/* * Copyright (c) 1997 - 2005 Kungliga Tekniska Högskolan * (Royal Institute of Technology, Stockholm, Sweden). * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "krb5_locl.h" RCSID("$Id: crypto.c 22200 2007-12-07 13:48:01Z lha $"); /* RCSID("$FreeBSD$"); */ #undef CRYPTO_DEBUG #ifdef CRYPTO_DEBUG static void krb5_crypto_debug(krb5_context, int, size_t, krb5_keyblock*); #endif struct key_data { krb5_keyblock *key; krb5_data *schedule; }; struct key_usage { unsigned usage; struct key_data key; }; struct krb5_crypto_data { struct encryption_type *et; struct key_data key; int num_key_usage; struct key_usage *key_usage; }; #define CRYPTO_ETYPE(C) ((C)->et->type) /* bits for `flags' below */ #define F_KEYED 1 /* checksum is keyed */ #define F_CPROOF 2 /* checksum is collision proof */ #define F_DERIVED 4 /* uses derived keys */ #define F_VARIANT 8 /* uses `variant' keys (6.4.3) */ #define F_PSEUDO 16 /* not a real protocol type */ #define F_SPECIAL 32 /* backwards */ #define F_DISABLED 64 /* enctype/checksum disabled */ struct salt_type { krb5_salttype type; const char *name; krb5_error_code (*string_to_key)(krb5_context, krb5_enctype, krb5_data, krb5_salt, krb5_data, krb5_keyblock*); }; struct key_type { krb5_keytype type; /* XXX */ const char *name; size_t bits; size_t size; size_t schedule_size; #if 0 krb5_enctype best_etype; #endif void (*random_key)(krb5_context, krb5_keyblock*); void (*schedule)(krb5_context, struct key_data *); struct salt_type *string_to_key; void (*random_to_key)(krb5_context, krb5_keyblock*, const void*, size_t); }; struct checksum_type { krb5_cksumtype type; const char *name; size_t blocksize; size_t checksumsize; unsigned flags; void (*checksum)(krb5_context context, struct key_data *key, const void *buf, size_t len, unsigned usage, Checksum *csum); krb5_error_code (*verify)(krb5_context context, struct key_data *key, const void *buf, size_t len, unsigned usage, Checksum *csum); }; struct encryption_type { krb5_enctype type; const char *name; heim_oid *oid; size_t blocksize; size_t padsize; size_t confoundersize; struct key_type *keytype; struct checksum_type *checksum; struct checksum_type *keyed_checksum; unsigned flags; krb5_error_code (*encrypt)(krb5_context context, struct key_data *key, void *data, size_t len, krb5_boolean encryptp, int usage, void *ivec); size_t prf_length; krb5_error_code (*prf)(krb5_context, krb5_crypto, const krb5_data *, krb5_data *); }; #define ENCRYPTION_USAGE(U) (((U) << 8) | 0xAA) #define INTEGRITY_USAGE(U) (((U) << 8) | 0x55) #define CHECKSUM_USAGE(U) (((U) << 8) | 0x99) static struct checksum_type *_find_checksum(krb5_cksumtype type); static struct encryption_type *_find_enctype(krb5_enctype type); static struct key_type *_find_keytype(krb5_keytype type); static krb5_error_code _get_derived_key(krb5_context, krb5_crypto, unsigned, struct key_data**); static struct key_data *_new_derived_key(krb5_crypto crypto, unsigned usage); static krb5_error_code derive_key(krb5_context context, struct encryption_type *et, struct key_data *key, const void *constant, size_t len); static krb5_error_code hmac(krb5_context context, struct checksum_type *cm, const void *data, size_t len, unsigned usage, struct key_data *keyblock, Checksum *result); static void free_key_data(krb5_context context, struct key_data *key); static krb5_error_code usage2arcfour (krb5_context, unsigned *); static void xor (DES_cblock *, const unsigned char *); /************************************************************ * * ************************************************************/ static HEIMDAL_MUTEX crypto_mutex = HEIMDAL_MUTEX_INITIALIZER; static void krb5_DES_random_key(krb5_context context, krb5_keyblock *key) { DES_cblock *k = key->keyvalue.data; do { krb5_generate_random_block(k, sizeof(DES_cblock)); DES_set_odd_parity(k); } while(DES_is_weak_key(k)); } static void krb5_DES_schedule(krb5_context context, struct key_data *key) { DES_set_key(key->key->keyvalue.data, key->schedule->data); } #ifdef ENABLE_AFS_STRING_TO_KEY /* This defines the Andrew string_to_key function. It accepts a password * string as input and converts it via a one-way encryption algorithm to a DES * encryption key. It is compatible with the original Andrew authentication * service password database. */ /* * Short passwords, i.e 8 characters or less. */ static void krb5_DES_AFS3_CMU_string_to_key (krb5_data pw, krb5_data cell, DES_cblock *key) { char password[8+1]; /* crypt is limited to 8 chars anyway */ int i; for(i = 0; i < 8; i++) { char c = ((i < pw.length) ? ((char*)pw.data)[i] : 0) ^ ((i < cell.length) ? tolower(((unsigned char*)cell.data)[i]) : 0); password[i] = c ? c : 'X'; } password[8] = '\0'; memcpy(key, crypt(password, "p1") + 2, sizeof(DES_cblock)); /* parity is inserted into the LSB so left shift each byte up one bit. This allows ascii characters with a zero MSB to retain as much significance as possible. */ for (i = 0; i < sizeof(DES_cblock); i++) ((unsigned char*)key)[i] <<= 1; DES_set_odd_parity (key); } /* * Long passwords, i.e 9 characters or more. */ static void krb5_DES_AFS3_Transarc_string_to_key (krb5_data pw, krb5_data cell, DES_cblock *key) { DES_key_schedule schedule; DES_cblock temp_key; DES_cblock ivec; char password[512]; size_t passlen; memcpy(password, pw.data, min(pw.length, sizeof(password))); if(pw.length < sizeof(password)) { int len = min(cell.length, sizeof(password) - pw.length); int i; memcpy(password + pw.length, cell.data, len); for (i = pw.length; i < pw.length + len; ++i) password[i] = tolower((unsigned char)password[i]); } passlen = min(sizeof(password), pw.length + cell.length); memcpy(&ivec, "kerberos", 8); memcpy(&temp_key, "kerberos", 8); DES_set_odd_parity (&temp_key); DES_set_key (&temp_key, &schedule); DES_cbc_cksum ((void*)password, &ivec, passlen, &schedule, &ivec); memcpy(&temp_key, &ivec, 8); DES_set_odd_parity (&temp_key); DES_set_key (&temp_key, &schedule); DES_cbc_cksum ((void*)password, key, passlen, &schedule, &ivec); memset(&schedule, 0, sizeof(schedule)); memset(&temp_key, 0, sizeof(temp_key)); memset(&ivec, 0, sizeof(ivec)); memset(password, 0, sizeof(password)); DES_set_odd_parity (key); } static krb5_error_code DES_AFS3_string_to_key(krb5_context context, krb5_enctype enctype, krb5_data password, krb5_salt salt, krb5_data opaque, krb5_keyblock *key) { DES_cblock tmp; if(password.length > 8) krb5_DES_AFS3_Transarc_string_to_key(password, salt.saltvalue, &tmp); else krb5_DES_AFS3_CMU_string_to_key(password, salt.saltvalue, &tmp); key->keytype = enctype; krb5_data_copy(&key->keyvalue, tmp, sizeof(tmp)); memset(&key, 0, sizeof(key)); return 0; } #endif /* ENABLE_AFS_STRING_TO_KEY */ static void DES_string_to_key_int(unsigned char *data, size_t length, DES_cblock *key) { DES_key_schedule schedule; int i; int reverse = 0; unsigned char *p; unsigned char swap[] = { 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf }; memset(key, 0, 8); p = (unsigned char*)key; for (i = 0; i < length; i++) { unsigned char tmp = data[i]; if (!reverse) *p++ ^= (tmp << 1); else *--p ^= (swap[tmp & 0xf] << 4) | swap[(tmp & 0xf0) >> 4]; if((i % 8) == 7) reverse = !reverse; } DES_set_odd_parity(key); if(DES_is_weak_key(key)) (*key)[7] ^= 0xF0; DES_set_key(key, &schedule); DES_cbc_cksum((void*)data, key, length, &schedule, key); memset(&schedule, 0, sizeof(schedule)); DES_set_odd_parity(key); if(DES_is_weak_key(key)) (*key)[7] ^= 0xF0; } static krb5_error_code krb5_DES_string_to_key(krb5_context context, krb5_enctype enctype, krb5_data password, krb5_salt salt, krb5_data opaque, krb5_keyblock *key) { unsigned char *s; size_t len; DES_cblock tmp; #ifdef ENABLE_AFS_STRING_TO_KEY if (opaque.length == 1) { unsigned long v; _krb5_get_int(opaque.data, &v, 1); if (v == 1) return DES_AFS3_string_to_key(context, enctype, password, salt, opaque, key); } #endif len = password.length + salt.saltvalue.length; s = malloc(len); if(len > 0 && s == NULL) { krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } memcpy(s, password.data, password.length); memcpy(s + password.length, salt.saltvalue.data, salt.saltvalue.length); DES_string_to_key_int(s, len, &tmp); key->keytype = enctype; krb5_data_copy(&key->keyvalue, tmp, sizeof(tmp)); memset(&tmp, 0, sizeof(tmp)); memset(s, 0, len); free(s); return 0; } static void krb5_DES_random_to_key(krb5_context context, krb5_keyblock *key, const void *data, size_t size) { DES_cblock *k = key->keyvalue.data; memcpy(k, data, key->keyvalue.length); DES_set_odd_parity(k); if(DES_is_weak_key(k)) xor(k, (const unsigned char*)"\0\0\0\0\0\0\0\xf0"); } /* * */ static void DES3_random_key(krb5_context context, krb5_keyblock *key) { DES_cblock *k = key->keyvalue.data; do { krb5_generate_random_block(k, 3 * sizeof(DES_cblock)); DES_set_odd_parity(&k[0]); DES_set_odd_parity(&k[1]); DES_set_odd_parity(&k[2]); } while(DES_is_weak_key(&k[0]) || DES_is_weak_key(&k[1]) || DES_is_weak_key(&k[2])); } static void DES3_schedule(krb5_context context, struct key_data *key) { DES_cblock *k = key->key->keyvalue.data; DES_key_schedule *s = key->schedule->data; DES_set_key(&k[0], &s[0]); DES_set_key(&k[1], &s[1]); DES_set_key(&k[2], &s[2]); } /* * A = A xor B. A & B are 8 bytes. */ static void xor (DES_cblock *key, const unsigned char *b) { unsigned char *a = (unsigned char*)key; a[0] ^= b[0]; a[1] ^= b[1]; a[2] ^= b[2]; a[3] ^= b[3]; a[4] ^= b[4]; a[5] ^= b[5]; a[6] ^= b[6]; a[7] ^= b[7]; } static krb5_error_code DES3_string_to_key(krb5_context context, krb5_enctype enctype, krb5_data password, krb5_salt salt, krb5_data opaque, krb5_keyblock *key) { char *str; size_t len; unsigned char tmp[24]; DES_cblock keys[3]; krb5_error_code ret; len = password.length + salt.saltvalue.length; str = malloc(len); if(len != 0 && str == NULL) { krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } memcpy(str, password.data, password.length); memcpy(str + password.length, salt.saltvalue.data, salt.saltvalue.length); { DES_cblock ivec; DES_key_schedule s[3]; int i; ret = _krb5_n_fold(str, len, tmp, 24); if (ret) { memset(str, 0, len); free(str); krb5_set_error_string(context, "out of memory"); return ret; } for(i = 0; i < 3; i++){ memcpy(keys + i, tmp + i * 8, sizeof(keys[i])); DES_set_odd_parity(keys + i); if(DES_is_weak_key(keys + i)) xor(keys + i, (const unsigned char*)"\0\0\0\0\0\0\0\xf0"); DES_set_key(keys + i, &s[i]); } memset(&ivec, 0, sizeof(ivec)); DES_ede3_cbc_encrypt(tmp, tmp, sizeof(tmp), &s[0], &s[1], &s[2], &ivec, DES_ENCRYPT); memset(s, 0, sizeof(s)); memset(&ivec, 0, sizeof(ivec)); for(i = 0; i < 3; i++){ memcpy(keys + i, tmp + i * 8, sizeof(keys[i])); DES_set_odd_parity(keys + i); if(DES_is_weak_key(keys + i)) xor(keys + i, (const unsigned char*)"\0\0\0\0\0\0\0\xf0"); } memset(tmp, 0, sizeof(tmp)); } key->keytype = enctype; krb5_data_copy(&key->keyvalue, keys, sizeof(keys)); memset(keys, 0, sizeof(keys)); memset(str, 0, len); free(str); return 0; } static krb5_error_code DES3_string_to_key_derived(krb5_context context, krb5_enctype enctype, krb5_data password, krb5_salt salt, krb5_data opaque, krb5_keyblock *key) { krb5_error_code ret; size_t len = password.length + salt.saltvalue.length; char *s; s = malloc(len); if(len != 0 && s == NULL) { krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } memcpy(s, password.data, password.length); memcpy(s + password.length, salt.saltvalue.data, salt.saltvalue.length); ret = krb5_string_to_key_derived(context, s, len, enctype, key); memset(s, 0, len); free(s); return ret; } static void DES3_random_to_key(krb5_context context, krb5_keyblock *key, const void *data, size_t size) { unsigned char *x = key->keyvalue.data; const u_char *q = data; DES_cblock *k; int i, j; memset(x, 0, sizeof(x)); for (i = 0; i < 3; ++i) { unsigned char foo; for (j = 0; j < 7; ++j) { unsigned char b = q[7 * i + j]; x[8 * i + j] = b; } foo = 0; for (j = 6; j >= 0; --j) { foo |= q[7 * i + j] & 1; foo <<= 1; } x[8 * i + 7] = foo; } k = key->keyvalue.data; for (i = 0; i < 3; i++) { DES_set_odd_parity(&k[i]); if(DES_is_weak_key(&k[i])) xor(&k[i], (const unsigned char*)"\0\0\0\0\0\0\0\xf0"); } } /* * ARCFOUR */ static void ARCFOUR_schedule(krb5_context context, struct key_data *kd) { RC4_set_key (kd->schedule->data, kd->key->keyvalue.length, kd->key->keyvalue.data); } static krb5_error_code ARCFOUR_string_to_key(krb5_context context, krb5_enctype enctype, krb5_data password, krb5_salt salt, krb5_data opaque, krb5_keyblock *key) { char *s, *p; size_t len; int i; MD4_CTX m; krb5_error_code ret; len = 2 * password.length; s = malloc (len); if (len != 0 && s == NULL) { krb5_set_error_string(context, "malloc: out of memory"); ret = ENOMEM; goto out; } for (p = s, i = 0; i < password.length; ++i) { *p++ = ((char *)password.data)[i]; *p++ = 0; } MD4_Init (&m); MD4_Update (&m, s, len); key->keytype = enctype; ret = krb5_data_alloc (&key->keyvalue, 16); if (ret) { krb5_set_error_string(context, "malloc: out of memory"); goto out; } MD4_Final (key->keyvalue.data, &m); memset (s, 0, len); ret = 0; out: free (s); return ret; } /* * AES */ int _krb5_AES_string_to_default_iterator = 4096; static krb5_error_code AES_string_to_key(krb5_context context, krb5_enctype enctype, krb5_data password, krb5_salt salt, krb5_data opaque, krb5_keyblock *key) { krb5_error_code ret; uint32_t iter; struct encryption_type *et; struct key_data kd; if (opaque.length == 0) iter = _krb5_AES_string_to_default_iterator; else if (opaque.length == 4) { unsigned long v; _krb5_get_int(opaque.data, &v, 4); iter = ((uint32_t)v); } else return KRB5_PROG_KEYTYPE_NOSUPP; /* XXX */ et = _find_enctype(enctype); if (et == NULL) return KRB5_PROG_KEYTYPE_NOSUPP; kd.schedule = NULL; ALLOC(kd.key, 1); if(kd.key == NULL) { krb5_set_error_string (context, "malloc: out of memory"); return ENOMEM; } kd.key->keytype = enctype; ret = krb5_data_alloc(&kd.key->keyvalue, et->keytype->size); if (ret) { krb5_set_error_string(context, "Failed to allocate pkcs5 key"); return ret; } ret = PKCS5_PBKDF2_HMAC_SHA1(password.data, password.length, salt.saltvalue.data, salt.saltvalue.length, iter, et->keytype->size, kd.key->keyvalue.data); if (ret != 1) { free_key_data(context, &kd); krb5_set_error_string(context, "Error calculating s2k"); return KRB5_PROG_KEYTYPE_NOSUPP; } ret = derive_key(context, et, &kd, "kerberos", strlen("kerberos")); if (ret == 0) ret = krb5_copy_keyblock_contents(context, kd.key, key); free_key_data(context, &kd); return ret; } struct krb5_aes_schedule { AES_KEY ekey; AES_KEY dkey; }; static void AES_schedule(krb5_context context, struct key_data *kd) { struct krb5_aes_schedule *key = kd->schedule->data; int bits = kd->key->keyvalue.length * 8; memset(key, 0, sizeof(*key)); AES_set_encrypt_key(kd->key->keyvalue.data, bits, &key->ekey); AES_set_decrypt_key(kd->key->keyvalue.data, bits, &key->dkey); } /* * */ static struct salt_type des_salt[] = { { KRB5_PW_SALT, "pw-salt", krb5_DES_string_to_key }, #ifdef ENABLE_AFS_STRING_TO_KEY { KRB5_AFS3_SALT, "afs3-salt", DES_AFS3_string_to_key }, #endif { 0 } }; static struct salt_type des3_salt[] = { { KRB5_PW_SALT, "pw-salt", DES3_string_to_key }, { 0 } }; static struct salt_type des3_salt_derived[] = { { KRB5_PW_SALT, "pw-salt", DES3_string_to_key_derived }, { 0 } }; static struct salt_type AES_salt[] = { { KRB5_PW_SALT, "pw-salt", AES_string_to_key }, { 0 } }; static struct salt_type arcfour_salt[] = { { KRB5_PW_SALT, "pw-salt", ARCFOUR_string_to_key }, { 0 } }; /* * */ static struct key_type keytype_null = { KEYTYPE_NULL, "null", 0, 0, 0, NULL, NULL, NULL }; static struct key_type keytype_des = { KEYTYPE_DES, "des", 56, sizeof(DES_cblock), sizeof(DES_key_schedule), krb5_DES_random_key, krb5_DES_schedule, des_salt, krb5_DES_random_to_key }; static struct key_type keytype_des3 = { KEYTYPE_DES3, "des3", 168, 3 * sizeof(DES_cblock), 3 * sizeof(DES_key_schedule), DES3_random_key, DES3_schedule, des3_salt, DES3_random_to_key }; static struct key_type keytype_des3_derived = { KEYTYPE_DES3, "des3", 168, 3 * sizeof(DES_cblock), 3 * sizeof(DES_key_schedule), DES3_random_key, DES3_schedule, des3_salt_derived, DES3_random_to_key }; static struct key_type keytype_aes128 = { KEYTYPE_AES128, "aes-128", 128, 16, sizeof(struct krb5_aes_schedule), NULL, AES_schedule, AES_salt }; static struct key_type keytype_aes256 = { KEYTYPE_AES256, "aes-256", 256, 32, sizeof(struct krb5_aes_schedule), NULL, AES_schedule, AES_salt }; static struct key_type keytype_arcfour = { KEYTYPE_ARCFOUR, "arcfour", 128, 16, sizeof(RC4_KEY), NULL, ARCFOUR_schedule, arcfour_salt }; static struct key_type *keytypes[] = { &keytype_null, &keytype_des, &keytype_des3_derived, &keytype_des3, &keytype_aes128, &keytype_aes256, &keytype_arcfour }; static int num_keytypes = sizeof(keytypes) / sizeof(keytypes[0]); static struct key_type * _find_keytype(krb5_keytype type) { int i; for(i = 0; i < num_keytypes; i++) if(keytypes[i]->type == type) return keytypes[i]; return NULL; } krb5_error_code KRB5_LIB_FUNCTION krb5_salttype_to_string (krb5_context context, krb5_enctype etype, krb5_salttype stype, char **string) { struct encryption_type *e; struct salt_type *st; e = _find_enctype (etype); if (e == NULL) { krb5_set_error_string(context, "encryption type %d not supported", etype); return KRB5_PROG_ETYPE_NOSUPP; } for (st = e->keytype->string_to_key; st && st->type; st++) { if (st->type == stype) { *string = strdup (st->name); if (*string == NULL) { krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } return 0; } } krb5_set_error_string(context, "salttype %d not supported", stype); return HEIM_ERR_SALTTYPE_NOSUPP; } krb5_error_code KRB5_LIB_FUNCTION krb5_string_to_salttype (krb5_context context, krb5_enctype etype, const char *string, krb5_salttype *salttype) { struct encryption_type *e; struct salt_type *st; e = _find_enctype (etype); if (e == NULL) { krb5_set_error_string(context, "encryption type %d not supported", etype); return KRB5_PROG_ETYPE_NOSUPP; } for (st = e->keytype->string_to_key; st && st->type; st++) { if (strcasecmp (st->name, string) == 0) { *salttype = st->type; return 0; } } krb5_set_error_string(context, "salttype %s not supported", string); return HEIM_ERR_SALTTYPE_NOSUPP; } krb5_error_code KRB5_LIB_FUNCTION krb5_get_pw_salt(krb5_context context, krb5_const_principal principal, krb5_salt *salt) { size_t len; int i; krb5_error_code ret; char *p; salt->salttype = KRB5_PW_SALT; len = strlen(principal->realm); for (i = 0; i < principal->name.name_string.len; ++i) len += strlen(principal->name.name_string.val[i]); ret = krb5_data_alloc (&salt->saltvalue, len); if (ret) return ret; p = salt->saltvalue.data; memcpy (p, principal->realm, strlen(principal->realm)); p += strlen(principal->realm); for (i = 0; i < principal->name.name_string.len; ++i) { memcpy (p, principal->name.name_string.val[i], strlen(principal->name.name_string.val[i])); p += strlen(principal->name.name_string.val[i]); } return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_free_salt(krb5_context context, krb5_salt salt) { krb5_data_free(&salt.saltvalue); return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_string_to_key_data (krb5_context context, krb5_enctype enctype, krb5_data password, krb5_principal principal, krb5_keyblock *key) { krb5_error_code ret; krb5_salt salt; ret = krb5_get_pw_salt(context, principal, &salt); if(ret) return ret; ret = krb5_string_to_key_data_salt(context, enctype, password, salt, key); krb5_free_salt(context, salt); return ret; } krb5_error_code KRB5_LIB_FUNCTION krb5_string_to_key (krb5_context context, krb5_enctype enctype, const char *password, krb5_principal principal, krb5_keyblock *key) { krb5_data pw; pw.data = rk_UNCONST(password); pw.length = strlen(password); return krb5_string_to_key_data(context, enctype, pw, principal, key); } krb5_error_code KRB5_LIB_FUNCTION krb5_string_to_key_data_salt (krb5_context context, krb5_enctype enctype, krb5_data password, krb5_salt salt, krb5_keyblock *key) { krb5_data opaque; krb5_data_zero(&opaque); return krb5_string_to_key_data_salt_opaque(context, enctype, password, salt, opaque, key); } /* * Do a string -> key for encryption type `enctype' operation on * `password' (with salt `salt' and the enctype specific data string * `opaque'), returning the resulting key in `key' */ krb5_error_code KRB5_LIB_FUNCTION krb5_string_to_key_data_salt_opaque (krb5_context context, krb5_enctype enctype, krb5_data password, krb5_salt salt, krb5_data opaque, krb5_keyblock *key) { struct encryption_type *et =_find_enctype(enctype); struct salt_type *st; if(et == NULL) { krb5_set_error_string(context, "encryption type %d not supported", enctype); return KRB5_PROG_ETYPE_NOSUPP; } for(st = et->keytype->string_to_key; st && st->type; st++) if(st->type == salt.salttype) return (*st->string_to_key)(context, enctype, password, salt, opaque, key); krb5_set_error_string(context, "salt type %d not supported", salt.salttype); return HEIM_ERR_SALTTYPE_NOSUPP; } /* * Do a string -> key for encryption type `enctype' operation on the * string `password' (with salt `salt'), returning the resulting key * in `key' */ krb5_error_code KRB5_LIB_FUNCTION krb5_string_to_key_salt (krb5_context context, krb5_enctype enctype, const char *password, krb5_salt salt, krb5_keyblock *key) { krb5_data pw; pw.data = rk_UNCONST(password); pw.length = strlen(password); return krb5_string_to_key_data_salt(context, enctype, pw, salt, key); } krb5_error_code KRB5_LIB_FUNCTION krb5_string_to_key_salt_opaque (krb5_context context, krb5_enctype enctype, const char *password, krb5_salt salt, krb5_data opaque, krb5_keyblock *key) { krb5_data pw; pw.data = rk_UNCONST(password); pw.length = strlen(password); return krb5_string_to_key_data_salt_opaque(context, enctype, pw, salt, opaque, key); } krb5_error_code KRB5_LIB_FUNCTION krb5_keytype_to_string(krb5_context context, krb5_keytype keytype, char **string) { struct key_type *kt = _find_keytype(keytype); if(kt == NULL) { krb5_set_error_string(context, "key type %d not supported", keytype); return KRB5_PROG_KEYTYPE_NOSUPP; } *string = strdup(kt->name); if(*string == NULL) { krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_string_to_keytype(krb5_context context, const char *string, krb5_keytype *keytype) { int i; for(i = 0; i < num_keytypes; i++) if(strcasecmp(keytypes[i]->name, string) == 0){ *keytype = keytypes[i]->type; return 0; } krb5_set_error_string(context, "key type %s not supported", string); return KRB5_PROG_KEYTYPE_NOSUPP; } krb5_error_code KRB5_LIB_FUNCTION krb5_enctype_keysize(krb5_context context, krb5_enctype type, size_t *keysize) { struct encryption_type *et = _find_enctype(type); if(et == NULL) { krb5_set_error_string(context, "encryption type %d not supported", type); return KRB5_PROG_ETYPE_NOSUPP; } *keysize = et->keytype->size; return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_enctype_keybits(krb5_context context, krb5_enctype type, size_t *keybits) { struct encryption_type *et = _find_enctype(type); if(et == NULL) { krb5_set_error_string(context, "encryption type %d not supported", type); return KRB5_PROG_ETYPE_NOSUPP; } *keybits = et->keytype->bits; return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_generate_random_keyblock(krb5_context context, krb5_enctype type, krb5_keyblock *key) { krb5_error_code ret; struct encryption_type *et = _find_enctype(type); if(et == NULL) { krb5_set_error_string(context, "encryption type %d not supported", type); return KRB5_PROG_ETYPE_NOSUPP; } ret = krb5_data_alloc(&key->keyvalue, et->keytype->size); if(ret) return ret; key->keytype = type; if(et->keytype->random_key) (*et->keytype->random_key)(context, key); else krb5_generate_random_block(key->keyvalue.data, key->keyvalue.length); return 0; } static krb5_error_code _key_schedule(krb5_context context, struct key_data *key) { krb5_error_code ret; struct encryption_type *et = _find_enctype(key->key->keytype); struct key_type *kt = et->keytype; if(kt->schedule == NULL) return 0; if (key->schedule != NULL) return 0; ALLOC(key->schedule, 1); if(key->schedule == NULL) { krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } ret = krb5_data_alloc(key->schedule, kt->schedule_size); if(ret) { free(key->schedule); key->schedule = NULL; return ret; } (*kt->schedule)(context, key); return 0; } /************************************************************ * * ************************************************************/ static void NONE_checksum(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *C) { } static void CRC32_checksum(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *C) { uint32_t crc; unsigned char *r = C->checksum.data; _krb5_crc_init_table (); crc = _krb5_crc_update (data, len, 0); r[0] = crc & 0xff; r[1] = (crc >> 8) & 0xff; r[2] = (crc >> 16) & 0xff; r[3] = (crc >> 24) & 0xff; } static void RSA_MD4_checksum(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *C) { MD4_CTX m; MD4_Init (&m); MD4_Update (&m, data, len); MD4_Final (C->checksum.data, &m); } static void RSA_MD4_DES_checksum(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *cksum) { MD4_CTX md4; DES_cblock ivec; unsigned char *p = cksum->checksum.data; krb5_generate_random_block(p, 8); MD4_Init (&md4); MD4_Update (&md4, p, 8); MD4_Update (&md4, data, len); MD4_Final (p + 8, &md4); memset (&ivec, 0, sizeof(ivec)); DES_cbc_encrypt(p, p, 24, key->schedule->data, &ivec, DES_ENCRYPT); } static krb5_error_code RSA_MD4_DES_verify(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *C) { MD4_CTX md4; unsigned char tmp[24]; unsigned char res[16]; DES_cblock ivec; krb5_error_code ret = 0; memset(&ivec, 0, sizeof(ivec)); DES_cbc_encrypt(C->checksum.data, (void*)tmp, C->checksum.length, key->schedule->data, &ivec, DES_DECRYPT); MD4_Init (&md4); MD4_Update (&md4, tmp, 8); /* confounder */ MD4_Update (&md4, data, len); MD4_Final (res, &md4); if(memcmp(res, tmp + 8, sizeof(res)) != 0) { krb5_clear_error_string (context); ret = KRB5KRB_AP_ERR_BAD_INTEGRITY; } memset(tmp, 0, sizeof(tmp)); memset(res, 0, sizeof(res)); return ret; } static void RSA_MD5_checksum(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *C) { MD5_CTX m; MD5_Init (&m); MD5_Update(&m, data, len); MD5_Final (C->checksum.data, &m); } static void RSA_MD5_DES_checksum(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *C) { MD5_CTX md5; DES_cblock ivec; unsigned char *p = C->checksum.data; krb5_generate_random_block(p, 8); MD5_Init (&md5); MD5_Update (&md5, p, 8); MD5_Update (&md5, data, len); MD5_Final (p + 8, &md5); memset (&ivec, 0, sizeof(ivec)); DES_cbc_encrypt(p, p, 24, key->schedule->data, &ivec, DES_ENCRYPT); } static krb5_error_code RSA_MD5_DES_verify(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *C) { MD5_CTX md5; unsigned char tmp[24]; unsigned char res[16]; DES_cblock ivec; DES_key_schedule *sched = key->schedule->data; krb5_error_code ret = 0; memset(&ivec, 0, sizeof(ivec)); DES_cbc_encrypt(C->checksum.data, (void*)tmp, C->checksum.length, &sched[0], &ivec, DES_DECRYPT); MD5_Init (&md5); MD5_Update (&md5, tmp, 8); /* confounder */ MD5_Update (&md5, data, len); MD5_Final (res, &md5); if(memcmp(res, tmp + 8, sizeof(res)) != 0) { krb5_clear_error_string (context); ret = KRB5KRB_AP_ERR_BAD_INTEGRITY; } memset(tmp, 0, sizeof(tmp)); memset(res, 0, sizeof(res)); return ret; } static void RSA_MD5_DES3_checksum(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *C) { MD5_CTX md5; DES_cblock ivec; unsigned char *p = C->checksum.data; DES_key_schedule *sched = key->schedule->data; krb5_generate_random_block(p, 8); MD5_Init (&md5); MD5_Update (&md5, p, 8); MD5_Update (&md5, data, len); MD5_Final (p + 8, &md5); memset (&ivec, 0, sizeof(ivec)); DES_ede3_cbc_encrypt(p, p, 24, &sched[0], &sched[1], &sched[2], &ivec, DES_ENCRYPT); } static krb5_error_code RSA_MD5_DES3_verify(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *C) { MD5_CTX md5; unsigned char tmp[24]; unsigned char res[16]; DES_cblock ivec; DES_key_schedule *sched = key->schedule->data; krb5_error_code ret = 0; memset(&ivec, 0, sizeof(ivec)); DES_ede3_cbc_encrypt(C->checksum.data, (void*)tmp, C->checksum.length, &sched[0], &sched[1], &sched[2], &ivec, DES_DECRYPT); MD5_Init (&md5); MD5_Update (&md5, tmp, 8); /* confounder */ MD5_Update (&md5, data, len); MD5_Final (res, &md5); if(memcmp(res, tmp + 8, sizeof(res)) != 0) { krb5_clear_error_string (context); ret = KRB5KRB_AP_ERR_BAD_INTEGRITY; } memset(tmp, 0, sizeof(tmp)); memset(res, 0, sizeof(res)); return ret; } static void SHA1_checksum(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *C) { SHA_CTX m; SHA1_Init(&m); SHA1_Update(&m, data, len); SHA1_Final(C->checksum.data, &m); } /* HMAC according to RFC2104 */ static krb5_error_code hmac(krb5_context context, struct checksum_type *cm, const void *data, size_t len, unsigned usage, struct key_data *keyblock, Checksum *result) { unsigned char *ipad, *opad; unsigned char *key; size_t key_len; int i; ipad = malloc(cm->blocksize + len); if (ipad == NULL) return ENOMEM; opad = malloc(cm->blocksize + cm->checksumsize); if (opad == NULL) { free(ipad); return ENOMEM; } memset(ipad, 0x36, cm->blocksize); memset(opad, 0x5c, cm->blocksize); if(keyblock->key->keyvalue.length > cm->blocksize){ (*cm->checksum)(context, keyblock, keyblock->key->keyvalue.data, keyblock->key->keyvalue.length, usage, result); key = result->checksum.data; key_len = result->checksum.length; } else { key = keyblock->key->keyvalue.data; key_len = keyblock->key->keyvalue.length; } for(i = 0; i < key_len; i++){ ipad[i] ^= key[i]; opad[i] ^= key[i]; } memcpy(ipad + cm->blocksize, data, len); (*cm->checksum)(context, keyblock, ipad, cm->blocksize + len, usage, result); memcpy(opad + cm->blocksize, result->checksum.data, result->checksum.length); (*cm->checksum)(context, keyblock, opad, cm->blocksize + cm->checksumsize, usage, result); memset(ipad, 0, cm->blocksize + len); free(ipad); memset(opad, 0, cm->blocksize + cm->checksumsize); free(opad); return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_hmac(krb5_context context, krb5_cksumtype cktype, const void *data, size_t len, unsigned usage, krb5_keyblock *key, Checksum *result) { struct checksum_type *c = _find_checksum(cktype); struct key_data kd; krb5_error_code ret; if (c == NULL) { krb5_set_error_string (context, "checksum type %d not supported", cktype); return KRB5_PROG_SUMTYPE_NOSUPP; } kd.key = key; kd.schedule = NULL; ret = hmac(context, c, data, len, usage, &kd, result); if (kd.schedule) krb5_free_data(context, kd.schedule); return ret; } static void SP_HMAC_SHA1_checksum(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *result) { struct checksum_type *c = _find_checksum(CKSUMTYPE_SHA1); Checksum res; char sha1_data[20]; krb5_error_code ret; res.checksum.data = sha1_data; res.checksum.length = sizeof(sha1_data); ret = hmac(context, c, data, len, usage, key, &res); if (ret) krb5_abortx(context, "hmac failed"); memcpy(result->checksum.data, res.checksum.data, result->checksum.length); } /* * checksum according to section 5. of draft-brezak-win2k-krb-rc4-hmac-03.txt */ static void HMAC_MD5_checksum(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *result) { MD5_CTX md5; struct checksum_type *c = _find_checksum (CKSUMTYPE_RSA_MD5); const char signature[] = "signaturekey"; Checksum ksign_c; struct key_data ksign; krb5_keyblock kb; unsigned char t[4]; unsigned char tmp[16]; unsigned char ksign_c_data[16]; krb5_error_code ret; ksign_c.checksum.length = sizeof(ksign_c_data); ksign_c.checksum.data = ksign_c_data; ret = hmac(context, c, signature, sizeof(signature), 0, key, &ksign_c); if (ret) krb5_abortx(context, "hmac failed"); ksign.key = &kb; kb.keyvalue = ksign_c.checksum; MD5_Init (&md5); t[0] = (usage >> 0) & 0xFF; t[1] = (usage >> 8) & 0xFF; t[2] = (usage >> 16) & 0xFF; t[3] = (usage >> 24) & 0xFF; MD5_Update (&md5, t, 4); MD5_Update (&md5, data, len); MD5_Final (tmp, &md5); ret = hmac(context, c, tmp, sizeof(tmp), 0, &ksign, result); if (ret) krb5_abortx(context, "hmac failed"); } /* * same as previous but being used while encrypting. */ static void HMAC_MD5_checksum_enc(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *result) { struct checksum_type *c = _find_checksum (CKSUMTYPE_RSA_MD5); Checksum ksign_c; struct key_data ksign; krb5_keyblock kb; unsigned char t[4]; unsigned char ksign_c_data[16]; krb5_error_code ret; t[0] = (usage >> 0) & 0xFF; t[1] = (usage >> 8) & 0xFF; t[2] = (usage >> 16) & 0xFF; t[3] = (usage >> 24) & 0xFF; ksign_c.checksum.length = sizeof(ksign_c_data); ksign_c.checksum.data = ksign_c_data; ret = hmac(context, c, t, sizeof(t), 0, key, &ksign_c); if (ret) krb5_abortx(context, "hmac failed"); ksign.key = &kb; kb.keyvalue = ksign_c.checksum; ret = hmac(context, c, data, len, 0, &ksign, result); if (ret) krb5_abortx(context, "hmac failed"); } static struct checksum_type checksum_none = { CKSUMTYPE_NONE, "none", 1, 0, 0, NONE_checksum, NULL }; static struct checksum_type checksum_crc32 = { CKSUMTYPE_CRC32, "crc32", 1, 4, 0, CRC32_checksum, NULL }; static struct checksum_type checksum_rsa_md4 = { CKSUMTYPE_RSA_MD4, "rsa-md4", 64, 16, F_CPROOF, RSA_MD4_checksum, NULL }; static struct checksum_type checksum_rsa_md4_des = { CKSUMTYPE_RSA_MD4_DES, "rsa-md4-des", 64, 24, F_KEYED | F_CPROOF | F_VARIANT, RSA_MD4_DES_checksum, RSA_MD4_DES_verify }; #if 0 static struct checksum_type checksum_des_mac = { CKSUMTYPE_DES_MAC, "des-mac", 0, 0, 0, DES_MAC_checksum }; static struct checksum_type checksum_des_mac_k = { CKSUMTYPE_DES_MAC_K, "des-mac-k", 0, 0, 0, DES_MAC_K_checksum }; static struct checksum_type checksum_rsa_md4_des_k = { CKSUMTYPE_RSA_MD4_DES_K, "rsa-md4-des-k", 0, 0, 0, RSA_MD4_DES_K_checksum, RSA_MD4_DES_K_verify }; #endif static struct checksum_type checksum_rsa_md5 = { CKSUMTYPE_RSA_MD5, "rsa-md5", 64, 16, F_CPROOF, RSA_MD5_checksum, NULL }; static struct checksum_type checksum_rsa_md5_des = { CKSUMTYPE_RSA_MD5_DES, "rsa-md5-des", 64, 24, F_KEYED | F_CPROOF | F_VARIANT, RSA_MD5_DES_checksum, RSA_MD5_DES_verify }; static struct checksum_type checksum_rsa_md5_des3 = { CKSUMTYPE_RSA_MD5_DES3, "rsa-md5-des3", 64, 24, F_KEYED | F_CPROOF | F_VARIANT, RSA_MD5_DES3_checksum, RSA_MD5_DES3_verify }; static struct checksum_type checksum_sha1 = { CKSUMTYPE_SHA1, "sha1", 64, 20, F_CPROOF, SHA1_checksum, NULL }; static struct checksum_type checksum_hmac_sha1_des3 = { CKSUMTYPE_HMAC_SHA1_DES3, "hmac-sha1-des3", 64, 20, F_KEYED | F_CPROOF | F_DERIVED, SP_HMAC_SHA1_checksum, NULL }; static struct checksum_type checksum_hmac_sha1_aes128 = { CKSUMTYPE_HMAC_SHA1_96_AES_128, "hmac-sha1-96-aes128", 64, 12, F_KEYED | F_CPROOF | F_DERIVED, SP_HMAC_SHA1_checksum, NULL }; static struct checksum_type checksum_hmac_sha1_aes256 = { CKSUMTYPE_HMAC_SHA1_96_AES_256, "hmac-sha1-96-aes256", 64, 12, F_KEYED | F_CPROOF | F_DERIVED, SP_HMAC_SHA1_checksum, NULL }; static struct checksum_type checksum_hmac_md5 = { CKSUMTYPE_HMAC_MD5, "hmac-md5", 64, 16, F_KEYED | F_CPROOF, HMAC_MD5_checksum, NULL }; static struct checksum_type checksum_hmac_md5_enc = { CKSUMTYPE_HMAC_MD5_ENC, "hmac-md5-enc", 64, 16, F_KEYED | F_CPROOF | F_PSEUDO, HMAC_MD5_checksum_enc, NULL }; static struct checksum_type *checksum_types[] = { &checksum_none, &checksum_crc32, &checksum_rsa_md4, &checksum_rsa_md4_des, #if 0 &checksum_des_mac, &checksum_des_mac_k, &checksum_rsa_md4_des_k, #endif &checksum_rsa_md5, &checksum_rsa_md5_des, &checksum_rsa_md5_des3, &checksum_sha1, &checksum_hmac_sha1_des3, &checksum_hmac_sha1_aes128, &checksum_hmac_sha1_aes256, &checksum_hmac_md5, &checksum_hmac_md5_enc }; static int num_checksums = sizeof(checksum_types) / sizeof(checksum_types[0]); static struct checksum_type * _find_checksum(krb5_cksumtype type) { int i; for(i = 0; i < num_checksums; i++) if(checksum_types[i]->type == type) return checksum_types[i]; return NULL; } static krb5_error_code get_checksum_key(krb5_context context, krb5_crypto crypto, unsigned usage, /* not krb5_key_usage */ struct checksum_type *ct, struct key_data **key) { krb5_error_code ret = 0; if(ct->flags & F_DERIVED) ret = _get_derived_key(context, crypto, usage, key); else if(ct->flags & F_VARIANT) { int i; *key = _new_derived_key(crypto, 0xff/* KRB5_KU_RFC1510_VARIANT */); if(*key == NULL) { krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } ret = krb5_copy_keyblock(context, crypto->key.key, &(*key)->key); if(ret) return ret; for(i = 0; i < (*key)->key->keyvalue.length; i++) ((unsigned char*)(*key)->key->keyvalue.data)[i] ^= 0xF0; } else { *key = &crypto->key; } if(ret == 0) ret = _key_schedule(context, *key); return ret; } static krb5_error_code create_checksum (krb5_context context, struct checksum_type *ct, krb5_crypto crypto, unsigned usage, void *data, size_t len, Checksum *result) { krb5_error_code ret; struct key_data *dkey; int keyed_checksum; if (ct->flags & F_DISABLED) { krb5_clear_error_string (context); return KRB5_PROG_SUMTYPE_NOSUPP; } keyed_checksum = (ct->flags & F_KEYED) != 0; if(keyed_checksum && crypto == NULL) { krb5_set_error_string (context, "Checksum type %s is keyed " "but no crypto context (key) was passed in", ct->name); return KRB5_PROG_SUMTYPE_NOSUPP; /* XXX */ } if(keyed_checksum) { ret = get_checksum_key(context, crypto, usage, ct, &dkey); if (ret) return ret; } else dkey = NULL; result->cksumtype = ct->type; ret = krb5_data_alloc(&result->checksum, ct->checksumsize); if (ret) return (ret); (*ct->checksum)(context, dkey, data, len, usage, result); return 0; } static int arcfour_checksum_p(struct checksum_type *ct, krb5_crypto crypto) { return (ct->type == CKSUMTYPE_HMAC_MD5) && (crypto->key.key->keytype == KEYTYPE_ARCFOUR); } krb5_error_code KRB5_LIB_FUNCTION krb5_create_checksum(krb5_context context, krb5_crypto crypto, krb5_key_usage usage, int type, void *data, size_t len, Checksum *result) { struct checksum_type *ct = NULL; unsigned keyusage; /* type 0 -> pick from crypto */ if (type) { ct = _find_checksum(type); } else if (crypto) { ct = crypto->et->keyed_checksum; if (ct == NULL) ct = crypto->et->checksum; } if(ct == NULL) { krb5_set_error_string (context, "checksum type %d not supported", type); return KRB5_PROG_SUMTYPE_NOSUPP; } if (arcfour_checksum_p(ct, crypto)) { keyusage = usage; usage2arcfour(context, &keyusage); } else keyusage = CHECKSUM_USAGE(usage); return create_checksum(context, ct, crypto, keyusage, data, len, result); } static krb5_error_code verify_checksum(krb5_context context, krb5_crypto crypto, unsigned usage, /* not krb5_key_usage */ void *data, size_t len, Checksum *cksum) { krb5_error_code ret; struct key_data *dkey; int keyed_checksum; Checksum c; struct checksum_type *ct; ct = _find_checksum(cksum->cksumtype); if (ct == NULL || (ct->flags & F_DISABLED)) { krb5_set_error_string (context, "checksum type %d not supported", cksum->cksumtype); return KRB5_PROG_SUMTYPE_NOSUPP; } if(ct->checksumsize != cksum->checksum.length) { krb5_clear_error_string (context); return KRB5KRB_AP_ERR_BAD_INTEGRITY; /* XXX */ } keyed_checksum = (ct->flags & F_KEYED) != 0; if(keyed_checksum && crypto == NULL) { krb5_set_error_string (context, "Checksum type %s is keyed " "but no crypto context (key) was passed in", ct->name); return KRB5_PROG_SUMTYPE_NOSUPP; /* XXX */ } if(keyed_checksum) ret = get_checksum_key(context, crypto, usage, ct, &dkey); else dkey = NULL; if(ct->verify) return (*ct->verify)(context, dkey, data, len, usage, cksum); ret = krb5_data_alloc (&c.checksum, ct->checksumsize); if (ret) return ret; (*ct->checksum)(context, dkey, data, len, usage, &c); if(c.checksum.length != cksum->checksum.length || memcmp(c.checksum.data, cksum->checksum.data, c.checksum.length)) { krb5_clear_error_string (context); ret = KRB5KRB_AP_ERR_BAD_INTEGRITY; } else { ret = 0; } krb5_data_free (&c.checksum); return ret; } krb5_error_code KRB5_LIB_FUNCTION krb5_verify_checksum(krb5_context context, krb5_crypto crypto, krb5_key_usage usage, void *data, size_t len, Checksum *cksum) { struct checksum_type *ct; unsigned keyusage; ct = _find_checksum(cksum->cksumtype); if(ct == NULL) { krb5_set_error_string (context, "checksum type %d not supported", cksum->cksumtype); return KRB5_PROG_SUMTYPE_NOSUPP; } if (arcfour_checksum_p(ct, crypto)) { keyusage = usage; usage2arcfour(context, &keyusage); } else keyusage = CHECKSUM_USAGE(usage); return verify_checksum(context, crypto, keyusage, data, len, cksum); } krb5_error_code KRB5_LIB_FUNCTION krb5_crypto_get_checksum_type(krb5_context context, krb5_crypto crypto, krb5_cksumtype *type) { struct checksum_type *ct = NULL; if (crypto != NULL) { ct = crypto->et->keyed_checksum; if (ct == NULL) ct = crypto->et->checksum; } if (ct == NULL) { krb5_set_error_string (context, "checksum type not found"); return KRB5_PROG_SUMTYPE_NOSUPP; } *type = ct->type; return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_checksumsize(krb5_context context, krb5_cksumtype type, size_t *size) { struct checksum_type *ct = _find_checksum(type); if(ct == NULL) { krb5_set_error_string (context, "checksum type %d not supported", type); return KRB5_PROG_SUMTYPE_NOSUPP; } *size = ct->checksumsize; return 0; } krb5_boolean KRB5_LIB_FUNCTION krb5_checksum_is_keyed(krb5_context context, krb5_cksumtype type) { struct checksum_type *ct = _find_checksum(type); if(ct == NULL) { if (context) krb5_set_error_string (context, "checksum type %d not supported", type); return KRB5_PROG_SUMTYPE_NOSUPP; } return ct->flags & F_KEYED; } krb5_boolean KRB5_LIB_FUNCTION krb5_checksum_is_collision_proof(krb5_context context, krb5_cksumtype type) { struct checksum_type *ct = _find_checksum(type); if(ct == NULL) { if (context) krb5_set_error_string (context, "checksum type %d not supported", type); return KRB5_PROG_SUMTYPE_NOSUPP; } return ct->flags & F_CPROOF; } krb5_error_code KRB5_LIB_FUNCTION krb5_checksum_disable(krb5_context context, krb5_cksumtype type) { struct checksum_type *ct = _find_checksum(type); if(ct == NULL) { if (context) krb5_set_error_string (context, "checksum type %d not supported", type); return KRB5_PROG_SUMTYPE_NOSUPP; } ct->flags |= F_DISABLED; return 0; } /************************************************************ * * ************************************************************/ static krb5_error_code NULL_encrypt(krb5_context context, struct key_data *key, void *data, size_t len, krb5_boolean encryptp, int usage, void *ivec) { return 0; } static krb5_error_code DES_CBC_encrypt_null_ivec(krb5_context context, struct key_data *key, void *data, size_t len, krb5_boolean encryptp, int usage, void *ignore_ivec) { DES_cblock ivec; DES_key_schedule *s = key->schedule->data; memset(&ivec, 0, sizeof(ivec)); DES_cbc_encrypt(data, data, len, s, &ivec, encryptp); return 0; } static krb5_error_code DES_CBC_encrypt_key_ivec(krb5_context context, struct key_data *key, void *data, size_t len, krb5_boolean encryptp, int usage, void *ignore_ivec) { DES_cblock ivec; DES_key_schedule *s = key->schedule->data; memcpy(&ivec, key->key->keyvalue.data, sizeof(ivec)); DES_cbc_encrypt(data, data, len, s, &ivec, encryptp); return 0; } static krb5_error_code DES3_CBC_encrypt(krb5_context context, struct key_data *key, void *data, size_t len, krb5_boolean encryptp, int usage, void *ivec) { DES_cblock local_ivec; DES_key_schedule *s = key->schedule->data; if(ivec == NULL) { ivec = &local_ivec; memset(local_ivec, 0, sizeof(local_ivec)); } DES_ede3_cbc_encrypt(data, data, len, &s[0], &s[1], &s[2], ivec, encryptp); return 0; } static krb5_error_code DES_CFB64_encrypt_null_ivec(krb5_context context, struct key_data *key, void *data, size_t len, krb5_boolean encryptp, int usage, void *ignore_ivec) { DES_cblock ivec; int num = 0; DES_key_schedule *s = key->schedule->data; memset(&ivec, 0, sizeof(ivec)); DES_cfb64_encrypt(data, data, len, s, &ivec, &num, encryptp); return 0; } static krb5_error_code DES_PCBC_encrypt_key_ivec(krb5_context context, struct key_data *key, void *data, size_t len, krb5_boolean encryptp, int usage, void *ignore_ivec) { DES_cblock ivec; DES_key_schedule *s = key->schedule->data; memcpy(&ivec, key->key->keyvalue.data, sizeof(ivec)); DES_pcbc_encrypt(data, data, len, s, &ivec, encryptp); return 0; } /* * AES draft-raeburn-krb-rijndael-krb-02 */ void KRB5_LIB_FUNCTION _krb5_aes_cts_encrypt(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, unsigned char *ivec, const int encryptp) { unsigned char tmp[AES_BLOCK_SIZE]; int i; /* * In the framework of kerberos, the length can never be shorter * then at least one blocksize. */ if (encryptp) { while(len > AES_BLOCK_SIZE) { for (i = 0; i < AES_BLOCK_SIZE; i++) tmp[i] = in[i] ^ ivec[i]; AES_encrypt(tmp, out, key); memcpy(ivec, out, AES_BLOCK_SIZE); len -= AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } for (i = 0; i < len; i++) tmp[i] = in[i] ^ ivec[i]; for (; i < AES_BLOCK_SIZE; i++) tmp[i] = 0 ^ ivec[i]; AES_encrypt(tmp, out - AES_BLOCK_SIZE, key); memcpy(out, ivec, len); memcpy(ivec, out - AES_BLOCK_SIZE, AES_BLOCK_SIZE); } else { unsigned char tmp2[AES_BLOCK_SIZE]; unsigned char tmp3[AES_BLOCK_SIZE]; while(len > AES_BLOCK_SIZE * 2) { memcpy(tmp, in, AES_BLOCK_SIZE); AES_decrypt(in, out, key); for (i = 0; i < AES_BLOCK_SIZE; i++) out[i] ^= ivec[i]; memcpy(ivec, tmp, AES_BLOCK_SIZE); len -= AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } len -= AES_BLOCK_SIZE; memcpy(tmp, in, AES_BLOCK_SIZE); /* save last iv */ AES_decrypt(in, tmp2, key); memcpy(tmp3, in + AES_BLOCK_SIZE, len); memcpy(tmp3 + len, tmp2 + len, AES_BLOCK_SIZE - len); /* xor 0 */ for (i = 0; i < len; i++) out[i + AES_BLOCK_SIZE] = tmp2[i] ^ tmp3[i]; AES_decrypt(tmp3, out, key); for (i = 0; i < AES_BLOCK_SIZE; i++) out[i] ^= ivec[i]; memcpy(ivec, tmp, AES_BLOCK_SIZE); } } static krb5_error_code AES_CTS_encrypt(krb5_context context, struct key_data *key, void *data, size_t len, krb5_boolean encryptp, int usage, void *ivec) { struct krb5_aes_schedule *aeskey = key->schedule->data; char local_ivec[AES_BLOCK_SIZE]; AES_KEY *k; if (encryptp) k = &aeskey->ekey; else k = &aeskey->dkey; if (len < AES_BLOCK_SIZE) krb5_abortx(context, "invalid use of AES_CTS_encrypt"); if (len == AES_BLOCK_SIZE) { if (encryptp) AES_encrypt(data, data, k); else AES_decrypt(data, data, k); } else { if(ivec == NULL) { memset(local_ivec, 0, sizeof(local_ivec)); ivec = local_ivec; } _krb5_aes_cts_encrypt(data, data, len, k, ivec, encryptp); } return 0; } /* * section 6 of draft-brezak-win2k-krb-rc4-hmac-03 * * warning: not for small children */ static krb5_error_code ARCFOUR_subencrypt(krb5_context context, struct key_data *key, void *data, size_t len, unsigned usage, void *ivec) { struct checksum_type *c = _find_checksum (CKSUMTYPE_RSA_MD5); Checksum k1_c, k2_c, k3_c, cksum; struct key_data ke; krb5_keyblock kb; unsigned char t[4]; RC4_KEY rc4_key; unsigned char *cdata = data; unsigned char k1_c_data[16], k2_c_data[16], k3_c_data[16]; krb5_error_code ret; t[0] = (usage >> 0) & 0xFF; t[1] = (usage >> 8) & 0xFF; t[2] = (usage >> 16) & 0xFF; t[3] = (usage >> 24) & 0xFF; k1_c.checksum.length = sizeof(k1_c_data); k1_c.checksum.data = k1_c_data; ret = hmac(NULL, c, t, sizeof(t), 0, key, &k1_c); if (ret) krb5_abortx(context, "hmac failed"); memcpy (k2_c_data, k1_c_data, sizeof(k1_c_data)); k2_c.checksum.length = sizeof(k2_c_data); k2_c.checksum.data = k2_c_data; ke.key = &kb; kb.keyvalue = k2_c.checksum; cksum.checksum.length = 16; cksum.checksum.data = data; ret = hmac(NULL, c, cdata + 16, len - 16, 0, &ke, &cksum); if (ret) krb5_abortx(context, "hmac failed"); ke.key = &kb; kb.keyvalue = k1_c.checksum; k3_c.checksum.length = sizeof(k3_c_data); k3_c.checksum.data = k3_c_data; ret = hmac(NULL, c, data, 16, 0, &ke, &k3_c); if (ret) krb5_abortx(context, "hmac failed"); RC4_set_key (&rc4_key, k3_c.checksum.length, k3_c.checksum.data); RC4 (&rc4_key, len - 16, cdata + 16, cdata + 16); memset (k1_c_data, 0, sizeof(k1_c_data)); memset (k2_c_data, 0, sizeof(k2_c_data)); memset (k3_c_data, 0, sizeof(k3_c_data)); return 0; } static krb5_error_code ARCFOUR_subdecrypt(krb5_context context, struct key_data *key, void *data, size_t len, unsigned usage, void *ivec) { struct checksum_type *c = _find_checksum (CKSUMTYPE_RSA_MD5); Checksum k1_c, k2_c, k3_c, cksum; struct key_data ke; krb5_keyblock kb; unsigned char t[4]; RC4_KEY rc4_key; unsigned char *cdata = data; unsigned char k1_c_data[16], k2_c_data[16], k3_c_data[16]; unsigned char cksum_data[16]; krb5_error_code ret; t[0] = (usage >> 0) & 0xFF; t[1] = (usage >> 8) & 0xFF; t[2] = (usage >> 16) & 0xFF; t[3] = (usage >> 24) & 0xFF; k1_c.checksum.length = sizeof(k1_c_data); k1_c.checksum.data = k1_c_data; ret = hmac(NULL, c, t, sizeof(t), 0, key, &k1_c); if (ret) krb5_abortx(context, "hmac failed"); memcpy (k2_c_data, k1_c_data, sizeof(k1_c_data)); k2_c.checksum.length = sizeof(k2_c_data); k2_c.checksum.data = k2_c_data; ke.key = &kb; kb.keyvalue = k1_c.checksum; k3_c.checksum.length = sizeof(k3_c_data); k3_c.checksum.data = k3_c_data; ret = hmac(NULL, c, cdata, 16, 0, &ke, &k3_c); if (ret) krb5_abortx(context, "hmac failed"); RC4_set_key (&rc4_key, k3_c.checksum.length, k3_c.checksum.data); RC4 (&rc4_key, len - 16, cdata + 16, cdata + 16); ke.key = &kb; kb.keyvalue = k2_c.checksum; cksum.checksum.length = 16; cksum.checksum.data = cksum_data; ret = hmac(NULL, c, cdata + 16, len - 16, 0, &ke, &cksum); if (ret) krb5_abortx(context, "hmac failed"); memset (k1_c_data, 0, sizeof(k1_c_data)); memset (k2_c_data, 0, sizeof(k2_c_data)); memset (k3_c_data, 0, sizeof(k3_c_data)); if (memcmp (cksum.checksum.data, data, 16) != 0) { krb5_clear_error_string (context); return KRB5KRB_AP_ERR_BAD_INTEGRITY; } else { return 0; } } /* * convert the usage numbers used in * draft-ietf-cat-kerb-key-derivation-00.txt to the ones in * draft-brezak-win2k-krb-rc4-hmac-04.txt */ static krb5_error_code usage2arcfour (krb5_context context, unsigned *usage) { switch (*usage) { case KRB5_KU_AS_REP_ENC_PART : /* 3 */ case KRB5_KU_TGS_REP_ENC_PART_SUB_KEY : /* 9 */ *usage = 8; return 0; case KRB5_KU_USAGE_SEAL : /* 22 */ *usage = 13; return 0; case KRB5_KU_USAGE_SIGN : /* 23 */ *usage = 15; return 0; case KRB5_KU_USAGE_SEQ: /* 24 */ *usage = 0; return 0; default : return 0; } } static krb5_error_code ARCFOUR_encrypt(krb5_context context, struct key_data *key, void *data, size_t len, krb5_boolean encryptp, int usage, void *ivec) { krb5_error_code ret; unsigned keyusage = usage; if((ret = usage2arcfour (context, &keyusage)) != 0) return ret; if (encryptp) return ARCFOUR_subencrypt (context, key, data, len, keyusage, ivec); else return ARCFOUR_subdecrypt (context, key, data, len, keyusage, ivec); } /* * */ static krb5_error_code AES_PRF(krb5_context context, krb5_crypto crypto, const krb5_data *in, krb5_data *out) { struct checksum_type *ct = crypto->et->checksum; krb5_error_code ret; Checksum result; krb5_keyblock *derived; result.cksumtype = ct->type; ret = krb5_data_alloc(&result.checksum, ct->checksumsize); if (ret) { krb5_set_error_string(context, "out memory"); return ret; } (*ct->checksum)(context, NULL, in->data, in->length, 0, &result); if (result.checksum.length < crypto->et->blocksize) krb5_abortx(context, "internal prf error"); derived = NULL; ret = krb5_derive_key(context, crypto->key.key, crypto->et->type, "prf", 3, &derived); if (ret) krb5_abortx(context, "krb5_derive_key"); ret = krb5_data_alloc(out, crypto->et->blocksize); if (ret) krb5_abortx(context, "malloc failed"); { AES_KEY key; AES_set_encrypt_key(derived->keyvalue.data, crypto->et->keytype->bits, &key); AES_encrypt(result.checksum.data, out->data, &key); memset(&key, 0, sizeof(key)); } krb5_data_free(&result.checksum); krb5_free_keyblock(context, derived); return ret; } /* * these should currently be in reverse preference order. * (only relevant for !F_PSEUDO) */ static struct encryption_type enctype_null = { ETYPE_NULL, "null", NULL, 1, 1, 0, &keytype_null, &checksum_none, NULL, F_DISABLED, NULL_encrypt, 0, NULL }; static struct encryption_type enctype_des_cbc_crc = { ETYPE_DES_CBC_CRC, "des-cbc-crc", NULL, 8, 8, 8, &keytype_des, &checksum_crc32, NULL, 0, DES_CBC_encrypt_key_ivec, 0, NULL }; static struct encryption_type enctype_des_cbc_md4 = { ETYPE_DES_CBC_MD4, "des-cbc-md4", NULL, 8, 8, 8, &keytype_des, &checksum_rsa_md4, &checksum_rsa_md4_des, 0, DES_CBC_encrypt_null_ivec, 0, NULL }; static struct encryption_type enctype_des_cbc_md5 = { ETYPE_DES_CBC_MD5, "des-cbc-md5", NULL, 8, 8, 8, &keytype_des, &checksum_rsa_md5, &checksum_rsa_md5_des, 0, DES_CBC_encrypt_null_ivec, 0, NULL }; static struct encryption_type enctype_arcfour_hmac_md5 = { ETYPE_ARCFOUR_HMAC_MD5, "arcfour-hmac-md5", NULL, 1, 1, 8, &keytype_arcfour, &checksum_hmac_md5, NULL, F_SPECIAL, ARCFOUR_encrypt, 0, NULL }; static struct encryption_type enctype_des3_cbc_md5 = { ETYPE_DES3_CBC_MD5, "des3-cbc-md5", NULL, 8, 8, 8, &keytype_des3, &checksum_rsa_md5, &checksum_rsa_md5_des3, 0, DES3_CBC_encrypt, 0, NULL }; static struct encryption_type enctype_des3_cbc_sha1 = { ETYPE_DES3_CBC_SHA1, "des3-cbc-sha1", NULL, 8, 8, 8, &keytype_des3_derived, &checksum_sha1, &checksum_hmac_sha1_des3, F_DERIVED, DES3_CBC_encrypt, 0, NULL }; static struct encryption_type enctype_old_des3_cbc_sha1 = { ETYPE_OLD_DES3_CBC_SHA1, "old-des3-cbc-sha1", NULL, 8, 8, 8, &keytype_des3, &checksum_sha1, &checksum_hmac_sha1_des3, 0, DES3_CBC_encrypt, 0, NULL }; static struct encryption_type enctype_aes128_cts_hmac_sha1 = { ETYPE_AES128_CTS_HMAC_SHA1_96, "aes128-cts-hmac-sha1-96", NULL, 16, 1, 16, &keytype_aes128, &checksum_sha1, &checksum_hmac_sha1_aes128, F_DERIVED, AES_CTS_encrypt, 16, AES_PRF }; static struct encryption_type enctype_aes256_cts_hmac_sha1 = { ETYPE_AES256_CTS_HMAC_SHA1_96, "aes256-cts-hmac-sha1-96", NULL, 16, 1, 16, &keytype_aes256, &checksum_sha1, &checksum_hmac_sha1_aes256, F_DERIVED, AES_CTS_encrypt, 16, AES_PRF }; static struct encryption_type enctype_des_cbc_none = { ETYPE_DES_CBC_NONE, "des-cbc-none", NULL, 8, 8, 0, &keytype_des, &checksum_none, NULL, F_PSEUDO, DES_CBC_encrypt_null_ivec, 0, NULL }; static struct encryption_type enctype_des_cfb64_none = { ETYPE_DES_CFB64_NONE, "des-cfb64-none", NULL, 1, 1, 0, &keytype_des, &checksum_none, NULL, F_PSEUDO, DES_CFB64_encrypt_null_ivec, 0, NULL }; static struct encryption_type enctype_des_pcbc_none = { ETYPE_DES_PCBC_NONE, "des-pcbc-none", NULL, 8, 8, 0, &keytype_des, &checksum_none, NULL, F_PSEUDO, DES_PCBC_encrypt_key_ivec, 0, NULL }; static struct encryption_type enctype_des3_cbc_none = { ETYPE_DES3_CBC_NONE, "des3-cbc-none", NULL, 8, 8, 0, &keytype_des3_derived, &checksum_none, NULL, F_PSEUDO, DES3_CBC_encrypt, 0, NULL }; static struct encryption_type *etypes[] = { &enctype_null, &enctype_des_cbc_crc, &enctype_des_cbc_md4, &enctype_des_cbc_md5, &enctype_arcfour_hmac_md5, &enctype_des3_cbc_md5, &enctype_des3_cbc_sha1, &enctype_old_des3_cbc_sha1, &enctype_aes128_cts_hmac_sha1, &enctype_aes256_cts_hmac_sha1, &enctype_des_cbc_none, &enctype_des_cfb64_none, &enctype_des_pcbc_none, &enctype_des3_cbc_none }; static unsigned num_etypes = sizeof(etypes) / sizeof(etypes[0]); static struct encryption_type * _find_enctype(krb5_enctype type) { int i; for(i = 0; i < num_etypes; i++) if(etypes[i]->type == type) return etypes[i]; return NULL; } krb5_error_code KRB5_LIB_FUNCTION krb5_enctype_to_string(krb5_context context, krb5_enctype etype, char **string) { struct encryption_type *e; e = _find_enctype(etype); if(e == NULL) { krb5_set_error_string (context, "encryption type %d not supported", etype); *string = NULL; return KRB5_PROG_ETYPE_NOSUPP; } *string = strdup(e->name); if(*string == NULL) { krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_string_to_enctype(krb5_context context, const char *string, krb5_enctype *etype) { int i; for(i = 0; i < num_etypes; i++) if(strcasecmp(etypes[i]->name, string) == 0){ *etype = etypes[i]->type; return 0; } krb5_set_error_string (context, "encryption type %s not supported", string); return KRB5_PROG_ETYPE_NOSUPP; } krb5_error_code KRB5_LIB_FUNCTION _krb5_enctype_to_oid(krb5_context context, krb5_enctype etype, heim_oid *oid) { struct encryption_type *et = _find_enctype(etype); if(et == NULL) { krb5_set_error_string (context, "encryption type %d not supported", etype); return KRB5_PROG_ETYPE_NOSUPP; } if(et->oid == NULL) { krb5_set_error_string (context, "%s have not oid", et->name); return KRB5_PROG_ETYPE_NOSUPP; } krb5_clear_error_string(context); return der_copy_oid(et->oid, oid); } krb5_error_code KRB5_LIB_FUNCTION _krb5_oid_to_enctype(krb5_context context, const heim_oid *oid, krb5_enctype *etype) { int i; for(i = 0; i < num_etypes; i++) { if(etypes[i]->oid && der_heim_oid_cmp(etypes[i]->oid, oid) == 0) { *etype = etypes[i]->type; return 0; } } krb5_set_error_string(context, "enctype for oid not supported"); return KRB5_PROG_ETYPE_NOSUPP; } krb5_error_code KRB5_LIB_FUNCTION krb5_enctype_to_keytype(krb5_context context, krb5_enctype etype, krb5_keytype *keytype) { struct encryption_type *e = _find_enctype(etype); if(e == NULL) { krb5_set_error_string (context, "encryption type %d not supported", etype); return KRB5_PROG_ETYPE_NOSUPP; } *keytype = e->keytype->type; /* XXX */ return 0; } #if 0 krb5_error_code KRB5_LIB_FUNCTION krb5_keytype_to_enctype(krb5_context context, krb5_keytype keytype, krb5_enctype *etype) { struct key_type *kt = _find_keytype(keytype); krb5_warnx(context, "krb5_keytype_to_enctype(%u)", keytype); if(kt == NULL) return KRB5_PROG_KEYTYPE_NOSUPP; *etype = kt->best_etype; return 0; } #endif krb5_error_code KRB5_LIB_FUNCTION krb5_keytype_to_enctypes (krb5_context context, krb5_keytype keytype, unsigned *len, krb5_enctype **val) { int i; unsigned n = 0; krb5_enctype *ret; for (i = num_etypes - 1; i >= 0; --i) { if (etypes[i]->keytype->type == keytype && !(etypes[i]->flags & F_PSEUDO)) ++n; } ret = malloc(n * sizeof(*ret)); if (ret == NULL && n != 0) { krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } n = 0; for (i = num_etypes - 1; i >= 0; --i) { if (etypes[i]->keytype->type == keytype && !(etypes[i]->flags & F_PSEUDO)) ret[n++] = etypes[i]->type; } *len = n; *val = ret; return 0; } /* * First take the configured list of etypes for `keytype' if available, * else, do `krb5_keytype_to_enctypes'. */ krb5_error_code KRB5_LIB_FUNCTION krb5_keytype_to_enctypes_default (krb5_context context, krb5_keytype keytype, unsigned *len, krb5_enctype **val) { int i, n; krb5_enctype *ret; if (keytype != KEYTYPE_DES || context->etypes_des == NULL) return krb5_keytype_to_enctypes (context, keytype, len, val); for (n = 0; context->etypes_des[n]; ++n) ; ret = malloc (n * sizeof(*ret)); if (ret == NULL && n != 0) { krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } for (i = 0; i < n; ++i) ret[i] = context->etypes_des[i]; *len = n; *val = ret; return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_enctype_valid(krb5_context context, krb5_enctype etype) { struct encryption_type *e = _find_enctype(etype); if(e == NULL) { krb5_set_error_string (context, "encryption type %d not supported", etype); return KRB5_PROG_ETYPE_NOSUPP; } if (e->flags & F_DISABLED) { krb5_set_error_string (context, "encryption type %s is disabled", e->name); return KRB5_PROG_ETYPE_NOSUPP; } return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_cksumtype_valid(krb5_context context, krb5_cksumtype ctype) { struct checksum_type *c = _find_checksum(ctype); if (c == NULL) { krb5_set_error_string (context, "checksum type %d not supported", ctype); return KRB5_PROG_SUMTYPE_NOSUPP; } if (c->flags & F_DISABLED) { krb5_set_error_string (context, "checksum type %s is disabled", c->name); return KRB5_PROG_SUMTYPE_NOSUPP; } return 0; } /* if two enctypes have compatible keys */ krb5_boolean KRB5_LIB_FUNCTION krb5_enctypes_compatible_keys(krb5_context context, krb5_enctype etype1, krb5_enctype etype2) { struct encryption_type *e1 = _find_enctype(etype1); struct encryption_type *e2 = _find_enctype(etype2); return e1 != NULL && e2 != NULL && e1->keytype == e2->keytype; } static krb5_boolean derived_crypto(krb5_context context, krb5_crypto crypto) { return (crypto->et->flags & F_DERIVED) != 0; } static krb5_boolean special_crypto(krb5_context context, krb5_crypto crypto) { return (crypto->et->flags & F_SPECIAL) != 0; } #define CHECKSUMSIZE(C) ((C)->checksumsize) #define CHECKSUMTYPE(C) ((C)->type) static krb5_error_code encrypt_internal_derived(krb5_context context, krb5_crypto crypto, unsigned usage, const void *data, size_t len, krb5_data *result, void *ivec) { size_t sz, block_sz, checksum_sz, total_sz; Checksum cksum; unsigned char *p, *q; krb5_error_code ret; struct key_data *dkey; const struct encryption_type *et = crypto->et; checksum_sz = CHECKSUMSIZE(et->keyed_checksum); sz = et->confoundersize + len; block_sz = (sz + et->padsize - 1) &~ (et->padsize - 1); /* pad */ total_sz = block_sz + checksum_sz; p = calloc(1, total_sz); if(p == NULL) { krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } q = p; krb5_generate_random_block(q, et->confoundersize); /* XXX */ q += et->confoundersize; memcpy(q, data, len); ret = create_checksum(context, et->keyed_checksum, crypto, INTEGRITY_USAGE(usage), p, block_sz, &cksum); if(ret == 0 && cksum.checksum.length != checksum_sz) { free_Checksum (&cksum); krb5_clear_error_string (context); ret = KRB5_CRYPTO_INTERNAL; } if(ret) goto fail; memcpy(p + block_sz, cksum.checksum.data, cksum.checksum.length); free_Checksum (&cksum); ret = _get_derived_key(context, crypto, ENCRYPTION_USAGE(usage), &dkey); if(ret) goto fail; ret = _key_schedule(context, dkey); if(ret) goto fail; #ifdef CRYPTO_DEBUG krb5_crypto_debug(context, 1, block_sz, dkey->key); #endif ret = (*et->encrypt)(context, dkey, p, block_sz, 1, usage, ivec); if (ret) goto fail; result->data = p; result->length = total_sz; return 0; fail: memset(p, 0, total_sz); free(p); return ret; } static krb5_error_code encrypt_internal(krb5_context context, krb5_crypto crypto, const void *data, size_t len, krb5_data *result, void *ivec) { size_t sz, block_sz, checksum_sz; Checksum cksum; unsigned char *p, *q; krb5_error_code ret; const struct encryption_type *et = crypto->et; checksum_sz = CHECKSUMSIZE(et->checksum); sz = et->confoundersize + checksum_sz + len; block_sz = (sz + et->padsize - 1) &~ (et->padsize - 1); /* pad */ p = calloc(1, block_sz); if(p == NULL) { krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } q = p; krb5_generate_random_block(q, et->confoundersize); /* XXX */ q += et->confoundersize; memset(q, 0, checksum_sz); q += checksum_sz; memcpy(q, data, len); ret = create_checksum(context, et->checksum, crypto, 0, p, block_sz, &cksum); if(ret == 0 && cksum.checksum.length != checksum_sz) { krb5_clear_error_string (context); free_Checksum(&cksum); ret = KRB5_CRYPTO_INTERNAL; } if(ret) goto fail; memcpy(p + et->confoundersize, cksum.checksum.data, cksum.checksum.length); free_Checksum(&cksum); ret = _key_schedule(context, &crypto->key); if(ret) goto fail; #ifdef CRYPTO_DEBUG krb5_crypto_debug(context, 1, block_sz, crypto->key.key); #endif ret = (*et->encrypt)(context, &crypto->key, p, block_sz, 1, 0, ivec); if (ret) { memset(p, 0, block_sz); free(p); return ret; } result->data = p; result->length = block_sz; return 0; fail: memset(p, 0, block_sz); free(p); return ret; } static krb5_error_code encrypt_internal_special(krb5_context context, krb5_crypto crypto, int usage, const void *data, size_t len, krb5_data *result, void *ivec) { struct encryption_type *et = crypto->et; size_t cksum_sz = CHECKSUMSIZE(et->checksum); size_t sz = len + cksum_sz + et->confoundersize; char *tmp, *p; krb5_error_code ret; tmp = malloc (sz); if (tmp == NULL) { krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } p = tmp; memset (p, 0, cksum_sz); p += cksum_sz; krb5_generate_random_block(p, et->confoundersize); p += et->confoundersize; memcpy (p, data, len); ret = (*et->encrypt)(context, &crypto->key, tmp, sz, TRUE, usage, ivec); if (ret) { memset(tmp, 0, sz); free(tmp); return ret; } result->data = tmp; result->length = sz; return 0; } static krb5_error_code decrypt_internal_derived(krb5_context context, krb5_crypto crypto, unsigned usage, void *data, size_t len, krb5_data *result, void *ivec) { size_t checksum_sz; Checksum cksum; unsigned char *p; krb5_error_code ret; struct key_data *dkey; struct encryption_type *et = crypto->et; unsigned long l; checksum_sz = CHECKSUMSIZE(et->keyed_checksum); if (len < checksum_sz + et->confoundersize) { krb5_set_error_string(context, "Encrypted data shorter then " "checksum + confunder"); return KRB5_BAD_MSIZE; } if (((len - checksum_sz) % et->padsize) != 0) { krb5_clear_error_string(context); return KRB5_BAD_MSIZE; } p = malloc(len); if(len != 0 && p == NULL) { krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } memcpy(p, data, len); len -= checksum_sz; ret = _get_derived_key(context, crypto, ENCRYPTION_USAGE(usage), &dkey); if(ret) { free(p); return ret; } ret = _key_schedule(context, dkey); if(ret) { free(p); return ret; } #ifdef CRYPTO_DEBUG krb5_crypto_debug(context, 0, len, dkey->key); #endif ret = (*et->encrypt)(context, dkey, p, len, 0, usage, ivec); if (ret) { free(p); return ret; } cksum.checksum.data = p + len; cksum.checksum.length = checksum_sz; cksum.cksumtype = CHECKSUMTYPE(et->keyed_checksum); ret = verify_checksum(context, crypto, INTEGRITY_USAGE(usage), p, len, &cksum); if(ret) { free(p); return ret; } l = len - et->confoundersize; memmove(p, p + et->confoundersize, l); result->data = realloc(p, l); if(result->data == NULL && l != 0) { free(p); krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } result->length = l; return 0; } static krb5_error_code decrypt_internal(krb5_context context, krb5_crypto crypto, void *data, size_t len, krb5_data *result, void *ivec) { krb5_error_code ret; unsigned char *p; Checksum cksum; size_t checksum_sz, l; struct encryption_type *et = crypto->et; if ((len % et->padsize) != 0) { krb5_clear_error_string(context); return KRB5_BAD_MSIZE; } checksum_sz = CHECKSUMSIZE(et->checksum); p = malloc(len); if(len != 0 && p == NULL) { krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } memcpy(p, data, len); ret = _key_schedule(context, &crypto->key); if(ret) { free(p); return ret; } #ifdef CRYPTO_DEBUG krb5_crypto_debug(context, 0, len, crypto->key.key); #endif ret = (*et->encrypt)(context, &crypto->key, p, len, 0, 0, ivec); if (ret) { free(p); return ret; } ret = krb5_data_copy(&cksum.checksum, p + et->confoundersize, checksum_sz); if(ret) { free(p); return ret; } memset(p + et->confoundersize, 0, checksum_sz); cksum.cksumtype = CHECKSUMTYPE(et->checksum); ret = verify_checksum(context, NULL, 0, p, len, &cksum); free_Checksum(&cksum); if(ret) { free(p); return ret; } l = len - et->confoundersize - checksum_sz; memmove(p, p + et->confoundersize + checksum_sz, l); result->data = realloc(p, l); if(result->data == NULL && l != 0) { free(p); krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } result->length = l; return 0; } static krb5_error_code decrypt_internal_special(krb5_context context, krb5_crypto crypto, int usage, void *data, size_t len, krb5_data *result, void *ivec) { struct encryption_type *et = crypto->et; size_t cksum_sz = CHECKSUMSIZE(et->checksum); size_t sz = len - cksum_sz - et->confoundersize; unsigned char *p; krb5_error_code ret; if ((len % et->padsize) != 0) { krb5_clear_error_string(context); return KRB5_BAD_MSIZE; } p = malloc (len); if (p == NULL) { krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } memcpy(p, data, len); ret = (*et->encrypt)(context, &crypto->key, p, len, FALSE, usage, ivec); if (ret) { free(p); return ret; } memmove (p, p + cksum_sz + et->confoundersize, sz); result->data = realloc(p, sz); if(result->data == NULL && sz != 0) { free(p); krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } result->length = sz; return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_encrypt_ivec(krb5_context context, krb5_crypto crypto, unsigned usage, const void *data, size_t len, krb5_data *result, void *ivec) { if(derived_crypto(context, crypto)) return encrypt_internal_derived(context, crypto, usage, data, len, result, ivec); else if (special_crypto(context, crypto)) return encrypt_internal_special (context, crypto, usage, data, len, result, ivec); else return encrypt_internal(context, crypto, data, len, result, ivec); } krb5_error_code KRB5_LIB_FUNCTION krb5_encrypt(krb5_context context, krb5_crypto crypto, unsigned usage, const void *data, size_t len, krb5_data *result) { return krb5_encrypt_ivec(context, crypto, usage, data, len, result, NULL); } krb5_error_code KRB5_LIB_FUNCTION krb5_encrypt_EncryptedData(krb5_context context, krb5_crypto crypto, unsigned usage, void *data, size_t len, int kvno, EncryptedData *result) { result->etype = CRYPTO_ETYPE(crypto); if(kvno){ ALLOC(result->kvno, 1); *result->kvno = kvno; }else result->kvno = NULL; return krb5_encrypt(context, crypto, usage, data, len, &result->cipher); } krb5_error_code KRB5_LIB_FUNCTION krb5_decrypt_ivec(krb5_context context, krb5_crypto crypto, unsigned usage, void *data, size_t len, krb5_data *result, void *ivec) { if(derived_crypto(context, crypto)) return decrypt_internal_derived(context, crypto, usage, data, len, result, ivec); else if (special_crypto (context, crypto)) return decrypt_internal_special(context, crypto, usage, data, len, result, ivec); else return decrypt_internal(context, crypto, data, len, result, ivec); } krb5_error_code KRB5_LIB_FUNCTION krb5_decrypt(krb5_context context, krb5_crypto crypto, unsigned usage, void *data, size_t len, krb5_data *result) { return krb5_decrypt_ivec (context, crypto, usage, data, len, result, NULL); } krb5_error_code KRB5_LIB_FUNCTION krb5_decrypt_EncryptedData(krb5_context context, krb5_crypto crypto, unsigned usage, const EncryptedData *e, krb5_data *result) { return krb5_decrypt(context, crypto, usage, e->cipher.data, e->cipher.length, result); } /************************************************************ * * ************************************************************/ #define ENTROPY_NEEDED 128 static int seed_something(void) { char buf[1024], seedfile[256]; /* If there is a seed file, load it. But such a file cannot be trusted, so use 0 for the entropy estimate */ if (RAND_file_name(seedfile, sizeof(seedfile))) { int fd; fd = open(seedfile, O_RDONLY); if (fd >= 0) { ssize_t ret; ret = read(fd, buf, sizeof(buf)); if (ret > 0) RAND_add(buf, ret, 0.0); close(fd); } else seedfile[0] = '\0'; } else seedfile[0] = '\0'; /* Calling RAND_status() will try to use /dev/urandom if it exists so we do not have to deal with it. */ if (RAND_status() != 1) { krb5_context context; const char *p; /* Try using egd */ if (!krb5_init_context(&context)) { p = krb5_config_get_string(context, NULL, "libdefaults", "egd_socket", NULL); if (p != NULL) RAND_egd_bytes(p, ENTROPY_NEEDED); krb5_free_context(context); } } if (RAND_status() == 1) { /* Update the seed file */ if (seedfile[0]) RAND_write_file(seedfile); return 0; } else return -1; } void KRB5_LIB_FUNCTION krb5_generate_random_block(void *buf, size_t len) { static int rng_initialized = 0; HEIMDAL_MUTEX_lock(&crypto_mutex); if (!rng_initialized) { if (seed_something()) krb5_abortx(NULL, "Fatal: could not seed the " "random number generator"); rng_initialized = 1; } HEIMDAL_MUTEX_unlock(&crypto_mutex); if (RAND_bytes(buf, len) != 1) krb5_abortx(NULL, "Failed to generate random block"); } static void DES3_postproc(krb5_context context, unsigned char *k, size_t len, struct key_data *key) { DES3_random_to_key(context, key->key, k, len); if (key->schedule) { krb5_free_data(context, key->schedule); key->schedule = NULL; } } static krb5_error_code derive_key(krb5_context context, struct encryption_type *et, struct key_data *key, const void *constant, size_t len) { unsigned char *k; unsigned int nblocks = 0, i; krb5_error_code ret = 0; struct key_type *kt = et->keytype; ret = _key_schedule(context, key); if(ret) return ret; if(et->blocksize * 8 < kt->bits || len != et->blocksize) { nblocks = (kt->bits + et->blocksize * 8 - 1) / (et->blocksize * 8); k = malloc(nblocks * et->blocksize); if(k == NULL) { krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } ret = _krb5_n_fold(constant, len, k, et->blocksize); if (ret) { free(k); krb5_set_error_string(context, "out of memory"); return ret; } for(i = 0; i < nblocks; i++) { if(i > 0) memcpy(k + i * et->blocksize, k + (i - 1) * et->blocksize, et->blocksize); (*et->encrypt)(context, key, k + i * et->blocksize, et->blocksize, 1, 0, NULL); } } else { /* this case is probably broken, but won't be run anyway */ void *c = malloc(len); size_t res_len = (kt->bits + 7) / 8; if(len != 0 && c == NULL) { krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } memcpy(c, constant, len); (*et->encrypt)(context, key, c, len, 1, 0, NULL); k = malloc(res_len); if(res_len != 0 && k == NULL) { free(c); krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } ret = _krb5_n_fold(c, len, k, res_len); if (ret) { free(k); krb5_set_error_string(context, "out of memory"); return ret; } free(c); } /* XXX keytype dependent post-processing */ switch(kt->type) { case KEYTYPE_DES3: DES3_postproc(context, k, nblocks * et->blocksize, key); break; case KEYTYPE_AES128: case KEYTYPE_AES256: memcpy(key->key->keyvalue.data, k, key->key->keyvalue.length); break; default: krb5_set_error_string(context, "derive_key() called with unknown keytype (%u)", kt->type); ret = KRB5_CRYPTO_INTERNAL; break; } if (key->schedule) { krb5_free_data(context, key->schedule); key->schedule = NULL; } memset(k, 0, nblocks * et->blocksize); free(k); return ret; } static struct key_data * _new_derived_key(krb5_crypto crypto, unsigned usage) { struct key_usage *d = crypto->key_usage; d = realloc(d, (crypto->num_key_usage + 1) * sizeof(*d)); if(d == NULL) return NULL; crypto->key_usage = d; d += crypto->num_key_usage++; memset(d, 0, sizeof(*d)); d->usage = usage; return &d->key; } krb5_error_code KRB5_LIB_FUNCTION krb5_derive_key(krb5_context context, const krb5_keyblock *key, krb5_enctype etype, const void *constant, size_t constant_len, krb5_keyblock **derived_key) { krb5_error_code ret; struct encryption_type *et; struct key_data d; *derived_key = NULL; et = _find_enctype (etype); if (et == NULL) { krb5_set_error_string(context, "encryption type %d not supported", etype); return KRB5_PROG_ETYPE_NOSUPP; } ret = krb5_copy_keyblock(context, key, &d.key); if (ret) return ret; d.schedule = NULL; ret = derive_key(context, et, &d, constant, constant_len); if (ret == 0) ret = krb5_copy_keyblock(context, d.key, derived_key); free_key_data(context, &d); return ret; } static krb5_error_code _get_derived_key(krb5_context context, krb5_crypto crypto, unsigned usage, struct key_data **key) { int i; struct key_data *d; unsigned char constant[5]; for(i = 0; i < crypto->num_key_usage; i++) if(crypto->key_usage[i].usage == usage) { *key = &crypto->key_usage[i].key; return 0; } d = _new_derived_key(crypto, usage); if(d == NULL) { krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } krb5_copy_keyblock(context, crypto->key.key, &d->key); _krb5_put_int(constant, usage, 5); derive_key(context, crypto->et, d, constant, sizeof(constant)); *key = d; return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_crypto_init(krb5_context context, const krb5_keyblock *key, krb5_enctype etype, krb5_crypto *crypto) { krb5_error_code ret; ALLOC(*crypto, 1); if(*crypto == NULL) { krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } if(etype == ETYPE_NULL) etype = key->keytype; (*crypto)->et = _find_enctype(etype); if((*crypto)->et == NULL || ((*crypto)->et->flags & F_DISABLED)) { free(*crypto); *crypto = NULL; krb5_set_error_string (context, "encryption type %d not supported", etype); return KRB5_PROG_ETYPE_NOSUPP; } if((*crypto)->et->keytype->size != key->keyvalue.length) { free(*crypto); *crypto = NULL; krb5_set_error_string (context, "encryption key has bad length"); return KRB5_BAD_KEYSIZE; } ret = krb5_copy_keyblock(context, key, &(*crypto)->key.key); if(ret) { free(*crypto); *crypto = NULL; return ret; } (*crypto)->key.schedule = NULL; (*crypto)->num_key_usage = 0; (*crypto)->key_usage = NULL; return 0; } static void free_key_data(krb5_context context, struct key_data *key) { krb5_free_keyblock(context, key->key); if(key->schedule) { memset(key->schedule->data, 0, key->schedule->length); krb5_free_data(context, key->schedule); } } static void free_key_usage(krb5_context context, struct key_usage *ku) { free_key_data(context, &ku->key); } krb5_error_code KRB5_LIB_FUNCTION krb5_crypto_destroy(krb5_context context, krb5_crypto crypto) { int i; for(i = 0; i < crypto->num_key_usage; i++) free_key_usage(context, &crypto->key_usage[i]); free(crypto->key_usage); free_key_data(context, &crypto->key); free (crypto); return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_crypto_getblocksize(krb5_context context, krb5_crypto crypto, size_t *blocksize) { *blocksize = crypto->et->blocksize; return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_crypto_getenctype(krb5_context context, krb5_crypto crypto, krb5_enctype *enctype) { *enctype = crypto->et->type; return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_crypto_getpadsize(krb5_context context, krb5_crypto crypto, size_t *padsize) { *padsize = crypto->et->padsize; return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_crypto_getconfoundersize(krb5_context context, krb5_crypto crypto, size_t *confoundersize) { *confoundersize = crypto->et->confoundersize; return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_enctype_disable(krb5_context context, krb5_enctype enctype) { struct encryption_type *et = _find_enctype(enctype); if(et == NULL) { if (context) krb5_set_error_string (context, "encryption type %d not supported", enctype); return KRB5_PROG_ETYPE_NOSUPP; } et->flags |= F_DISABLED; return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_string_to_key_derived(krb5_context context, const void *str, size_t len, krb5_enctype etype, krb5_keyblock *key) { struct encryption_type *et = _find_enctype(etype); krb5_error_code ret; struct key_data kd; size_t keylen; u_char *tmp; if(et == NULL) { krb5_set_error_string (context, "encryption type %d not supported", etype); return KRB5_PROG_ETYPE_NOSUPP; } keylen = et->keytype->bits / 8; ALLOC(kd.key, 1); if(kd.key == NULL) { krb5_set_error_string (context, "malloc: out of memory"); return ENOMEM; } ret = krb5_data_alloc(&kd.key->keyvalue, et->keytype->size); if(ret) { free(kd.key); return ret; } kd.key->keytype = etype; tmp = malloc (keylen); if(tmp == NULL) { krb5_free_keyblock(context, kd.key); krb5_set_error_string (context, "malloc: out of memory"); return ENOMEM; } ret = _krb5_n_fold(str, len, tmp, keylen); if (ret) { free(tmp); krb5_set_error_string(context, "out of memory"); return ret; } kd.schedule = NULL; DES3_postproc (context, tmp, keylen, &kd); /* XXX */ memset(tmp, 0, keylen); free(tmp); ret = derive_key(context, et, &kd, "kerberos", /* XXX well known constant */ strlen("kerberos")); ret = krb5_copy_keyblock_contents(context, kd.key, key); free_key_data(context, &kd); return ret; } static size_t wrapped_length (krb5_context context, krb5_crypto crypto, size_t data_len) { struct encryption_type *et = crypto->et; size_t padsize = et->padsize; size_t checksumsize = CHECKSUMSIZE(et->checksum); size_t res; res = et->confoundersize + checksumsize + data_len; res = (res + padsize - 1) / padsize * padsize; return res; } static size_t wrapped_length_dervied (krb5_context context, krb5_crypto crypto, size_t data_len) { struct encryption_type *et = crypto->et; size_t padsize = et->padsize; size_t res; res = et->confoundersize + data_len; res = (res + padsize - 1) / padsize * padsize; if (et->keyed_checksum) res += et->keyed_checksum->checksumsize; else res += et->checksum->checksumsize; return res; } /* * Return the size of an encrypted packet of length `data_len' */ size_t krb5_get_wrapped_length (krb5_context context, krb5_crypto crypto, size_t data_len) { if (derived_crypto (context, crypto)) return wrapped_length_dervied (context, crypto, data_len); else return wrapped_length (context, crypto, data_len); } /* * Return the size of an encrypted packet of length `data_len' */ static size_t crypto_overhead (krb5_context context, krb5_crypto crypto) { struct encryption_type *et = crypto->et; size_t res; res = CHECKSUMSIZE(et->checksum); res += et->confoundersize; if (et->padsize > 1) res += et->padsize; return res; } static size_t crypto_overhead_dervied (krb5_context context, krb5_crypto crypto) { struct encryption_type *et = crypto->et; size_t res; if (et->keyed_checksum) res = CHECKSUMSIZE(et->keyed_checksum); else res = CHECKSUMSIZE(et->checksum); res += et->confoundersize; if (et->padsize > 1) res += et->padsize; return res; } size_t krb5_crypto_overhead (krb5_context context, krb5_crypto crypto) { if (derived_crypto (context, crypto)) return crypto_overhead_dervied (context, crypto); else return crypto_overhead (context, crypto); } krb5_error_code KRB5_LIB_FUNCTION krb5_random_to_key(krb5_context context, krb5_enctype type, const void *data, size_t size, krb5_keyblock *key) { krb5_error_code ret; struct encryption_type *et = _find_enctype(type); if(et == NULL) { krb5_set_error_string(context, "encryption type %d not supported", type); return KRB5_PROG_ETYPE_NOSUPP; } if ((et->keytype->bits + 7) / 8 > size) { krb5_set_error_string(context, "encryption key %s needs %d bytes " "of random to make an encryption key out of it", et->name, (int)et->keytype->size); return KRB5_PROG_ETYPE_NOSUPP; } ret = krb5_data_alloc(&key->keyvalue, et->keytype->size); if(ret) return ret; key->keytype = type; if (et->keytype->random_to_key) (*et->keytype->random_to_key)(context, key, data, size); else memcpy(key->keyvalue.data, data, et->keytype->size); return 0; } krb5_error_code _krb5_pk_octetstring2key(krb5_context context, krb5_enctype type, const void *dhdata, size_t dhsize, const heim_octet_string *c_n, const heim_octet_string *k_n, krb5_keyblock *key) { struct encryption_type *et = _find_enctype(type); krb5_error_code ret; size_t keylen, offset; void *keydata; unsigned char counter; unsigned char shaoutput[20]; if(et == NULL) { krb5_set_error_string(context, "encryption type %d not supported", type); return KRB5_PROG_ETYPE_NOSUPP; } keylen = (et->keytype->bits + 7) / 8; keydata = malloc(keylen); if (keydata == NULL) { krb5_set_error_string(context, "malloc: out of memory"); return ENOMEM; } counter = 0; offset = 0; do { SHA_CTX m; SHA1_Init(&m); SHA1_Update(&m, &counter, 1); SHA1_Update(&m, dhdata, dhsize); if (c_n) SHA1_Update(&m, c_n->data, c_n->length); if (k_n) SHA1_Update(&m, k_n->data, k_n->length); SHA1_Final(shaoutput, &m); memcpy((unsigned char *)keydata + offset, shaoutput, min(keylen - offset, sizeof(shaoutput))); offset += sizeof(shaoutput); counter++; } while(offset < keylen); memset(shaoutput, 0, sizeof(shaoutput)); ret = krb5_random_to_key(context, type, keydata, keylen, key); memset(keydata, 0, sizeof(keylen)); free(keydata); return ret; } krb5_error_code KRB5_LIB_FUNCTION krb5_crypto_prf_length(krb5_context context, krb5_enctype type, size_t *length) { struct encryption_type *et = _find_enctype(type); if(et == NULL || et->prf_length == 0) { krb5_set_error_string(context, "encryption type %d not supported", type); return KRB5_PROG_ETYPE_NOSUPP; } *length = et->prf_length; return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_crypto_prf(krb5_context context, const krb5_crypto crypto, const krb5_data *input, krb5_data *output) { struct encryption_type *et = crypto->et; krb5_data_zero(output); if(et->prf == NULL) { krb5_set_error_string(context, "kerberos prf for %s not supported", et->name); return KRB5_PROG_ETYPE_NOSUPP; } return (*et->prf)(context, crypto, input, output); } #ifdef CRYPTO_DEBUG static krb5_error_code krb5_get_keyid(krb5_context context, krb5_keyblock *key, uint32_t *keyid) { MD5_CTX md5; unsigned char tmp[16]; MD5_Init (&md5); MD5_Update (&md5, key->keyvalue.data, key->keyvalue.length); MD5_Final (tmp, &md5); *keyid = (tmp[12] << 24) | (tmp[13] << 16) | (tmp[14] << 8) | tmp[15]; return 0; } static void krb5_crypto_debug(krb5_context context, int encryptp, size_t len, krb5_keyblock *key) { uint32_t keyid; char *kt; krb5_get_keyid(context, key, &keyid); krb5_enctype_to_string(context, key->keytype, &kt); krb5_warnx(context, "%s %lu bytes with key-id %#x (%s)", encryptp ? "encrypting" : "decrypting", (unsigned long)len, keyid, kt); free(kt); } #endif /* CRYPTO_DEBUG */ #if 0 int main() { #if 0 int i; krb5_context context; krb5_crypto crypto; struct key_data *d; krb5_keyblock key; char constant[4]; unsigned usage = ENCRYPTION_USAGE(3); krb5_error_code ret; ret = krb5_init_context(&context); if (ret) errx (1, "krb5_init_context failed: %d", ret); key.keytype = ETYPE_NEW_DES3_CBC_SHA1; key.keyvalue.data = "\xb3\x85\x58\x94\xd9\xdc\x7c\xc8" "\x25\xe9\x85\xab\x3e\xb5\xfb\x0e" "\xc8\xdf\xab\x26\x86\x64\x15\x25"; key.keyvalue.length = 24; krb5_crypto_init(context, &key, 0, &crypto); d = _new_derived_key(crypto, usage); if(d == NULL) krb5_errx(context, 1, "_new_derived_key failed"); krb5_copy_keyblock(context, crypto->key.key, &d->key); _krb5_put_int(constant, usage, 4); derive_key(context, crypto->et, d, constant, sizeof(constant)); return 0; #else int i; krb5_context context; krb5_crypto crypto; struct key_data *d; krb5_keyblock key; krb5_error_code ret; Checksum res; char *data = "what do ya want for nothing?"; ret = krb5_init_context(&context); if (ret) errx (1, "krb5_init_context failed: %d", ret); key.keytype = ETYPE_NEW_DES3_CBC_SHA1; key.keyvalue.data = "Jefe"; /* "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"; */ key.keyvalue.length = 4; d = ecalloc(1, sizeof(*d)); d->key = &key; res.checksum.length = 20; res.checksum.data = emalloc(res.checksum.length); SP_HMAC_SHA1_checksum(context, d, data, 28, &res); return 0; #endif } #endif