { avginc--; } else { if (up->avgint > MINAVG) { up->avgint >>= 1; avginc = 0; } } } } if (pp->sloppyclockflag & CLK_FLAG4) { sprintf(tbuf, "wwv2 %04x %4.0f %4d %4d %2d %4d %4.0f %6.1f", up->status, up->epomax, mepoch, maxrun, avginc, avgcnt, dtemp, up->freq * 1e6 / SECOND); record_clock_stats(&peer->srcadr, tbuf); #ifdef DEBUG if (debug) printf("%s\n", tbuf); #endif /* DEBUG */ } up->status |= FGATE; zepoch = mepoch; avgcnt = syncnt = maxrun = 0; } /* * wwv_epoch - epoch scanner * * This routine scans the receiver second epoch to determine the signal * amplitudes and pulse timings. Receiver synchronization is determined * by the minute sync pulse detected in the wwv_rf() routine and the * second sync pulse detected in the wwv_epoch() routine. A pulse width * discriminator extracts data signals from the 100-Hz subcarrier. The * transmitted signals are delayed by the propagation delay, receiver * delay and filter delay of this program. Delay corrections are * introduced separately for WWV and WWVH. * * Most communications radios use a highpass filter in the audio stages, * which can do nasty things to the subcarrier phase relative to the * sync pulses. Therefore, the data subcarrier reference phase is * disciplined using the hardlimited quadrature-phase signal sampled at * the same time as the in-phase signal. The phase tracking loop uses * phase adjustments of plus-minus one sample (125 us). */ static void wwv_epoch( struct peer *peer /* peer structure pointer */ ) { struct refclockproc *pp; struct wwvunit *up; struct chan *cp; static double dpulse; /* data pulse length */ double dtemp; pp = peer->procptr; up = (struct wwvunit *)pp->unitptr; /* * Sample the minute sync pulse envelopes at epoch 800 for both * the WWV and WWVH stations. This will be used later for * channel and station mitigation. Note that the seconds epoch * is set here well before the end of the second to make sure we * never seet the epoch backwards. */ if (up->rphase == 800 * MS) { up->repoch = up->yepoch; cp = &up->mitig[up->achan]; cp->wwv.synamp = cp->wwv.amp; cp->wwvh.synamp = cp->wwvh.amp; } /* * Sample the data subcarrier at epoch 15 ms, giving a guard * time of +-15 ms from the beginning of the second until the * pulse rises at 30 ms. The I-channel amplitude is used to * calculate the slice level. The envelope amplitude is used * during the probe seconds to determine the SNR. There is a * compromise here; we want to delay the sample as long as * possible to give the radio time to change frequency and the * AGC to stabilize, but as early as possible if the second * epoch is not exact. */ if (up->rphase == 15 * MS) { up->noiamp = up->irig * up->irig + up->qrig * up->qrig; /* * Sample the data subcarrier at epoch 215 ms, giving a guard * time of +-15 ms from the earliest the pulse peak can be * reached to the earliest it can begin to fall. For the data * channel latch the I-channel amplitude for all except the * probe seconds and adjust the 100-Hz reference oscillator * phase using the Q-channel amplitude at this epoch. For the * probe channel latch the envelope amplitude. */ } else if (up->rphase == 215 * MS) { up->sigsig = up->irig; if (up->sigsig < 0) up->sigsig = 0; up->datpha = up->qrig / up->avgint; if (up->datpha >= 0) { up->datapt++; if (up->datapt >= 80) up->datapt -= 80; } else { up->datapt--; if (up->datapt < 0) up->datapt += 80; } up->sigamp = up->irig * up->irig + up->qrig * up->qrig; /* * The slice level is set half way between the peak signal and * noise levels. Sample the negative zero crossing after epoch * 200 ms and record the epoch at that time. This defines the * length of the data pulse, which will later be converted into * scaled bit probabilities. */ } else if (up->rphase > 200 * MS) { dtemp = (up->sigsig + sqrt(up->noiamp)) / 2; if (up->irig < dtemp && dpulse == 0) dpulse = up->rphase; } /* * At the end of the second crank the clock state machine and * adjust the codec gain. Note the epoch is buffered from the * center of the second in order to avoid jitter while the * seconds synch is diddling the epoch. Then, determine the true * offset and update the median filter in the driver interface. * * Sample the data subcarrier envelope at the end of the second * to determine the SNR for the pulse. This gives a guard time * of +-30 ms from the decay of the longest pulse to the rise of * the next pulse. */ up->rphase++; if (up->mphase % SECOND == up->repoch) { up->datsnr = wwv_snr(up->sigsig, sqrt(up->noiamp)); wwv_rsec(peer, dpulse); wwv_gain(peer); up->rphase = dpulse = 0; } } /* * wwv_rsec - process receiver second * * This routine is called at the end of each receiver second to * implement the per-second state machine. The machine assembles BCD * digit bits, decodes miscellaneous bits and dances the leap seconds. * * Normally, the minute has 60 seconds numbered 0-59. If the leap * warning bit is set, the last minute (1439) of 30 June (day 181 or 182 * for leap years) or 31 December (day 365 or 366 for leap years) is * augmented by one second numbered 60. This is accomplished by * extending the minute interval by one second and teaching the state * machine to ignore it. */ static void wwv_rsec( struct peer *peer, /* peer structure pointer */ double dpulse ) { static int iniflg; /* initialization flag */ static double bcddld[4]; /* BCD data bits */ static double bitvec[61]; /* bit integrator for misc bits */ struct refclockproc *pp; struct wwvunit *up; struct chan *cp; struct sync *sp, *rp; l_fp offset; /* offset in NTP seconds */ double bit; /* bit likelihood */ char tbuf[80]; /* monitor buffer */ int sw, arg, nsec; #ifdef IRIG_SUCKS int i; l_fp ltemp; #endif /* IRIG_SUCKS */ pp = peer->procptr; up = (struct wwvunit *)pp->unitptr; if (!iniflg) { iniflg = 1; memset((char *)bitvec, 0, sizeof(bitvec)); } /* * The bit represents the probability of a hit on zero (negative * values), a hit on one (positive values) or a miss (zero * value). The likelihood vector is the exponential average of * these probabilities. Only the bits of this vector * corresponding to the miscellaneous bits of the timecode are * used, but it's easier to do them all. After that, crank the * seconds state machine. */ nsec = up->rsec + 1; bit = wwv_data(up, dpulse); bitvec[up->rsec] += (bit - bitvec[up->rsec]) / TCONST; sw = progx[up->rsec].sw; arg = progx[up->rsec].arg; switch (sw) { /* * Ignore this second. */ case IDLE: /* 9, 45-49 */ break; /* * Probe channel stuff * * The WWV/H format contains data pulses in second 59 (position * identifier), second 1 (not used) and the minute sync pulse in * second 0. At the end of second 58, QSY to the probe channel, * which rotates over all WWV/H frequencies. At the end of * second 1 QSY back to the data channel. * * At the end of second 0 save the minute sync pulse peak value * previously latched at 800 ms. */ case SYNC2: /* 0 */ cp = &up->mitig[up->achan]; cp->wwv.synmax = sqrt(cp->wwv.synamp); cp->wwvh.synmax = sqrt(cp->wwvh.synamp); break; /* * At the end of second 1 determine the minute sync pulse * amplitude and SNR and set SYNCNG if these values are below * thresholds. Determine the data pulse amplitude and SNR and * set DATANG if these values are below thresholds. Set ERRRNG * if data pulses in second 59 and second 1 are decoded in * error. Shift a 1 into the reachability register if SYNCNG and * DATANG are both lit; otherwise shift a 0. Ignore ERRRNG for * the present. The number of 1 bits in the last six intervals * represents the channel metric used by the mitigation routine. * Finally, QSY back to the data channel. */ case SYNC3: /* 1 */ cp = &up->mitig[up->achan]; cp->sigamp = sqrt(up->sigamp); cp->noiamp = sqrt(up->noiamp); cp->datsnr = wwv_snr(cp->sigamp, cp->noiamp); /* * WWV station */ sp = &cp->wwv; sp->synmin = sqrt((sp->synmin + sp->synamp) / 2.); sp->synsnr = wwv_snr(sp->synmax, sp->synmin); sp->select &= ~(SYNCNG | DATANG | ERRRNG); if (sp->synmax < QTHR || sp->synsnr < QSNR) sp->select |= SYNCNG; if (cp->sigamp < XTHR || cp->datsnr < XSNR) sp->select |= DATANG; if (up->errcnt > 2) sp->select |= ERRRNG; sp->reach <<= 1; if (sp->reach & (1 << AMAX)) sp->count--; if (!(sp->select & (SYNCNG | DATANG))) { sp->reach |= 1; sp->count++; } /* * WWVH station */ rp = &cp->wwvh; rp->synmin = sqrt((rp->synmin + rp->synamp) / 2.); rp->synsnr = wwv_snr(rp->synmax, rp->synmin); rp->select &= ~(SYNCNG | DATANG | ERRRNG); if (rp->synmax < QTHR || rp->synsnr < QSNR) rp->select |= SYNCNG; if (cp->sigamp < XTHR || cp->datsnr < XSNR) rp->select |= DATANG; if (up->errcnt > 2) rp->select |= ERRRNG; rp->reach <<= 1; if (rp->reach & (1 << AMAX)) rp->count--; if (!(rp->select & (SYNCNG | DATANG | ERRRNG))) { rp->reach |= 1; rp->count++; } /* * Set up for next minute. */ if (pp->sloppyclockflag & CLK_FLAG4) { sprintf(tbuf, "wwv5 %2d %04x %3d %4d %d %.0f/%.1f %s %04x %.0f %.0f/%.1f %s %04x %.0f %.0f/%.1f", up->port, up->status, up->gain, up->yepoch, up->errcnt, cp->sigamp, cp->datsnr, sp->refid, sp->reach & 0xffff, wwv_metric(sp), sp->synmax, sp->synsnr, rp->refid, rp->reach & 0xffff, wwv_metric(rp), rp->synmax, rp->synsnr); record_clock_stats(&peer->srcadr, tbuf); #ifdef DEBUG if (debug) printf("%s\n", tbuf); #endif /* DEBUG */ } #ifdef ICOM if (up->fd_icom > 0) wwv_qsy(peer, up->dchan); #endif /* ICOM */ up->status &= ~SFLAG; up->errcnt = 0; up->alarm = 0; wwv_newchan(peer); break; /* * Save the bit probability in the BCD data vector at the index * given by the argument. Note that all bits of the vector have * to be above the data gate threshold for the digit to be * considered valid. Bits not used in the digit are forced to * zero and not checked for errors. */ case COEF: /* 4-7, 10-13, 15-17, 20-23, 25-26, 30-33, 35-38, 40-41, 51-54 */ if (up->status & DGATE) up->status |= BGATE; bcddld[arg] = bit; break; case COEF2: /* 18, 27-28, 42-43 */ bcddld[arg] = 0; break; /* * Correlate coefficient vector with each valid digit vector and * save in decoding matrix. We step through the decoding matrix * digits correlating each with the coefficients and saving the * greatest and the next lower for later SNR calculation. */ case DECIM2: /* 29 */ wwv_corr4(peer, &up->decvec[arg], bcddld, bcd2); break; case DECIM3: /* 44 */ wwv_corr4(peer, &up->decvec[arg], bcddld, bcd3); break; case DECIM6: /* 19 */ wwv_corr4(peer, &up->decvec[arg], bcddld, bcd6); break; case DECIM9: /* 8, 14, 24, 34, 39 */ wwv_corr4(peer, &up->decvec[arg], bcddld, bcd9); break; /* * Miscellaneous bits. If above the positive threshold, declare * 1; if below the negative threshold, declare 0; otherwise * raise the SYMERR alarm. At the end of second 58, QSY to the * probe channel. The design is intended to preserve the bits * over periods of signal loss. */ case MSC20: /* 55 */ wwv_corr4(peer, &up->decvec[YR + 1], bcddld, bcd9); /* fall through */ case MSCBIT: /* 2-3, 50, 56-57 */ if (bitvec[up->rsec] > BTHR) up->misc |= arg; else if (bitvec[up->rsec] < -BTHR) up->misc &= ~arg; else up->alarm |= SYMERR; break; /* * Save the data channel gain, then QSY to the probe channel. */ case MSC21: /* 58 */ if (bitvec[up->rsec] > BTHR) up->misc |= arg; else if (bitvec[up->rsec] < -BTHR) up->misc &= ~arg; else up->alarm |= SYMERR; up->mitig[up->dchan].gain = up->gain; #ifdef ICOM if (up->fd_icom > 0) { up->schan = (up->schan + 1) % NCHAN; wwv_qsy(peer, up->schan); } #endif /* ICOM */ up->status |= SFLAG | SELV | SELH; up->errbit = up->errcnt; up->errcnt = 0; break; /* * The endgames * * During second 59 the receiver and codec AGC are settling * down, so the data pulse is unusable. At the end of this * second, latch the minute sync pulse noise floor. Then do the * minute processing and update the system clock. If a leap * second sail on to the next second (60); otherwise, set up for * the next minute. */ case MIN1: /* 59 */ cp = &up->mitig[up->achan]; cp->wwv.synmin = cp->wwv.synamp; cp->wwvh.synmin = cp->wwvh.synamp; /* * Dance the leap if necessary and the kernel has the * right stuff. Then, wind up the clock and initialize * for the following minute. If the leap dance, note the * kernel is armed one second before the actual leap is * scheduled. */ if (up->status & SSYNC && up->digcnt >= 9) up->status |= INSYNC; if (up->status & LEPDAY) { pp->leap = LEAP_ADDSECOND; } else { pp->leap = LEAP_NOWARNING; wwv_tsec(up); nsec = up->digcnt = 0; } pp->lencode = timecode(up, pp->a_lastcode); record_clock_stats(&peer->srcadr, pp->a_lastcode); #ifdef DEBUG if (debug) printf("wwv: timecode %d %s\n", pp->lencode, pp->a_lastcode); #endif /* DEBUG */ if (up->status & INSYNC && up->watch < HOLD) refclock_receive(peer); break; /* * If LEPDAY is set on the last minute of 30 June or 31 * December, the LEPSEC bit is set. At the end of the minute in * which LEPSEC is set the transmitter and receiver insert an * extra second (60) in the timescale and the minute sync skips * a second. We only get to test this wrinkle at intervals of * about 18 months; the actual mileage may vary. */ case MIN2: /* 60 */ wwv_tsec(up); nsec = up->digcnt = 0; break; } /* * If digit sync has not been acquired before timeout or if no * station has been heard, game over and restart from scratch. */ if (!(up->status & DSYNC) && (!(up->status & (SELV | SELH)) || up->watch > DIGIT)) { wwv_newgame(peer); return; } /* * If no timestamps have been struck before timeout, game over * and restart from scratch. */ if (up->watch > PANIC) { wwv_newgame(peer); return; } pp->disp += AUDIO_PHI; up->rsec = nsec; #ifdef IRIG_SUCKS /* * You really don't wanna know what comes down here. Leave it to * say Solaris 2.8 broke the nice clean audio stream, apparently * affected by a 5-ms sawtooth jitter. Sundown on Solaris. This * leaves a little twilight. * * The scheme involves differentiation, forward learning and * integration. The sawtooth has a period of 11 seconds. The * timestamp differences are integrated and subtracted from the * signal. */ ltemp = pp->lastrec; L_SUB(<emp, &pp->lastref); if (ltemp.l_f < 0) ltemp.l_i = -1; else ltemp.l_i = 0; pp->lastref = pp->lastrec; if (!L_ISNEG(<emp)) L_CLR(&up->wigwag); else L_ADD(&up->wigwag, <emp); L_SUB(&pp->lastrec, &up->wigwag); up->wiggle[up->wp] = ltemp; /* * Bottom fisher. To understand this, you have to know about * velocity microphones and AM transmitters. No further * explanation is offered, as this is truly a black art. */ up->wigbot[up->wp] = pp->lastrec; for (i = 0; i < WIGGLE; i++) { if (i != up->wp) up->wigbot[i].l_ui++; L_SUB(&pp->lastrec, &up->wigbot[i]); if (L_ISNEG(&pp->lastrec)) L_ADD(&pp->lastrec, &up->wigbot[i]); else pp->lastrec = up->wigbot[i]; } up->wp++; up->wp %= WIGGLE; #endif /* IRIG_SUCKS */ /* * If victory has been declared and seconds sync is lit, strike * a timestamp. It should not be a surprise, especially if the * radio is not tunable, that sometimes no stations are above * the noise and the reference ID set to NONE. */ if (up->status & INSYNC && up->status & SSYNC) { pp->second = up->rsec; pp->minute = up->decvec[MN].digit + up->decvec[MN + 1].digit * 10; pp->hour = up->decvec[HR].digit + up->decvec[HR + 1].digit * 10; pp->day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 + up->decvec[DA + 2].digit * 100; pp->year = up->decvec[YR].digit + up->decvec[YR + 1].digit * 10; pp->year += 2000; L_CLR(&offset); if (!clocktime(pp->day, pp->hour, pp->minute, pp->second, GMT, up->timestamp.l_ui, &pp->yearstart, &offset.l_ui)) { up->errflg = CEVNT_BADTIME; } else { up->watch = 0; pp->disp = 0; refclock_process_offset(pp, offset, up->timestamp, PDELAY); } } if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status & DSYNC)) { sprintf(tbuf, "wwv3 %2d %04x %5.0f %5.1f %5.0f %5.1f %5.0f", up->rsec, up->status, up->epomax, up->eposnr, up->sigsig, up->datsnr, bit); record_clock_stats(&peer->srcadr, tbuf); #ifdef DEBUG if (debug) printf("%s\n", tbuf); #endif /* DEBUG */ } } /* * wwv_data - calculate bit probability * * This routine is called at the end of the receiver second to calculate * the probabilities that the previous second contained a zero (P0), one * (P1) or position indicator (P2) pulse. If not in sync or if the data * bit is bad, a bit error is declared and the probabilities are forced * to zero. Otherwise, the data gate is enabled and the probabilities * are calculated. Note that the data matched filter contributes half * the pulse width, or 85 ms. * * It's important to observe that there are three conditions to * determine: average to +1 (hit), average to -1 (miss) or average to * zero (erasure). The erasure condition results from insufficient * signal (noise) and has no bias toward either a hit or miss. */ static double wwv_data( struct wwvunit *up, /* driver unit pointer */ double pulse /* pulse length (sample units) */ ) { double p0, p1, p2; /* probabilities */ double dpulse; /* pulse length in ms */ p0 = p1 = p2 = 0; dpulse = pulse - DATSIZ / 2; /* * If no station is being tracked, if either the data amplitude * or SNR are below threshold or if the pulse length is less * than 170 ms, declare an erasure. */ if (!(up->status & (SELV | SELH)) || up->sigsig < DTHR || up->datsnr < DSNR || dpulse < DATSIZ) { up->status |= DGATE; up->errcnt++; if (up->errcnt > MAXERR) up->alarm |= MODERR; return (0); } /* * The probability of P0 is one below 200 ms falling to zero at * 500 ms. The probability of P1 is zero below 200 ms rising to * one at 500 ms and falling to zero at 800 ms. The probability * of P2 is zero below 500 ms, rising to one above 800 ms. */ up->status &= ~DGATE; if (dpulse < (200 * MS)) { p0 = 1; } else if (dpulse < 500 * MS) { dpulse -= 200 * MS; p1 = dpulse / (300 * MS); p0 = 1 - p1; } else if (dpulse < 800 * MS) { dpulse -= 500 * MS; p2 = dpulse / (300 * MS); p1 = 1 - p2; } else { p2 = 1; } /* * The ouput is a metric that ranges from -1 (P0), to +1 (P1) * scaled for convenience. An output of zero represents an * erasure, either because of a data error or pulse length * greater than 500 ms. At the moment, we don't use P2. */ return ((p1 - p0) * MAXSIG); } /* * wwv_corr4 - determine maximum likelihood digit * * This routine correlates the received digit vector with the BCD * coefficient vectors corresponding to all valid digits at the given * position in the decoding matrix. The maximum value corresponds to the * maximum likelihood digit, while the ratio of this value to the next * lower value determines the likelihood function. Note that, if the * digit is invalid, the likelihood vector is averaged toward a miss. */ static void wwv_corr4( struct peer *peer, /* peer unit pointer */ struct decvec *vp, /* decoding table pointer */ double data[], /* received data vector */ double tab[][4] /* correlation vector array */ ) { struct refclockproc *pp; struct wwvunit *up; double topmax, nxtmax; /* metrics */ double acc; /* accumulator */ char tbuf[80]; /* monitor buffer */ int mldigit; /* max likelihood digit */ int diff; /* decoding difference */ int i, j; pp = peer->procptr; up = (struct wwvunit *)pp->unitptr; /* * Correlate digit vector with each BCD coefficient vector. If * any BCD digit bit is bad, consider all bits a miss. */ mldigit = 0; topmax = nxtmax = -MAXSIG; for (i = 0; tab[i][0] != 0; i++) { acc = 0; for (j = 0; j < 4; j++) { if (!(up->status & BGATE)) acc += data[j] * tab[i][j]; } acc = (vp->like[i] += (acc - vp->like[i]) / TCONST); if (acc > topmax) { nxtmax = topmax; topmax = acc; mldigit = i; } else if (acc > nxtmax) { nxtmax = acc; } } vp->mldigit = mldigit; vp->digprb = topmax; vp->digsnr = wwv_snr(topmax, nxtmax); /* * The maximum likelihood digit is compared with the current * clock digit. The difference represents the decoding phase * error. If the clock is not yet synchronized, the phase error * is corrected even of the digit probability and likelihood are * below thresholds. This avoids lengthy averaging times should * a carry mistake occur. However, the digit is not declared * synchronized until these values are above thresholds and the * last five decoded values are identical. If the clock is * synchronized, the phase error is not corrected unless the * last five digits are all above thresholds and identical. This * avoids mistakes when the signal is coming out of the noise * and the SNR is very marginal. */ diff = mldigit - vp->digit; if (diff < 0) diff += vp->radix; if (diff != vp->phase) { vp->count = 0; vp->phase = diff; } if (vp->digsnr < BSNR) { vp->count = 0; up->alarm |= SYMERR; } else if (vp->digprb < BTHR) { vp->count = 0; up->alarm |= SYMERR; if (!(up->status & INSYNC)) { vp->phase = 0; vp->digit = mldigit; } } else if (vp->count < BCMP) { vp->count++; up->status |= DSYNC; if (!(up->status & INSYNC)) { vp->phase = 0; vp->digit = mldigit; } } else { vp->phase = 0; vp->digit = mldigit; up->digcnt++; } if (vp->digit != mldigit) up->alarm |= DECERR; if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status & INSYNC)) { sprintf(tbuf, "wwv4 %2d %04x %5.0f %2d %d %d %d %d %5.0f %5.1f", up->rsec, up->status, up->epomax, vp->radix, vp->digit, vp->mldigit, vp->phase, vp->count, vp->digprb, vp->digsnr); record_clock_stats(&peer->srcadr, tbuf); #ifdef DEBUG if (debug) printf("%s\n", tbuf); #endif /* DEBUG */ } up->status &= ~BGATE; } /* * wwv_tsec - transmitter minute processing * * This routine is called at the end of the transmitter minute. It * implements a state machine that advances the logical clock subject to * the funny rules that govern the conventional clock and calendar. */ static void wwv_tsec( struct wwvunit *up /* driver structure pointer */ ) { int minute, day, isleap; int temp; /* * Advance minute unit of the day. */ temp = carry(&up->decvec[MN]); /* minute units */ /* * Propagate carries through the day. */ if (temp == 0) /* carry minutes */ temp = carry(&up->decvec[MN + 1]); if (temp == 0) /* carry hours */ temp = carry(&up->decvec[HR]); if (temp == 0) temp = carry(&up->decvec[HR + 1]); /* * Decode the current minute and day. Set leap day if the * timecode leap bit is set on 30 June or 31 December. Set leap * minute if the last minute on leap day. This code fails in * 2400 AD. */ minute = up->decvec[MN].digit + up->decvec[MN + 1].digit * 10 + up->decvec[HR].digit * 60 + up->decvec[HR + 1].digit * 600; day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 + up->decvec[DA + 2].digit * 100; isleap = (up->decvec[YR].digit & 0x3) == 0; if (up->misc & SECWAR && (day == (isleap ? 182 : 183) || day == (isleap ? 365 : 366)) && up->status & INSYNC && up->status & SSYNC) up->status |= LEPDAY; else up->status &= ~LEPDAY; if (up->status & LEPDAY && minute == 1439) up->status |= LEPSEC; else up->status &= ~LEPSEC; /* * Roll the day if this the first minute and propagate carries * through the year. */ if (minute != 1440) return; minute = 0; while (carry(&up->decvec[HR]) != 0); /* advance to minute 0 */ while (carry(&up->decvec[HR + 1]) != 0); day++; temp = carry(&up->decvec[DA]); /* carry days */ if (temp == 0) temp = carry(&up->decvec[DA + 1]); if (temp == 0) temp = carry(&up->decvec[DA + 2]); /* * Roll the year if this the first day and propagate carries * through the century. */ if (day != (isleap ? 365 : 366)) return; day = 1; while (carry(&up->decvec[DA]) != 1); /* advance to day 1 */ while (carry(&up->decvec[DA + 1]) != 0); while (carry(&up->decvec[DA + 2]) != 0); temp = carry(&up->decvec[YR]); /* carry years */ if (temp) carry(&up->decvec[YR + 1]); } /* * carry - process digit * * This routine rotates a likelihood vector one position and increments * the clock digit modulo the radix. It returns the new clock digit or * zero if a carry occurred. Once synchronized, the clock digit will * match the maximum likelihood digit corresponding to that position. */ static int carry( struct decvec *dp /* decoding table pointer */ ) { int temp; int j; dp->digit++; /* advance clock digit */ if (dp->digit == dp->radix) { /* modulo radix */ dp->digit = 0; } temp = dp->like[dp->radix - 1]; /* rotate likelihood vector */ for (j = dp->radix - 1; j > 0; j--) dp->like[j] = dp->like[j - 1]; dp->like[0] = temp; return (dp->digit); } /* * wwv_snr - compute SNR or likelihood function */ static double wwv_snr( double signal, /* signal */ double noise /* noise */ ) { double rval; /* * This is a little tricky. Due to the way things are measured, * either or both the signal or noise amplitude can be negative * or zero. The intent is that, if the signal is negative or * zero, the SNR must always be zero. This can happen with the * subcarrier SNR before the phase has been aligned. On the * other hand, in the likelihood function the "noise" is the * next maximum down from the peak and this could be negative. * However, in this case the SNR is truly stupendous, so we * simply cap at MAXSNR dB. */ if (signal <= 0) { rval = 0; } else if (noise <= 0) { rval = MAXSNR; } else { rval = 20 * log10(signal / noise); if (rval > MAXSNR) rval = MAXSNR; } return (rval); } /* * wwv_newchan - change to new data channel * * The radio actually appears to have ten channels, one channel for each * of five frequencies and each of two stations (WWV and WWVH), although * if not tunable only the 15 MHz channels appear live. While the radio * is tuned to the working data channel frequency and station for most * of the minute, during seconds 59, 0 and 1 the radio is tuned to a * probe frequency in order to search for minute sync pulse and data * subcarrier from other transmitters. * * The search for WWV and WWVH operates simultaneously, with WWV minute * sync pulse at 1000 Hz and WWVH at 1200 Hz. The probe frequency * rotates each minute over 2.5, 5, 10, 15 and 20 MHz in order and yes, * we all know WWVH is dark on 20 MHz, but few remember when WWV was lit * on 25 MHz. * * This routine selects the best channel using a metric computed from * the reachability register and minute pulse amplitude. Normally, the * award goes to the the channel with the highest metric; but, in case * of ties, the award goes to the channel with the highest minute sync * pulse amplitude and then to the highest frequency. * * The routine performs an important squelch function to keep dirty data * from polluting the integrators. During acquisition and until the * clock is synchronized, the signal metric must be at least MTR (13); * after that the metrict must be at least TTHR (50). If either of these * is not true, the station select bits are cleared so the second sync * is disabled and the data bit integrators averaged to a miss. */ static void wwv_newchan( struct peer *peer /* peer structure pointer */ ) { struct refclockproc *pp; struct wwvunit *up; struct sync *sp, *rp; double rank, dtemp; int i, j; pp = peer->procptr; up = (struct wwvunit *)pp->unitptr; /* * Search all five station pairs looking for the channel with * maximum metric. If no station is found above thresholds, the * reference ID is set to NONE and we wait for hotter ions. */ j = 0; sp = NULL; rank = 0; for (i = 0; i < NCHAN; i++) { rp = &up->mitig[i].wwvh; dtemp = wwv_metric(rp); if (dtemp >= rank) { rank = dtemp; sp = rp; j = i; } rp = &up->mitig[i].wwv; dtemp = wwv_metric(rp); if (dtemp >= rank) { rank = dtemp; sp = rp; j = i; } } up->dchan = j; up->sptr = sp; up->status &= ~(SELV | SELH); memcpy(&pp->refid, "NONE", 4); if ((!(up->status & INSYNC) && rank >= MTHR) || ((up->status & INSYNC) && rank >= TTHR)) { up->status |= sp->select & (SELV | SELH); memcpy(&pp->refid, sp->refid, 4); } if (peer->stratum <= 1) memcpy(&peer->refid, &pp->refid, 4); } /* * www_newgame - reset and start over */ static void wwv_newgame( struct peer *peer /* peer structure pointer */ ) { struct refclockproc *pp; struct wwvunit *up; struct chan *cp; int i; pp = peer->procptr; up = (struct wwvunit *)pp->unitptr; /* * Initialize strategic values. Note we set the leap bits * NOTINSYNC and the refid "NONE". */ peer->leap = LEAP_NOTINSYNC; up->watch = up->status = up->alarm = 0; up->avgint = MINAVG; up->freq = 0; up->sptr = NULL; up->gain = MAXGAIN / 2; /* * Initialize the station processes for audio gain, select bit, * station/frequency identifier and reference identifier. */ memset(up->mitig, 0, sizeof(up->mitig)); for (i = 0; i < NCHAN; i++) { cp = &up->mitig[i]; cp->gain = up->gain; cp->wwv.select = SELV; sprintf(cp->wwv.refid, "WV%.0f", floor(qsy[i])); cp->wwvh.select = SELH; sprintf(cp->wwvh.refid, "WH%.0f", floor(qsy[i])); } wwv_newchan(peer); } /* * wwv_metric - compute station metric * * The most significant bits represent the number of ones in the * reachability register. The least significant bits represent the * minute sync pulse amplitude. The combined value is scaled 0-100. */ double wwv_metric( struct sync *sp /* station pointer */ ) { double dtemp; dtemp = sp->count * MAXSIG; if (sp->synmax < MAXSIG) dtemp += sp->synmax; else dtemp += MAXSIG - 1; dtemp /= (AMAX + 1) * MAXSIG; return (dtemp * 100.); } #ifdef ICOM /* * wwv_qsy - Tune ICOM receiver * * This routine saves the AGC for the current channel, switches to a new * channel and restores the AGC for that channel. If a tunable receiver * is not available, just fake it. */ static int wwv_qsy( struct peer *peer, /* peer structure pointer */ int chan /* channel */ ) { int rval = 0; struct refclockproc *pp; struct wwvunit *up; pp = peer->procptr; up = (struct wwvunit *)pp->unitptr; if (up->fd_icom > 0) { up->mitig[up->achan].gain = up->gain; rval = icom_freq(up->fd_icom, peer->ttl & 0x7f, qsy[chan]); up->achan = chan; up->gain = up->mitig[up->achan].gain; } return (rval); } #endif /* ICOM */ /* * timecode - assemble timecode string and length * * Prettytime format - similar to Spectracom * * sq yy ddd hh:mm:ss ld dut lset agc iden sig errs freq avgt * * s sync indicator ('?' or ' ') * q error bits (hex 0-F) * yyyy year of century * ddd day of year * hh hour of day * mm minute of hour * ss second of minute) * l leap second warning (' ' or 'L') * d DST state ('S', 'D', 'I', or 'O') * dut DUT sign and magnitude (0.1 s) * lset minutes since last clock update * agc audio gain (0-255) * iden reference identifier (station and frequency) * sig signal quality (0-100) * errs bit errors in last minute * freq frequency offset (PPM) * avgt averaging time (s) */ static int timecode( struct wwvunit *up, /* driver structure pointer */ char *ptr /* target string */ ) { struct sync *sp; int year, day, hour, minute, second, dut; char synchar, leapchar, dst; char cptr[50]; /* * Common fixed-format fields */ synchar = (up->status & INSYNC) ? ' ' : '?'; year = up->decvec[YR].digit + up->decvec[YR + 1].digit * 10 + 2000; day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 + up->decvec[DA + 2].digit * 100; hour = up->decvec[HR].digit + up->decvec[HR + 1].digit * 10; minute = up->decvec[MN].digit + up->decvec[MN + 1].digit * 10; second = 0; leapchar = (up->misc & SECWAR) ? 'L' : ' '; dst = dstcod[(up->misc >> 4) & 0x3]; dut = up->misc & 0x7; if (!(up->misc & DUTS)) dut = -dut; sprintf(ptr, "%c%1X", synchar, up->alarm); sprintf(cptr, " %4d %03d %02d:%02d:%02d %c%c %+d", year, day, hour, minute, second, leapchar, dst, dut); strcat(ptr, cptr); /* * Specific variable-format fields */ sp = up->sptr; sprintf(cptr, " %d %d %s %.0f %d %.1f %d", up->watch, up->mitig[up->dchan].gain, sp->refid, wwv_metric(sp), up->errbit, up->freq / SECOND * 1e6, up->avgint); strcat(ptr, cptr); return (strlen(ptr)); } /* * wwv_gain - adjust codec gain * * This routine is called at the end of each second. It counts the * number of signal clips above the MAXSIG threshold during the previous * second. If there are no clips, the gain is bumped up; if too many * clips, it is bumped down. The decoder is relatively insensitive to * amplitude, so this crudity works just fine. The input port is set and * the error flag is cleared, mostly to be ornery. */ static void wwv_gain( struct peer *peer /* peer structure pointer */ ) { struct refclockproc *pp; struct wwvunit *up; pp = peer->procptr; up = (struct wwvunit *)pp->unitptr; /* * Apparently, the codec uses only the high order bits of the * gain control field. Thus, it may take awhile for changes to * wiggle the hardware bits. */ if (up->clipcnt == 0) { up->gain += 4; if (up->gain > MAXGAIN) up->gain = MAXGAIN; } else if (up->clipcnt > MAXCLP) { up->gain -= 4; if (up->gain < 0) up->gain = 0; } audio_gain(up->gain, up->mongain, up->port); up->clipcnt = 0; #if DEBUG if (debug > 1) audio_show(); #endif } #else int refclock_wwv_bs; #endif /* REFCLOCK */