//===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements bookkeeping for "interesting" users of expressions // computed from induction variables. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "iv-users" #include "llvm/Analysis/IVUsers.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/Type.h" #include "llvm/DerivedTypes.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Assembly/AsmAnnotationWriter.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; char IVUsers::ID = 0; static RegisterPass X("iv-users", "Induction Variable Users", false, true); Pass *llvm::createIVUsersPass() { return new IVUsers(); } /// CollectSubexprs - Split S into subexpressions which can be pulled out into /// separate registers. static void CollectSubexprs(const SCEV *S, SmallVectorImpl &Ops, ScalarEvolution &SE) { if (const SCEVAddExpr *Add = dyn_cast(S)) { // Break out add operands. for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); I != E; ++I) CollectSubexprs(*I, Ops, SE); return; } else if (const SCEVAddRecExpr *AR = dyn_cast(S)) { // Split a non-zero base out of an addrec. if (!AR->getStart()->isZero()) { CollectSubexprs(AR->getStart(), Ops, SE); CollectSubexprs(SE.getAddRecExpr(SE.getIntegerSCEV(0, AR->getType()), AR->getStepRecurrence(SE), AR->getLoop()), Ops, SE); return; } } // Otherwise use the value itself. Ops.push_back(S); } /// getSCEVStartAndStride - Compute the start and stride of this expression, /// returning false if the expression is not a start/stride pair, or true if it /// is. The stride must be a loop invariant expression, but the start may be /// a mix of loop invariant and loop variant expressions. The start cannot, /// however, contain an AddRec from a different loop, unless that loop is an /// outer loop of the current loop. static bool getSCEVStartAndStride(const SCEV *&SH, Loop *L, Loop *UseLoop, const SCEV *&Start, const SCEV *&Stride, ScalarEvolution *SE, DominatorTree *DT) { const SCEV *TheAddRec = Start; // Initialize to zero. // If the outer level is an AddExpr, the operands are all start values except // for a nested AddRecExpr. if (const SCEVAddExpr *AE = dyn_cast(SH)) { for (unsigned i = 0, e = AE->getNumOperands(); i != e; ++i) if (const SCEVAddRecExpr *AddRec = dyn_cast(AE->getOperand(i))) TheAddRec = SE->getAddExpr(AddRec, TheAddRec); else Start = SE->getAddExpr(Start, AE->getOperand(i)); } else if (isa(SH)) { TheAddRec = SH; } else { return false; // not analyzable. } // Break down TheAddRec into its component parts. SmallVector Subexprs; CollectSubexprs(TheAddRec, Subexprs, *SE); // Look for an addrec on the current loop among the parts. const SCEV *AddRecStride = 0; for (SmallVectorImpl::iterator I = Subexprs.begin(), E = Subexprs.end(); I != E; ++I) { const SCEV *S = *I; if (const SCEVAddRecExpr *AR = dyn_cast(S)) if (AR->getLoop() == L) { *I = AR->getStart(); AddRecStride = AR->getStepRecurrence(*SE); break; } } if (!AddRecStride) return false; // Add up everything else into a start value (which may not be // loop-invariant). const SCEV *AddRecStart = SE->getAddExpr(Subexprs); // Use getSCEVAtScope to attempt to simplify other loops out of // the picture. AddRecStart = SE->getSCEVAtScope(AddRecStart, UseLoop); Start = SE->getAddExpr(Start, AddRecStart); // If stride is an instruction, make sure it properly dominates the header. // Otherwise we could end up with a use before def situation. if (!isa(AddRecStride)) { BasicBlock *Header = L->getHeader(); if (!AddRecStride->properlyDominates(Header, DT)) return false; DEBUG(dbgs() << "["; WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false); dbgs() << "] Variable stride: " << *AddRecStride << "\n"); } Stride = AddRecStride; return true; } /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression /// and now we need to decide whether the user should use the preinc or post-inc /// value. If this user should use the post-inc version of the IV, return true. /// /// Choosing wrong here can break dominance properties (if we choose to use the /// post-inc value when we cannot) or it can end up adding extra live-ranges to /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we /// should use the post-inc value). static bool IVUseShouldUsePostIncValue(Instruction *User, Instruction *IV, const Loop *L, DominatorTree *DT) { // If the user is in the loop, use the preinc value. if (L->contains(User)) return false; BasicBlock *LatchBlock = L->getLoopLatch(); if (!LatchBlock) return false; // Ok, the user is outside of the loop. If it is dominated by the latch // block, use the post-inc value. if (DT->dominates(LatchBlock, User->getParent())) return true; // There is one case we have to be careful of: PHI nodes. These little guys // can live in blocks that are not dominated by the latch block, but (since // their uses occur in the predecessor block, not the block the PHI lives in) // should still use the post-inc value. Check for this case now. PHINode *PN = dyn_cast(User); if (!PN) return false; // not a phi, not dominated by latch block. // Look at all of the uses of IV by the PHI node. If any use corresponds to // a block that is not dominated by the latch block, give up and use the // preincremented value. unsigned NumUses = 0; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == IV) { ++NumUses; if (!DT->dominates(LatchBlock, PN->getIncomingBlock(i))) return false; } // Okay, all uses of IV by PN are in predecessor blocks that really are // dominated by the latch block. Use the post-incremented value. return true; } /// AddUsersIfInteresting - Inspect the specified instruction. If it is a /// reducible SCEV, recursively add its users to the IVUsesByStride set and /// return true. Otherwise, return false. bool IVUsers::AddUsersIfInteresting(Instruction *I) { if (!SE->isSCEVable(I->getType())) return false; // Void and FP expressions cannot be reduced. // LSR is not APInt clean, do not touch integers bigger than 64-bits. if (SE->getTypeSizeInBits(I->getType()) > 64) return false; if (!Processed.insert(I)) return true; // Instruction already handled. // Get the symbolic expression for this instruction. const SCEV *ISE = SE->getSCEV(I); if (isa(ISE)) return false; // Get the start and stride for this expression. Loop *UseLoop = LI->getLoopFor(I->getParent()); const SCEV *Start = SE->getIntegerSCEV(0, ISE->getType()); const SCEV *Stride = Start; if (!getSCEVStartAndStride(ISE, L, UseLoop, Start, Stride, SE, DT)) return false; // Non-reducible symbolic expression, bail out. // Keep things simple. Don't touch loop-variant strides. if (!Stride->isLoopInvariant(L) && L->contains(I)) return false; SmallPtrSet UniqueUsers; for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) { Instruction *User = cast(*UI); if (!UniqueUsers.insert(User)) continue; // Do not infinitely recurse on PHI nodes. if (isa(User) && Processed.count(User)) continue; // Descend recursively, but not into PHI nodes outside the current loop. // It's important to see the entire expression outside the loop to get // choices that depend on addressing mode use right, although we won't // consider references outside the loop in all cases. // If User is already in Processed, we don't want to recurse into it again, // but do want to record a second reference in the same instruction. bool AddUserToIVUsers = false; if (LI->getLoopFor(User->getParent()) != L) { if (isa(User) || Processed.count(User) || !AddUsersIfInteresting(User)) { DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n' << " OF SCEV: " << *ISE << '\n'); AddUserToIVUsers = true; } } else if (Processed.count(User) || !AddUsersIfInteresting(User)) { DEBUG(dbgs() << "FOUND USER: " << *User << '\n' << " OF SCEV: " << *ISE << '\n'); AddUserToIVUsers = true; } if (AddUserToIVUsers) { // Okay, we found a user that we cannot reduce. Analyze the instruction // and decide what to do with it. If we are a use inside of the loop, use // the value before incrementation, otherwise use it after incrementation. if (IVUseShouldUsePostIncValue(User, I, L, DT)) { // The value used will be incremented by the stride more than we are // expecting, so subtract this off. const SCEV *NewStart = SE->getMinusSCEV(Start, Stride); IVUses.push_back(new IVStrideUse(this, Stride, NewStart, User, I)); IVUses.back().setIsUseOfPostIncrementedValue(true); DEBUG(dbgs() << " USING POSTINC SCEV, START=" << *NewStart<< "\n"); } else { IVUses.push_back(new IVStrideUse(this, Stride, Start, User, I)); } } } return true; } IVStrideUse &IVUsers::AddUser(const SCEV *Stride, const SCEV *Offset, Instruction *User, Value *Operand) { IVUses.push_back(new IVStrideUse(this, Stride, Offset, User, Operand)); return IVUses.back(); } IVUsers::IVUsers() : LoopPass(&ID) { } void IVUsers::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.setPreservesAll(); } bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) { L = l; LI = &getAnalysis(); DT = &getAnalysis(); SE = &getAnalysis(); // Find all uses of induction variables in this loop, and categorize // them by stride. Start by finding all of the PHI nodes in the header for // this loop. If they are induction variables, inspect their uses. for (BasicBlock::iterator I = L->getHeader()->begin(); isa(I); ++I) AddUsersIfInteresting(I); return false; } /// getReplacementExpr - Return a SCEV expression which computes the /// value of the OperandValToReplace of the given IVStrideUse. const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &U) const { // Start with zero. const SCEV *RetVal = SE->getIntegerSCEV(0, U.getStride()->getType()); // Create the basic add recurrence. RetVal = SE->getAddRecExpr(RetVal, U.getStride(), L); // Add the offset in a separate step, because it may be loop-variant. RetVal = SE->getAddExpr(RetVal, U.getOffset()); // For uses of post-incremented values, add an extra stride to compute // the actual replacement value. if (U.isUseOfPostIncrementedValue()) RetVal = SE->getAddExpr(RetVal, U.getStride()); return RetVal; } /// getCanonicalExpr - Return a SCEV expression which computes the /// value of the SCEV of the given IVStrideUse, ignoring the /// isUseOfPostIncrementedValue flag. const SCEV *IVUsers::getCanonicalExpr(const IVStrideUse &U) const { // Start with zero. const SCEV *RetVal = SE->getIntegerSCEV(0, U.getStride()->getType()); // Create the basic add recurrence. RetVal = SE->getAddRecExpr(RetVal, U.getStride(), L); // Add the offset in a separate step, because it may be loop-variant. RetVal = SE->getAddExpr(RetVal, U.getOffset()); return RetVal; } void IVUsers::print(raw_ostream &OS, const Module *M) const { OS << "IV Users for loop "; WriteAsOperand(OS, L->getHeader(), false); if (SE->hasLoopInvariantBackedgeTakenCount(L)) { OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L); } OS << ":\n"; // Use a default AssemblyAnnotationWriter to suppress the default info // comments, which aren't relevant here. AssemblyAnnotationWriter Annotator; for (ilist::const_iterator UI = IVUses.begin(), E = IVUses.end(); UI != E; ++UI) { OS << " "; WriteAsOperand(OS, UI->getOperandValToReplace(), false); OS << " = " << *getReplacementExpr(*UI); if (UI->isUseOfPostIncrementedValue()) OS << " (post-inc)"; OS << " in "; UI->getUser()->print(OS, &Annotator); OS << '\n'; } } void IVUsers::dump() const { print(dbgs()); } void IVUsers::releaseMemory() { Processed.clear(); IVUses.clear(); } void IVStrideUse::deleted() { // Remove this user from the list. Parent->IVUses.erase(this); // this now dangles! }