//===--- Diagnostic.h - C Language Family Diagnostic Handling ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the Diagnostic-related interfaces. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_DIAGNOSTIC_H #define LLVM_CLANG_DIAGNOSTIC_H #include "clang/Basic/SourceLocation.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/type_traits.h" #include #include #include namespace llvm { template class SmallVectorImpl; } namespace clang { class DeclContext; class DiagnosticBuilder; class DiagnosticClient; class IdentifierInfo; class LangOptions; class PartialDiagnostic; class SourceRange; // Import the diagnostic enums themselves. namespace diag { // Start position for diagnostics. enum { DIAG_START_DRIVER = 300, DIAG_START_FRONTEND = DIAG_START_DRIVER + 100, DIAG_START_LEX = DIAG_START_FRONTEND + 100, DIAG_START_PARSE = DIAG_START_LEX + 300, DIAG_START_AST = DIAG_START_PARSE + 300, DIAG_START_SEMA = DIAG_START_AST + 100, DIAG_START_ANALYSIS = DIAG_START_SEMA + 1100, DIAG_UPPER_LIMIT = DIAG_START_ANALYSIS + 100 }; class CustomDiagInfo; /// diag::kind - All of the diagnostics that can be emitted by the frontend. typedef unsigned kind; // Get typedefs for common diagnostics. enum { #define DIAG(ENUM,FLAGS,DEFAULT_MAPPING,DESC,GROUP,SFINAE) ENUM, #include "clang/Basic/DiagnosticCommonKinds.inc" NUM_BUILTIN_COMMON_DIAGNOSTICS #undef DIAG }; /// Enum values that allow the client to map NOTEs, WARNINGs, and EXTENSIONs /// to either MAP_IGNORE (nothing), MAP_WARNING (emit a warning), MAP_ERROR /// (emit as an error). It allows clients to map errors to /// MAP_ERROR/MAP_DEFAULT or MAP_FATAL (stop emitting diagnostics after this /// one). enum Mapping { // NOTE: 0 means "uncomputed". MAP_IGNORE = 1, //< Map this diagnostic to nothing, ignore it. MAP_WARNING = 2, //< Map this diagnostic to a warning. MAP_ERROR = 3, //< Map this diagnostic to an error. MAP_FATAL = 4, //< Map this diagnostic to a fatal error. /// Map this diagnostic to "warning", but make it immune to -Werror. This /// happens when you specify -Wno-error=foo. MAP_WARNING_NO_WERROR = 5 }; } /// \brief Annotates a diagnostic with some code that should be /// inserted, removed, or replaced to fix the problem. /// /// This kind of hint should be used when we are certain that the /// introduction, removal, or modification of a particular (small!) /// amount of code will correct a compilation error. The compiler /// should also provide full recovery from such errors, such that /// suppressing the diagnostic output can still result in successful /// compilation. class CodeModificationHint { public: /// \brief Tokens that should be removed to correct the error. SourceRange RemoveRange; /// \brief The location at which we should insert code to correct /// the error. SourceLocation InsertionLoc; /// \brief The actual code to insert at the insertion location, as a /// string. std::string CodeToInsert; /// \brief Empty code modification hint, indicating that no code /// modification is known. CodeModificationHint() : RemoveRange(), InsertionLoc() { } /// \brief Create a code modification hint that inserts the given /// code string at a specific location. static CodeModificationHint CreateInsertion(SourceLocation InsertionLoc, llvm::StringRef Code) { CodeModificationHint Hint; Hint.InsertionLoc = InsertionLoc; Hint.CodeToInsert = Code; return Hint; } /// \brief Create a code modification hint that removes the given /// source range. static CodeModificationHint CreateRemoval(SourceRange RemoveRange) { CodeModificationHint Hint; Hint.RemoveRange = RemoveRange; return Hint; } /// \brief Create a code modification hint that replaces the given /// source range with the given code string. static CodeModificationHint CreateReplacement(SourceRange RemoveRange, llvm::StringRef Code) { CodeModificationHint Hint; Hint.RemoveRange = RemoveRange; Hint.InsertionLoc = RemoveRange.getBegin(); Hint.CodeToInsert = Code; return Hint; } }; /// Diagnostic - This concrete class is used by the front-end to report /// problems and issues. It massages the diagnostics (e.g. handling things like /// "report warnings as errors" and passes them off to the DiagnosticClient for /// reporting to the user. class Diagnostic { public: /// Level - The level of the diagnostic, after it has been through mapping. enum Level { Ignored, Note, Warning, Error, Fatal }; /// ExtensionHandling - How do we handle otherwise-unmapped extension? This /// is controlled by -pedantic and -pedantic-errors. enum ExtensionHandling { Ext_Ignore, Ext_Warn, Ext_Error }; enum ArgumentKind { ak_std_string, // std::string ak_c_string, // const char * ak_sint, // int ak_uint, // unsigned ak_identifierinfo, // IdentifierInfo ak_qualtype, // QualType ak_declarationname, // DeclarationName ak_nameddecl, // NamedDecl * ak_nestednamespec, // NestedNameSpecifier * ak_declcontext // DeclContext * }; /// ArgumentValue - This typedef represents on argument value, which is a /// union discriminated by ArgumentKind, with a value. typedef std::pair ArgumentValue; private: unsigned char AllExtensionsSilenced; // Used by __extension__ bool IgnoreAllWarnings; // Ignore all warnings: -w bool WarningsAsErrors; // Treat warnings like errors: bool SuppressSystemWarnings; // Suppress warnings in system headers. bool SuppressAllDiagnostics; // Suppress all diagnostics. ExtensionHandling ExtBehavior; // Map extensions onto warnings or errors? DiagnosticClient *Client; /// DiagMappings - Mapping information for diagnostics. Mapping info is /// packed into four bits per diagnostic. The low three bits are the mapping /// (an instance of diag::Mapping), or zero if unset. The high bit is set /// when the mapping was established as a user mapping. If the high bit is /// clear, then the low bits are set to the default value, and should be /// mapped with -pedantic, -Werror, etc. typedef std::vector DiagMappings; mutable std::vector DiagMappingsStack; /// ErrorOccurred / FatalErrorOccurred - This is set to true when an error or /// fatal error is emitted, and is sticky. bool ErrorOccurred; bool FatalErrorOccurred; /// LastDiagLevel - This is the level of the last diagnostic emitted. This is /// used to emit continuation diagnostics with the same level as the /// diagnostic that they follow. Diagnostic::Level LastDiagLevel; unsigned NumDiagnostics; // Number of diagnostics reported unsigned NumErrors; // Number of diagnostics that are errors /// CustomDiagInfo - Information for uniquing and looking up custom diags. diag::CustomDiagInfo *CustomDiagInfo; /// ArgToStringFn - A function pointer that converts an opaque diagnostic /// argument to a strings. This takes the modifiers and argument that was /// present in the diagnostic. /// /// The PrevArgs array (whose length is NumPrevArgs) indicates the previous /// arguments formatted for this diagnostic. Implementations of this function /// can use this information to avoid redundancy across arguments. /// /// This is a hack to avoid a layering violation between libbasic and libsema. typedef void (*ArgToStringFnTy)(ArgumentKind Kind, intptr_t Val, const char *Modifier, unsigned ModifierLen, const char *Argument, unsigned ArgumentLen, const ArgumentValue *PrevArgs, unsigned NumPrevArgs, llvm::SmallVectorImpl &Output, void *Cookie); void *ArgToStringCookie; ArgToStringFnTy ArgToStringFn; public: explicit Diagnostic(DiagnosticClient *client = 0); ~Diagnostic(); //===--------------------------------------------------------------------===// // Diagnostic characterization methods, used by a client to customize how // DiagnosticClient *getClient() { return Client; }; const DiagnosticClient *getClient() const { return Client; }; /// pushMappings - Copies the current DiagMappings and pushes the new copy /// onto the top of the stack. void pushMappings(); /// popMappings - Pops the current DiagMappings off the top of the stack /// causing the new top of the stack to be the active mappings. Returns /// true if the pop happens, false if there is only one DiagMapping on the /// stack. bool popMappings(); void setClient(DiagnosticClient* client) { Client = client; } /// setIgnoreAllWarnings - When set to true, any unmapped warnings are /// ignored. If this and WarningsAsErrors are both set, then this one wins. void setIgnoreAllWarnings(bool Val) { IgnoreAllWarnings = Val; } bool getIgnoreAllWarnings() const { return IgnoreAllWarnings; } /// setWarningsAsErrors - When set to true, any warnings reported are issued /// as errors. void setWarningsAsErrors(bool Val) { WarningsAsErrors = Val; } bool getWarningsAsErrors() const { return WarningsAsErrors; } /// setSuppressSystemWarnings - When set to true mask warnings that /// come from system headers. void setSuppressSystemWarnings(bool Val) { SuppressSystemWarnings = Val; } bool getSuppressSystemWarnings() const { return SuppressSystemWarnings; } /// \brief Suppress all diagnostics, to silence the front end when we /// know that we don't want any more diagnostics to be passed along to the /// client void setSuppressAllDiagnostics(bool Val = true) { SuppressAllDiagnostics = Val; } bool getSuppressAllDiagnostics() const { return SuppressAllDiagnostics; } /// \brief Pretend that the last diagnostic issued was ignored. This can /// be used by clients who suppress diagnostics themselves. void setLastDiagnosticIgnored() { LastDiagLevel = Ignored; } /// setExtensionHandlingBehavior - This controls whether otherwise-unmapped /// extension diagnostics are mapped onto ignore/warning/error. This /// corresponds to the GCC -pedantic and -pedantic-errors option. void setExtensionHandlingBehavior(ExtensionHandling H) { ExtBehavior = H; } /// AllExtensionsSilenced - This is a counter bumped when an __extension__ /// block is encountered. When non-zero, all extension diagnostics are /// entirely silenced, no matter how they are mapped. void IncrementAllExtensionsSilenced() { ++AllExtensionsSilenced; } void DecrementAllExtensionsSilenced() { --AllExtensionsSilenced; } bool hasAllExtensionsSilenced() { return AllExtensionsSilenced != 0; } /// setDiagnosticMapping - This allows the client to specify that certain /// warnings are ignored. Notes can never be mapped, errors can only be /// mapped to fatal, and WARNINGs and EXTENSIONs can be mapped arbitrarily. void setDiagnosticMapping(diag::kind Diag, diag::Mapping Map) { assert(Diag < diag::DIAG_UPPER_LIMIT && "Can only map builtin diagnostics"); assert((isBuiltinWarningOrExtension(Diag) || Map == diag::MAP_FATAL) && "Cannot map errors!"); setDiagnosticMappingInternal(Diag, Map, true); } /// setDiagnosticGroupMapping - Change an entire diagnostic group (e.g. /// "unknown-pragmas" to have the specified mapping. This returns true and /// ignores the request if "Group" was unknown, false otherwise. bool setDiagnosticGroupMapping(const char *Group, diag::Mapping Map); bool hasErrorOccurred() const { return ErrorOccurred; } bool hasFatalErrorOccurred() const { return FatalErrorOccurred; } unsigned getNumErrors() const { return NumErrors; } unsigned getNumDiagnostics() const { return NumDiagnostics; } /// getCustomDiagID - Return an ID for a diagnostic with the specified message /// and level. If this is the first request for this diagnosic, it is /// registered and created, otherwise the existing ID is returned. unsigned getCustomDiagID(Level L, const char *Message); /// ConvertArgToString - This method converts a diagnostic argument (as an /// intptr_t) into the string that represents it. void ConvertArgToString(ArgumentKind Kind, intptr_t Val, const char *Modifier, unsigned ModLen, const char *Argument, unsigned ArgLen, const ArgumentValue *PrevArgs, unsigned NumPrevArgs, llvm::SmallVectorImpl &Output) const { ArgToStringFn(Kind, Val, Modifier, ModLen, Argument, ArgLen, PrevArgs, NumPrevArgs, Output, ArgToStringCookie); } void SetArgToStringFn(ArgToStringFnTy Fn, void *Cookie) { ArgToStringFn = Fn; ArgToStringCookie = Cookie; } //===--------------------------------------------------------------------===// // Diagnostic classification and reporting interfaces. // /// getDescription - Given a diagnostic ID, return a description of the /// issue. const char *getDescription(unsigned DiagID) const; /// isNoteWarningOrExtension - Return true if the unmapped diagnostic /// level of the specified diagnostic ID is a Warning or Extension. /// This only works on builtin diagnostics, not custom ones, and is not legal to /// call on NOTEs. static bool isBuiltinWarningOrExtension(unsigned DiagID); /// \brief Determine whether the given built-in diagnostic ID is a /// Note. static bool isBuiltinNote(unsigned DiagID); /// isBuiltinExtensionDiag - Determine whether the given built-in diagnostic /// ID is for an extension of some sort. /// static bool isBuiltinExtensionDiag(unsigned DiagID); /// getWarningOptionForDiag - Return the lowest-level warning option that /// enables the specified diagnostic. If there is no -Wfoo flag that controls /// the diagnostic, this returns null. static const char *getWarningOptionForDiag(unsigned DiagID); /// \brief Determines whether the given built-in diagnostic ID is /// for an error that is suppressed if it occurs during C++ template /// argument deduction. /// /// When an error is suppressed due to SFINAE, the template argument /// deduction fails but no diagnostic is emitted. Certain classes of /// errors, such as those errors that involve C++ access control, /// are not SFINAE errors. static bool isBuiltinSFINAEDiag(unsigned DiagID); /// getDiagnosticLevel - Based on the way the client configured the Diagnostic /// object, classify the specified diagnostic ID into a Level, consumable by /// the DiagnosticClient. Level getDiagnosticLevel(unsigned DiagID) const; /// Report - Issue the message to the client. @c DiagID is a member of the /// @c diag::kind enum. This actually returns aninstance of DiagnosticBuilder /// which emits the diagnostics (through @c ProcessDiag) when it is destroyed. /// @c Pos represents the source location associated with the diagnostic, /// which can be an invalid location if no position information is available. inline DiagnosticBuilder Report(FullSourceLoc Pos, unsigned DiagID); /// \brief Clear out the current diagnostic. void Clear() { CurDiagID = ~0U; } private: /// getDiagnosticMappingInfo - Return the mapping info currently set for the /// specified builtin diagnostic. This returns the high bit encoding, or zero /// if the field is completely uninitialized. unsigned getDiagnosticMappingInfo(diag::kind Diag) const { const DiagMappings ¤tMappings = DiagMappingsStack.back(); return (diag::Mapping)((currentMappings[Diag/2] >> (Diag & 1)*4) & 15); } void setDiagnosticMappingInternal(unsigned DiagId, unsigned Map, bool isUser) const { if (isUser) Map |= 8; // Set the high bit for user mappings. unsigned char &Slot = DiagMappingsStack.back()[DiagId/2]; unsigned Shift = (DiagId & 1)*4; Slot &= ~(15 << Shift); Slot |= Map << Shift; } /// getDiagnosticLevel - This is an internal implementation helper used when /// DiagClass is already known. Level getDiagnosticLevel(unsigned DiagID, unsigned DiagClass) const; // This is private state used by DiagnosticBuilder. We put it here instead of // in DiagnosticBuilder in order to keep DiagnosticBuilder a small lightweight // object. This implementation choice means that we can only have one // diagnostic "in flight" at a time, but this seems to be a reasonable // tradeoff to keep these objects small. Assertions verify that only one // diagnostic is in flight at a time. friend class DiagnosticBuilder; friend class DiagnosticInfo; /// CurDiagLoc - This is the location of the current diagnostic that is in /// flight. FullSourceLoc CurDiagLoc; /// CurDiagID - This is the ID of the current diagnostic that is in flight. /// This is set to ~0U when there is no diagnostic in flight. unsigned CurDiagID; enum { /// MaxArguments - The maximum number of arguments we can hold. We currently /// only support up to 10 arguments (%0-%9). A single diagnostic with more /// than that almost certainly has to be simplified anyway. MaxArguments = 10 }; /// NumDiagArgs - This contains the number of entries in Arguments. signed char NumDiagArgs; /// NumRanges - This is the number of ranges in the DiagRanges array. unsigned char NumDiagRanges; /// \brief The number of code modifications hints in the /// CodeModificationHints array. unsigned char NumCodeModificationHints; /// DiagArgumentsKind - This is an array of ArgumentKind::ArgumentKind enum /// values, with one for each argument. This specifies whether the argument /// is in DiagArgumentsStr or in DiagArguments. unsigned char DiagArgumentsKind[MaxArguments]; /// DiagArgumentsStr - This holds the values of each string argument for the /// current diagnostic. This value is only used when the corresponding /// ArgumentKind is ak_std_string. std::string DiagArgumentsStr[MaxArguments]; /// DiagArgumentsVal - The values for the various substitution positions. This /// is used when the argument is not an std::string. The specific value is /// mangled into an intptr_t and the intepretation depends on exactly what /// sort of argument kind it is. intptr_t DiagArgumentsVal[MaxArguments]; /// DiagRanges - The list of ranges added to this diagnostic. It currently /// only support 10 ranges, could easily be extended if needed. const SourceRange *DiagRanges[10]; enum { MaxCodeModificationHints = 3 }; /// CodeModificationHints - If valid, provides a hint with some code /// to insert, remove, or modify at a particular position. CodeModificationHint CodeModificationHints[MaxCodeModificationHints]; /// ProcessDiag - This is the method used to report a diagnostic that is /// finally fully formed. /// /// \returns true if the diagnostic was emitted, false if it was /// suppressed. bool ProcessDiag(); }; //===----------------------------------------------------------------------===// // DiagnosticBuilder //===----------------------------------------------------------------------===// /// DiagnosticBuilder - This is a little helper class used to produce /// diagnostics. This is constructed by the Diagnostic::Report method, and /// allows insertion of extra information (arguments and source ranges) into the /// currently "in flight" diagnostic. When the temporary for the builder is /// destroyed, the diagnostic is issued. /// /// Note that many of these will be created as temporary objects (many call /// sites), so we want them to be small and we never want their address taken. /// This ensures that compilers with somewhat reasonable optimizers will promote /// the common fields to registers, eliminating increments of the NumArgs field, /// for example. class DiagnosticBuilder { mutable Diagnostic *DiagObj; mutable unsigned NumArgs, NumRanges, NumCodeModificationHints; void operator=(const DiagnosticBuilder&); // DO NOT IMPLEMENT friend class Diagnostic; explicit DiagnosticBuilder(Diagnostic *diagObj) : DiagObj(diagObj), NumArgs(0), NumRanges(0), NumCodeModificationHints(0) {} public: /// Copy constructor. When copied, this "takes" the diagnostic info from the /// input and neuters it. DiagnosticBuilder(const DiagnosticBuilder &D) { DiagObj = D.DiagObj; D.DiagObj = 0; NumArgs = D.NumArgs; NumRanges = D.NumRanges; NumCodeModificationHints = D.NumCodeModificationHints; } /// \brief Simple enumeration value used to give a name to the /// suppress-diagnostic constructor. enum SuppressKind { Suppress }; /// \brief Create an empty DiagnosticBuilder object that represents /// no actual diagnostic. explicit DiagnosticBuilder(SuppressKind) : DiagObj(0), NumArgs(0), NumRanges(0), NumCodeModificationHints(0) { } /// \brief Force the diagnostic builder to emit the diagnostic now. /// /// Once this function has been called, the DiagnosticBuilder object /// should not be used again before it is destroyed. /// /// \returns true if a diagnostic was emitted, false if the /// diagnostic was suppressed. bool Emit() { // If DiagObj is null, then its soul was stolen by the copy ctor // or the user called Emit(). if (DiagObj == 0) return false; // When emitting diagnostics, we set the final argument count into // the Diagnostic object. DiagObj->NumDiagArgs = NumArgs; DiagObj->NumDiagRanges = NumRanges; DiagObj->NumCodeModificationHints = NumCodeModificationHints; // Process the diagnostic, sending the accumulated information to the // DiagnosticClient. bool Emitted = DiagObj->ProcessDiag(); // Clear out the current diagnostic object. DiagObj->Clear(); // This diagnostic is dead. DiagObj = 0; return Emitted; } /// Destructor - The dtor emits the diagnostic if it hasn't already /// been emitted. ~DiagnosticBuilder() { Emit(); } /// Operator bool: conversion of DiagnosticBuilder to bool always returns /// true. This allows is to be used in boolean error contexts like: /// return Diag(...); operator bool() const { return true; } void AddString(llvm::StringRef S) const { assert(NumArgs < Diagnostic::MaxArguments && "Too many arguments to diagnostic!"); if (DiagObj) { DiagObj->DiagArgumentsKind[NumArgs] = Diagnostic::ak_std_string; DiagObj->DiagArgumentsStr[NumArgs++] = S; } } void AddTaggedVal(intptr_t V, Diagnostic::ArgumentKind Kind) const { assert(NumArgs < Diagnostic::MaxArguments && "Too many arguments to diagnostic!"); if (DiagObj) { DiagObj->DiagArgumentsKind[NumArgs] = Kind; DiagObj->DiagArgumentsVal[NumArgs++] = V; } } void AddSourceRange(const SourceRange &R) const { assert(NumRanges < sizeof(DiagObj->DiagRanges)/sizeof(DiagObj->DiagRanges[0]) && "Too many arguments to diagnostic!"); if (DiagObj) DiagObj->DiagRanges[NumRanges++] = &R; } void AddCodeModificationHint(const CodeModificationHint &Hint) const { assert(NumCodeModificationHints < Diagnostic::MaxCodeModificationHints && "Too many code modification hints!"); if (DiagObj) DiagObj->CodeModificationHints[NumCodeModificationHints++] = Hint; } }; inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, llvm::StringRef S) { DB.AddString(S); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, const char *Str) { DB.AddTaggedVal(reinterpret_cast(Str), Diagnostic::ak_c_string); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, int I) { DB.AddTaggedVal(I, Diagnostic::ak_sint); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,bool I) { DB.AddTaggedVal(I, Diagnostic::ak_sint); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, unsigned I) { DB.AddTaggedVal(I, Diagnostic::ak_uint); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, const IdentifierInfo *II) { DB.AddTaggedVal(reinterpret_cast(II), Diagnostic::ak_identifierinfo); return DB; } // Adds a DeclContext to the diagnostic. The enable_if template magic is here // so that we only match those arguments that are (statically) DeclContexts; // other arguments that derive from DeclContext (e.g., RecordDecls) will not // match. template inline typename llvm::enable_if, const DiagnosticBuilder &>::type operator<<(const DiagnosticBuilder &DB, T *DC) { DB.AddTaggedVal(reinterpret_cast(DC), Diagnostic::ak_declcontext); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, const SourceRange &R) { DB.AddSourceRange(R); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, const CodeModificationHint &Hint) { DB.AddCodeModificationHint(Hint); return DB; } /// Report - Issue the message to the client. DiagID is a member of the /// diag::kind enum. This actually returns a new instance of DiagnosticBuilder /// which emits the diagnostics (through ProcessDiag) when it is destroyed. inline DiagnosticBuilder Diagnostic::Report(FullSourceLoc Loc, unsigned DiagID){ assert(CurDiagID == ~0U && "Multiple diagnostics in flight at once!"); CurDiagLoc = Loc; CurDiagID = DiagID; return DiagnosticBuilder(this); } //===----------------------------------------------------------------------===// // DiagnosticInfo //===----------------------------------------------------------------------===// /// DiagnosticInfo - This is a little helper class (which is basically a smart /// pointer that forward info from Diagnostic) that allows clients to enquire /// about the currently in-flight diagnostic. class DiagnosticInfo { const Diagnostic *DiagObj; public: explicit DiagnosticInfo(const Diagnostic *DO) : DiagObj(DO) {} const Diagnostic *getDiags() const { return DiagObj; } unsigned getID() const { return DiagObj->CurDiagID; } const FullSourceLoc &getLocation() const { return DiagObj->CurDiagLoc; } unsigned getNumArgs() const { return DiagObj->NumDiagArgs; } /// getArgKind - Return the kind of the specified index. Based on the kind /// of argument, the accessors below can be used to get the value. Diagnostic::ArgumentKind getArgKind(unsigned Idx) const { assert(Idx < getNumArgs() && "Argument index out of range!"); return (Diagnostic::ArgumentKind)DiagObj->DiagArgumentsKind[Idx]; } /// getArgStdStr - Return the provided argument string specified by Idx. const std::string &getArgStdStr(unsigned Idx) const { assert(getArgKind(Idx) == Diagnostic::ak_std_string && "invalid argument accessor!"); return DiagObj->DiagArgumentsStr[Idx]; } /// getArgCStr - Return the specified C string argument. const char *getArgCStr(unsigned Idx) const { assert(getArgKind(Idx) == Diagnostic::ak_c_string && "invalid argument accessor!"); return reinterpret_cast(DiagObj->DiagArgumentsVal[Idx]); } /// getArgSInt - Return the specified signed integer argument. int getArgSInt(unsigned Idx) const { assert(getArgKind(Idx) == Diagnostic::ak_sint && "invalid argument accessor!"); return (int)DiagObj->DiagArgumentsVal[Idx]; } /// getArgUInt - Return the specified unsigned integer argument. unsigned getArgUInt(unsigned Idx) const { assert(getArgKind(Idx) == Diagnostic::ak_uint && "invalid argument accessor!"); return (unsigned)DiagObj->DiagArgumentsVal[Idx]; } /// getArgIdentifier - Return the specified IdentifierInfo argument. const IdentifierInfo *getArgIdentifier(unsigned Idx) const { assert(getArgKind(Idx) == Diagnostic::ak_identifierinfo && "invalid argument accessor!"); return reinterpret_cast(DiagObj->DiagArgumentsVal[Idx]); } /// getRawArg - Return the specified non-string argument in an opaque form. intptr_t getRawArg(unsigned Idx) const { assert(getArgKind(Idx) != Diagnostic::ak_std_string && "invalid argument accessor!"); return DiagObj->DiagArgumentsVal[Idx]; } /// getNumRanges - Return the number of source ranges associated with this /// diagnostic. unsigned getNumRanges() const { return DiagObj->NumDiagRanges; } const SourceRange &getRange(unsigned Idx) const { assert(Idx < DiagObj->NumDiagRanges && "Invalid diagnostic range index!"); return *DiagObj->DiagRanges[Idx]; } unsigned getNumCodeModificationHints() const { return DiagObj->NumCodeModificationHints; } const CodeModificationHint &getCodeModificationHint(unsigned Idx) const { return DiagObj->CodeModificationHints[Idx]; } const CodeModificationHint *getCodeModificationHints() const { return DiagObj->NumCodeModificationHints? &DiagObj->CodeModificationHints[0] : 0; } /// FormatDiagnostic - Format this diagnostic into a string, substituting the /// formal arguments into the %0 slots. The result is appended onto the Str /// array. void FormatDiagnostic(llvm::SmallVectorImpl &OutStr) const; }; /// DiagnosticClient - This is an abstract interface implemented by clients of /// the front-end, which formats and prints fully processed diagnostics. class DiagnosticClient { public: virtual ~DiagnosticClient(); /// setLangOptions - This is set by clients of diagnostics when they know the /// language parameters of the diagnostics that may be sent through. Note /// that this can change over time if a DiagClient has multiple languages sent /// through it. It may also be set to null (e.g. when processing command line /// options). virtual void setLangOptions(const LangOptions *LO) {} /// IncludeInDiagnosticCounts - This method (whose default implementation /// returns true) indicates whether the diagnostics handled by this /// DiagnosticClient should be included in the number of diagnostics /// reported by Diagnostic. virtual bool IncludeInDiagnosticCounts() const; /// HandleDiagnostic - Handle this diagnostic, reporting it to the user or /// capturing it to a log as needed. virtual void HandleDiagnostic(Diagnostic::Level DiagLevel, const DiagnosticInfo &Info) = 0; }; } // end namespace clang #endif