//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // These classes implement wrappers around llvm::Value in order to // fully represent the range of values for C L- and R- values. // //===----------------------------------------------------------------------===// #ifndef CLANG_CODEGEN_CGVALUE_H #define CLANG_CODEGEN_CGVALUE_H #include "clang/AST/Type.h" namespace llvm { class Constant; class Value; } namespace clang { class ObjCPropertyRefExpr; class ObjCImplicitSetterGetterRefExpr; namespace CodeGen { class CGBitFieldInfo; /// RValue - This trivial value class is used to represent the result of an /// expression that is evaluated. It can be one of three things: either a /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the /// address of an aggregate value in memory. class RValue { enum Flavor { Scalar, Complex, Aggregate }; // Stores first value and flavor. llvm::PointerIntPair V1; // Stores second value and volatility. llvm::PointerIntPair V2; public: bool isScalar() const { return V1.getInt() == Scalar; } bool isComplex() const { return V1.getInt() == Complex; } bool isAggregate() const { return V1.getInt() == Aggregate; } bool isVolatileQualified() const { return V2.getInt(); } /// getScalarVal() - Return the Value* of this scalar value. llvm::Value *getScalarVal() const { assert(isScalar() && "Not a scalar!"); return V1.getPointer(); } /// getComplexVal - Return the real/imag components of this complex value. /// std::pair getComplexVal() const { return std::make_pair(V1.getPointer(), V2.getPointer()); } /// getAggregateAddr() - Return the Value* of the address of the aggregate. llvm::Value *getAggregateAddr() const { assert(isAggregate() && "Not an aggregate!"); return V1.getPointer(); } static RValue get(llvm::Value *V) { RValue ER; ER.V1.setPointer(V); ER.V1.setInt(Scalar); ER.V2.setInt(false); return ER; } static RValue getComplex(llvm::Value *V1, llvm::Value *V2) { RValue ER; ER.V1.setPointer(V1); ER.V2.setPointer(V2); ER.V1.setInt(Complex); ER.V2.setInt(false); return ER; } static RValue getComplex(const std::pair &C) { return getComplex(C.first, C.second); } // FIXME: Aggregate rvalues need to retain information about whether they are // volatile or not. Remove default to find all places that probably get this // wrong. static RValue getAggregate(llvm::Value *V, bool Volatile = false) { RValue ER; ER.V1.setPointer(V); ER.V1.setInt(Aggregate); ER.V2.setInt(Volatile); return ER; } }; /// LValue - This represents an lvalue references. Because C/C++ allow /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a /// bitrange. class LValue { // FIXME: alignment? enum { Simple, // This is a normal l-value, use getAddress(). VectorElt, // This is a vector element l-value (V[i]), use getVector* BitField, // This is a bitfield l-value, use getBitfield*. ExtVectorElt, // This is an extended vector subset, use getExtVectorComp PropertyRef, // This is an Objective-C property reference, use // getPropertyRefExpr KVCRef // This is an objective-c 'implicit' property ref, // use getKVCRefExpr } LVType; llvm::Value *V; union { // Index into a vector subscript: V[i] llvm::Value *VectorIdx; // ExtVector element subset: V.xyx llvm::Constant *VectorElts; // BitField start bit and size const CGBitFieldInfo *BitFieldInfo; // Obj-C property reference expression const ObjCPropertyRefExpr *PropertyRefExpr; // ObjC 'implicit' property reference expression const ObjCImplicitSetterGetterRefExpr *KVCRefExpr; }; // 'const' is unused here Qualifiers Quals; // objective-c's ivar bool Ivar:1; // objective-c's ivar is an array bool ObjIsArray:1; // LValue is non-gc'able for any reason, including being a parameter or local // variable. bool NonGC: 1; // Lvalue is a global reference of an objective-c object bool GlobalObjCRef : 1; Expr *BaseIvarExp; private: void SetQualifiers(Qualifiers Quals) { this->Quals = Quals; // FIXME: Convenient place to set objc flags to 0. This should really be // done in a user-defined constructor instead. this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false; this->BaseIvarExp = 0; } public: bool isSimple() const { return LVType == Simple; } bool isVectorElt() const { return LVType == VectorElt; } bool isBitField() const { return LVType == BitField; } bool isExtVectorElt() const { return LVType == ExtVectorElt; } bool isPropertyRef() const { return LVType == PropertyRef; } bool isKVCRef() const { return LVType == KVCRef; } bool isVolatileQualified() const { return Quals.hasVolatile(); } bool isRestrictQualified() const { return Quals.hasRestrict(); } unsigned getVRQualifiers() const { return Quals.getCVRQualifiers() & ~Qualifiers::Const; } bool isObjCIvar() const { return Ivar; } bool isObjCArray() const { return ObjIsArray; } bool isNonGC () const { return NonGC; } bool isGlobalObjCRef() const { return GlobalObjCRef; } bool isObjCWeak() const { return Quals.getObjCGCAttr() == Qualifiers::Weak; } bool isObjCStrong() const { return Quals.getObjCGCAttr() == Qualifiers::Strong; } Expr *getBaseIvarExp() const { return BaseIvarExp; } void setBaseIvarExp(Expr *V) { BaseIvarExp = V; } unsigned getAddressSpace() const { return Quals.getAddressSpace(); } static void SetObjCIvar(LValue& R, bool iValue) { R.Ivar = iValue; } static void SetObjCArray(LValue& R, bool iValue) { R.ObjIsArray = iValue; } static void SetGlobalObjCRef(LValue& R, bool iValue) { R.GlobalObjCRef = iValue; } static void SetObjCNonGC(LValue& R, bool iValue) { R.NonGC = iValue; } // simple lvalue llvm::Value *getAddress() const { assert(isSimple()); return V; } // vector elt lvalue llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; } llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; } // extended vector elements. llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; } llvm::Constant *getExtVectorElts() const { assert(isExtVectorElt()); return VectorElts; } // bitfield lvalue llvm::Value *getBitFieldBaseAddr() const { assert(isBitField()); return V; } const CGBitFieldInfo &getBitFieldInfo() const { assert(isBitField()); return *BitFieldInfo; } // property ref lvalue const ObjCPropertyRefExpr *getPropertyRefExpr() const { assert(isPropertyRef()); return PropertyRefExpr; } // 'implicit' property ref lvalue const ObjCImplicitSetterGetterRefExpr *getKVCRefExpr() const { assert(isKVCRef()); return KVCRefExpr; } static LValue MakeAddr(llvm::Value *V, Qualifiers Quals) { LValue R; R.LVType = Simple; R.V = V; R.SetQualifiers(Quals); return R; } static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx, unsigned CVR) { LValue R; R.LVType = VectorElt; R.V = Vec; R.VectorIdx = Idx; R.SetQualifiers(Qualifiers::fromCVRMask(CVR)); return R; } static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts, unsigned CVR) { LValue R; R.LVType = ExtVectorElt; R.V = Vec; R.VectorElts = Elts; R.SetQualifiers(Qualifiers::fromCVRMask(CVR)); return R; } /// \brief Create a new object to represent a bit-field access. /// /// \param BaseValue - The base address of the structure containing the /// bit-field. /// \param Info - The information describing how to perform the bit-field /// access. static LValue MakeBitfield(llvm::Value *BaseValue, const CGBitFieldInfo &Info, unsigned CVR) { LValue R; R.LVType = BitField; R.V = BaseValue; R.BitFieldInfo = &Info; R.SetQualifiers(Qualifiers::fromCVRMask(CVR)); return R; } // FIXME: It is probably bad that we aren't emitting the target when we build // the lvalue. However, this complicates the code a bit, and I haven't figured // out how to make it go wrong yet. static LValue MakePropertyRef(const ObjCPropertyRefExpr *E, unsigned CVR) { LValue R; R.LVType = PropertyRef; R.PropertyRefExpr = E; R.SetQualifiers(Qualifiers::fromCVRMask(CVR)); return R; } static LValue MakeKVCRef(const ObjCImplicitSetterGetterRefExpr *E, unsigned CVR) { LValue R; R.LVType = KVCRef; R.KVCRefExpr = E; R.SetQualifiers(Qualifiers::fromCVRMask(CVR)); return R; } }; } // end namespace CodeGen } // end namespace clang #endif