//===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the classes used to represent and build scalar expressions. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_EXPRESSIONS_H #define LLVM_ANALYSIS_SCALAREVOLUTION_EXPRESSIONS_H #include "llvm/Analysis/ScalarEvolution.h" namespace llvm { class ConstantInt; class ConstantRange; class DominatorTree; enum SCEVTypes { // These should be ordered in terms of increasing complexity to make the // folders simpler. scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr, scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr, scUnknown, scCouldNotCompute }; //===--------------------------------------------------------------------===// /// SCEVConstant - This class represents a constant integer value. /// class SCEVConstant : public SCEV { friend class ScalarEvolution; ConstantInt *V; explicit SCEVConstant(ConstantInt *v, const ScalarEvolution* p) : SCEV(scConstant, p), V(v) {} virtual ~SCEVConstant(); public: ConstantInt *getValue() const { return V; } virtual bool isLoopInvariant(const Loop *L) const { return true; } virtual bool hasComputableLoopEvolution(const Loop *L) const { return false; // Not loop variant } virtual const Type *getType() const; SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, const SCEVHandle &Conc, ScalarEvolution &SE) const { return this; } bool dominates(BasicBlock *BB, DominatorTree *DT) const { return true; } virtual void print(raw_ostream &OS) const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVConstant *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scConstant; } }; //===--------------------------------------------------------------------===// /// SCEVCastExpr - This is the base class for unary cast operator classes. /// class SCEVCastExpr : public SCEV { protected: SCEVHandle Op; const Type *Ty; SCEVCastExpr(unsigned SCEVTy, const SCEVHandle &op, const Type *ty, const ScalarEvolution* p); virtual ~SCEVCastExpr(); public: const SCEVHandle &getOperand() const { return Op; } virtual const Type *getType() const { return Ty; } virtual bool isLoopInvariant(const Loop *L) const { return Op->isLoopInvariant(L); } virtual bool hasComputableLoopEvolution(const Loop *L) const { return Op->hasComputableLoopEvolution(L); } virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVCastExpr *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scTruncate || S->getSCEVType() == scZeroExtend || S->getSCEVType() == scSignExtend; } }; //===--------------------------------------------------------------------===// /// SCEVTruncateExpr - This class represents a truncation of an integer value /// to a smaller integer value. /// class SCEVTruncateExpr : public SCEVCastExpr { friend class ScalarEvolution; SCEVTruncateExpr(const SCEVHandle &op, const Type *ty, const ScalarEvolution* p); virtual ~SCEVTruncateExpr(); public: SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, const SCEVHandle &Conc, ScalarEvolution &SE) const { SCEVHandle H = Op->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); if (H == Op) return this; return SE.getTruncateExpr(H, Ty); } virtual void print(raw_ostream &OS) const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVTruncateExpr *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scTruncate; } }; //===--------------------------------------------------------------------===// /// SCEVZeroExtendExpr - This class represents a zero extension of a small /// integer value to a larger integer value. /// class SCEVZeroExtendExpr : public SCEVCastExpr { friend class ScalarEvolution; SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty, const ScalarEvolution* p); virtual ~SCEVZeroExtendExpr(); public: SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, const SCEVHandle &Conc, ScalarEvolution &SE) const { SCEVHandle H = Op->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); if (H == Op) return this; return SE.getZeroExtendExpr(H, Ty); } virtual void print(raw_ostream &OS) const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVZeroExtendExpr *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scZeroExtend; } }; //===--------------------------------------------------------------------===// /// SCEVSignExtendExpr - This class represents a sign extension of a small /// integer value to a larger integer value. /// class SCEVSignExtendExpr : public SCEVCastExpr { friend class ScalarEvolution; SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty, const ScalarEvolution* p); virtual ~SCEVSignExtendExpr(); public: SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, const SCEVHandle &Conc, ScalarEvolution &SE) const { SCEVHandle H = Op->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); if (H == Op) return this; return SE.getSignExtendExpr(H, Ty); } virtual void print(raw_ostream &OS) const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVSignExtendExpr *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scSignExtend; } }; //===--------------------------------------------------------------------===// /// SCEVNAryExpr - This node is a base class providing common /// functionality for n'ary operators. /// class SCEVNAryExpr : public SCEV { protected: SmallVector Operands; SCEVNAryExpr(enum SCEVTypes T, const SmallVectorImpl &ops, const ScalarEvolution* p) : SCEV(T, p), Operands(ops.begin(), ops.end()) {} virtual ~SCEVNAryExpr() {} public: unsigned getNumOperands() const { return (unsigned)Operands.size(); } const SCEVHandle &getOperand(unsigned i) const { assert(i < Operands.size() && "Operand index out of range!"); return Operands[i]; } const SmallVectorImpl &getOperands() const { return Operands; } typedef SmallVectorImpl::const_iterator op_iterator; op_iterator op_begin() const { return Operands.begin(); } op_iterator op_end() const { return Operands.end(); } virtual bool isLoopInvariant(const Loop *L) const { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (!getOperand(i)->isLoopInvariant(L)) return false; return true; } // hasComputableLoopEvolution - N-ary expressions have computable loop // evolutions iff they have at least one operand that varies with the loop, // but that all varying operands are computable. virtual bool hasComputableLoopEvolution(const Loop *L) const { bool HasVarying = false; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (!getOperand(i)->isLoopInvariant(L)) { if (getOperand(i)->hasComputableLoopEvolution(L)) HasVarying = true; else return false; } return HasVarying; } bool dominates(BasicBlock *BB, DominatorTree *DT) const; virtual const Type *getType() const { return getOperand(0)->getType(); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVNAryExpr *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr || S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr || S->getSCEVType() == scAddRecExpr; } }; //===--------------------------------------------------------------------===// /// SCEVCommutativeExpr - This node is the base class for n'ary commutative /// operators. /// class SCEVCommutativeExpr : public SCEVNAryExpr { protected: SCEVCommutativeExpr(enum SCEVTypes T, const SmallVectorImpl &ops, const ScalarEvolution* p) : SCEVNAryExpr(T, ops, p) {} ~SCEVCommutativeExpr(); public: SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, const SCEVHandle &Conc, ScalarEvolution &SE) const; virtual const char *getOperationStr() const = 0; virtual void print(raw_ostream &OS) const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVCommutativeExpr *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr || S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr; } }; //===--------------------------------------------------------------------===// /// SCEVAddExpr - This node represents an addition of some number of SCEVs. /// class SCEVAddExpr : public SCEVCommutativeExpr { friend class ScalarEvolution; explicit SCEVAddExpr(const SmallVectorImpl &ops, const ScalarEvolution* p) : SCEVCommutativeExpr(scAddExpr, ops, p) { } public: virtual const char *getOperationStr() const { return " + "; } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVAddExpr *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scAddExpr; } }; //===--------------------------------------------------------------------===// /// SCEVMulExpr - This node represents multiplication of some number of SCEVs. /// class SCEVMulExpr : public SCEVCommutativeExpr { friend class ScalarEvolution; explicit SCEVMulExpr(const SmallVectorImpl &ops, const ScalarEvolution* p) : SCEVCommutativeExpr(scMulExpr, ops, p) { } public: virtual const char *getOperationStr() const { return " * "; } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVMulExpr *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scMulExpr; } }; //===--------------------------------------------------------------------===// /// SCEVUDivExpr - This class represents a binary unsigned division operation. /// class SCEVUDivExpr : public SCEV { friend class ScalarEvolution; SCEVHandle LHS, RHS; SCEVUDivExpr(const SCEVHandle &lhs, const SCEVHandle &rhs, const ScalarEvolution* p) : SCEV(scUDivExpr, p), LHS(lhs), RHS(rhs) {} virtual ~SCEVUDivExpr(); public: const SCEVHandle &getLHS() const { return LHS; } const SCEVHandle &getRHS() const { return RHS; } virtual bool isLoopInvariant(const Loop *L) const { return LHS->isLoopInvariant(L) && RHS->isLoopInvariant(L); } virtual bool hasComputableLoopEvolution(const Loop *L) const { return LHS->hasComputableLoopEvolution(L) && RHS->hasComputableLoopEvolution(L); } SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, const SCEVHandle &Conc, ScalarEvolution &SE) const { SCEVHandle L = LHS->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); SCEVHandle R = RHS->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); if (L == LHS && R == RHS) return this; else return SE.getUDivExpr(L, R); } bool dominates(BasicBlock *BB, DominatorTree *DT) const; virtual const Type *getType() const; void print(raw_ostream &OS) const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVUDivExpr *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scUDivExpr; } }; //===--------------------------------------------------------------------===// /// SCEVAddRecExpr - This node represents a polynomial recurrence on the trip /// count of the specified loop. This is the primary focus of the /// ScalarEvolution framework; all the other SCEV subclasses are mostly just /// supporting infrastructure to allow SCEVAddRecExpr expressions to be /// created and analyzed. /// /// All operands of an AddRec are required to be loop invariant. /// class SCEVAddRecExpr : public SCEVNAryExpr { friend class ScalarEvolution; const Loop *L; SCEVAddRecExpr(const SmallVectorImpl &ops, const Loop *l, const ScalarEvolution* p) : SCEVNAryExpr(scAddRecExpr, ops, p), L(l) { for (size_t i = 0, e = Operands.size(); i != e; ++i) assert(Operands[i]->isLoopInvariant(l) && "Operands of AddRec must be loop-invariant!"); } ~SCEVAddRecExpr(); public: const SCEVHandle &getStart() const { return Operands[0]; } const Loop *getLoop() const { return L; } /// getStepRecurrence - This method constructs and returns the recurrence /// indicating how much this expression steps by. If this is a polynomial /// of degree N, it returns a chrec of degree N-1. SCEVHandle getStepRecurrence(ScalarEvolution &SE) const { if (isAffine()) return getOperand(1); return SE.getAddRecExpr(SmallVector(op_begin()+1,op_end()), getLoop()); } virtual bool hasComputableLoopEvolution(const Loop *QL) const { if (L == QL) return true; return false; } virtual bool isLoopInvariant(const Loop *QueryLoop) const; /// isAffine - Return true if this is an affine AddRec (i.e., it represents /// an expressions A+B*x where A and B are loop invariant values. bool isAffine() const { // We know that the start value is invariant. This expression is thus // affine iff the step is also invariant. return getNumOperands() == 2; } /// isQuadratic - Return true if this is an quadratic AddRec (i.e., it /// represents an expressions A+B*x+C*x^2 where A, B and C are loop /// invariant values. This corresponds to an addrec of the form {L,+,M,+,N} bool isQuadratic() const { return getNumOperands() == 3; } /// evaluateAtIteration - Return the value of this chain of recurrences at /// the specified iteration number. SCEVHandle evaluateAtIteration(SCEVHandle It, ScalarEvolution &SE) const; /// getNumIterationsInRange - Return the number of iterations of this loop /// that produce values in the specified constant range. Another way of /// looking at this is that it returns the first iteration number where the /// value is not in the condition, thus computing the exit count. If the /// iteration count can't be computed, an instance of SCEVCouldNotCompute is /// returned. SCEVHandle getNumIterationsInRange(ConstantRange Range, ScalarEvolution &SE) const; SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, const SCEVHandle &Conc, ScalarEvolution &SE) const; virtual void print(raw_ostream &OS) const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVAddRecExpr *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scAddRecExpr; } }; //===--------------------------------------------------------------------===// /// SCEVSMaxExpr - This class represents a signed maximum selection. /// class SCEVSMaxExpr : public SCEVCommutativeExpr { friend class ScalarEvolution; explicit SCEVSMaxExpr(const SmallVectorImpl &ops, const ScalarEvolution* p) : SCEVCommutativeExpr(scSMaxExpr, ops, p) { } public: virtual const char *getOperationStr() const { return " smax "; } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVSMaxExpr *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scSMaxExpr; } }; //===--------------------------------------------------------------------===// /// SCEVUMaxExpr - This class represents an unsigned maximum selection. /// class SCEVUMaxExpr : public SCEVCommutativeExpr { friend class ScalarEvolution; explicit SCEVUMaxExpr(const SmallVectorImpl &ops, const ScalarEvolution* p) : SCEVCommutativeExpr(scUMaxExpr, ops, p) { } public: virtual const char *getOperationStr() const { return " umax "; } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVUMaxExpr *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scUMaxExpr; } }; //===--------------------------------------------------------------------===// /// SCEVUnknown - This means that we are dealing with an entirely unknown SCEV /// value, and only represent it as it's LLVM Value. This is the "bottom" /// value for the analysis. /// class SCEVUnknown : public SCEV { friend class ScalarEvolution; Value *V; explicit SCEVUnknown(Value *v, const ScalarEvolution* p) : SCEV(scUnknown, p), V(v) {} protected: ~SCEVUnknown(); public: Value *getValue() const { return V; } virtual bool isLoopInvariant(const Loop *L) const; virtual bool hasComputableLoopEvolution(const Loop *QL) const { return false; // not computable } SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, const SCEVHandle &Conc, ScalarEvolution &SE) const { if (&*Sym == this) return Conc; return this; } bool dominates(BasicBlock *BB, DominatorTree *DT) const; virtual const Type *getType() const; virtual void print(raw_ostream &OS) const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVUnknown *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scUnknown; } }; /// SCEVVisitor - This class defines a simple visitor class that may be used /// for various SCEV analysis purposes. template struct SCEVVisitor { RetVal visit(const SCEV *S) { switch (S->getSCEVType()) { case scConstant: return ((SC*)this)->visitConstant((const SCEVConstant*)S); case scTruncate: return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S); case scZeroExtend: return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S); case scSignExtend: return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S); case scAddExpr: return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S); case scMulExpr: return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S); case scUDivExpr: return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S); case scAddRecExpr: return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S); case scSMaxExpr: return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S); case scUMaxExpr: return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S); case scUnknown: return ((SC*)this)->visitUnknown((const SCEVUnknown*)S); case scCouldNotCompute: return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S); default: assert(0 && "Unknown SCEV type!"); abort(); } } RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) { assert(0 && "Invalid use of SCEVCouldNotCompute!"); abort(); return RetVal(); } }; } #endif