/** * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. An additional grant * of patent rights can be found in the PATENTS file in the same directory. */ /*-************************************* * Tuning parameters ***************************************/ #ifndef ZSTD_CLEVEL_DEFAULT # define ZSTD_CLEVEL_DEFAULT 3 #endif /*-************************************* * Dependencies ***************************************/ #include /* memset */ #include "mem.h" #define FSE_STATIC_LINKING_ONLY /* FSE_encodeSymbol */ #include "fse.h" #define HUF_STATIC_LINKING_ONLY #include "huf.h" #include "zstd_internal.h" /* includes zstd.h */ #include "zstdmt_compress.h" /*-************************************* * Constants ***************************************/ static const U32 g_searchStrength = 8; /* control skip over incompressible data */ #define HASH_READ_SIZE 8 typedef enum { ZSTDcs_created=0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e; /* entropy tables always have same size */ static size_t const hufCTable_size = HUF_CTABLE_SIZE(255); static size_t const litlengthCTable_size = FSE_CTABLE_SIZE(LLFSELog, MaxLL); static size_t const offcodeCTable_size = FSE_CTABLE_SIZE(OffFSELog, MaxOff); static size_t const matchlengthCTable_size = FSE_CTABLE_SIZE(MLFSELog, MaxML); static size_t const entropyScratchSpace_size = HUF_WORKSPACE_SIZE; /*-************************************* * Helper functions ***************************************/ size_t ZSTD_compressBound(size_t srcSize) { size_t const lowLimit = 256 KB; size_t const margin = (srcSize < lowLimit) ? (lowLimit-srcSize) >> 12 : 0; /* from 64 to 0 */ return srcSize + (srcSize >> 8) + margin; } /*-************************************* * Sequence storage ***************************************/ static void ZSTD_resetSeqStore(seqStore_t* ssPtr) { ssPtr->lit = ssPtr->litStart; ssPtr->sequences = ssPtr->sequencesStart; ssPtr->longLengthID = 0; } /*-************************************* * Context memory management ***************************************/ typedef enum { zcss_init=0, zcss_load, zcss_flush } ZSTD_cStreamStage; struct ZSTD_CDict_s { void* dictBuffer; const void* dictContent; size_t dictContentSize; ZSTD_CCtx* refContext; }; /* typedef'd to ZSTD_CDict within "zstd.h" */ struct ZSTD_CCtx_s { const BYTE* nextSrc; /* next block here to continue on current prefix */ const BYTE* base; /* All regular indexes relative to this position */ const BYTE* dictBase; /* extDict indexes relative to this position */ U32 dictLimit; /* below that point, need extDict */ U32 lowLimit; /* below that point, no more data */ U32 nextToUpdate; /* index from which to continue dictionary update */ U32 nextToUpdate3; /* index from which to continue dictionary update */ U32 hashLog3; /* dispatch table : larger == faster, more memory */ U32 loadedDictEnd; /* index of end of dictionary */ U32 forceWindow; /* force back-references to respect limit of 1<customMem = customMem; cctx->compressionLevel = ZSTD_CLEVEL_DEFAULT; ZSTD_STATIC_ASSERT(zcss_init==0); ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN==(0ULL - 1)); return cctx; } ZSTD_CCtx* ZSTD_initStaticCCtx(void *workspace, size_t workspaceSize) { ZSTD_CCtx* cctx = (ZSTD_CCtx*) workspace; if (workspaceSize <= sizeof(ZSTD_CCtx)) return NULL; /* minimum size */ if ((size_t)workspace & 7) return NULL; /* must be 8-aligned */ memset(workspace, 0, workspaceSize); /* may be a bit generous, could memset be smaller ? */ cctx->staticSize = workspaceSize; cctx->workSpace = (void*)(cctx+1); cctx->workSpaceSize = workspaceSize - sizeof(ZSTD_CCtx); /* entropy space (never moves) */ /* note : this code should be shared with resetCCtx, rather than copy/pasted */ { void* ptr = cctx->workSpace; cctx->hufCTable = (HUF_CElt*)ptr; ptr = (char*)cctx->hufCTable + hufCTable_size; cctx->offcodeCTable = (FSE_CTable*) ptr; ptr = (char*)ptr + offcodeCTable_size; cctx->matchlengthCTable = (FSE_CTable*) ptr; ptr = (char*)ptr + matchlengthCTable_size; cctx->litlengthCTable = (FSE_CTable*) ptr; ptr = (char*)ptr + litlengthCTable_size; assert(((size_t)ptr & 3) == 0); /* ensure correct alignment */ cctx->entropyScratchSpace = (unsigned*) ptr; } return cctx; } size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx) { if (cctx==NULL) return 0; /* support free on NULL */ if (cctx->staticSize) return ERROR(memory_allocation); /* not compatible with static CCtx */ ZSTD_free(cctx->workSpace, cctx->customMem); cctx->workSpace = NULL; ZSTD_freeCDict(cctx->cdictLocal); cctx->cdictLocal = NULL; ZSTDMT_freeCCtx(cctx->mtctx); cctx->mtctx = NULL; ZSTD_free(cctx, cctx->customMem); return 0; /* reserved as a potential error code in the future */ } size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx) { if (cctx==NULL) return 0; /* support sizeof on NULL */ DEBUGLOG(5, "sizeof(*cctx) : %u", (U32)sizeof(*cctx)); DEBUGLOG(5, "workSpaceSize : %u", (U32)cctx->workSpaceSize); DEBUGLOG(5, "streaming buffers : %u", (U32)(cctx->outBuffSize + cctx->inBuffSize)); DEBUGLOG(5, "inner MTCTX : %u", (U32)ZSTDMT_sizeof_CCtx(cctx->mtctx)); return sizeof(*cctx) + cctx->workSpaceSize + ZSTD_sizeof_CDict(cctx->cdictLocal) + cctx->outBuffSize + cctx->inBuffSize + ZSTDMT_sizeof_CCtx(cctx->mtctx); } size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs) { return ZSTD_sizeof_CCtx(zcs); /* same object */ } /* private API call, for dictBuilder only */ const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx) { return &(ctx->seqStore); } static ZSTD_parameters ZSTD_getParamsFromCCtx(const ZSTD_CCtx* cctx) { return cctx->appliedParams; } /* older variant; will be deprecated */ size_t ZSTD_setCCtxParameter(ZSTD_CCtx* cctx, ZSTD_CCtxParameter param, unsigned value) { switch(param) { case ZSTD_p_forceWindow : cctx->forceWindow = value>0; cctx->loadedDictEnd = 0; return 0; ZSTD_STATIC_ASSERT(ZSTD_dm_auto==0); ZSTD_STATIC_ASSERT(ZSTD_dm_rawContent==1); case ZSTD_p_forceRawDict : cctx->dictMode = (ZSTD_dictMode_e)(value>0); return 0; default: return ERROR(parameter_unknown); } } #define ZSTD_CLEVEL_CUSTOM 999 static void ZSTD_cLevelToCParams(ZSTD_CCtx* cctx) { if (cctx->compressionLevel==ZSTD_CLEVEL_CUSTOM) return; cctx->requestedParams.cParams = ZSTD_getCParams(cctx->compressionLevel, cctx->pledgedSrcSizePlusOne-1, 0); cctx->compressionLevel = ZSTD_CLEVEL_CUSTOM; } #define CLAMPCHECK(val,min,max) { \ if (((val)<(min)) | ((val)>(max))) { \ return ERROR(compressionParameter_outOfBound); \ } } size_t ZSTD_CCtx_setParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, unsigned value) { if (cctx->streamStage != zcss_init) return ERROR(stage_wrong); switch(param) { case ZSTD_p_compressionLevel : if ((int)value > ZSTD_maxCLevel()) value = ZSTD_maxCLevel(); /* cap max compression level */ if (value == 0) return 0; /* special value : 0 means "don't change anything" */ if (cctx->cdict) return ERROR(stage_wrong); cctx->compressionLevel = value; return 0; case ZSTD_p_windowLog : DEBUGLOG(5, "setting ZSTD_p_windowLog = %u (cdict:%u)", value, (cctx->cdict!=NULL)); if (value == 0) return 0; /* special value : 0 means "don't change anything" */ if (cctx->cdict) return ERROR(stage_wrong); CLAMPCHECK(value, ZSTD_WINDOWLOG_MIN, ZSTD_WINDOWLOG_MAX); ZSTD_cLevelToCParams(cctx); cctx->requestedParams.cParams.windowLog = value; return 0; case ZSTD_p_hashLog : if (value == 0) return 0; /* special value : 0 means "don't change anything" */ if (cctx->cdict) return ERROR(stage_wrong); CLAMPCHECK(value, ZSTD_HASHLOG_MIN, ZSTD_HASHLOG_MAX); ZSTD_cLevelToCParams(cctx); cctx->requestedParams.cParams.hashLog = value; return 0; case ZSTD_p_chainLog : if (value == 0) return 0; /* special value : 0 means "don't change anything" */ if (cctx->cdict) return ERROR(stage_wrong); CLAMPCHECK(value, ZSTD_CHAINLOG_MIN, ZSTD_CHAINLOG_MAX); ZSTD_cLevelToCParams(cctx); cctx->requestedParams.cParams.chainLog = value; return 0; case ZSTD_p_searchLog : if (value == 0) return 0; /* special value : 0 means "don't change anything" */ if (cctx->cdict) return ERROR(stage_wrong); CLAMPCHECK(value, ZSTD_SEARCHLOG_MIN, ZSTD_SEARCHLOG_MAX); ZSTD_cLevelToCParams(cctx); cctx->requestedParams.cParams.searchLog = value; return 0; case ZSTD_p_minMatch : if (value == 0) return 0; /* special value : 0 means "don't change anything" */ if (cctx->cdict) return ERROR(stage_wrong); CLAMPCHECK(value, ZSTD_SEARCHLENGTH_MIN, ZSTD_SEARCHLENGTH_MAX); ZSTD_cLevelToCParams(cctx); cctx->requestedParams.cParams.searchLength = value; return 0; case ZSTD_p_targetLength : if (value == 0) return 0; /* special value : 0 means "don't change anything" */ if (cctx->cdict) return ERROR(stage_wrong); CLAMPCHECK(value, ZSTD_TARGETLENGTH_MIN, ZSTD_TARGETLENGTH_MAX); ZSTD_cLevelToCParams(cctx); cctx->requestedParams.cParams.targetLength = value; return 0; case ZSTD_p_compressionStrategy : if (value == 0) return 0; /* special value : 0 means "don't change anything" */ if (cctx->cdict) return ERROR(stage_wrong); CLAMPCHECK(value, (unsigned)ZSTD_fast, (unsigned)ZSTD_btultra); ZSTD_cLevelToCParams(cctx); cctx->requestedParams.cParams.strategy = (ZSTD_strategy)value; return 0; case ZSTD_p_contentSizeFlag : DEBUGLOG(5, "set content size flag = %u", (value>0)); /* Content size written in frame header _when known_ (default:1) */ cctx->requestedParams.fParams.contentSizeFlag = value>0; return 0; case ZSTD_p_checksumFlag : /* A 32-bits content checksum will be calculated and written at end of frame (default:0) */ cctx->requestedParams.fParams.checksumFlag = value>0; return 0; case ZSTD_p_dictIDFlag : /* When applicable, dictionary's dictID is provided in frame header (default:1) */ DEBUGLOG(5, "set dictIDFlag = %u", (value>0)); cctx->requestedParams.fParams.noDictIDFlag = (value==0); return 0; /* Dictionary parameters */ case ZSTD_p_dictMode : if (cctx->cdict) return ERROR(stage_wrong); /* must be set before loading */ /* restrict dictionary mode, to "rawContent" or "fullDict" only */ ZSTD_STATIC_ASSERT((U32)ZSTD_dm_fullDict > (U32)ZSTD_dm_rawContent); if (value > (unsigned)ZSTD_dm_fullDict) return ERROR(compressionParameter_outOfBound); cctx->dictMode = (ZSTD_dictMode_e)value; return 0; case ZSTD_p_refDictContent : if (cctx->cdict) return ERROR(stage_wrong); /* must be set before loading */ /* dictionary content will be referenced, instead of copied */ cctx->dictContentByRef = value>0; return 0; case ZSTD_p_forceMaxWindow : /* Force back-references to remain < windowSize, * even when referencing into Dictionary content * default : 0 when using a CDict, 1 when using a Prefix */ cctx->forceWindow = value>0; cctx->loadedDictEnd = 0; return 0; case ZSTD_p_nbThreads: if (value==0) return 0; DEBUGLOG(5, " setting nbThreads : %u", value); #ifndef ZSTD_MULTITHREAD if (value > 1) return ERROR(compressionParameter_unsupported); #endif if ((value>1) && (cctx->nbThreads != value)) { if (cctx->staticSize) /* MT not compatible with static alloc */ return ERROR(compressionParameter_unsupported); ZSTDMT_freeCCtx(cctx->mtctx); cctx->nbThreads = 1; cctx->mtctx = ZSTDMT_createCCtx(value); if (cctx->mtctx == NULL) return ERROR(memory_allocation); } cctx->nbThreads = value; return 0; case ZSTD_p_jobSize: if (cctx->nbThreads <= 1) return ERROR(compressionParameter_unsupported); assert(cctx->mtctx != NULL); return ZSTDMT_setMTCtxParameter(cctx->mtctx, ZSTDMT_p_sectionSize, value); case ZSTD_p_overlapSizeLog: DEBUGLOG(5, " setting overlap with nbThreads == %u", cctx->nbThreads); if (cctx->nbThreads <= 1) return ERROR(compressionParameter_unsupported); assert(cctx->mtctx != NULL); return ZSTDMT_setMTCtxParameter(cctx->mtctx, ZSTDMT_p_overlapSectionLog, value); default: return ERROR(parameter_unknown); } } ZSTDLIB_API size_t ZSTD_CCtx_setPledgedSrcSize(ZSTD_CCtx* cctx, unsigned long long pledgedSrcSize) { DEBUGLOG(5, " setting pledgedSrcSize to %u", (U32)pledgedSrcSize); if (cctx->streamStage != zcss_init) return ERROR(stage_wrong); cctx->pledgedSrcSizePlusOne = pledgedSrcSize+1; return 0; } ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize) { if (cctx->streamStage != zcss_init) return ERROR(stage_wrong); if (cctx->staticSize) return ERROR(memory_allocation); /* no malloc for static CCtx */ DEBUGLOG(5, "load dictionary of size %u", (U32)dictSize); ZSTD_freeCDict(cctx->cdictLocal); /* in case one already exists */ if (dict==NULL || dictSize==0) { /* no dictionary mode */ cctx->cdictLocal = NULL; cctx->cdict = NULL; } else { ZSTD_compressionParameters const cParams = cctx->compressionLevel == ZSTD_CLEVEL_CUSTOM ? cctx->requestedParams.cParams : ZSTD_getCParams(cctx->compressionLevel, 0, dictSize); cctx->cdictLocal = ZSTD_createCDict_advanced( dict, dictSize, cctx->dictContentByRef, cctx->dictMode, cParams, cctx->customMem); cctx->cdict = cctx->cdictLocal; if (cctx->cdictLocal == NULL) return ERROR(memory_allocation); } return 0; } size_t ZSTD_CCtx_refCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict) { if (cctx->streamStage != zcss_init) return ERROR(stage_wrong); cctx->cdict = cdict; cctx->prefix = NULL; /* exclusive */ cctx->prefixSize = 0; return 0; } size_t ZSTD_CCtx_refPrefix(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize) { if (cctx->streamStage != zcss_init) return ERROR(stage_wrong); cctx->cdict = NULL; /* prefix discards any prior cdict */ cctx->prefix = prefix; cctx->prefixSize = prefixSize; return 0; } static void ZSTD_startNewCompression(ZSTD_CCtx* cctx) { cctx->streamStage = zcss_init; cctx->pledgedSrcSizePlusOne = 0; } /*! ZSTD_CCtx_reset() : * Also dumps dictionary */ void ZSTD_CCtx_reset(ZSTD_CCtx* cctx) { ZSTD_startNewCompression(cctx); cctx->cdict = NULL; } /** ZSTD_checkCParams() : control CParam values remain within authorized range. @return : 0, or an error code if one value is beyond authorized range */ size_t ZSTD_checkCParams(ZSTD_compressionParameters cParams) { CLAMPCHECK(cParams.windowLog, ZSTD_WINDOWLOG_MIN, ZSTD_WINDOWLOG_MAX); CLAMPCHECK(cParams.chainLog, ZSTD_CHAINLOG_MIN, ZSTD_CHAINLOG_MAX); CLAMPCHECK(cParams.hashLog, ZSTD_HASHLOG_MIN, ZSTD_HASHLOG_MAX); CLAMPCHECK(cParams.searchLog, ZSTD_SEARCHLOG_MIN, ZSTD_SEARCHLOG_MAX); CLAMPCHECK(cParams.searchLength, ZSTD_SEARCHLENGTH_MIN, ZSTD_SEARCHLENGTH_MAX); CLAMPCHECK(cParams.targetLength, ZSTD_TARGETLENGTH_MIN, ZSTD_TARGETLENGTH_MAX); if ((U32)(cParams.strategy) > (U32)ZSTD_btultra) return ERROR(compressionParameter_unsupported); return 0; } /** ZSTD_clampCParams() : * make CParam values within valid range. * @return : valid CParams */ static ZSTD_compressionParameters ZSTD_clampCParams(ZSTD_compressionParameters cParams) { # define CLAMP(val,min,max) { \ if (valmax) val=max; \ } CLAMP(cParams.windowLog, ZSTD_WINDOWLOG_MIN, ZSTD_WINDOWLOG_MAX); CLAMP(cParams.chainLog, ZSTD_CHAINLOG_MIN, ZSTD_CHAINLOG_MAX); CLAMP(cParams.hashLog, ZSTD_HASHLOG_MIN, ZSTD_HASHLOG_MAX); CLAMP(cParams.searchLog, ZSTD_SEARCHLOG_MIN, ZSTD_SEARCHLOG_MAX); CLAMP(cParams.searchLength, ZSTD_SEARCHLENGTH_MIN, ZSTD_SEARCHLENGTH_MAX); CLAMP(cParams.targetLength, ZSTD_TARGETLENGTH_MIN, ZSTD_TARGETLENGTH_MAX); if ((U32)(cParams.strategy) > (U32)ZSTD_btultra) cParams.strategy = ZSTD_btultra; return cParams; } /** ZSTD_cycleLog() : * condition for correct operation : hashLog > 1 */ static U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat) { U32 const btScale = ((U32)strat >= (U32)ZSTD_btlazy2); return hashLog - btScale; } /** ZSTD_adjustCParams_internal() : optimize `cPar` for a given input (`srcSize` and `dictSize`). mostly downsizing to reduce memory consumption and initialization. Both `srcSize` and `dictSize` are optional (use 0 if unknown), but if both are 0, no optimization can be done. Note : cPar is considered validated at this stage. Use ZSTD_checkParams() to ensure that. */ ZSTD_compressionParameters ZSTD_adjustCParams_internal(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize) { assert(ZSTD_checkCParams(cPar)==0); if (srcSize+dictSize == 0) return cPar; /* no size information available : no adjustment */ /* resize params, to use less memory when necessary */ { U32 const minSrcSize = (srcSize==0) ? 500 : 0; U64 const rSize = srcSize + dictSize + minSrcSize; if (rSize < ((U64)1< srcLog) cPar.windowLog = srcLog; } } if (cPar.hashLog > cPar.windowLog) cPar.hashLog = cPar.windowLog; { U32 const cycleLog = ZSTD_cycleLog(cPar.chainLog, cPar.strategy); if (cycleLog > cPar.windowLog) cPar.chainLog -= (cycleLog - cPar.windowLog); } if (cPar.windowLog < ZSTD_WINDOWLOG_ABSOLUTEMIN) cPar.windowLog = ZSTD_WINDOWLOG_ABSOLUTEMIN; /* required for frame header */ return cPar; } ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize) { cPar = ZSTD_clampCParams(cPar); return ZSTD_adjustCParams_internal(cPar, srcSize, dictSize); } size_t ZSTD_estimateCCtxSize_advanced(ZSTD_compressionParameters cParams) { size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, (size_t)1 << cParams.windowLog); U32 const divider = (cParams.searchLength==3) ? 3 : 4; size_t const maxNbSeq = blockSize / divider; size_t const tokenSpace = blockSize + 11*maxNbSeq; size_t const chainSize = (cParams.strategy == ZSTD_fast) ? 0 : (1 << cParams.chainLog); size_t const hSize = ((size_t)1) << cParams.hashLog; U32 const hashLog3 = (cParams.searchLength>3) ? 0 : MIN(ZSTD_HASHLOG3_MAX, cParams.windowLog); size_t const h3Size = ((size_t)1) << hashLog3; size_t const entropySpace = hufCTable_size + litlengthCTable_size + offcodeCTable_size + matchlengthCTable_size + entropyScratchSpace_size; size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32); size_t const optBudget = ((MaxML+1) + (MaxLL+1) + (MaxOff+1) + (1<nextSrc - cctx->base); DEBUGLOG(5, "continue mode"); cctx->appliedParams = params; cctx->pledgedSrcSizePlusOne = pledgedSrcSize+1; cctx->consumedSrcSize = 0; if (pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN) cctx->appliedParams.fParams.contentSizeFlag = 0; DEBUGLOG(5, "pledged content size : %u ; flag : %u", (U32)pledgedSrcSize, cctx->appliedParams.fParams.contentSizeFlag); cctx->lowLimit = end; cctx->dictLimit = end; cctx->nextToUpdate = end+1; cctx->stage = ZSTDcs_init; cctx->dictID = 0; cctx->loadedDictEnd = 0; { int i; for (i=0; irep[i] = repStartValue[i]; } cctx->seqStore.litLengthSum = 0; /* force reset of btopt stats */ XXH64_reset(&cctx->xxhState, 0); return 0; } typedef enum { ZSTDcrp_continue, ZSTDcrp_noMemset } ZSTD_compResetPolicy_e; typedef enum { ZSTDb_not_buffered, ZSTDb_buffered } ZSTD_buffered_policy_e; /*! ZSTD_resetCCtx_internal() : note : `params` are assumed fully validated at this stage */ static size_t ZSTD_resetCCtx_internal(ZSTD_CCtx* zc, ZSTD_parameters params, U64 pledgedSrcSize, ZSTD_compResetPolicy_e const crp, ZSTD_buffered_policy_e const zbuff) { assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); if (crp == ZSTDcrp_continue) { if (ZSTD_equivalentParams(params.cParams, zc->appliedParams.cParams)) { DEBUGLOG(5, "ZSTD_equivalentParams()==1"); zc->fseCTables_ready = 0; zc->hufCTable_repeatMode = HUF_repeat_none; return ZSTD_continueCCtx(zc, params, pledgedSrcSize); } } { size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, (size_t)1 << params.cParams.windowLog); U32 const divider = (params.cParams.searchLength==3) ? 3 : 4; size_t const maxNbSeq = blockSize / divider; size_t const tokenSpace = blockSize + 11*maxNbSeq; size_t const chainSize = (params.cParams.strategy == ZSTD_fast) ? 0 : (1 << params.cParams.chainLog); size_t const hSize = ((size_t)1) << params.cParams.hashLog; U32 const hashLog3 = (params.cParams.searchLength>3) ? 0 : MIN(ZSTD_HASHLOG3_MAX, params.cParams.windowLog); size_t const h3Size = ((size_t)1) << hashLog3; size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32); size_t const buffOutSize = (zbuff==ZSTDb_buffered) ? ZSTD_compressBound(blockSize)+1 : 0; size_t const buffInSize = (zbuff==ZSTDb_buffered) ? ((size_t)1 << params.cParams.windowLog) + blockSize : 0; void* ptr; /* Check if workSpace is large enough, alloc a new one if needed */ { size_t const entropySpace = hufCTable_size + litlengthCTable_size + offcodeCTable_size + matchlengthCTable_size + entropyScratchSpace_size; size_t const optPotentialSpace = ((MaxML+1) + (MaxLL+1) + (MaxOff+1) + (1<workSpaceSize < neededSpace) { /* too small : resize /*/ DEBUGLOG(5, "Need to update workSpaceSize from %uK to %uK \n", (unsigned)zc->workSpaceSize>>10, (unsigned)neededSpace>>10); /* static cctx : no resize, error out */ if (zc->staticSize) return ERROR(memory_allocation); zc->workSpaceSize = 0; ZSTD_free(zc->workSpace, zc->customMem); zc->workSpace = ZSTD_malloc(neededSpace, zc->customMem); if (zc->workSpace == NULL) return ERROR(memory_allocation); zc->workSpaceSize = neededSpace; ptr = zc->workSpace; /* entropy space */ zc->hufCTable = (HUF_CElt*)ptr; ptr = (char*)zc->hufCTable + hufCTable_size; /* note : HUF_CElt* is incomplete type, size is estimated via macro */ zc->offcodeCTable = (FSE_CTable*) ptr; ptr = (char*)ptr + offcodeCTable_size; zc->matchlengthCTable = (FSE_CTable*) ptr; ptr = (char*)ptr + matchlengthCTable_size; zc->litlengthCTable = (FSE_CTable*) ptr; ptr = (char*)ptr + litlengthCTable_size; assert(((size_t)ptr & 3) == 0); /* ensure correct alignment */ zc->entropyScratchSpace = (unsigned*) ptr; } } /* init params */ zc->appliedParams = params; zc->pledgedSrcSizePlusOne = pledgedSrcSize+1; zc->consumedSrcSize = 0; if (pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN) zc->appliedParams.fParams.contentSizeFlag = 0; DEBUGLOG(5, "pledged content size : %u ; flag : %u", (U32)pledgedSrcSize, zc->appliedParams.fParams.contentSizeFlag); zc->blockSize = blockSize; XXH64_reset(&zc->xxhState, 0); zc->stage = ZSTDcs_init; zc->dictID = 0; zc->loadedDictEnd = 0; zc->fseCTables_ready = 0; zc->hufCTable_repeatMode = HUF_repeat_none; zc->nextToUpdate = 1; zc->nextSrc = NULL; zc->base = NULL; zc->dictBase = NULL; zc->dictLimit = 0; zc->lowLimit = 0; { int i; for (i=0; irep[i] = repStartValue[i]; } zc->hashLog3 = hashLog3; zc->seqStore.litLengthSum = 0; /* ensure entropy tables are close together at the beginning */ assert((void*)zc->hufCTable == zc->workSpace); assert((char*)zc->offcodeCTable == (char*)zc->hufCTable + hufCTable_size); assert((char*)zc->matchlengthCTable == (char*)zc->offcodeCTable + offcodeCTable_size); assert((char*)zc->litlengthCTable == (char*)zc->matchlengthCTable + matchlengthCTable_size); assert((char*)zc->entropyScratchSpace == (char*)zc->litlengthCTable + litlengthCTable_size); ptr = (char*)zc->entropyScratchSpace + entropyScratchSpace_size; /* opt parser space */ if ((params.cParams.strategy == ZSTD_btopt) || (params.cParams.strategy == ZSTD_btultra)) { DEBUGLOG(5, "reserving optimal parser space"); assert(((size_t)ptr & 3) == 0); /* ensure ptr is properly aligned */ zc->seqStore.litFreq = (U32*)ptr; zc->seqStore.litLengthFreq = zc->seqStore.litFreq + (1<seqStore.matchLengthFreq = zc->seqStore.litLengthFreq + (MaxLL+1); zc->seqStore.offCodeFreq = zc->seqStore.matchLengthFreq + (MaxML+1); ptr = zc->seqStore.offCodeFreq + (MaxOff+1); zc->seqStore.matchTable = (ZSTD_match_t*)ptr; ptr = zc->seqStore.matchTable + ZSTD_OPT_NUM+1; zc->seqStore.priceTable = (ZSTD_optimal_t*)ptr; ptr = zc->seqStore.priceTable + ZSTD_OPT_NUM+1; } /* table Space */ if (crp!=ZSTDcrp_noMemset) memset(ptr, 0, tableSpace); /* reset tables only */ assert(((size_t)ptr & 3) == 0); /* ensure ptr is properly aligned */ zc->hashTable = (U32*)(ptr); zc->chainTable = zc->hashTable + hSize; zc->hashTable3 = zc->chainTable + chainSize; ptr = zc->hashTable3 + h3Size; /* sequences storage */ zc->seqStore.sequencesStart = (seqDef*)ptr; ptr = zc->seqStore.sequencesStart + maxNbSeq; zc->seqStore.llCode = (BYTE*) ptr; zc->seqStore.mlCode = zc->seqStore.llCode + maxNbSeq; zc->seqStore.ofCode = zc->seqStore.mlCode + maxNbSeq; zc->seqStore.litStart = zc->seqStore.ofCode + maxNbSeq; ptr = zc->seqStore.litStart + blockSize; /* buffers */ zc->inBuffSize = buffInSize; zc->inBuff = (char*)ptr; zc->outBuffSize = buffOutSize; zc->outBuff = zc->inBuff + buffInSize; return 0; } } /* ZSTD_invalidateRepCodes() : * ensures next compression will not use repcodes from previous block. * Note : only works with regular variant; * do not use with extDict variant ! */ void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx) { int i; for (i=0; irep[i] = 0; } /*! ZSTD_copyCCtx_internal() : * Duplicate an existing context `srcCCtx` into another one `dstCCtx`. * Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()). * pledgedSrcSize=0 means "empty" if fParams.contentSizeFlag=1 * @return : 0, or an error code */ static size_t ZSTD_copyCCtx_internal(ZSTD_CCtx* dstCCtx, const ZSTD_CCtx* srcCCtx, ZSTD_frameParameters fParams, unsigned long long pledgedSrcSize, ZSTD_buffered_policy_e zbuff) { DEBUGLOG(5, "ZSTD_copyCCtx_internal"); if (srcCCtx->stage!=ZSTDcs_init) return ERROR(stage_wrong); memcpy(&dstCCtx->customMem, &srcCCtx->customMem, sizeof(ZSTD_customMem)); { ZSTD_parameters params = srcCCtx->appliedParams; params.fParams = fParams; ZSTD_resetCCtx_internal(dstCCtx, params, pledgedSrcSize, ZSTDcrp_noMemset, zbuff); } /* copy tables */ { size_t const chainSize = (srcCCtx->appliedParams.cParams.strategy == ZSTD_fast) ? 0 : (1 << srcCCtx->appliedParams.cParams.chainLog); size_t const hSize = (size_t)1 << srcCCtx->appliedParams.cParams.hashLog; size_t const h3Size = (size_t)1 << srcCCtx->hashLog3; size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32); assert((U32*)dstCCtx->chainTable == (U32*)dstCCtx->hashTable + hSize); /* chainTable must follow hashTable */ assert((U32*)dstCCtx->hashTable3 == (U32*)dstCCtx->chainTable + chainSize); memcpy(dstCCtx->hashTable, srcCCtx->hashTable, tableSpace); /* presumes all tables follow each other */ } /* copy dictionary offsets */ dstCCtx->nextToUpdate = srcCCtx->nextToUpdate; dstCCtx->nextToUpdate3= srcCCtx->nextToUpdate3; dstCCtx->nextSrc = srcCCtx->nextSrc; dstCCtx->base = srcCCtx->base; dstCCtx->dictBase = srcCCtx->dictBase; dstCCtx->dictLimit = srcCCtx->dictLimit; dstCCtx->lowLimit = srcCCtx->lowLimit; dstCCtx->loadedDictEnd= srcCCtx->loadedDictEnd; dstCCtx->dictID = srcCCtx->dictID; /* copy entropy tables */ dstCCtx->fseCTables_ready = srcCCtx->fseCTables_ready; if (srcCCtx->fseCTables_ready) { memcpy(dstCCtx->litlengthCTable, srcCCtx->litlengthCTable, litlengthCTable_size); memcpy(dstCCtx->matchlengthCTable, srcCCtx->matchlengthCTable, matchlengthCTable_size); memcpy(dstCCtx->offcodeCTable, srcCCtx->offcodeCTable, offcodeCTable_size); } dstCCtx->hufCTable_repeatMode = srcCCtx->hufCTable_repeatMode; if (srcCCtx->hufCTable_repeatMode) { memcpy(dstCCtx->hufCTable, srcCCtx->hufCTable, hufCTable_size); } return 0; } /*! ZSTD_copyCCtx() : * Duplicate an existing context `srcCCtx` into another one `dstCCtx`. * Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()). * pledgedSrcSize==0 means "unknown". * @return : 0, or an error code */ size_t ZSTD_copyCCtx(ZSTD_CCtx* dstCCtx, const ZSTD_CCtx* srcCCtx, unsigned long long pledgedSrcSize) { ZSTD_frameParameters fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ }; ZSTD_buffered_policy_e const zbuff = (ZSTD_buffered_policy_e)(srcCCtx->inBuffSize>0); ZSTD_STATIC_ASSERT((U32)ZSTDb_buffered==1); fParams.contentSizeFlag = pledgedSrcSize>0; return ZSTD_copyCCtx_internal(dstCCtx, srcCCtx, fParams, pledgedSrcSize, zbuff); } /*! ZSTD_reduceTable() : * reduce table indexes by `reducerValue` */ static void ZSTD_reduceTable (U32* const table, U32 const size, U32 const reducerValue) { U32 u; for (u=0 ; u < size ; u++) { if (table[u] < reducerValue) table[u] = 0; else table[u] -= reducerValue; } } /*! ZSTD_reduceIndex() : * rescale all indexes to avoid future overflow (indexes are U32) */ static void ZSTD_reduceIndex (ZSTD_CCtx* zc, const U32 reducerValue) { { U32 const hSize = 1 << zc->appliedParams.cParams.hashLog; ZSTD_reduceTable(zc->hashTable, hSize, reducerValue); } { U32 const chainSize = (zc->appliedParams.cParams.strategy == ZSTD_fast) ? 0 : (1 << zc->appliedParams.cParams.chainLog); ZSTD_reduceTable(zc->chainTable, chainSize, reducerValue); } { U32 const h3Size = (zc->hashLog3) ? 1 << zc->hashLog3 : 0; ZSTD_reduceTable(zc->hashTable3, h3Size, reducerValue); } } /*-******************************************************* * Block entropic compression *********************************************************/ /* See doc/zstd_compression_format.md for detailed format description */ size_t ZSTD_noCompressBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize) { if (srcSize + ZSTD_blockHeaderSize > dstCapacity) return ERROR(dstSize_tooSmall); memcpy((BYTE*)dst + ZSTD_blockHeaderSize, src, srcSize); MEM_writeLE24(dst, (U32)(srcSize << 2) + (U32)bt_raw); return ZSTD_blockHeaderSize+srcSize; } static size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize) { BYTE* const ostart = (BYTE* const)dst; U32 const flSize = 1 + (srcSize>31) + (srcSize>4095); if (srcSize + flSize > dstCapacity) return ERROR(dstSize_tooSmall); switch(flSize) { case 1: /* 2 - 1 - 5 */ ostart[0] = (BYTE)((U32)set_basic + (srcSize<<3)); break; case 2: /* 2 - 2 - 12 */ MEM_writeLE16(ostart, (U16)((U32)set_basic + (1<<2) + (srcSize<<4))); break; case 3: /* 2 - 2 - 20 */ MEM_writeLE32(ostart, (U32)((U32)set_basic + (3<<2) + (srcSize<<4))); break; default: /* not necessary : flSize is {1,2,3} */ assert(0); } memcpy(ostart + flSize, src, srcSize); return srcSize + flSize; } static size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize) { BYTE* const ostart = (BYTE* const)dst; U32 const flSize = 1 + (srcSize>31) + (srcSize>4095); (void)dstCapacity; /* dstCapacity already guaranteed to be >=4, hence large enough */ switch(flSize) { case 1: /* 2 - 1 - 5 */ ostart[0] = (BYTE)((U32)set_rle + (srcSize<<3)); break; case 2: /* 2 - 2 - 12 */ MEM_writeLE16(ostart, (U16)((U32)set_rle + (1<<2) + (srcSize<<4))); break; case 3: /* 2 - 2 - 20 */ MEM_writeLE32(ostart, (U32)((U32)set_rle + (3<<2) + (srcSize<<4))); break; default: /* not necessary : flSize is {1,2,3} */ assert(0); } ostart[flSize] = *(const BYTE*)src; return flSize+1; } static size_t ZSTD_minGain(size_t srcSize) { return (srcSize >> 6) + 2; } static size_t ZSTD_compressLiterals (ZSTD_CCtx* zc, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { size_t const minGain = ZSTD_minGain(srcSize); size_t const lhSize = 3 + (srcSize >= 1 KB) + (srcSize >= 16 KB); BYTE* const ostart = (BYTE*)dst; U32 singleStream = srcSize < 256; symbolEncodingType_e hType = set_compressed; size_t cLitSize; /* small ? don't even attempt compression (speed opt) */ # define LITERAL_NOENTROPY 63 { size_t const minLitSize = zc->hufCTable_repeatMode == HUF_repeat_valid ? 6 : LITERAL_NOENTROPY; if (srcSize <= minLitSize) return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize); } if (dstCapacity < lhSize+1) return ERROR(dstSize_tooSmall); /* not enough space for compression */ { HUF_repeat repeat = zc->hufCTable_repeatMode; int const preferRepeat = zc->appliedParams.cParams.strategy < ZSTD_lazy ? srcSize <= 1024 : 0; if (repeat == HUF_repeat_valid && lhSize == 3) singleStream = 1; cLitSize = singleStream ? HUF_compress1X_repeat(ostart+lhSize, dstCapacity-lhSize, src, srcSize, 255, 11, zc->entropyScratchSpace, entropyScratchSpace_size, zc->hufCTable, &repeat, preferRepeat) : HUF_compress4X_repeat(ostart+lhSize, dstCapacity-lhSize, src, srcSize, 255, 11, zc->entropyScratchSpace, entropyScratchSpace_size, zc->hufCTable, &repeat, preferRepeat); if (repeat != HUF_repeat_none) { hType = set_repeat; } /* reused the existing table */ else { zc->hufCTable_repeatMode = HUF_repeat_check; } /* now have a table to reuse */ } if ((cLitSize==0) | (cLitSize >= srcSize - minGain)) { zc->hufCTable_repeatMode = HUF_repeat_none; return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize); } if (cLitSize==1) { zc->hufCTable_repeatMode = HUF_repeat_none; return ZSTD_compressRleLiteralsBlock(dst, dstCapacity, src, srcSize); } /* Build header */ switch(lhSize) { case 3: /* 2 - 2 - 10 - 10 */ { U32 const lhc = hType + ((!singleStream) << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<14); MEM_writeLE24(ostart, lhc); break; } case 4: /* 2 - 2 - 14 - 14 */ { U32 const lhc = hType + (2 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<18); MEM_writeLE32(ostart, lhc); break; } case 5: /* 2 - 2 - 18 - 18 */ { U32 const lhc = hType + (3 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<22); MEM_writeLE32(ostart, lhc); ostart[4] = (BYTE)(cLitSize >> 10); break; } default: /* not possible : lhSize is {3,4,5} */ assert(0); } return lhSize+cLitSize; } static const BYTE LL_Code[64] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24 }; static const BYTE ML_Code[128] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37, 38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 }; void ZSTD_seqToCodes(const seqStore_t* seqStorePtr) { BYTE const LL_deltaCode = 19; BYTE const ML_deltaCode = 36; const seqDef* const sequences = seqStorePtr->sequencesStart; BYTE* const llCodeTable = seqStorePtr->llCode; BYTE* const ofCodeTable = seqStorePtr->ofCode; BYTE* const mlCodeTable = seqStorePtr->mlCode; U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); U32 u; for (u=0; u 63) ? (BYTE)ZSTD_highbit32(llv) + LL_deltaCode : LL_Code[llv]; ofCodeTable[u] = (BYTE)ZSTD_highbit32(sequences[u].offset); mlCodeTable[u] = (mlv>127) ? (BYTE)ZSTD_highbit32(mlv) + ML_deltaCode : ML_Code[mlv]; } if (seqStorePtr->longLengthID==1) llCodeTable[seqStorePtr->longLengthPos] = MaxLL; if (seqStorePtr->longLengthID==2) mlCodeTable[seqStorePtr->longLengthPos] = MaxML; } MEM_STATIC size_t ZSTD_compressSequences (ZSTD_CCtx* zc, void* dst, size_t dstCapacity, size_t srcSize) { const int longOffsets = zc->appliedParams.cParams.windowLog > STREAM_ACCUMULATOR_MIN; const seqStore_t* seqStorePtr = &(zc->seqStore); U32 count[MaxSeq+1]; S16 norm[MaxSeq+1]; FSE_CTable* CTable_LitLength = zc->litlengthCTable; FSE_CTable* CTable_OffsetBits = zc->offcodeCTable; FSE_CTable* CTable_MatchLength = zc->matchlengthCTable; U32 LLtype, Offtype, MLtype; /* compressed, raw or rle */ const seqDef* const sequences = seqStorePtr->sequencesStart; const BYTE* const ofCodeTable = seqStorePtr->ofCode; const BYTE* const llCodeTable = seqStorePtr->llCode; const BYTE* const mlCodeTable = seqStorePtr->mlCode; BYTE* const ostart = (BYTE*)dst; BYTE* const oend = ostart + dstCapacity; BYTE* op = ostart; size_t const nbSeq = seqStorePtr->sequences - seqStorePtr->sequencesStart; BYTE* seqHead; BYTE scratchBuffer[1<litStart; size_t const litSize = seqStorePtr->lit - literals; size_t const cSize = ZSTD_compressLiterals(zc, op, dstCapacity, literals, litSize); if (ZSTD_isError(cSize)) return cSize; op += cSize; } /* Sequences Header */ if ((oend-op) < 3 /*max nbSeq Size*/ + 1 /*seqHead */) return ERROR(dstSize_tooSmall); if (nbSeq < 0x7F) *op++ = (BYTE)nbSeq; else if (nbSeq < LONGNBSEQ) op[0] = (BYTE)((nbSeq>>8) + 0x80), op[1] = (BYTE)nbSeq, op+=2; else op[0]=0xFF, MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ)), op+=3; if (nbSeq==0) goto _check_compressibility; /* seqHead : flags for FSE encoding type */ seqHead = op++; #define MIN_SEQ_FOR_DYNAMIC_FSE 64 #define MAX_SEQ_FOR_STATIC_FSE 1000 /* convert length/distances into codes */ ZSTD_seqToCodes(seqStorePtr); /* CTable for Literal Lengths */ { U32 max = MaxLL; size_t const mostFrequent = FSE_countFast_wksp(count, &max, llCodeTable, nbSeq, zc->entropyScratchSpace); if ((mostFrequent == nbSeq) && (nbSeq > 2)) { *op++ = llCodeTable[0]; FSE_buildCTable_rle(CTable_LitLength, (BYTE)max); LLtype = set_rle; } else if ((zc->fseCTables_ready) && (nbSeq < MAX_SEQ_FOR_STATIC_FSE)) { LLtype = set_repeat; } else if ((nbSeq < MIN_SEQ_FOR_DYNAMIC_FSE) || (mostFrequent < (nbSeq >> (LL_defaultNormLog-1)))) { FSE_buildCTable_wksp(CTable_LitLength, LL_defaultNorm, MaxLL, LL_defaultNormLog, scratchBuffer, sizeof(scratchBuffer)); LLtype = set_basic; } else { size_t nbSeq_1 = nbSeq; const U32 tableLog = FSE_optimalTableLog(LLFSELog, nbSeq, max); if (count[llCodeTable[nbSeq-1]]>1) { count[llCodeTable[nbSeq-1]]--; nbSeq_1--; } FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max); { size_t const NCountSize = FSE_writeNCount(op, oend-op, norm, max, tableLog); /* overflow protected */ if (FSE_isError(NCountSize)) return NCountSize; op += NCountSize; } FSE_buildCTable_wksp(CTable_LitLength, norm, max, tableLog, scratchBuffer, sizeof(scratchBuffer)); LLtype = set_compressed; } } /* CTable for Offsets */ { U32 max = MaxOff; size_t const mostFrequent = FSE_countFast_wksp(count, &max, ofCodeTable, nbSeq, zc->entropyScratchSpace); if ((mostFrequent == nbSeq) && (nbSeq > 2)) { *op++ = ofCodeTable[0]; FSE_buildCTable_rle(CTable_OffsetBits, (BYTE)max); Offtype = set_rle; } else if ((zc->fseCTables_ready) && (nbSeq < MAX_SEQ_FOR_STATIC_FSE)) { Offtype = set_repeat; } else if ((nbSeq < MIN_SEQ_FOR_DYNAMIC_FSE) || (mostFrequent < (nbSeq >> (OF_defaultNormLog-1)))) { FSE_buildCTable_wksp(CTable_OffsetBits, OF_defaultNorm, MaxOff, OF_defaultNormLog, scratchBuffer, sizeof(scratchBuffer)); Offtype = set_basic; } else { size_t nbSeq_1 = nbSeq; const U32 tableLog = FSE_optimalTableLog(OffFSELog, nbSeq, max); if (count[ofCodeTable[nbSeq-1]]>1) { count[ofCodeTable[nbSeq-1]]--; nbSeq_1--; } FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max); { size_t const NCountSize = FSE_writeNCount(op, oend-op, norm, max, tableLog); /* overflow protected */ if (FSE_isError(NCountSize)) return NCountSize; op += NCountSize; } FSE_buildCTable_wksp(CTable_OffsetBits, norm, max, tableLog, scratchBuffer, sizeof(scratchBuffer)); Offtype = set_compressed; } } /* CTable for MatchLengths */ { U32 max = MaxML; size_t const mostFrequent = FSE_countFast_wksp(count, &max, mlCodeTable, nbSeq, zc->entropyScratchSpace); if ((mostFrequent == nbSeq) && (nbSeq > 2)) { *op++ = *mlCodeTable; FSE_buildCTable_rle(CTable_MatchLength, (BYTE)max); MLtype = set_rle; } else if ((zc->fseCTables_ready) && (nbSeq < MAX_SEQ_FOR_STATIC_FSE)) { MLtype = set_repeat; } else if ((nbSeq < MIN_SEQ_FOR_DYNAMIC_FSE) || (mostFrequent < (nbSeq >> (ML_defaultNormLog-1)))) { FSE_buildCTable_wksp(CTable_MatchLength, ML_defaultNorm, MaxML, ML_defaultNormLog, scratchBuffer, sizeof(scratchBuffer)); MLtype = set_basic; } else { size_t nbSeq_1 = nbSeq; const U32 tableLog = FSE_optimalTableLog(MLFSELog, nbSeq, max); if (count[mlCodeTable[nbSeq-1]]>1) { count[mlCodeTable[nbSeq-1]]--; nbSeq_1--; } FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max); { size_t const NCountSize = FSE_writeNCount(op, oend-op, norm, max, tableLog); /* overflow protected */ if (FSE_isError(NCountSize)) return NCountSize; op += NCountSize; } FSE_buildCTable_wksp(CTable_MatchLength, norm, max, tableLog, scratchBuffer, sizeof(scratchBuffer)); MLtype = set_compressed; } } *seqHead = (BYTE)((LLtype<<6) + (Offtype<<4) + (MLtype<<2)); zc->fseCTables_ready = 0; /* Encoding Sequences */ { BIT_CStream_t blockStream; FSE_CState_t stateMatchLength; FSE_CState_t stateOffsetBits; FSE_CState_t stateLitLength; CHECK_E(BIT_initCStream(&blockStream, op, oend-op), dstSize_tooSmall); /* not enough space remaining */ /* first symbols */ FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]); FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]); FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]); BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]); if (MEM_32bits()) BIT_flushBits(&blockStream); BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]); if (MEM_32bits()) BIT_flushBits(&blockStream); if (longOffsets) { U32 const ofBits = ofCodeTable[nbSeq-1]; int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1); if (extraBits) { BIT_addBits(&blockStream, sequences[nbSeq-1].offset, extraBits); BIT_flushBits(&blockStream); } BIT_addBits(&blockStream, sequences[nbSeq-1].offset >> extraBits, ofBits - extraBits); } else { BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]); } BIT_flushBits(&blockStream); { size_t n; for (n=nbSeq-2 ; n= 64-7-(LLFSELog+MLFSELog+OffFSELog))) BIT_flushBits(&blockStream); /* (7)*/ BIT_addBits(&blockStream, sequences[n].litLength, llBits); if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream); BIT_addBits(&blockStream, sequences[n].matchLength, mlBits); if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/ if (longOffsets) { int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1); if (extraBits) { BIT_addBits(&blockStream, sequences[n].offset, extraBits); BIT_flushBits(&blockStream); /* (7)*/ } BIT_addBits(&blockStream, sequences[n].offset >> extraBits, ofBits - extraBits); /* 31 */ } else { BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */ } BIT_flushBits(&blockStream); /* (7)*/ } } FSE_flushCState(&blockStream, &stateMatchLength); FSE_flushCState(&blockStream, &stateOffsetBits); FSE_flushCState(&blockStream, &stateLitLength); { size_t const streamSize = BIT_closeCStream(&blockStream); if (streamSize==0) return ERROR(dstSize_tooSmall); /* not enough space */ op += streamSize; } } /* check compressibility */ _check_compressibility: { size_t const minGain = ZSTD_minGain(srcSize); size_t const maxCSize = srcSize - minGain; if ((size_t)(op-ostart) >= maxCSize) { zc->hufCTable_repeatMode = HUF_repeat_none; return 0; } } /* confirm repcodes */ { int i; for (i=0; irep[i] = zc->repToConfirm[i]; } return op - ostart; } /*! ZSTD_storeSeq() : Store a sequence (literal length, literals, offset code and match length code) into seqStore_t. `offsetCode` : distance to match, or 0 == repCode. `matchCode` : matchLength - MINMATCH */ MEM_STATIC void ZSTD_storeSeq(seqStore_t* seqStorePtr, size_t litLength, const void* literals, U32 offsetCode, size_t matchCode) { #if defined(ZSTD_DEBUG) && (ZSTD_DEBUG >= 6) static const BYTE* g_start = NULL; U32 const pos = (U32)((const BYTE*)literals - g_start); if (g_start==NULL) g_start = (const BYTE*)literals; if ((pos > 0) && (pos < 1000000000)) DEBUGLOG(6, "Cpos %6u :%5u literals & match %3u bytes at distance %6u", pos, (U32)litLength, (U32)matchCode+MINMATCH, (U32)offsetCode); #endif /* copy Literals */ assert(seqStorePtr->lit + litLength <= seqStorePtr->litStart + 128 KB); ZSTD_wildcopy(seqStorePtr->lit, literals, litLength); seqStorePtr->lit += litLength; /* literal Length */ if (litLength>0xFFFF) { seqStorePtr->longLengthID = 1; seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); } seqStorePtr->sequences[0].litLength = (U16)litLength; /* match offset */ seqStorePtr->sequences[0].offset = offsetCode + 1; /* match Length */ if (matchCode>0xFFFF) { seqStorePtr->longLengthID = 2; seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); } seqStorePtr->sequences[0].matchLength = (U16)matchCode; seqStorePtr->sequences++; } /*-************************************* * Match length counter ***************************************/ static unsigned ZSTD_NbCommonBytes (register size_t val) { if (MEM_isLittleEndian()) { if (MEM_64bits()) { # if defined(_MSC_VER) && defined(_WIN64) unsigned long r = 0; _BitScanForward64( &r, (U64)val ); return (unsigned)(r>>3); # elif defined(__GNUC__) && (__GNUC__ >= 3) return (__builtin_ctzll((U64)val) >> 3); # else static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 }; return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58]; # endif } else { /* 32 bits */ # if defined(_MSC_VER) unsigned long r=0; _BitScanForward( &r, (U32)val ); return (unsigned)(r>>3); # elif defined(__GNUC__) && (__GNUC__ >= 3) return (__builtin_ctz((U32)val) >> 3); # else static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 }; return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27]; # endif } } else { /* Big Endian CPU */ if (MEM_64bits()) { # if defined(_MSC_VER) && defined(_WIN64) unsigned long r = 0; _BitScanReverse64( &r, val ); return (unsigned)(r>>3); # elif defined(__GNUC__) && (__GNUC__ >= 3) return (__builtin_clzll(val) >> 3); # else unsigned r; const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */ if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; } if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; } r += (!val); return r; # endif } else { /* 32 bits */ # if defined(_MSC_VER) unsigned long r = 0; _BitScanReverse( &r, (unsigned long)val ); return (unsigned)(r>>3); # elif defined(__GNUC__) && (__GNUC__ >= 3) return (__builtin_clz((U32)val) >> 3); # else unsigned r; if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; } r += (!val); return r; # endif } } } static size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* const pInLimit) { const BYTE* const pStart = pIn; const BYTE* const pInLoopLimit = pInLimit - (sizeof(size_t)-1); while (pIn < pInLoopLimit) { size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn); if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; } pIn += ZSTD_NbCommonBytes(diff); return (size_t)(pIn - pStart); } if (MEM_64bits()) if ((pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; } if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; } if ((pIn> (32-h) ; } MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h); } /* only in zstd_opt.h */ static const U32 prime4bytes = 2654435761U; static U32 ZSTD_hash4(U32 u, U32 h) { return (u * prime4bytes) >> (32-h) ; } static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_read32(ptr), h); } static const U64 prime5bytes = 889523592379ULL; static size_t ZSTD_hash5(U64 u, U32 h) { return (size_t)(((u << (64-40)) * prime5bytes) >> (64-h)) ; } static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h); } static const U64 prime6bytes = 227718039650203ULL; static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u << (64-48)) * prime6bytes) >> (64-h)) ; } static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); } static const U64 prime7bytes = 58295818150454627ULL; static size_t ZSTD_hash7(U64 u, U32 h) { return (size_t)(((u << (64-56)) * prime7bytes) >> (64-h)) ; } static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h); } static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL; static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; } static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); } static size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls) { switch(mls) { default: case 4: return ZSTD_hash4Ptr(p, hBits); case 5: return ZSTD_hash5Ptr(p, hBits); case 6: return ZSTD_hash6Ptr(p, hBits); case 7: return ZSTD_hash7Ptr(p, hBits); case 8: return ZSTD_hash8Ptr(p, hBits); } } /*-************************************* * Fast Scan ***************************************/ static void ZSTD_fillHashTable (ZSTD_CCtx* zc, const void* end, const U32 mls) { U32* const hashTable = zc->hashTable; U32 const hBits = zc->appliedParams.cParams.hashLog; const BYTE* const base = zc->base; const BYTE* ip = base + zc->nextToUpdate; const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE; const size_t fastHashFillStep = 3; while(ip <= iend) { hashTable[ZSTD_hashPtr(ip, hBits, mls)] = (U32)(ip - base); ip += fastHashFillStep; } } FORCE_INLINE void ZSTD_compressBlock_fast_generic(ZSTD_CCtx* cctx, const void* src, size_t srcSize, const U32 mls) { U32* const hashTable = cctx->hashTable; U32 const hBits = cctx->appliedParams.cParams.hashLog; seqStore_t* seqStorePtr = &(cctx->seqStore); const BYTE* const base = cctx->base; const BYTE* const istart = (const BYTE*)src; const BYTE* ip = istart; const BYTE* anchor = istart; const U32 lowestIndex = cctx->dictLimit; const BYTE* const lowest = base + lowestIndex; const BYTE* const iend = istart + srcSize; const BYTE* const ilimit = iend - HASH_READ_SIZE; U32 offset_1=cctx->rep[0], offset_2=cctx->rep[1]; U32 offsetSaved = 0; /* init */ ip += (ip==lowest); { U32 const maxRep = (U32)(ip-lowest); if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0; if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0; } /* Main Search Loop */ while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */ size_t mLength; size_t const h = ZSTD_hashPtr(ip, hBits, mls); U32 const current = (U32)(ip-base); U32 const matchIndex = hashTable[h]; const BYTE* match = base + matchIndex; hashTable[h] = current; /* update hash table */ if ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1))) { mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4; ip++; ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, 0, mLength-MINMATCH); } else { U32 offset; if ( (matchIndex <= lowestIndex) || (MEM_read32(match) != MEM_read32(ip)) ) { ip += ((ip-anchor) >> g_searchStrength) + 1; continue; } mLength = ZSTD_count(ip+4, match+4, iend) + 4; offset = (U32)(ip-match); while (((ip>anchor) & (match>lowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */ offset_2 = offset_1; offset_1 = offset; ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH); } /* match found */ ip += mLength; anchor = ip; if (ip <= ilimit) { /* Fill Table */ hashTable[ZSTD_hashPtr(base+current+2, hBits, mls)] = current+2; /* here because current+2 could be > iend-8 */ hashTable[ZSTD_hashPtr(ip-2, hBits, mls)] = (U32)(ip-2-base); /* check immediate repcode */ while ( (ip <= ilimit) && ( (offset_2>0) & (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) { /* store sequence */ size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4; { U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; } /* swap offset_2 <=> offset_1 */ hashTable[ZSTD_hashPtr(ip, hBits, mls)] = (U32)(ip-base); ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, rLength-MINMATCH); ip += rLength; anchor = ip; continue; /* faster when present ... (?) */ } } } /* save reps for next block */ cctx->repToConfirm[0] = offset_1 ? offset_1 : offsetSaved; cctx->repToConfirm[1] = offset_2 ? offset_2 : offsetSaved; /* Last Literals */ { size_t const lastLLSize = iend - anchor; memcpy(seqStorePtr->lit, anchor, lastLLSize); seqStorePtr->lit += lastLLSize; } } static void ZSTD_compressBlock_fast(ZSTD_CCtx* ctx, const void* src, size_t srcSize) { const U32 mls = ctx->appliedParams.cParams.searchLength; switch(mls) { default: /* includes case 3 */ case 4 : ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 4); return; case 5 : ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 5); return; case 6 : ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 6); return; case 7 : ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 7); return; } } static void ZSTD_compressBlock_fast_extDict_generic(ZSTD_CCtx* ctx, const void* src, size_t srcSize, const U32 mls) { U32* hashTable = ctx->hashTable; const U32 hBits = ctx->appliedParams.cParams.hashLog; seqStore_t* seqStorePtr = &(ctx->seqStore); const BYTE* const base = ctx->base; const BYTE* const dictBase = ctx->dictBase; const BYTE* const istart = (const BYTE*)src; const BYTE* ip = istart; const BYTE* anchor = istart; const U32 lowestIndex = ctx->lowLimit; const BYTE* const dictStart = dictBase + lowestIndex; const U32 dictLimit = ctx->dictLimit; const BYTE* const lowPrefixPtr = base + dictLimit; const BYTE* const dictEnd = dictBase + dictLimit; const BYTE* const iend = istart + srcSize; const BYTE* const ilimit = iend - 8; U32 offset_1=ctx->rep[0], offset_2=ctx->rep[1]; /* Search Loop */ while (ip < ilimit) { /* < instead of <=, because (ip+1) */ const size_t h = ZSTD_hashPtr(ip, hBits, mls); const U32 matchIndex = hashTable[h]; const BYTE* matchBase = matchIndex < dictLimit ? dictBase : base; const BYTE* match = matchBase + matchIndex; const U32 current = (U32)(ip-base); const U32 repIndex = current + 1 - offset_1; /* offset_1 expected <= current +1 */ const BYTE* repBase = repIndex < dictLimit ? dictBase : base; const BYTE* repMatch = repBase + repIndex; size_t mLength; hashTable[h] = current; /* update hash table */ if ( (((U32)((dictLimit-1) - repIndex) >= 3) /* intentional underflow */ & (repIndex > lowestIndex)) && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) { const BYTE* repMatchEnd = repIndex < dictLimit ? dictEnd : iend; mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, lowPrefixPtr) + 4; ip++; ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, 0, mLength-MINMATCH); } else { if ( (matchIndex < lowestIndex) || (MEM_read32(match) != MEM_read32(ip)) ) { ip += ((ip-anchor) >> g_searchStrength) + 1; continue; } { const BYTE* matchEnd = matchIndex < dictLimit ? dictEnd : iend; const BYTE* lowMatchPtr = matchIndex < dictLimit ? dictStart : lowPrefixPtr; U32 offset; mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, lowPrefixPtr) + 4; while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */ offset = current - matchIndex; offset_2 = offset_1; offset_1 = offset; ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH); } } /* found a match : store it */ ip += mLength; anchor = ip; if (ip <= ilimit) { /* Fill Table */ hashTable[ZSTD_hashPtr(base+current+2, hBits, mls)] = current+2; hashTable[ZSTD_hashPtr(ip-2, hBits, mls)] = (U32)(ip-2-base); /* check immediate repcode */ while (ip <= ilimit) { U32 const current2 = (U32)(ip-base); U32 const repIndex2 = current2 - offset_2; const BYTE* repMatch2 = repIndex2 < dictLimit ? dictBase + repIndex2 : base + repIndex2; if ( (((U32)((dictLimit-1) - repIndex2) >= 3) & (repIndex2 > lowestIndex)) /* intentional overflow */ && (MEM_read32(repMatch2) == MEM_read32(ip)) ) { const BYTE* const repEnd2 = repIndex2 < dictLimit ? dictEnd : iend; size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, lowPrefixPtr) + 4; U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */ ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, repLength2-MINMATCH); hashTable[ZSTD_hashPtr(ip, hBits, mls)] = current2; ip += repLength2; anchor = ip; continue; } break; } } } /* save reps for next block */ ctx->repToConfirm[0] = offset_1; ctx->repToConfirm[1] = offset_2; /* Last Literals */ { size_t const lastLLSize = iend - anchor; memcpy(seqStorePtr->lit, anchor, lastLLSize); seqStorePtr->lit += lastLLSize; } } static void ZSTD_compressBlock_fast_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize) { U32 const mls = ctx->appliedParams.cParams.searchLength; switch(mls) { default: /* includes case 3 */ case 4 : ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 4); return; case 5 : ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 5); return; case 6 : ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 6); return; case 7 : ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 7); return; } } /*-************************************* * Double Fast ***************************************/ static void ZSTD_fillDoubleHashTable (ZSTD_CCtx* cctx, const void* end, const U32 mls) { U32* const hashLarge = cctx->hashTable; U32 const hBitsL = cctx->appliedParams.cParams.hashLog; U32* const hashSmall = cctx->chainTable; U32 const hBitsS = cctx->appliedParams.cParams.chainLog; const BYTE* const base = cctx->base; const BYTE* ip = base + cctx->nextToUpdate; const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE; const size_t fastHashFillStep = 3; while(ip <= iend) { hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip - base); hashLarge[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip - base); ip += fastHashFillStep; } } FORCE_INLINE void ZSTD_compressBlock_doubleFast_generic(ZSTD_CCtx* cctx, const void* src, size_t srcSize, const U32 mls) { U32* const hashLong = cctx->hashTable; const U32 hBitsL = cctx->appliedParams.cParams.hashLog; U32* const hashSmall = cctx->chainTable; const U32 hBitsS = cctx->appliedParams.cParams.chainLog; seqStore_t* seqStorePtr = &(cctx->seqStore); const BYTE* const base = cctx->base; const BYTE* const istart = (const BYTE*)src; const BYTE* ip = istart; const BYTE* anchor = istart; const U32 lowestIndex = cctx->dictLimit; const BYTE* const lowest = base + lowestIndex; const BYTE* const iend = istart + srcSize; const BYTE* const ilimit = iend - HASH_READ_SIZE; U32 offset_1=cctx->rep[0], offset_2=cctx->rep[1]; U32 offsetSaved = 0; /* init */ ip += (ip==lowest); { U32 const maxRep = (U32)(ip-lowest); if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0; if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0; } /* Main Search Loop */ while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */ size_t mLength; size_t const h2 = ZSTD_hashPtr(ip, hBitsL, 8); size_t const h = ZSTD_hashPtr(ip, hBitsS, mls); U32 const current = (U32)(ip-base); U32 const matchIndexL = hashLong[h2]; U32 const matchIndexS = hashSmall[h]; const BYTE* matchLong = base + matchIndexL; const BYTE* match = base + matchIndexS; hashLong[h2] = hashSmall[h] = current; /* update hash tables */ assert(offset_1 <= current); /* supposed guaranteed by construction */ if ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1))) { /* favor repcode */ mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4; ip++; ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, 0, mLength-MINMATCH); } else { U32 offset; if ( (matchIndexL > lowestIndex) && (MEM_read64(matchLong) == MEM_read64(ip)) ) { mLength = ZSTD_count(ip+8, matchLong+8, iend) + 8; offset = (U32)(ip-matchLong); while (((ip>anchor) & (matchLong>lowest)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */ } else if ( (matchIndexS > lowestIndex) && (MEM_read32(match) == MEM_read32(ip)) ) { size_t const hl3 = ZSTD_hashPtr(ip+1, hBitsL, 8); U32 const matchIndexL3 = hashLong[hl3]; const BYTE* matchL3 = base + matchIndexL3; hashLong[hl3] = current + 1; if ( (matchIndexL3 > lowestIndex) && (MEM_read64(matchL3) == MEM_read64(ip+1)) ) { mLength = ZSTD_count(ip+9, matchL3+8, iend) + 8; ip++; offset = (U32)(ip-matchL3); while (((ip>anchor) & (matchL3>lowest)) && (ip[-1] == matchL3[-1])) { ip--; matchL3--; mLength++; } /* catch up */ } else { mLength = ZSTD_count(ip+4, match+4, iend) + 4; offset = (U32)(ip-match); while (((ip>anchor) & (match>lowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */ } } else { ip += ((ip-anchor) >> g_searchStrength) + 1; continue; } offset_2 = offset_1; offset_1 = offset; ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH); } /* match found */ ip += mLength; anchor = ip; if (ip <= ilimit) { /* Fill Table */ hashLong[ZSTD_hashPtr(base+current+2, hBitsL, 8)] = hashSmall[ZSTD_hashPtr(base+current+2, hBitsS, mls)] = current+2; /* here because current+2 could be > iend-8 */ hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = hashSmall[ZSTD_hashPtr(ip-2, hBitsS, mls)] = (U32)(ip-2-base); /* check immediate repcode */ while ( (ip <= ilimit) && ( (offset_2>0) & (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) { /* store sequence */ size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4; { U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; } /* swap offset_2 <=> offset_1 */ hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip-base); hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip-base); ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, rLength-MINMATCH); ip += rLength; anchor = ip; continue; /* faster when present ... (?) */ } } } /* save reps for next block */ cctx->repToConfirm[0] = offset_1 ? offset_1 : offsetSaved; cctx->repToConfirm[1] = offset_2 ? offset_2 : offsetSaved; /* Last Literals */ { size_t const lastLLSize = iend - anchor; memcpy(seqStorePtr->lit, anchor, lastLLSize); seqStorePtr->lit += lastLLSize; } } static void ZSTD_compressBlock_doubleFast(ZSTD_CCtx* ctx, const void* src, size_t srcSize) { const U32 mls = ctx->appliedParams.cParams.searchLength; switch(mls) { default: /* includes case 3 */ case 4 : ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 4); return; case 5 : ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 5); return; case 6 : ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 6); return; case 7 : ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 7); return; } } static void ZSTD_compressBlock_doubleFast_extDict_generic(ZSTD_CCtx* ctx, const void* src, size_t srcSize, const U32 mls) { U32* const hashLong = ctx->hashTable; U32 const hBitsL = ctx->appliedParams.cParams.hashLog; U32* const hashSmall = ctx->chainTable; U32 const hBitsS = ctx->appliedParams.cParams.chainLog; seqStore_t* seqStorePtr = &(ctx->seqStore); const BYTE* const base = ctx->base; const BYTE* const dictBase = ctx->dictBase; const BYTE* const istart = (const BYTE*)src; const BYTE* ip = istart; const BYTE* anchor = istart; const U32 lowestIndex = ctx->lowLimit; const BYTE* const dictStart = dictBase + lowestIndex; const U32 dictLimit = ctx->dictLimit; const BYTE* const lowPrefixPtr = base + dictLimit; const BYTE* const dictEnd = dictBase + dictLimit; const BYTE* const iend = istart + srcSize; const BYTE* const ilimit = iend - 8; U32 offset_1=ctx->rep[0], offset_2=ctx->rep[1]; /* Search Loop */ while (ip < ilimit) { /* < instead of <=, because (ip+1) */ const size_t hSmall = ZSTD_hashPtr(ip, hBitsS, mls); const U32 matchIndex = hashSmall[hSmall]; const BYTE* matchBase = matchIndex < dictLimit ? dictBase : base; const BYTE* match = matchBase + matchIndex; const size_t hLong = ZSTD_hashPtr(ip, hBitsL, 8); const U32 matchLongIndex = hashLong[hLong]; const BYTE* matchLongBase = matchLongIndex < dictLimit ? dictBase : base; const BYTE* matchLong = matchLongBase + matchLongIndex; const U32 current = (U32)(ip-base); const U32 repIndex = current + 1 - offset_1; /* offset_1 expected <= current +1 */ const BYTE* repBase = repIndex < dictLimit ? dictBase : base; const BYTE* repMatch = repBase + repIndex; size_t mLength; hashSmall[hSmall] = hashLong[hLong] = current; /* update hash table */ if ( (((U32)((dictLimit-1) - repIndex) >= 3) /* intentional underflow */ & (repIndex > lowestIndex)) && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) { const BYTE* repMatchEnd = repIndex < dictLimit ? dictEnd : iend; mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, lowPrefixPtr) + 4; ip++; ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, 0, mLength-MINMATCH); } else { if ((matchLongIndex > lowestIndex) && (MEM_read64(matchLong) == MEM_read64(ip))) { const BYTE* matchEnd = matchLongIndex < dictLimit ? dictEnd : iend; const BYTE* lowMatchPtr = matchLongIndex < dictLimit ? dictStart : lowPrefixPtr; U32 offset; mLength = ZSTD_count_2segments(ip+8, matchLong+8, iend, matchEnd, lowPrefixPtr) + 8; offset = current - matchLongIndex; while (((ip>anchor) & (matchLong>lowMatchPtr)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */ offset_2 = offset_1; offset_1 = offset; ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH); } else if ((matchIndex > lowestIndex) && (MEM_read32(match) == MEM_read32(ip))) { size_t const h3 = ZSTD_hashPtr(ip+1, hBitsL, 8); U32 const matchIndex3 = hashLong[h3]; const BYTE* const match3Base = matchIndex3 < dictLimit ? dictBase : base; const BYTE* match3 = match3Base + matchIndex3; U32 offset; hashLong[h3] = current + 1; if ( (matchIndex3 > lowestIndex) && (MEM_read64(match3) == MEM_read64(ip+1)) ) { const BYTE* matchEnd = matchIndex3 < dictLimit ? dictEnd : iend; const BYTE* lowMatchPtr = matchIndex3 < dictLimit ? dictStart : lowPrefixPtr; mLength = ZSTD_count_2segments(ip+9, match3+8, iend, matchEnd, lowPrefixPtr) + 8; ip++; offset = current+1 - matchIndex3; while (((ip>anchor) & (match3>lowMatchPtr)) && (ip[-1] == match3[-1])) { ip--; match3--; mLength++; } /* catch up */ } else { const BYTE* matchEnd = matchIndex < dictLimit ? dictEnd : iend; const BYTE* lowMatchPtr = matchIndex < dictLimit ? dictStart : lowPrefixPtr; mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, lowPrefixPtr) + 4; offset = current - matchIndex; while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */ } offset_2 = offset_1; offset_1 = offset; ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH); } else { ip += ((ip-anchor) >> g_searchStrength) + 1; continue; } } /* found a match : store it */ ip += mLength; anchor = ip; if (ip <= ilimit) { /* Fill Table */ hashSmall[ZSTD_hashPtr(base+current+2, hBitsS, mls)] = current+2; hashLong[ZSTD_hashPtr(base+current+2, hBitsL, 8)] = current+2; hashSmall[ZSTD_hashPtr(ip-2, hBitsS, mls)] = (U32)(ip-2-base); hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base); /* check immediate repcode */ while (ip <= ilimit) { U32 const current2 = (U32)(ip-base); U32 const repIndex2 = current2 - offset_2; const BYTE* repMatch2 = repIndex2 < dictLimit ? dictBase + repIndex2 : base + repIndex2; if ( (((U32)((dictLimit-1) - repIndex2) >= 3) & (repIndex2 > lowestIndex)) /* intentional overflow */ && (MEM_read32(repMatch2) == MEM_read32(ip)) ) { const BYTE* const repEnd2 = repIndex2 < dictLimit ? dictEnd : iend; size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, lowPrefixPtr) + 4; U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */ ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, repLength2-MINMATCH); hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2; hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2; ip += repLength2; anchor = ip; continue; } break; } } } /* save reps for next block */ ctx->repToConfirm[0] = offset_1; ctx->repToConfirm[1] = offset_2; /* Last Literals */ { size_t const lastLLSize = iend - anchor; memcpy(seqStorePtr->lit, anchor, lastLLSize); seqStorePtr->lit += lastLLSize; } } static void ZSTD_compressBlock_doubleFast_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize) { U32 const mls = ctx->appliedParams.cParams.searchLength; switch(mls) { default: /* includes case 3 */ case 4 : ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 4); return; case 5 : ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 5); return; case 6 : ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 6); return; case 7 : ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 7); return; } } /*-************************************* * Binary Tree search ***************************************/ /** ZSTD_insertBt1() : add one or multiple positions to tree. * ip : assumed <= iend-8 . * @return : nb of positions added */ static U32 ZSTD_insertBt1(ZSTD_CCtx* zc, const BYTE* const ip, const U32 mls, const BYTE* const iend, U32 nbCompares, U32 extDict) { U32* const hashTable = zc->hashTable; U32 const hashLog = zc->appliedParams.cParams.hashLog; size_t const h = ZSTD_hashPtr(ip, hashLog, mls); U32* const bt = zc->chainTable; U32 const btLog = zc->appliedParams.cParams.chainLog - 1; U32 const btMask = (1 << btLog) - 1; U32 matchIndex = hashTable[h]; size_t commonLengthSmaller=0, commonLengthLarger=0; const BYTE* const base = zc->base; const BYTE* const dictBase = zc->dictBase; const U32 dictLimit = zc->dictLimit; const BYTE* const dictEnd = dictBase + dictLimit; const BYTE* const prefixStart = base + dictLimit; const BYTE* match; const U32 current = (U32)(ip-base); const U32 btLow = btMask >= current ? 0 : current - btMask; U32* smallerPtr = bt + 2*(current&btMask); U32* largerPtr = smallerPtr + 1; U32 dummy32; /* to be nullified at the end */ U32 const windowLow = zc->lowLimit; U32 matchEndIdx = current+8; size_t bestLength = 8; #ifdef ZSTD_C_PREDICT U32 predictedSmall = *(bt + 2*((current-1)&btMask) + 0); U32 predictedLarge = *(bt + 2*((current-1)&btMask) + 1); predictedSmall += (predictedSmall>0); predictedLarge += (predictedLarge>0); #endif /* ZSTD_C_PREDICT */ hashTable[h] = current; /* Update Hash Table */ while (nbCompares-- && (matchIndex > windowLow)) { U32* const nextPtr = bt + 2*(matchIndex & btMask); size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ #ifdef ZSTD_C_PREDICT /* note : can create issues when hlog small <= 11 */ const U32* predictPtr = bt + 2*((matchIndex-1) & btMask); /* written this way, as bt is a roll buffer */ if (matchIndex == predictedSmall) { /* no need to check length, result known */ *smallerPtr = matchIndex; if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */ smallerPtr = nextPtr+1; /* new "smaller" => larger of match */ matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */ predictedSmall = predictPtr[1] + (predictPtr[1]>0); continue; } if (matchIndex == predictedLarge) { *largerPtr = matchIndex; if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */ largerPtr = nextPtr; matchIndex = nextPtr[0]; predictedLarge = predictPtr[0] + (predictPtr[0]>0); continue; } #endif if ((!extDict) || (matchIndex+matchLength >= dictLimit)) { match = base + matchIndex; if (match[matchLength] == ip[matchLength]) matchLength += ZSTD_count(ip+matchLength+1, match+matchLength+1, iend) +1; } else { match = dictBase + matchIndex; matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart); if (matchIndex+matchLength >= dictLimit) match = base + matchIndex; /* to prepare for next usage of match[matchLength] */ } if (matchLength > bestLength) { bestLength = matchLength; if (matchLength > matchEndIdx - matchIndex) matchEndIdx = matchIndex + (U32)matchLength; } if (ip+matchLength == iend) /* equal : no way to know if inf or sup */ break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt the tree */ if (match[matchLength] < ip[matchLength]) { /* necessarily within correct buffer */ /* match is smaller than current */ *smallerPtr = matchIndex; /* update smaller idx */ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */ smallerPtr = nextPtr+1; /* new "smaller" => larger of match */ matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */ } else { /* match is larger than current */ *largerPtr = matchIndex; commonLengthLarger = matchLength; if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */ largerPtr = nextPtr; matchIndex = nextPtr[0]; } } *smallerPtr = *largerPtr = 0; if (bestLength > 384) return MIN(192, (U32)(bestLength - 384)); /* speed optimization */ if (matchEndIdx > current + 8) return matchEndIdx - current - 8; return 1; } static size_t ZSTD_insertBtAndFindBestMatch ( ZSTD_CCtx* zc, const BYTE* const ip, const BYTE* const iend, size_t* offsetPtr, U32 nbCompares, const U32 mls, U32 extDict) { U32* const hashTable = zc->hashTable; U32 const hashLog = zc->appliedParams.cParams.hashLog; size_t const h = ZSTD_hashPtr(ip, hashLog, mls); U32* const bt = zc->chainTable; U32 const btLog = zc->appliedParams.cParams.chainLog - 1; U32 const btMask = (1 << btLog) - 1; U32 matchIndex = hashTable[h]; size_t commonLengthSmaller=0, commonLengthLarger=0; const BYTE* const base = zc->base; const BYTE* const dictBase = zc->dictBase; const U32 dictLimit = zc->dictLimit; const BYTE* const dictEnd = dictBase + dictLimit; const BYTE* const prefixStart = base + dictLimit; const U32 current = (U32)(ip-base); const U32 btLow = btMask >= current ? 0 : current - btMask; const U32 windowLow = zc->lowLimit; U32* smallerPtr = bt + 2*(current&btMask); U32* largerPtr = bt + 2*(current&btMask) + 1; U32 matchEndIdx = current+8; U32 dummy32; /* to be nullified at the end */ size_t bestLength = 0; hashTable[h] = current; /* Update Hash Table */ while (nbCompares-- && (matchIndex > windowLow)) { U32* const nextPtr = bt + 2*(matchIndex & btMask); size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ const BYTE* match; if ((!extDict) || (matchIndex+matchLength >= dictLimit)) { match = base + matchIndex; if (match[matchLength] == ip[matchLength]) matchLength += ZSTD_count(ip+matchLength+1, match+matchLength+1, iend) +1; } else { match = dictBase + matchIndex; matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart); if (matchIndex+matchLength >= dictLimit) match = base + matchIndex; /* to prepare for next usage of match[matchLength] */ } if (matchLength > bestLength) { if (matchLength > matchEndIdx - matchIndex) matchEndIdx = matchIndex + (U32)matchLength; if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(current-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) ) bestLength = matchLength, *offsetPtr = ZSTD_REP_MOVE + current - matchIndex; if (ip+matchLength == iend) /* equal : no way to know if inf or sup */ break; /* drop, to guarantee consistency (miss a little bit of compression) */ } if (match[matchLength] < ip[matchLength]) { /* match is smaller than current */ *smallerPtr = matchIndex; /* update smaller idx */ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */ smallerPtr = nextPtr+1; /* new "smaller" => larger of match */ matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */ } else { /* match is larger than current */ *largerPtr = matchIndex; commonLengthLarger = matchLength; if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */ largerPtr = nextPtr; matchIndex = nextPtr[0]; } } *smallerPtr = *largerPtr = 0; zc->nextToUpdate = (matchEndIdx > current + 8) ? matchEndIdx - 8 : current+1; return bestLength; } static void ZSTD_updateTree(ZSTD_CCtx* zc, const BYTE* const ip, const BYTE* const iend, const U32 nbCompares, const U32 mls) { const BYTE* const base = zc->base; const U32 target = (U32)(ip - base); U32 idx = zc->nextToUpdate; while(idx < target) idx += ZSTD_insertBt1(zc, base+idx, mls, iend, nbCompares, 0); } /** ZSTD_BtFindBestMatch() : Tree updater, providing best match */ static size_t ZSTD_BtFindBestMatch ( ZSTD_CCtx* zc, const BYTE* const ip, const BYTE* const iLimit, size_t* offsetPtr, const U32 maxNbAttempts, const U32 mls) { if (ip < zc->base + zc->nextToUpdate) return 0; /* skipped area */ ZSTD_updateTree(zc, ip, iLimit, maxNbAttempts, mls); return ZSTD_insertBtAndFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, mls, 0); } static size_t ZSTD_BtFindBestMatch_selectMLS ( ZSTD_CCtx* zc, /* Index table will be updated */ const BYTE* ip, const BYTE* const iLimit, size_t* offsetPtr, const U32 maxNbAttempts, const U32 matchLengthSearch) { switch(matchLengthSearch) { default : /* includes case 3 */ case 4 : return ZSTD_BtFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4); case 5 : return ZSTD_BtFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5); case 7 : case 6 : return ZSTD_BtFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6); } } static void ZSTD_updateTree_extDict(ZSTD_CCtx* zc, const BYTE* const ip, const BYTE* const iend, const U32 nbCompares, const U32 mls) { const BYTE* const base = zc->base; const U32 target = (U32)(ip - base); U32 idx = zc->nextToUpdate; while (idx < target) idx += ZSTD_insertBt1(zc, base+idx, mls, iend, nbCompares, 1); } /** Tree updater, providing best match */ static size_t ZSTD_BtFindBestMatch_extDict ( ZSTD_CCtx* zc, const BYTE* const ip, const BYTE* const iLimit, size_t* offsetPtr, const U32 maxNbAttempts, const U32 mls) { if (ip < zc->base + zc->nextToUpdate) return 0; /* skipped area */ ZSTD_updateTree_extDict(zc, ip, iLimit, maxNbAttempts, mls); return ZSTD_insertBtAndFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, mls, 1); } static size_t ZSTD_BtFindBestMatch_selectMLS_extDict ( ZSTD_CCtx* zc, /* Index table will be updated */ const BYTE* ip, const BYTE* const iLimit, size_t* offsetPtr, const U32 maxNbAttempts, const U32 matchLengthSearch) { switch(matchLengthSearch) { default : /* includes case 3 */ case 4 : return ZSTD_BtFindBestMatch_extDict(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4); case 5 : return ZSTD_BtFindBestMatch_extDict(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5); case 7 : case 6 : return ZSTD_BtFindBestMatch_extDict(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6); } } /* ********************************* * Hash Chain ***********************************/ #define NEXT_IN_CHAIN(d, mask) chainTable[(d) & mask] /* Update chains up to ip (excluded) Assumption : always within prefix (i.e. not within extDict) */ FORCE_INLINE U32 ZSTD_insertAndFindFirstIndex (ZSTD_CCtx* zc, const BYTE* ip, U32 mls) { U32* const hashTable = zc->hashTable; const U32 hashLog = zc->appliedParams.cParams.hashLog; U32* const chainTable = zc->chainTable; const U32 chainMask = (1 << zc->appliedParams.cParams.chainLog) - 1; const BYTE* const base = zc->base; const U32 target = (U32)(ip - base); U32 idx = zc->nextToUpdate; while(idx < target) { /* catch up */ size_t const h = ZSTD_hashPtr(base+idx, hashLog, mls); NEXT_IN_CHAIN(idx, chainMask) = hashTable[h]; hashTable[h] = idx; idx++; } zc->nextToUpdate = target; return hashTable[ZSTD_hashPtr(ip, hashLog, mls)]; } /* inlining is important to hardwire a hot branch (template emulation) */ FORCE_INLINE size_t ZSTD_HcFindBestMatch_generic ( ZSTD_CCtx* zc, /* Index table will be updated */ const BYTE* const ip, const BYTE* const iLimit, size_t* offsetPtr, const U32 maxNbAttempts, const U32 mls, const U32 extDict) { U32* const chainTable = zc->chainTable; const U32 chainSize = (1 << zc->appliedParams.cParams.chainLog); const U32 chainMask = chainSize-1; const BYTE* const base = zc->base; const BYTE* const dictBase = zc->dictBase; const U32 dictLimit = zc->dictLimit; const BYTE* const prefixStart = base + dictLimit; const BYTE* const dictEnd = dictBase + dictLimit; const U32 lowLimit = zc->lowLimit; const U32 current = (U32)(ip-base); const U32 minChain = current > chainSize ? current - chainSize : 0; int nbAttempts=maxNbAttempts; size_t ml=4-1; /* HC4 match finder */ U32 matchIndex = ZSTD_insertAndFindFirstIndex (zc, ip, mls); for ( ; (matchIndex>lowLimit) & (nbAttempts>0) ; nbAttempts--) { const BYTE* match; size_t currentMl=0; if ((!extDict) || matchIndex >= dictLimit) { match = base + matchIndex; if (match[ml] == ip[ml]) /* potentially better */ currentMl = ZSTD_count(ip, match, iLimit); } else { match = dictBase + matchIndex; if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */ currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4; } /* save best solution */ if (currentMl > ml) { ml = currentMl; *offsetPtr = current - matchIndex + ZSTD_REP_MOVE; if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */ } if (matchIndex <= minChain) break; matchIndex = NEXT_IN_CHAIN(matchIndex, chainMask); } return ml; } FORCE_INLINE size_t ZSTD_HcFindBestMatch_selectMLS ( ZSTD_CCtx* zc, const BYTE* ip, const BYTE* const iLimit, size_t* offsetPtr, const U32 maxNbAttempts, const U32 matchLengthSearch) { switch(matchLengthSearch) { default : /* includes case 3 */ case 4 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4, 0); case 5 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5, 0); case 7 : case 6 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6, 0); } } FORCE_INLINE size_t ZSTD_HcFindBestMatch_extDict_selectMLS ( ZSTD_CCtx* zc, const BYTE* ip, const BYTE* const iLimit, size_t* offsetPtr, const U32 maxNbAttempts, const U32 matchLengthSearch) { switch(matchLengthSearch) { default : /* includes case 3 */ case 4 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4, 1); case 5 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5, 1); case 7 : case 6 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6, 1); } } /* ******************************* * Common parser - lazy strategy *********************************/ FORCE_INLINE void ZSTD_compressBlock_lazy_generic(ZSTD_CCtx* ctx, const void* src, size_t srcSize, const U32 searchMethod, const U32 depth) { seqStore_t* seqStorePtr = &(ctx->seqStore); const BYTE* const istart = (const BYTE*)src; const BYTE* ip = istart; const BYTE* anchor = istart; const BYTE* const iend = istart + srcSize; const BYTE* const ilimit = iend - 8; const BYTE* const base = ctx->base + ctx->dictLimit; U32 const maxSearches = 1 << ctx->appliedParams.cParams.searchLog; U32 const mls = ctx->appliedParams.cParams.searchLength; typedef size_t (*searchMax_f)(ZSTD_CCtx* zc, const BYTE* ip, const BYTE* iLimit, size_t* offsetPtr, U32 maxNbAttempts, U32 matchLengthSearch); searchMax_f const searchMax = searchMethod ? ZSTD_BtFindBestMatch_selectMLS : ZSTD_HcFindBestMatch_selectMLS; U32 offset_1 = ctx->rep[0], offset_2 = ctx->rep[1], savedOffset=0; /* init */ ip += (ip==base); ctx->nextToUpdate3 = ctx->nextToUpdate; { U32 const maxRep = (U32)(ip-base); if (offset_2 > maxRep) savedOffset = offset_2, offset_2 = 0; if (offset_1 > maxRep) savedOffset = offset_1, offset_1 = 0; } /* Match Loop */ while (ip < ilimit) { size_t matchLength=0; size_t offset=0; const BYTE* start=ip+1; /* check repCode */ if ((offset_1>0) & (MEM_read32(ip+1) == MEM_read32(ip+1 - offset_1))) { /* repcode : we take it */ matchLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4; if (depth==0) goto _storeSequence; } /* first search (depth 0) */ { size_t offsetFound = 99999999; size_t const ml2 = searchMax(ctx, ip, iend, &offsetFound, maxSearches, mls); if (ml2 > matchLength) matchLength = ml2, start = ip, offset=offsetFound; } if (matchLength < 4) { ip += ((ip-anchor) >> g_searchStrength) + 1; /* jump faster over incompressible sections */ continue; } /* let's try to find a better solution */ if (depth>=1) while (ip0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) { size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4; int const gain2 = (int)(mlRep * 3); int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offset+1) + 1); if ((mlRep >= 4) && (gain2 > gain1)) matchLength = mlRep, offset = 0, start = ip; } { size_t offset2=99999999; size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls); int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 4); if ((ml2 >= 4) && (gain2 > gain1)) { matchLength = ml2, offset = offset2, start = ip; continue; /* search a better one */ } } /* let's find an even better one */ if ((depth==2) && (ip0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) { size_t const ml2 = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4; int const gain2 = (int)(ml2 * 4); int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 1); if ((ml2 >= 4) && (gain2 > gain1)) matchLength = ml2, offset = 0, start = ip; } { size_t offset2=99999999; size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls); int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 7); if ((ml2 >= 4) && (gain2 > gain1)) { matchLength = ml2, offset = offset2, start = ip; continue; } } } break; /* nothing found : store previous solution */ } /* NOTE: * start[-offset+ZSTD_REP_MOVE-1] is undefined behavior. * (-offset+ZSTD_REP_MOVE-1) is unsigned, and is added to start, which * overflows the pointer, which is undefined behavior. */ /* catch up */ if (offset) { while ( (start > anchor) && (start > base+offset-ZSTD_REP_MOVE) && (start[-1] == (start-offset+ZSTD_REP_MOVE)[-1]) ) /* only search for offset within prefix */ { start--; matchLength++; } offset_2 = offset_1; offset_1 = (U32)(offset - ZSTD_REP_MOVE); } /* store sequence */ _storeSequence: { size_t const litLength = start - anchor; ZSTD_storeSeq(seqStorePtr, litLength, anchor, (U32)offset, matchLength-MINMATCH); anchor = ip = start + matchLength; } /* check immediate repcode */ while ( (ip <= ilimit) && ((offset_2>0) & (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) { /* store sequence */ matchLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4; offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap repcodes */ ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, matchLength-MINMATCH); ip += matchLength; anchor = ip; continue; /* faster when present ... (?) */ } } /* Save reps for next block */ ctx->repToConfirm[0] = offset_1 ? offset_1 : savedOffset; ctx->repToConfirm[1] = offset_2 ? offset_2 : savedOffset; /* Last Literals */ { size_t const lastLLSize = iend - anchor; memcpy(seqStorePtr->lit, anchor, lastLLSize); seqStorePtr->lit += lastLLSize; } } static void ZSTD_compressBlock_btlazy2(ZSTD_CCtx* ctx, const void* src, size_t srcSize) { ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 1, 2); } static void ZSTD_compressBlock_lazy2(ZSTD_CCtx* ctx, const void* src, size_t srcSize) { ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 0, 2); } static void ZSTD_compressBlock_lazy(ZSTD_CCtx* ctx, const void* src, size_t srcSize) { ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 0, 1); } static void ZSTD_compressBlock_greedy(ZSTD_CCtx* ctx, const void* src, size_t srcSize) { ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 0, 0); } FORCE_INLINE void ZSTD_compressBlock_lazy_extDict_generic(ZSTD_CCtx* ctx, const void* src, size_t srcSize, const U32 searchMethod, const U32 depth) { seqStore_t* seqStorePtr = &(ctx->seqStore); const BYTE* const istart = (const BYTE*)src; const BYTE* ip = istart; const BYTE* anchor = istart; const BYTE* const iend = istart + srcSize; const BYTE* const ilimit = iend - 8; const BYTE* const base = ctx->base; const U32 dictLimit = ctx->dictLimit; const U32 lowestIndex = ctx->lowLimit; const BYTE* const prefixStart = base + dictLimit; const BYTE* const dictBase = ctx->dictBase; const BYTE* const dictEnd = dictBase + dictLimit; const BYTE* const dictStart = dictBase + ctx->lowLimit; const U32 maxSearches = 1 << ctx->appliedParams.cParams.searchLog; const U32 mls = ctx->appliedParams.cParams.searchLength; typedef size_t (*searchMax_f)(ZSTD_CCtx* zc, const BYTE* ip, const BYTE* iLimit, size_t* offsetPtr, U32 maxNbAttempts, U32 matchLengthSearch); searchMax_f searchMax = searchMethod ? ZSTD_BtFindBestMatch_selectMLS_extDict : ZSTD_HcFindBestMatch_extDict_selectMLS; U32 offset_1 = ctx->rep[0], offset_2 = ctx->rep[1]; /* init */ ctx->nextToUpdate3 = ctx->nextToUpdate; ip += (ip == prefixStart); /* Match Loop */ while (ip < ilimit) { size_t matchLength=0; size_t offset=0; const BYTE* start=ip+1; U32 current = (U32)(ip-base); /* check repCode */ { const U32 repIndex = (U32)(current+1 - offset_1); const BYTE* const repBase = repIndex < dictLimit ? dictBase : base; const BYTE* const repMatch = repBase + repIndex; if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */ if (MEM_read32(ip+1) == MEM_read32(repMatch)) { /* repcode detected we should take it */ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repEnd, prefixStart) + 4; if (depth==0) goto _storeSequence; } } /* first search (depth 0) */ { size_t offsetFound = 99999999; size_t const ml2 = searchMax(ctx, ip, iend, &offsetFound, maxSearches, mls); if (ml2 > matchLength) matchLength = ml2, start = ip, offset=offsetFound; } if (matchLength < 4) { ip += ((ip-anchor) >> g_searchStrength) + 1; /* jump faster over incompressible sections */ continue; } /* let's try to find a better solution */ if (depth>=1) while (ip= 3) & (repIndex > lowestIndex)) /* intentional overflow */ if (MEM_read32(ip) == MEM_read32(repMatch)) { /* repcode detected */ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4; int const gain2 = (int)(repLength * 3); int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offset+1) + 1); if ((repLength >= 4) && (gain2 > gain1)) matchLength = repLength, offset = 0, start = ip; } } /* search match, depth 1 */ { size_t offset2=99999999; size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls); int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 4); if ((ml2 >= 4) && (gain2 > gain1)) { matchLength = ml2, offset = offset2, start = ip; continue; /* search a better one */ } } /* let's find an even better one */ if ((depth==2) && (ip= 3) & (repIndex > lowestIndex)) /* intentional overflow */ if (MEM_read32(ip) == MEM_read32(repMatch)) { /* repcode detected */ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4; int const gain2 = (int)(repLength * 4); int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 1); if ((repLength >= 4) && (gain2 > gain1)) matchLength = repLength, offset = 0, start = ip; } } /* search match, depth 2 */ { size_t offset2=99999999; size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls); int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 7); if ((ml2 >= 4) && (gain2 > gain1)) { matchLength = ml2, offset = offset2, start = ip; continue; } } } break; /* nothing found : store previous solution */ } /* catch up */ if (offset) { U32 const matchIndex = (U32)((start-base) - (offset - ZSTD_REP_MOVE)); const BYTE* match = (matchIndex < dictLimit) ? dictBase + matchIndex : base + matchIndex; const BYTE* const mStart = (matchIndex < dictLimit) ? dictStart : prefixStart; while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */ offset_2 = offset_1; offset_1 = (U32)(offset - ZSTD_REP_MOVE); } /* store sequence */ _storeSequence: { size_t const litLength = start - anchor; ZSTD_storeSeq(seqStorePtr, litLength, anchor, (U32)offset, matchLength-MINMATCH); anchor = ip = start + matchLength; } /* check immediate repcode */ while (ip <= ilimit) { const U32 repIndex = (U32)((ip-base) - offset_2); const BYTE* const repBase = repIndex < dictLimit ? dictBase : base; const BYTE* const repMatch = repBase + repIndex; if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */ if (MEM_read32(ip) == MEM_read32(repMatch)) { /* repcode detected we should take it */ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4; offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap offset history */ ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, matchLength-MINMATCH); ip += matchLength; anchor = ip; continue; /* faster when present ... (?) */ } break; } } /* Save reps for next block */ ctx->repToConfirm[0] = offset_1; ctx->repToConfirm[1] = offset_2; /* Last Literals */ { size_t const lastLLSize = iend - anchor; memcpy(seqStorePtr->lit, anchor, lastLLSize); seqStorePtr->lit += lastLLSize; } } void ZSTD_compressBlock_greedy_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize) { ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 0, 0); } static void ZSTD_compressBlock_lazy_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize) { ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 0, 1); } static void ZSTD_compressBlock_lazy2_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize) { ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 0, 2); } static void ZSTD_compressBlock_btlazy2_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize) { ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 1, 2); } /* The optimal parser */ #include "zstd_opt.h" static void ZSTD_compressBlock_btopt(ZSTD_CCtx* ctx, const void* src, size_t srcSize) { #ifdef ZSTD_OPT_H_91842398743 ZSTD_compressBlock_opt_generic(ctx, src, srcSize, 0); #else (void)ctx; (void)src; (void)srcSize; return; #endif } static void ZSTD_compressBlock_btultra(ZSTD_CCtx* ctx, const void* src, size_t srcSize) { #ifdef ZSTD_OPT_H_91842398743 ZSTD_compressBlock_opt_generic(ctx, src, srcSize, 1); #else (void)ctx; (void)src; (void)srcSize; return; #endif } static void ZSTD_compressBlock_btopt_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize) { #ifdef ZSTD_OPT_H_91842398743 ZSTD_compressBlock_opt_extDict_generic(ctx, src, srcSize, 0); #else (void)ctx; (void)src; (void)srcSize; return; #endif } static void ZSTD_compressBlock_btultra_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize) { #ifdef ZSTD_OPT_H_91842398743 ZSTD_compressBlock_opt_extDict_generic(ctx, src, srcSize, 1); #else (void)ctx; (void)src; (void)srcSize; return; #endif } /* ZSTD_selectBlockCompressor() : * assumption : strat is a valid strategy */ typedef void (*ZSTD_blockCompressor) (ZSTD_CCtx* ctx, const void* src, size_t srcSize); static ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, int extDict) { static const ZSTD_blockCompressor blockCompressor[2][(unsigned)ZSTD_btultra+1] = { { ZSTD_compressBlock_fast /* default for 0 */, ZSTD_compressBlock_fast, ZSTD_compressBlock_doubleFast, ZSTD_compressBlock_greedy, ZSTD_compressBlock_lazy, ZSTD_compressBlock_lazy2, ZSTD_compressBlock_btlazy2, ZSTD_compressBlock_btopt, ZSTD_compressBlock_btultra }, { ZSTD_compressBlock_fast_extDict /* default for 0 */, ZSTD_compressBlock_fast_extDict, ZSTD_compressBlock_doubleFast_extDict, ZSTD_compressBlock_greedy_extDict, ZSTD_compressBlock_lazy_extDict,ZSTD_compressBlock_lazy2_extDict, ZSTD_compressBlock_btlazy2_extDict, ZSTD_compressBlock_btopt_extDict, ZSTD_compressBlock_btultra_extDict } }; ZSTD_STATIC_ASSERT((unsigned)ZSTD_fast == 1); assert((U32)strat >= (U32)ZSTD_fast); assert((U32)strat <= (U32)ZSTD_btultra); return blockCompressor[extDict!=0][(U32)strat]; } static size_t ZSTD_compressBlock_internal(ZSTD_CCtx* zc, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { ZSTD_blockCompressor const blockCompressor = ZSTD_selectBlockCompressor(zc->appliedParams.cParams.strategy, zc->lowLimit < zc->dictLimit); const BYTE* const base = zc->base; const BYTE* const istart = (const BYTE*)src; const U32 current = (U32)(istart-base); if (srcSize < MIN_CBLOCK_SIZE+ZSTD_blockHeaderSize+1) return 0; /* don't even attempt compression below a certain srcSize */ ZSTD_resetSeqStore(&(zc->seqStore)); if (current > zc->nextToUpdate + 384) zc->nextToUpdate = current - MIN(192, (U32)(current - zc->nextToUpdate - 384)); /* limited update after finding a very long match */ blockCompressor(zc, src, srcSize); return ZSTD_compressSequences(zc, dst, dstCapacity, srcSize); } /*! ZSTD_compress_frameChunk() : * Compress a chunk of data into one or multiple blocks. * All blocks will be terminated, all input will be consumed. * Function will issue an error if there is not enough `dstCapacity` to hold the compressed content. * Frame is supposed already started (header already produced) * @return : compressed size, or an error code */ static size_t ZSTD_compress_frameChunk (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastFrameChunk) { size_t blockSize = cctx->blockSize; size_t remaining = srcSize; const BYTE* ip = (const BYTE*)src; BYTE* const ostart = (BYTE*)dst; BYTE* op = ostart; U32 const maxDist = 1 << cctx->appliedParams.cParams.windowLog; if (cctx->appliedParams.fParams.checksumFlag && srcSize) XXH64_update(&cctx->xxhState, src, srcSize); while (remaining) { U32 const lastBlock = lastFrameChunk & (blockSize >= remaining); size_t cSize; if (dstCapacity < ZSTD_blockHeaderSize + MIN_CBLOCK_SIZE) return ERROR(dstSize_tooSmall); /* not enough space to store compressed block */ if (remaining < blockSize) blockSize = remaining; /* preemptive overflow correction */ if (cctx->lowLimit > (3U<<29)) { U32 const cycleMask = (1 << ZSTD_cycleLog(cctx->appliedParams.cParams.hashLog, cctx->appliedParams.cParams.strategy)) - 1; U32 const current = (U32)(ip - cctx->base); U32 const newCurrent = (current & cycleMask) + (1 << cctx->appliedParams.cParams.windowLog); U32 const correction = current - newCurrent; ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX_64 <= 30); ZSTD_reduceIndex(cctx, correction); cctx->base += correction; cctx->dictBase += correction; cctx->lowLimit -= correction; cctx->dictLimit -= correction; if (cctx->nextToUpdate < correction) cctx->nextToUpdate = 0; else cctx->nextToUpdate -= correction; } if ((U32)(ip+blockSize - cctx->base) > cctx->loadedDictEnd + maxDist) { /* enforce maxDist */ U32 const newLowLimit = (U32)(ip+blockSize - cctx->base) - maxDist; if (cctx->lowLimit < newLowLimit) cctx->lowLimit = newLowLimit; if (cctx->dictLimit < cctx->lowLimit) cctx->dictLimit = cctx->lowLimit; } cSize = ZSTD_compressBlock_internal(cctx, op+ZSTD_blockHeaderSize, dstCapacity-ZSTD_blockHeaderSize, ip, blockSize); if (ZSTD_isError(cSize)) return cSize; if (cSize == 0) { /* block is not compressible */ U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw)<<1) + (U32)(blockSize << 3); if (blockSize + ZSTD_blockHeaderSize > dstCapacity) return ERROR(dstSize_tooSmall); MEM_writeLE32(op, cBlockHeader24); /* no pb, 4th byte will be overwritten */ memcpy(op + ZSTD_blockHeaderSize, ip, blockSize); cSize = ZSTD_blockHeaderSize+blockSize; } else { U32 const cBlockHeader24 = lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3); MEM_writeLE24(op, cBlockHeader24); cSize += ZSTD_blockHeaderSize; } remaining -= blockSize; dstCapacity -= cSize; ip += blockSize; op += cSize; } if (lastFrameChunk && (op>ostart)) cctx->stage = ZSTDcs_ending; return op-ostart; } static size_t ZSTD_writeFrameHeader(void* dst, size_t dstCapacity, ZSTD_parameters params, U64 pledgedSrcSize, U32 dictID) { BYTE* const op = (BYTE*)dst; U32 const dictIDSizeCodeLength = (dictID>0) + (dictID>=256) + (dictID>=65536); /* 0-3 */ U32 const dictIDSizeCode = params.fParams.noDictIDFlag ? 0 : dictIDSizeCodeLength; /* 0-3 */ U32 const checksumFlag = params.fParams.checksumFlag>0; U32 const windowSize = 1U << params.cParams.windowLog; U32 const singleSegment = params.fParams.contentSizeFlag && (windowSize >= pledgedSrcSize); BYTE const windowLogByte = (BYTE)((params.cParams.windowLog - ZSTD_WINDOWLOG_ABSOLUTEMIN) << 3); U32 const fcsCode = params.fParams.contentSizeFlag ? (pledgedSrcSize>=256) + (pledgedSrcSize>=65536+256) + (pledgedSrcSize>=0xFFFFFFFFU) : 0; /* 0-3 */ BYTE const frameHeaderDecriptionByte = (BYTE)(dictIDSizeCode + (checksumFlag<<2) + (singleSegment<<5) + (fcsCode<<6) ); size_t pos; if (dstCapacity < ZSTD_frameHeaderSize_max) return ERROR(dstSize_tooSmall); DEBUGLOG(5, "ZSTD_writeFrameHeader : dictIDFlag : %u ; dictID : %u ; dictIDSizeCode : %u", !params.fParams.noDictIDFlag, dictID, dictIDSizeCode); MEM_writeLE32(dst, ZSTD_MAGICNUMBER); op[4] = frameHeaderDecriptionByte; pos=5; if (!singleSegment) op[pos++] = windowLogByte; switch(dictIDSizeCode) { default: assert(0); /* impossible */ case 0 : break; case 1 : op[pos] = (BYTE)(dictID); pos++; break; case 2 : MEM_writeLE16(op+pos, (U16)dictID); pos+=2; break; case 3 : MEM_writeLE32(op+pos, dictID); pos+=4; break; } switch(fcsCode) { default: assert(0); /* impossible */ case 0 : if (singleSegment) op[pos++] = (BYTE)(pledgedSrcSize); break; case 1 : MEM_writeLE16(op+pos, (U16)(pledgedSrcSize-256)); pos+=2; break; case 2 : MEM_writeLE32(op+pos, (U32)(pledgedSrcSize)); pos+=4; break; case 3 : MEM_writeLE64(op+pos, (U64)(pledgedSrcSize)); pos+=8; break; } return pos; } static size_t ZSTD_compressContinue_internal (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 frame, U32 lastFrameChunk) { const BYTE* const ip = (const BYTE*) src; size_t fhSize = 0; DEBUGLOG(5, "ZSTD_compressContinue_internal"); DEBUGLOG(5, "stage: %u", cctx->stage); if (cctx->stage==ZSTDcs_created) return ERROR(stage_wrong); /* missing init (ZSTD_compressBegin) */ if (frame && (cctx->stage==ZSTDcs_init)) { fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->appliedParams, cctx->pledgedSrcSizePlusOne-1, cctx->dictID); if (ZSTD_isError(fhSize)) return fhSize; dstCapacity -= fhSize; dst = (char*)dst + fhSize; cctx->stage = ZSTDcs_ongoing; } /* Check if blocks follow each other */ if (src != cctx->nextSrc) { /* not contiguous */ ptrdiff_t const delta = cctx->nextSrc - ip; cctx->lowLimit = cctx->dictLimit; cctx->dictLimit = (U32)(cctx->nextSrc - cctx->base); cctx->dictBase = cctx->base; cctx->base -= delta; cctx->nextToUpdate = cctx->dictLimit; if (cctx->dictLimit - cctx->lowLimit < HASH_READ_SIZE) cctx->lowLimit = cctx->dictLimit; /* too small extDict */ } /* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */ if ((ip+srcSize > cctx->dictBase + cctx->lowLimit) & (ip < cctx->dictBase + cctx->dictLimit)) { ptrdiff_t const highInputIdx = (ip + srcSize) - cctx->dictBase; U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)cctx->dictLimit) ? cctx->dictLimit : (U32)highInputIdx; cctx->lowLimit = lowLimitMax; } cctx->nextSrc = ip + srcSize; if (srcSize) { size_t const cSize = frame ? ZSTD_compress_frameChunk (cctx, dst, dstCapacity, src, srcSize, lastFrameChunk) : ZSTD_compressBlock_internal (cctx, dst, dstCapacity, src, srcSize); if (ZSTD_isError(cSize)) return cSize; cctx->consumedSrcSize += srcSize; return cSize + fhSize; } else return fhSize; } size_t ZSTD_compressContinue (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1 /* frame mode */, 0 /* last chunk */); } size_t ZSTD_getBlockSize(const ZSTD_CCtx* cctx) { U32 const cLevel = cctx->compressionLevel; ZSTD_compressionParameters cParams = (cLevel == ZSTD_CLEVEL_CUSTOM) ? cctx->appliedParams.cParams : ZSTD_getCParams(cLevel, 0, 0); return MIN (ZSTD_BLOCKSIZE_MAX, 1 << cParams.windowLog); } size_t ZSTD_compressBlock(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { size_t const blockSizeMax = ZSTD_getBlockSize(cctx); if (srcSize > blockSizeMax) return ERROR(srcSize_wrong); return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 0 /* frame mode */, 0 /* last chunk */); } /*! ZSTD_loadDictionaryContent() : * @return : 0, or an error code */ static size_t ZSTD_loadDictionaryContent(ZSTD_CCtx* zc, const void* src, size_t srcSize) { const BYTE* const ip = (const BYTE*) src; const BYTE* const iend = ip + srcSize; /* input becomes current prefix */ zc->lowLimit = zc->dictLimit; zc->dictLimit = (U32)(zc->nextSrc - zc->base); zc->dictBase = zc->base; zc->base += ip - zc->nextSrc; zc->nextToUpdate = zc->dictLimit; zc->loadedDictEnd = zc->forceWindow ? 0 : (U32)(iend - zc->base); zc->nextSrc = iend; if (srcSize <= HASH_READ_SIZE) return 0; switch(zc->appliedParams.cParams.strategy) { case ZSTD_fast: ZSTD_fillHashTable (zc, iend, zc->appliedParams.cParams.searchLength); break; case ZSTD_dfast: ZSTD_fillDoubleHashTable (zc, iend, zc->appliedParams.cParams.searchLength); break; case ZSTD_greedy: case ZSTD_lazy: case ZSTD_lazy2: if (srcSize >= HASH_READ_SIZE) ZSTD_insertAndFindFirstIndex(zc, iend-HASH_READ_SIZE, zc->appliedParams.cParams.searchLength); break; case ZSTD_btlazy2: case ZSTD_btopt: case ZSTD_btultra: if (srcSize >= HASH_READ_SIZE) ZSTD_updateTree(zc, iend-HASH_READ_SIZE, iend, 1 << zc->appliedParams.cParams.searchLog, zc->appliedParams.cParams.searchLength); break; default: assert(0); /* not possible : not a valid strategy id */ } zc->nextToUpdate = (U32)(iend - zc->base); return 0; } /* Dictionaries that assign zero probability to symbols that show up causes problems when FSE encoding. Refuse dictionaries that assign zero probability to symbols that we may encounter during compression. NOTE: This behavior is not standard and could be improved in the future. */ static size_t ZSTD_checkDictNCount(short* normalizedCounter, unsigned dictMaxSymbolValue, unsigned maxSymbolValue) { U32 s; if (dictMaxSymbolValue < maxSymbolValue) return ERROR(dictionary_corrupted); for (s = 0; s <= maxSymbolValue; ++s) { if (normalizedCounter[s] == 0) return ERROR(dictionary_corrupted); } return 0; } /* Dictionary format : * See : * https://github.com/facebook/zstd/blob/master/doc/zstd_compression_format.md#dictionary-format */ /*! ZSTD_loadZstdDictionary() : * @return : 0, or an error code * assumptions : magic number supposed already checked * dictSize supposed > 8 */ static size_t ZSTD_loadZstdDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize) { const BYTE* dictPtr = (const BYTE*)dict; const BYTE* const dictEnd = dictPtr + dictSize; short offcodeNCount[MaxOff+1]; unsigned offcodeMaxValue = MaxOff; BYTE scratchBuffer[1<dictID = cctx->appliedParams.fParams.noDictIDFlag ? 0 : MEM_readLE32(dictPtr); dictPtr += 4; { size_t const hufHeaderSize = HUF_readCTable(cctx->hufCTable, 255, dictPtr, dictEnd-dictPtr); if (HUF_isError(hufHeaderSize)) return ERROR(dictionary_corrupted); dictPtr += hufHeaderSize; } { unsigned offcodeLog; size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr); if (FSE_isError(offcodeHeaderSize)) return ERROR(dictionary_corrupted); if (offcodeLog > OffFSELog) return ERROR(dictionary_corrupted); /* Defer checking offcodeMaxValue because we need to know the size of the dictionary content */ CHECK_E( FSE_buildCTable_wksp(cctx->offcodeCTable, offcodeNCount, offcodeMaxValue, offcodeLog, scratchBuffer, sizeof(scratchBuffer)), dictionary_corrupted); dictPtr += offcodeHeaderSize; } { short matchlengthNCount[MaxML+1]; unsigned matchlengthMaxValue = MaxML, matchlengthLog; size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr); if (FSE_isError(matchlengthHeaderSize)) return ERROR(dictionary_corrupted); if (matchlengthLog > MLFSELog) return ERROR(dictionary_corrupted); /* Every match length code must have non-zero probability */ CHECK_F( ZSTD_checkDictNCount(matchlengthNCount, matchlengthMaxValue, MaxML)); CHECK_E( FSE_buildCTable_wksp(cctx->matchlengthCTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog, scratchBuffer, sizeof(scratchBuffer)), dictionary_corrupted); dictPtr += matchlengthHeaderSize; } { short litlengthNCount[MaxLL+1]; unsigned litlengthMaxValue = MaxLL, litlengthLog; size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr); if (FSE_isError(litlengthHeaderSize)) return ERROR(dictionary_corrupted); if (litlengthLog > LLFSELog) return ERROR(dictionary_corrupted); /* Every literal length code must have non-zero probability */ CHECK_F( ZSTD_checkDictNCount(litlengthNCount, litlengthMaxValue, MaxLL)); CHECK_E( FSE_buildCTable_wksp(cctx->litlengthCTable, litlengthNCount, litlengthMaxValue, litlengthLog, scratchBuffer, sizeof(scratchBuffer)), dictionary_corrupted); dictPtr += litlengthHeaderSize; } if (dictPtr+12 > dictEnd) return ERROR(dictionary_corrupted); cctx->rep[0] = MEM_readLE32(dictPtr+0); cctx->rep[1] = MEM_readLE32(dictPtr+4); cctx->rep[2] = MEM_readLE32(dictPtr+8); dictPtr += 12; { size_t const dictContentSize = (size_t)(dictEnd - dictPtr); U32 offcodeMax = MaxOff; if (dictContentSize <= ((U32)-1) - 128 KB) { U32 const maxOffset = (U32)dictContentSize + 128 KB; /* The maximum offset that must be supported */ offcodeMax = ZSTD_highbit32(maxOffset); /* Calculate minimum offset code required to represent maxOffset */ } /* All offset values <= dictContentSize + 128 KB must be representable */ CHECK_F (ZSTD_checkDictNCount(offcodeNCount, offcodeMaxValue, MIN(offcodeMax, MaxOff))); /* All repCodes must be <= dictContentSize and != 0*/ { U32 u; for (u=0; u<3; u++) { if (cctx->rep[u] == 0) return ERROR(dictionary_corrupted); if (cctx->rep[u] > dictContentSize) return ERROR(dictionary_corrupted); } } cctx->fseCTables_ready = 1; cctx->hufCTable_repeatMode = HUF_repeat_valid; return ZSTD_loadDictionaryContent(cctx, dictPtr, dictContentSize); } } /** ZSTD_compress_insertDictionary() : * @return : 0, or an error code */ static size_t ZSTD_compress_insertDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictMode_e dictMode) { DEBUGLOG(5, "ZSTD_compress_insertDictionary"); if ((dict==NULL) || (dictSize<=8)) return 0; /* dict restricted modes */ if (dictMode==ZSTD_dm_rawContent) return ZSTD_loadDictionaryContent(cctx, dict, dictSize); if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) { if (dictMode == ZSTD_dm_auto) { DEBUGLOG(5, "raw content dictionary detected"); return ZSTD_loadDictionaryContent(cctx, dict, dictSize); } if (dictMode == ZSTD_dm_fullDict) return ERROR(dictionary_wrong); assert(0); /* impossible */ } /* dict as full zstd dictionary */ return ZSTD_loadZstdDictionary(cctx, dict, dictSize); } /*! ZSTD_compressBegin_internal() : * @return : 0, or an error code */ static size_t ZSTD_compressBegin_internal(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictMode_e dictMode, const ZSTD_CDict* cdict, ZSTD_parameters params, U64 pledgedSrcSize, ZSTD_buffered_policy_e zbuff) { DEBUGLOG(4, "ZSTD_compressBegin_internal"); DEBUGLOG(4, "dict ? %s", dict ? "dict" : (cdict ? "cdict" : "none")); DEBUGLOG(4, "dictMode : %u", (U32)dictMode); /* params are supposed to be fully validated at this point */ assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); assert(!((dict) && (cdict))); /* either dict or cdict, not both */ if (cdict && cdict->dictContentSize>0) { return ZSTD_copyCCtx_internal(cctx, cdict->refContext, params.fParams, pledgedSrcSize, zbuff); } CHECK_F( ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize, ZSTDcrp_continue, zbuff) ); return ZSTD_compress_insertDictionary(cctx, dict, dictSize, dictMode); } /*! ZSTD_compressBegin_advanced() : * @return : 0, or an error code */ size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize) { /* compression parameters verification and optimization */ CHECK_F(ZSTD_checkCParams(params.cParams)); return ZSTD_compressBegin_internal(cctx, dict, dictSize, ZSTD_dm_auto, NULL, params, pledgedSrcSize, ZSTDb_not_buffered); } size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel) { ZSTD_parameters const params = ZSTD_getParams(compressionLevel, 0, dictSize); return ZSTD_compressBegin_internal(cctx, dict, dictSize, ZSTD_dm_auto, NULL, params, 0, ZSTDb_not_buffered); } size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel) { return ZSTD_compressBegin_usingDict(cctx, NULL, 0, compressionLevel); } /*! ZSTD_writeEpilogue() : * Ends a frame. * @return : nb of bytes written into dst (or an error code) */ static size_t ZSTD_writeEpilogue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity) { BYTE* const ostart = (BYTE*)dst; BYTE* op = ostart; size_t fhSize = 0; DEBUGLOG(5, "ZSTD_writeEpilogue"); if (cctx->stage == ZSTDcs_created) return ERROR(stage_wrong); /* init missing */ /* special case : empty frame */ if (cctx->stage == ZSTDcs_init) { fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->appliedParams, 0, 0); if (ZSTD_isError(fhSize)) return fhSize; dstCapacity -= fhSize; op += fhSize; cctx->stage = ZSTDcs_ongoing; } if (cctx->stage != ZSTDcs_ending) { /* write one last empty block, make it the "last" block */ U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw)<<1) + 0; if (dstCapacity<4) return ERROR(dstSize_tooSmall); MEM_writeLE32(op, cBlockHeader24); op += ZSTD_blockHeaderSize; dstCapacity -= ZSTD_blockHeaderSize; } if (cctx->appliedParams.fParams.checksumFlag) { U32 const checksum = (U32) XXH64_digest(&cctx->xxhState); if (dstCapacity<4) return ERROR(dstSize_tooSmall); MEM_writeLE32(op, checksum); op += 4; } cctx->stage = ZSTDcs_created; /* return to "created but no init" status */ return op-ostart; } size_t ZSTD_compressEnd (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { size_t endResult; size_t const cSize = ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1 /* frame mode */, 1 /* last chunk */); if (ZSTD_isError(cSize)) return cSize; endResult = ZSTD_writeEpilogue(cctx, (char*)dst + cSize, dstCapacity-cSize); if (ZSTD_isError(endResult)) return endResult; if (cctx->appliedParams.fParams.contentSizeFlag) { /* control src size */ DEBUGLOG(5, "end of frame : controlling src size"); if (cctx->pledgedSrcSizePlusOne != cctx->consumedSrcSize+1) { DEBUGLOG(5, "error : pledgedSrcSize = %u, while realSrcSize = %u", (U32)cctx->pledgedSrcSizePlusOne-1, (U32)cctx->consumedSrcSize); return ERROR(srcSize_wrong); } } return cSize + endResult; } static size_t ZSTD_compress_internal (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void* dict,size_t dictSize, ZSTD_parameters params) { CHECK_F( ZSTD_compressBegin_internal(cctx, dict, dictSize, ZSTD_dm_auto, NULL, params, srcSize, ZSTDb_not_buffered) ); return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize); } size_t ZSTD_compress_advanced (ZSTD_CCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void* dict,size_t dictSize, ZSTD_parameters params) { CHECK_F(ZSTD_checkCParams(params.cParams)); return ZSTD_compress_internal(ctx, dst, dstCapacity, src, srcSize, dict, dictSize, params); } size_t ZSTD_compress_usingDict(ZSTD_CCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void* dict, size_t dictSize, int compressionLevel) { ZSTD_parameters params = ZSTD_getParams(compressionLevel, srcSize, dict ? dictSize : 0); params.fParams.contentSizeFlag = 1; return ZSTD_compress_internal(ctx, dst, dstCapacity, src, srcSize, dict, dictSize, params); } size_t ZSTD_compressCCtx (ZSTD_CCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, int compressionLevel) { return ZSTD_compress_usingDict(ctx, dst, dstCapacity, src, srcSize, NULL, 0, compressionLevel); } size_t ZSTD_compress(void* dst, size_t dstCapacity, const void* src, size_t srcSize, int compressionLevel) { size_t result; ZSTD_CCtx ctxBody; memset(&ctxBody, 0, sizeof(ctxBody)); ctxBody.customMem = ZSTD_defaultCMem; result = ZSTD_compressCCtx(&ctxBody, dst, dstCapacity, src, srcSize, compressionLevel); ZSTD_free(ctxBody.workSpace, ZSTD_defaultCMem); /* can't free ctxBody itself, as it's on stack; free only heap content */ return result; } /* ===== Dictionary API ===== */ /*! ZSTD_estimateCDictSize_advanced() : * Estimate amount of memory that will be needed to create a dictionary with following arguments */ size_t ZSTD_estimateCDictSize_advanced(size_t dictSize, ZSTD_compressionParameters cParams, unsigned byReference) { DEBUGLOG(5, "sizeof(ZSTD_CDict) : %u", (U32)sizeof(ZSTD_CDict)); DEBUGLOG(5, "CCtx estimate : %u", (U32)ZSTD_estimateCCtxSize_advanced(cParams)); return sizeof(ZSTD_CDict) + ZSTD_estimateCCtxSize_advanced(cParams) + (byReference ? 0 : dictSize); } size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel) { ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, 0, dictSize); return ZSTD_estimateCDictSize_advanced(dictSize, cParams, 0); } size_t ZSTD_sizeof_CDict(const ZSTD_CDict* cdict) { if (cdict==NULL) return 0; /* support sizeof on NULL */ DEBUGLOG(5, "sizeof(*cdict) : %u", (U32)sizeof(*cdict)); DEBUGLOG(5, "ZSTD_sizeof_CCtx : %u", (U32)ZSTD_sizeof_CCtx(cdict->refContext)); return ZSTD_sizeof_CCtx(cdict->refContext) + (cdict->dictBuffer ? cdict->dictContentSize : 0) + sizeof(*cdict); } static ZSTD_parameters ZSTD_makeParams(ZSTD_compressionParameters cParams, ZSTD_frameParameters fParams) { ZSTD_parameters params; params.cParams = cParams; params.fParams = fParams; return params; } static size_t ZSTD_initCDict_internal( ZSTD_CDict* cdict, const void* dictBuffer, size_t dictSize, unsigned byReference, ZSTD_dictMode_e dictMode, ZSTD_compressionParameters cParams) { DEBUGLOG(5, "ZSTD_initCDict_internal, mode %u", (U32)dictMode); if ((byReference) || (!dictBuffer) || (!dictSize)) { cdict->dictBuffer = NULL; cdict->dictContent = dictBuffer; } else { void* const internalBuffer = ZSTD_malloc(dictSize, cdict->refContext->customMem); cdict->dictBuffer = internalBuffer; cdict->dictContent = internalBuffer; if (!internalBuffer) return ERROR(memory_allocation); memcpy(internalBuffer, dictBuffer, dictSize); } cdict->dictContentSize = dictSize; { ZSTD_frameParameters const fParams = { 0 /* contentSizeFlag */, 0 /* checksumFlag */, 0 /* noDictIDFlag */ }; /* dummy */ ZSTD_parameters const params = ZSTD_makeParams(cParams, fParams); CHECK_F( ZSTD_compressBegin_internal(cdict->refContext, cdict->dictContent, dictSize, dictMode, NULL, params, ZSTD_CONTENTSIZE_UNKNOWN, ZSTDb_not_buffered) ); } return 0; } ZSTD_CDict* ZSTD_createCDict_advanced(const void* dictBuffer, size_t dictSize, unsigned byReference, ZSTD_dictMode_e dictMode, ZSTD_compressionParameters cParams, ZSTD_customMem customMem) { DEBUGLOG(5, "ZSTD_createCDict_advanced, mode %u", (U32)dictMode); if (!customMem.customAlloc ^ !customMem.customFree) return NULL; { ZSTD_CDict* const cdict = (ZSTD_CDict*)ZSTD_malloc(sizeof(ZSTD_CDict), customMem); ZSTD_CCtx* const cctx = ZSTD_createCCtx_advanced(customMem); if (!cdict || !cctx) { ZSTD_free(cdict, customMem); ZSTD_freeCCtx(cctx); return NULL; } cdict->refContext = cctx; if (ZSTD_isError( ZSTD_initCDict_internal(cdict, dictBuffer, dictSize, byReference, dictMode, cParams) )) { ZSTD_freeCDict(cdict); return NULL; } return cdict; } } ZSTD_CDict* ZSTD_createCDict(const void* dict, size_t dictSize, int compressionLevel) { ZSTD_compressionParameters cParams = ZSTD_getCParams(compressionLevel, 0, dictSize); return ZSTD_createCDict_advanced(dict, dictSize, 0 /* byReference */, ZSTD_dm_auto, cParams, ZSTD_defaultCMem); } ZSTD_CDict* ZSTD_createCDict_byReference(const void* dict, size_t dictSize, int compressionLevel) { ZSTD_compressionParameters cParams = ZSTD_getCParams(compressionLevel, 0, dictSize); return ZSTD_createCDict_advanced(dict, dictSize, 1 /* byReference */, ZSTD_dm_auto, cParams, ZSTD_defaultCMem); } size_t ZSTD_freeCDict(ZSTD_CDict* cdict) { if (cdict==NULL) return 0; /* support free on NULL */ { ZSTD_customMem const cMem = cdict->refContext->customMem; ZSTD_freeCCtx(cdict->refContext); ZSTD_free(cdict->dictBuffer, cMem); ZSTD_free(cdict, cMem); return 0; } } /*! ZSTD_initStaticCDict_advanced() : * Generate a digested dictionary in provided memory area. * workspace: The memory area to emplace the dictionary into. * Provided pointer must 8-bytes aligned. * It must outlive dictionary usage. * workspaceSize: Use ZSTD_estimateCDictSize() * to determine how large workspace must be. * cParams : use ZSTD_getCParams() to transform a compression level * into its relevants cParams. * @return : pointer to ZSTD_CDict*, or NULL if error (size too small) * Note : there is no corresponding "free" function. * Since workspace was allocated externally, it must be freed externally. */ ZSTD_CDict* ZSTD_initStaticCDict(void* workspace, size_t workspaceSize, const void* dict, size_t dictSize, unsigned byReference, ZSTD_dictMode_e dictMode, ZSTD_compressionParameters cParams) { size_t const cctxSize = ZSTD_estimateCCtxSize_advanced(cParams); size_t const neededSize = sizeof(ZSTD_CDict) + (byReference ? 0 : dictSize) + cctxSize; ZSTD_CDict* const cdict = (ZSTD_CDict*) workspace; void* ptr; DEBUGLOG(5, "(size_t)workspace & 7 : %u", (U32)(size_t)workspace & 7); if ((size_t)workspace & 7) return NULL; /* 8-aligned */ DEBUGLOG(5, "(workspaceSize < neededSize) : (%u < %u) => %u", (U32)workspaceSize, (U32)neededSize, (U32)(workspaceSize < neededSize)); if (workspaceSize < neededSize) return NULL; if (!byReference) { memcpy(cdict+1, dict, dictSize); dict = cdict+1; ptr = (char*)workspace + sizeof(ZSTD_CDict) + dictSize; } else { ptr = cdict+1; } cdict->refContext = ZSTD_initStaticCCtx(ptr, cctxSize); if (ZSTD_isError( ZSTD_initCDict_internal(cdict, dict, dictSize, 1 /* byReference */, dictMode, cParams) )) return NULL; return cdict; } ZSTD_parameters ZSTD_getParamsFromCDict(const ZSTD_CDict* cdict) { return ZSTD_getParamsFromCCtx(cdict->refContext); } /* ZSTD_compressBegin_usingCDict_advanced() : * cdict must be != NULL */ size_t ZSTD_compressBegin_usingCDict_advanced( ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict, ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize) { if (cdict==NULL) return ERROR(dictionary_wrong); { ZSTD_parameters params = cdict->refContext->appliedParams; params.fParams = fParams; DEBUGLOG(5, "ZSTD_compressBegin_usingCDict_advanced"); return ZSTD_compressBegin_internal(cctx, NULL, 0, ZSTD_dm_auto, cdict, params, pledgedSrcSize, ZSTDb_not_buffered); } } /* ZSTD_compressBegin_usingCDict() : * pledgedSrcSize=0 means "unknown" * if pledgedSrcSize>0, it will enable contentSizeFlag */ size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict) { ZSTD_frameParameters const fParams = { 0 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ }; DEBUGLOG(5, "ZSTD_compressBegin_usingCDict : dictIDFlag == %u", !fParams.noDictIDFlag); return ZSTD_compressBegin_usingCDict_advanced(cctx, cdict, fParams, 0); } size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const ZSTD_CDict* cdict, ZSTD_frameParameters fParams) { CHECK_F (ZSTD_compressBegin_usingCDict_advanced(cctx, cdict, fParams, srcSize)); /* will check if cdict != NULL */ return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize); } /*! ZSTD_compress_usingCDict() : * Compression using a digested Dictionary. * Faster startup than ZSTD_compress_usingDict(), recommended when same dictionary is used multiple times. * Note that compression parameters are decided at CDict creation time * while frame parameters are hardcoded */ size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const ZSTD_CDict* cdict) { ZSTD_frameParameters const fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ }; return ZSTD_compress_usingCDict_advanced(cctx, dst, dstCapacity, src, srcSize, cdict, fParams); } /* ****************************************************************** * Streaming ********************************************************************/ ZSTD_CStream* ZSTD_createCStream(void) { return ZSTD_createCStream_advanced(ZSTD_defaultCMem); } ZSTD_CStream* ZSTD_initStaticCStream(void *workspace, size_t workspaceSize) { return ZSTD_initStaticCCtx(workspace, workspaceSize); } ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem) { /* CStream and CCtx are now same object */ return ZSTD_createCCtx_advanced(customMem); } size_t ZSTD_freeCStream(ZSTD_CStream* zcs) { return ZSTD_freeCCtx(zcs); /* same object */ } /*====== Initialization ======*/ size_t ZSTD_CStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX; } size_t ZSTD_CStreamOutSize(void) { return ZSTD_compressBound(ZSTD_BLOCKSIZE_MAX) + ZSTD_blockHeaderSize + 4 /* 32-bits hash */ ; } static size_t ZSTD_resetCStream_internal(ZSTD_CStream* zcs, const void* dict, size_t dictSize, ZSTD_dictMode_e dictMode, const ZSTD_CDict* cdict, ZSTD_parameters params, unsigned long long pledgedSrcSize) { DEBUGLOG(4, "ZSTD_resetCStream_internal"); /* params are supposed to be fully validated at this point */ assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); assert(!((dict) && (cdict))); /* either dict or cdict, not both */ CHECK_F( ZSTD_compressBegin_internal(zcs, dict, dictSize, dictMode, cdict, params, pledgedSrcSize, ZSTDb_buffered) ); zcs->inToCompress = 0; zcs->inBuffPos = 0; zcs->inBuffTarget = zcs->blockSize; zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0; zcs->streamStage = zcss_load; zcs->frameEnded = 0; return 0; /* ready to go */ } size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pledgedSrcSize) { ZSTD_parameters params = zcs->requestedParams; params.fParams.contentSizeFlag = (pledgedSrcSize > 0); DEBUGLOG(5, "ZSTD_resetCStream"); if (zcs->compressionLevel != ZSTD_CLEVEL_CUSTOM) { params.cParams = ZSTD_getCParams(zcs->compressionLevel, pledgedSrcSize, 0 /* dictSize */); } return ZSTD_resetCStream_internal(zcs, NULL, 0, zcs->dictMode, zcs->cdict, params, pledgedSrcSize); } /*! ZSTD_initCStream_internal() : * Note : not static, but hidden (not exposed). Used by zstdmt_compress.c * Assumption 1 : params are valid * Assumption 2 : either dict, or cdict, is defined, not both */ size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs, const void* dict, size_t dictSize, const ZSTD_CDict* cdict, ZSTD_parameters params, unsigned long long pledgedSrcSize) { DEBUGLOG(5, "ZSTD_initCStream_internal"); assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); assert(!((dict) && (cdict))); /* either dict or cdict, not both */ if (dict && dictSize >= 8) { DEBUGLOG(5, "loading dictionary of size %u", (U32)dictSize); if (zcs->staticSize) { /* static CCtx : never uses malloc */ /* incompatible with internal cdict creation */ return ERROR(memory_allocation); } ZSTD_freeCDict(zcs->cdictLocal); zcs->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize, zcs->dictContentByRef, zcs->dictMode, params.cParams, zcs->customMem); zcs->cdict = zcs->cdictLocal; if (zcs->cdictLocal == NULL) return ERROR(memory_allocation); } else { if (cdict) { ZSTD_parameters const cdictParams = ZSTD_getParamsFromCDict(cdict); params.cParams = cdictParams.cParams; /* cParams are enforced from cdict */ } ZSTD_freeCDict(zcs->cdictLocal); zcs->cdictLocal = NULL; zcs->cdict = cdict; } zcs->requestedParams = params; zcs->compressionLevel = ZSTD_CLEVEL_CUSTOM; return ZSTD_resetCStream_internal(zcs, NULL, 0, zcs->dictMode, zcs->cdict, params, pledgedSrcSize); } /* ZSTD_initCStream_usingCDict_advanced() : * same as ZSTD_initCStream_usingCDict(), with control over frame parameters */ size_t ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs, const ZSTD_CDict* cdict, ZSTD_frameParameters fParams, unsigned long long pledgedSrcSize) { /* cannot handle NULL cdict (does not know what to do) */ if (!cdict) return ERROR(dictionary_wrong); { ZSTD_parameters params = ZSTD_getParamsFromCDict(cdict); params.fParams = fParams; return ZSTD_initCStream_internal(zcs, NULL, 0, cdict, params, pledgedSrcSize); } } /* note : cdict must outlive compression session */ size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict) { ZSTD_frameParameters const fParams = { 0 /* contentSize */, 0 /* checksum */, 0 /* hideDictID */ }; return ZSTD_initCStream_usingCDict_advanced(zcs, cdict, fParams, 0); /* note : will check that cdict != NULL */ } size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs, const void* dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize) { CHECK_F( ZSTD_checkCParams(params.cParams) ); zcs->requestedParams = params; zcs->compressionLevel = ZSTD_CLEVEL_CUSTOM; return ZSTD_initCStream_internal(zcs, dict, dictSize, NULL, params, pledgedSrcSize); } size_t ZSTD_initCStream_usingDict(ZSTD_CStream* zcs, const void* dict, size_t dictSize, int compressionLevel) { ZSTD_parameters const params = ZSTD_getParams(compressionLevel, 0, dictSize); zcs->compressionLevel = compressionLevel; return ZSTD_initCStream_internal(zcs, dict, dictSize, NULL, params, 0); } size_t ZSTD_initCStream_srcSize(ZSTD_CStream* zcs, int compressionLevel, unsigned long long pledgedSrcSize) { ZSTD_parameters params = ZSTD_getParams(compressionLevel, pledgedSrcSize, 0); params.fParams.contentSizeFlag = (pledgedSrcSize>0); return ZSTD_initCStream_internal(zcs, NULL, 0, NULL, params, pledgedSrcSize); } size_t ZSTD_initCStream(ZSTD_CStream* zcs, int compressionLevel) { ZSTD_parameters const params = ZSTD_getParams(compressionLevel, 0, 0); return ZSTD_initCStream_internal(zcs, NULL, 0, NULL, params, 0); } /*====== Compression ======*/ MEM_STATIC size_t ZSTD_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize) { size_t const length = MIN(dstCapacity, srcSize); if (length) memcpy(dst, src, length); return length; } /** ZSTD_compressStream_generic(): * internal function for all *compressStream*() variants and *compress_generic() * @return : hint size for next input */ size_t ZSTD_compressStream_generic(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input, ZSTD_EndDirective const flushMode) { const char* const istart = (const char*)input->src; const char* const iend = istart + input->size; const char* ip = istart + input->pos; char* const ostart = (char*)output->dst; char* const oend = ostart + output->size; char* op = ostart + output->pos; U32 someMoreWork = 1; /* check expectations */ DEBUGLOG(5, "ZSTD_compressStream_generic, flush=%u", (U32)flushMode); assert(zcs->inBuff != NULL); assert(zcs->inBuffSize>0); assert(zcs->outBuff!= NULL); assert(zcs->outBuffSize>0); assert(output->pos <= output->size); assert(input->pos <= input->size); while (someMoreWork) { switch(zcs->streamStage) { case zcss_init: /* call ZSTD_initCStream() first ! */ return ERROR(init_missing); case zcss_load: if ( (flushMode == ZSTD_e_end) && ((size_t)(oend-op) >= ZSTD_compressBound(iend-ip)) /* enough dstCapacity */ && (zcs->inBuffPos == 0) ) { /* shortcut to compression pass directly into output buffer */ size_t const cSize = ZSTD_compressEnd(zcs, op, oend-op, ip, iend-ip); DEBUGLOG(4, "ZSTD_compressEnd : %u", (U32)cSize); if (ZSTD_isError(cSize)) return cSize; ip = iend; op += cSize; zcs->frameEnded = 1; ZSTD_startNewCompression(zcs); someMoreWork = 0; break; } /* complete loading into inBuffer */ { size_t const toLoad = zcs->inBuffTarget - zcs->inBuffPos; size_t const loaded = ZSTD_limitCopy( zcs->inBuff + zcs->inBuffPos, toLoad, ip, iend-ip); zcs->inBuffPos += loaded; ip += loaded; if ( (flushMode == ZSTD_e_continue) && (zcs->inBuffPos < zcs->inBuffTarget) ) { /* not enough input to fill full block : stop here */ someMoreWork = 0; break; } if ( (flushMode == ZSTD_e_flush) && (zcs->inBuffPos == zcs->inToCompress) ) { /* empty */ someMoreWork = 0; break; } } /* compress current block (note : this stage cannot be stopped in the middle) */ DEBUGLOG(5, "stream compression stage (flushMode==%u)", flushMode); { void* cDst; size_t cSize; size_t const iSize = zcs->inBuffPos - zcs->inToCompress; size_t oSize = oend-op; unsigned const lastBlock = (flushMode == ZSTD_e_end) && (ip==iend); if (oSize >= ZSTD_compressBound(iSize)) cDst = op; /* compress into output buffer, to skip flush stage */ else cDst = zcs->outBuff, oSize = zcs->outBuffSize; cSize = lastBlock ? ZSTD_compressEnd(zcs, cDst, oSize, zcs->inBuff + zcs->inToCompress, iSize) : ZSTD_compressContinue(zcs, cDst, oSize, zcs->inBuff + zcs->inToCompress, iSize); if (ZSTD_isError(cSize)) return cSize; zcs->frameEnded = lastBlock; /* prepare next block */ zcs->inBuffTarget = zcs->inBuffPos + zcs->blockSize; if (zcs->inBuffTarget > zcs->inBuffSize) zcs->inBuffPos = 0, zcs->inBuffTarget = zcs->blockSize; DEBUGLOG(5, "inBuffTarget:%u / inBuffSize:%u", (U32)zcs->inBuffTarget, (U32)zcs->inBuffSize); if (!lastBlock) assert(zcs->inBuffTarget <= zcs->inBuffSize); zcs->inToCompress = zcs->inBuffPos; if (cDst == op) { /* no need to flush */ op += cSize; if (zcs->frameEnded) { DEBUGLOG(5, "Frame completed directly in outBuffer"); someMoreWork = 0; ZSTD_startNewCompression(zcs); } break; } zcs->outBuffContentSize = cSize; zcs->outBuffFlushedSize = 0; zcs->streamStage = zcss_flush; /* pass-through to flush stage */ } /* fall-through */ case zcss_flush: DEBUGLOG(5, "flush stage"); { size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize; size_t const flushed = ZSTD_limitCopy(op, oend-op, zcs->outBuff + zcs->outBuffFlushedSize, toFlush); DEBUGLOG(5, "toFlush: %u into %u ==> flushed: %u", (U32)toFlush, (U32)(oend-op), (U32)flushed); op += flushed; zcs->outBuffFlushedSize += flushed; if (toFlush!=flushed) { /* flush not fully completed, presumably because dst is too small */ assert(op==oend); someMoreWork = 0; break; } zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0; if (zcs->frameEnded) { DEBUGLOG(5, "Frame completed on flush"); someMoreWork = 0; ZSTD_startNewCompression(zcs); break; } zcs->streamStage = zcss_load; break; } default: /* impossible */ assert(0); } } input->pos = ip - istart; output->pos = op - ostart; if (zcs->frameEnded) return 0; { size_t hintInSize = zcs->inBuffTarget - zcs->inBuffPos; if (hintInSize==0) hintInSize = zcs->blockSize; return hintInSize; } } size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input) { /* check conditions */ if (output->pos > output->size) return ERROR(GENERIC); if (input->pos > input->size) return ERROR(GENERIC); return ZSTD_compressStream_generic(zcs, output, input, ZSTD_e_continue); } /*! ZSTDMT_initCStream_internal() : * Private use only. Init streaming operation. * expects params to be valid. * must receive dict, or cdict, or none, but not both. * @return : 0, or an error code */ size_t ZSTDMT_initCStream_internal(ZSTDMT_CCtx* zcs, const void* dict, size_t dictSize, const ZSTD_CDict* cdict, ZSTD_parameters params, unsigned long long pledgedSrcSize); size_t ZSTD_compress_generic (ZSTD_CCtx* cctx, ZSTD_outBuffer* output, ZSTD_inBuffer* input, ZSTD_EndDirective endOp) { /* check conditions */ if (output->pos > output->size) return ERROR(GENERIC); if (input->pos > input->size) return ERROR(GENERIC); assert(cctx!=NULL); /* transparent initialization stage */ if (cctx->streamStage == zcss_init) { const void* const prefix = cctx->prefix; size_t const prefixSize = cctx->prefixSize; ZSTD_parameters params = cctx->requestedParams; if (cctx->compressionLevel != ZSTD_CLEVEL_CUSTOM) params.cParams = ZSTD_getCParams(cctx->compressionLevel, cctx->pledgedSrcSizePlusOne-1, 0 /*dictSize*/); cctx->prefix = NULL; cctx->prefixSize = 0; /* single usage */ assert(prefix==NULL || cctx->cdict==NULL); /* only one can be set */ #ifdef ZSTD_MULTITHREAD if (cctx->nbThreads > 1) { DEBUGLOG(4, "call ZSTDMT_initCStream_internal as nbThreads=%u", cctx->nbThreads); CHECK_F( ZSTDMT_initCStream_internal(cctx->mtctx, prefix, prefixSize, cctx->cdict, params, cctx->pledgedSrcSizePlusOne-1) ); cctx->streamStage = zcss_load; } else #endif { CHECK_F( ZSTD_resetCStream_internal(cctx, prefix, prefixSize, cctx->dictMode, cctx->cdict, params, cctx->pledgedSrcSizePlusOne-1) ); } } /* compression stage */ #ifdef ZSTD_MULTITHREAD if (cctx->nbThreads > 1) { size_t const flushMin = ZSTDMT_compressStream_generic(cctx->mtctx, output, input, endOp); DEBUGLOG(5, "ZSTDMT_compressStream_generic : %u", (U32)flushMin); if ( ZSTD_isError(flushMin) || (endOp == ZSTD_e_end && flushMin == 0) ) { /* compression completed */ ZSTD_startNewCompression(cctx); } return flushMin; } #endif CHECK_F( ZSTD_compressStream_generic(cctx, output, input, endOp) ); DEBUGLOG(5, "completed ZSTD_compress_generic"); return cctx->outBuffContentSize - cctx->outBuffFlushedSize; /* remaining to flush */ } size_t ZSTD_compress_generic_simpleArgs ( ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, size_t* dstPos, const void* src, size_t srcSize, size_t* srcPos, ZSTD_EndDirective endOp) { ZSTD_outBuffer output = { dst, dstCapacity, *dstPos }; ZSTD_inBuffer input = { src, srcSize, *srcPos }; /* ZSTD_compress_generic() will check validity of dstPos and srcPos */ size_t const cErr = ZSTD_compress_generic(cctx, &output, &input, endOp); *dstPos = output.pos; *srcPos = input.pos; return cErr; } /*====== Finalize ======*/ /*! ZSTD_flushStream() : * @return : amount of data remaining to flush */ size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output) { ZSTD_inBuffer input = { NULL, 0, 0 }; if (output->pos > output->size) return ERROR(GENERIC); CHECK_F( ZSTD_compressStream_generic(zcs, output, &input, ZSTD_e_flush) ); return zcs->outBuffContentSize - zcs->outBuffFlushedSize; /* remaining to flush */ } size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output) { ZSTD_inBuffer input = { NULL, 0, 0 }; if (output->pos > output->size) return ERROR(GENERIC); CHECK_F( ZSTD_compressStream_generic(zcs, output, &input, ZSTD_e_end) ); { size_t const lastBlockSize = zcs->frameEnded ? 0 : ZSTD_BLOCKHEADERSIZE; size_t const checksumSize = zcs->frameEnded ? 0 : zcs->appliedParams.fParams.checksumFlag * 4; size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize + lastBlockSize + checksumSize; DEBUGLOG(5, "ZSTD_endStream : remaining to flush : %u", (unsigned)toFlush); return toFlush; } } /*-===== Pre-defined compression levels =====-*/ #define ZSTD_MAX_CLEVEL 22 int ZSTD_maxCLevel(void) { return ZSTD_MAX_CLEVEL; } static const ZSTD_compressionParameters ZSTD_defaultCParameters[4][ZSTD_MAX_CLEVEL+1] = { { /* "default" - guarantees a monotonically increasing memory budget */ /* W, C, H, S, L, TL, strat */ { 18, 12, 12, 1, 7, 16, ZSTD_fast }, /* level 0 - never used */ { 19, 13, 14, 1, 7, 16, ZSTD_fast }, /* level 1 */ { 19, 15, 16, 1, 6, 16, ZSTD_fast }, /* level 2 */ { 20, 16, 17, 1, 5, 16, ZSTD_dfast }, /* level 3 */ { 20, 17, 18, 1, 5, 16, ZSTD_dfast }, /* level 4 */ { 20, 17, 18, 2, 5, 16, ZSTD_greedy }, /* level 5 */ { 21, 17, 19, 2, 5, 16, ZSTD_lazy }, /* level 6 */ { 21, 18, 19, 3, 5, 16, ZSTD_lazy }, /* level 7 */ { 21, 18, 20, 3, 5, 16, ZSTD_lazy2 }, /* level 8 */ { 21, 19, 20, 3, 5, 16, ZSTD_lazy2 }, /* level 9 */ { 21, 19, 21, 4, 5, 16, ZSTD_lazy2 }, /* level 10 */ { 22, 20, 22, 4, 5, 16, ZSTD_lazy2 }, /* level 11 */ { 22, 20, 22, 5, 5, 16, ZSTD_lazy2 }, /* level 12 */ { 22, 21, 22, 5, 5, 16, ZSTD_lazy2 }, /* level 13 */ { 22, 21, 22, 6, 5, 16, ZSTD_lazy2 }, /* level 14 */ { 22, 21, 22, 5, 5, 16, ZSTD_btlazy2 }, /* level 15 */ { 23, 22, 22, 5, 5, 16, ZSTD_btlazy2 }, /* level 16 */ { 23, 22, 22, 4, 5, 24, ZSTD_btopt }, /* level 17 */ { 23, 22, 22, 5, 4, 32, ZSTD_btopt }, /* level 18 */ { 23, 23, 22, 6, 3, 48, ZSTD_btopt }, /* level 19 */ { 25, 25, 23, 7, 3, 64, ZSTD_btultra }, /* level 20 */ { 26, 26, 24, 7, 3,256, ZSTD_btultra }, /* level 21 */ { 27, 27, 25, 9, 3,512, ZSTD_btultra }, /* level 22 */ }, { /* for srcSize <= 256 KB */ /* W, C, H, S, L, T, strat */ { 0, 0, 0, 0, 0, 0, ZSTD_fast }, /* level 0 - not used */ { 18, 13, 14, 1, 6, 8, ZSTD_fast }, /* level 1 */ { 18, 14, 13, 1, 5, 8, ZSTD_dfast }, /* level 2 */ { 18, 16, 15, 1, 5, 8, ZSTD_dfast }, /* level 3 */ { 18, 15, 17, 1, 5, 8, ZSTD_greedy }, /* level 4.*/ { 18, 16, 17, 4, 5, 8, ZSTD_greedy }, /* level 5.*/ { 18, 16, 17, 3, 5, 8, ZSTD_lazy }, /* level 6.*/ { 18, 17, 17, 4, 4, 8, ZSTD_lazy }, /* level 7 */ { 18, 17, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */ { 18, 17, 17, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */ { 18, 17, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */ { 18, 18, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 11.*/ { 18, 18, 17, 7, 4, 8, ZSTD_lazy2 }, /* level 12.*/ { 18, 19, 17, 6, 4, 8, ZSTD_btlazy2 }, /* level 13 */ { 18, 18, 18, 4, 4, 16, ZSTD_btopt }, /* level 14.*/ { 18, 18, 18, 4, 3, 16, ZSTD_btopt }, /* level 15.*/ { 18, 19, 18, 6, 3, 32, ZSTD_btopt }, /* level 16.*/ { 18, 19, 18, 8, 3, 64, ZSTD_btopt }, /* level 17.*/ { 18, 19, 18, 9, 3,128, ZSTD_btopt }, /* level 18.*/ { 18, 19, 18, 10, 3,256, ZSTD_btopt }, /* level 19.*/ { 18, 19, 18, 11, 3,512, ZSTD_btultra }, /* level 20.*/ { 18, 19, 18, 12, 3,512, ZSTD_btultra }, /* level 21.*/ { 18, 19, 18, 13, 3,512, ZSTD_btultra }, /* level 22.*/ }, { /* for srcSize <= 128 KB */ /* W, C, H, S, L, T, strat */ { 17, 12, 12, 1, 7, 8, ZSTD_fast }, /* level 0 - not used */ { 17, 12, 13, 1, 6, 8, ZSTD_fast }, /* level 1 */ { 17, 13, 16, 1, 5, 8, ZSTD_fast }, /* level 2 */ { 17, 16, 16, 2, 5, 8, ZSTD_dfast }, /* level 3 */ { 17, 13, 15, 3, 4, 8, ZSTD_greedy }, /* level 4 */ { 17, 15, 17, 4, 4, 8, ZSTD_greedy }, /* level 5 */ { 17, 16, 17, 3, 4, 8, ZSTD_lazy }, /* level 6 */ { 17, 15, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 7 */ { 17, 17, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */ { 17, 17, 17, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */ { 17, 17, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */ { 17, 17, 17, 7, 4, 8, ZSTD_lazy2 }, /* level 11 */ { 17, 17, 17, 8, 4, 8, ZSTD_lazy2 }, /* level 12 */ { 17, 18, 17, 6, 4, 8, ZSTD_btlazy2 }, /* level 13.*/ { 17, 17, 17, 7, 3, 8, ZSTD_btopt }, /* level 14.*/ { 17, 17, 17, 7, 3, 16, ZSTD_btopt }, /* level 15.*/ { 17, 18, 17, 7, 3, 32, ZSTD_btopt }, /* level 16.*/ { 17, 18, 17, 7, 3, 64, ZSTD_btopt }, /* level 17.*/ { 17, 18, 17, 7, 3,256, ZSTD_btopt }, /* level 18.*/ { 17, 18, 17, 8, 3,256, ZSTD_btopt }, /* level 19.*/ { 17, 18, 17, 9, 3,256, ZSTD_btultra }, /* level 20.*/ { 17, 18, 17, 10, 3,256, ZSTD_btultra }, /* level 21.*/ { 17, 18, 17, 11, 3,512, ZSTD_btultra }, /* level 22.*/ }, { /* for srcSize <= 16 KB */ /* W, C, H, S, L, T, strat */ { 14, 12, 12, 1, 7, 6, ZSTD_fast }, /* level 0 - not used */ { 14, 14, 14, 1, 6, 6, ZSTD_fast }, /* level 1 */ { 14, 14, 14, 1, 4, 6, ZSTD_fast }, /* level 2 */ { 14, 14, 14, 1, 4, 6, ZSTD_dfast }, /* level 3.*/ { 14, 14, 14, 4, 4, 6, ZSTD_greedy }, /* level 4.*/ { 14, 14, 14, 3, 4, 6, ZSTD_lazy }, /* level 5.*/ { 14, 14, 14, 4, 4, 6, ZSTD_lazy2 }, /* level 6 */ { 14, 14, 14, 5, 4, 6, ZSTD_lazy2 }, /* level 7 */ { 14, 14, 14, 6, 4, 6, ZSTD_lazy2 }, /* level 8.*/ { 14, 15, 14, 6, 4, 6, ZSTD_btlazy2 }, /* level 9.*/ { 14, 15, 14, 3, 3, 6, ZSTD_btopt }, /* level 10.*/ { 14, 15, 14, 6, 3, 8, ZSTD_btopt }, /* level 11.*/ { 14, 15, 14, 6, 3, 16, ZSTD_btopt }, /* level 12.*/ { 14, 15, 14, 6, 3, 24, ZSTD_btopt }, /* level 13.*/ { 14, 15, 15, 6, 3, 48, ZSTD_btopt }, /* level 14.*/ { 14, 15, 15, 6, 3, 64, ZSTD_btopt }, /* level 15.*/ { 14, 15, 15, 6, 3, 96, ZSTD_btopt }, /* level 16.*/ { 14, 15, 15, 6, 3,128, ZSTD_btopt }, /* level 17.*/ { 14, 15, 15, 6, 3,256, ZSTD_btopt }, /* level 18.*/ { 14, 15, 15, 7, 3,256, ZSTD_btopt }, /* level 19.*/ { 14, 15, 15, 8, 3,256, ZSTD_btultra }, /* level 20.*/ { 14, 15, 15, 9, 3,256, ZSTD_btultra }, /* level 21.*/ { 14, 15, 15, 10, 3,256, ZSTD_btultra }, /* level 22.*/ }, }; #if defined(ZSTD_DEBUG) && (ZSTD_DEBUG>=1) /* This function just controls * the monotonic memory budget increase of ZSTD_defaultCParameters[0]. * Run once, on first ZSTD_getCParams() usage, if ZSTD_DEBUG is enabled */ MEM_STATIC void ZSTD_check_compressionLevel_monotonicIncrease_memoryBudget(void) { int level; for (level=1; level=1) static int g_monotonicTest = 1; if (g_monotonicTest) { ZSTD_check_compressionLevel_monotonicIncrease_memoryBudget(); g_monotonicTest=0; } #endif if (compressionLevel <= 0) compressionLevel = ZSTD_CLEVEL_DEFAULT; /* 0 == default; no negative compressionLevel yet */ if (compressionLevel > ZSTD_MAX_CLEVEL) compressionLevel = ZSTD_MAX_CLEVEL; { ZSTD_compressionParameters const cp = ZSTD_defaultCParameters[tableID][compressionLevel]; return ZSTD_adjustCParams_internal(cp, srcSizeHint, dictSize); } } /*! ZSTD_getParams() : * same as ZSTD_getCParams(), but @return a `ZSTD_parameters` object (instead of `ZSTD_compressionParameters`). * All fields of `ZSTD_frameParameters` are set to default (0) */ ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize) { ZSTD_parameters params; ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, srcSizeHint, dictSize); memset(¶ms, 0, sizeof(params)); params.cParams = cParams; return params; }