//===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file implements the IRTranslator class. //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/IRTranslator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/GlobalISel/CallLowering.h" #include "llvm/CodeGen/LowLevelType.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/StackProtector.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/MC/MCContext.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/LowLevelTypeImpl.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetIntrinsicInfo.h" #include "llvm/Target/TargetMachine.h" #include #include #include #include #include #include #include #define DEBUG_TYPE "irtranslator" using namespace llvm; char IRTranslator::ID = 0; INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", false, false) INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", false, false) static void reportTranslationError(MachineFunction &MF, const TargetPassConfig &TPC, OptimizationRemarkEmitter &ORE, OptimizationRemarkMissed &R) { MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); // Print the function name explicitly if we don't have a debug location (which // makes the diagnostic less useful) or if we're going to emit a raw error. if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) R << (" (in function: " + MF.getName() + ")").str(); if (TPC.isGlobalISelAbortEnabled()) report_fatal_error(R.getMsg()); else ORE.emit(R); } IRTranslator::IRTranslator() : MachineFunctionPass(ID) { initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); } void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); getSelectionDAGFallbackAnalysisUsage(AU); MachineFunctionPass::getAnalysisUsage(AU); } static void computeValueLLTs(const DataLayout &DL, Type &Ty, SmallVectorImpl &ValueTys, SmallVectorImpl *Offsets = nullptr, uint64_t StartingOffset = 0) { // Given a struct type, recursively traverse the elements. if (StructType *STy = dyn_cast(&Ty)) { const StructLayout *SL = DL.getStructLayout(STy); for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets, StartingOffset + SL->getElementOffset(I)); return; } // Given an array type, recursively traverse the elements. if (ArrayType *ATy = dyn_cast(&Ty)) { Type *EltTy = ATy->getElementType(); uint64_t EltSize = DL.getTypeAllocSize(EltTy); for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) computeValueLLTs(DL, *EltTy, ValueTys, Offsets, StartingOffset + i * EltSize); return; } // Interpret void as zero return values. if (Ty.isVoidTy()) return; // Base case: we can get an LLT for this LLVM IR type. ValueTys.push_back(getLLTForType(Ty, DL)); if (Offsets != nullptr) Offsets->push_back(StartingOffset * 8); } IRTranslator::ValueToVRegInfo::VRegListT & IRTranslator::allocateVRegs(const Value &Val) { assert(!VMap.contains(Val) && "Value already allocated in VMap"); auto *Regs = VMap.getVRegs(Val); auto *Offsets = VMap.getOffsets(Val); SmallVector SplitTys; computeValueLLTs(*DL, *Val.getType(), SplitTys, Offsets->empty() ? Offsets : nullptr); for (unsigned i = 0; i < SplitTys.size(); ++i) Regs->push_back(0); return *Regs; } ArrayRef IRTranslator::getOrCreateVRegs(const Value &Val) { auto VRegsIt = VMap.findVRegs(Val); if (VRegsIt != VMap.vregs_end()) return *VRegsIt->second; if (Val.getType()->isVoidTy()) return *VMap.getVRegs(Val); // Create entry for this type. auto *VRegs = VMap.getVRegs(Val); auto *Offsets = VMap.getOffsets(Val); assert(Val.getType()->isSized() && "Don't know how to create an empty vreg"); SmallVector SplitTys; computeValueLLTs(*DL, *Val.getType(), SplitTys, Offsets->empty() ? Offsets : nullptr); if (!isa(Val)) { for (auto Ty : SplitTys) VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); return *VRegs; } if (Val.getType()->isAggregateType()) { // UndefValue, ConstantAggregateZero auto &C = cast(Val); unsigned Idx = 0; while (auto Elt = C.getAggregateElement(Idx++)) { auto EltRegs = getOrCreateVRegs(*Elt); std::copy(EltRegs.begin(), EltRegs.end(), std::back_inserter(*VRegs)); } } else { assert(SplitTys.size() == 1 && "unexpectedly split LLT"); VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); bool Success = translate(cast(Val), VRegs->front()); if (!Success) { OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", MF->getFunction().getSubprogram(), &MF->getFunction().getEntryBlock()); R << "unable to translate constant: " << ore::NV("Type", Val.getType()); reportTranslationError(*MF, *TPC, *ORE, R); return *VRegs; } } return *VRegs; } int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { if (FrameIndices.find(&AI) != FrameIndices.end()) return FrameIndices[&AI]; unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType()); unsigned Size = ElementSize * cast(AI.getArraySize())->getZExtValue(); // Always allocate at least one byte. Size = std::max(Size, 1u); unsigned Alignment = AI.getAlignment(); if (!Alignment) Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); int &FI = FrameIndices[&AI]; FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); return FI; } unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { unsigned Alignment = 0; Type *ValTy = nullptr; if (const StoreInst *SI = dyn_cast(&I)) { Alignment = SI->getAlignment(); ValTy = SI->getValueOperand()->getType(); } else if (const LoadInst *LI = dyn_cast(&I)) { Alignment = LI->getAlignment(); ValTy = LI->getType(); } else if (const AtomicCmpXchgInst *AI = dyn_cast(&I)) { // TODO(PR27168): This instruction has no alignment attribute, but unlike // the default alignment for load/store, the default here is to assume // it has NATURAL alignment, not DataLayout-specified alignment. const DataLayout &DL = AI->getModule()->getDataLayout(); Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); ValTy = AI->getCompareOperand()->getType(); } else if (const AtomicRMWInst *AI = dyn_cast(&I)) { // TODO(PR27168): This instruction has no alignment attribute, but unlike // the default alignment for load/store, the default here is to assume // it has NATURAL alignment, not DataLayout-specified alignment. const DataLayout &DL = AI->getModule()->getDataLayout(); Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType()); ValTy = AI->getType(); } else { OptimizationRemarkMissed R("gisel-irtranslator", "", &I); R << "unable to translate memop: " << ore::NV("Opcode", &I); reportTranslationError(*MF, *TPC, *ORE, R); return 1; } return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); } MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { MachineBasicBlock *&MBB = BBToMBB[&BB]; assert(MBB && "BasicBlock was not encountered before"); return *MBB; } void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { assert(NewPred && "new predecessor must be a real MachineBasicBlock"); MachinePreds[Edge].push_back(NewPred); } bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, MachineIRBuilder &MIRBuilder) { // FIXME: handle signed/unsigned wrapping flags. // Get or create a virtual register for each value. // Unless the value is a Constant => loadimm cst? // or inline constant each time? // Creation of a virtual register needs to have a size. unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); unsigned Res = getOrCreateVReg(U); MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1); return true; } bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { // -0.0 - X --> G_FNEG if (isa(U.getOperand(0)) && U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { MIRBuilder.buildInstr(TargetOpcode::G_FNEG) .addDef(getOrCreateVReg(U)) .addUse(getOrCreateVReg(*U.getOperand(1))); return true; } return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); } bool IRTranslator::translateCompare(const User &U, MachineIRBuilder &MIRBuilder) { const CmpInst *CI = dyn_cast(&U); unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); unsigned Res = getOrCreateVReg(U); CmpInst::Predicate Pred = CI ? CI->getPredicate() : static_cast( cast(U).getPredicate()); if (CmpInst::isIntPredicate(Pred)) MIRBuilder.buildICmp(Pred, Res, Op0, Op1); else if (Pred == CmpInst::FCMP_FALSE) MIRBuilder.buildCopy( Res, getOrCreateVReg(*Constant::getNullValue(CI->getType()))); else if (Pred == CmpInst::FCMP_TRUE) MIRBuilder.buildCopy( Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType()))); else MIRBuilder.buildFCmp(Pred, Res, Op0, Op1); return true; } bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { const ReturnInst &RI = cast(U); const Value *Ret = RI.getReturnValue(); if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) Ret = nullptr; // The target may mess up with the insertion point, but // this is not important as a return is the last instruction // of the block anyway. // FIXME: this interface should simplify when CallLowering gets adapted to // multiple VRegs per Value. unsigned VReg = Ret ? packRegs(*Ret, MIRBuilder) : 0; return CLI->lowerReturn(MIRBuilder, Ret, VReg); } bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { const BranchInst &BrInst = cast(U); unsigned Succ = 0; if (!BrInst.isUnconditional()) { // We want a G_BRCOND to the true BB followed by an unconditional branch. unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); const BasicBlock &TrueTgt = *cast(BrInst.getSuccessor(Succ++)); MachineBasicBlock &TrueBB = getMBB(TrueTgt); MIRBuilder.buildBrCond(Tst, TrueBB); } const BasicBlock &BrTgt = *cast(BrInst.getSuccessor(Succ)); MachineBasicBlock &TgtBB = getMBB(BrTgt); MachineBasicBlock &CurBB = MIRBuilder.getMBB(); // If the unconditional target is the layout successor, fallthrough. if (!CurBB.isLayoutSuccessor(&TgtBB)) MIRBuilder.buildBr(TgtBB); // Link successors. for (const BasicBlock *Succ : BrInst.successors()) CurBB.addSuccessor(&getMBB(*Succ)); return true; } bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIRBuilder) { // For now, just translate as a chain of conditional branches. // FIXME: could we share most of the logic/code in // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel? // At first sight, it seems most of the logic in there is independent of // SelectionDAG-specifics and a lot of work went in to optimize switch // lowering in there. const SwitchInst &SwInst = cast(U); const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition()); const BasicBlock *OrigBB = SwInst.getParent(); LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL); for (auto &CaseIt : SwInst.cases()) { const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue()); const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1); MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue); MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); const BasicBlock *TrueBB = CaseIt.getCaseSuccessor(); MachineBasicBlock &TrueMBB = getMBB(*TrueBB); MIRBuilder.buildBrCond(Tst, TrueMBB); CurMBB.addSuccessor(&TrueMBB); addMachineCFGPred({OrigBB, TrueBB}, &CurMBB); MachineBasicBlock *FalseMBB = MF->CreateMachineBasicBlock(SwInst.getParent()); // Insert the comparison blocks one after the other. MF->insert(std::next(CurMBB.getIterator()), FalseMBB); MIRBuilder.buildBr(*FalseMBB); CurMBB.addSuccessor(FalseMBB); MIRBuilder.setMBB(*FalseMBB); } // handle default case const BasicBlock *DefaultBB = SwInst.getDefaultDest(); MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB); MIRBuilder.buildBr(DefaultMBB); MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); CurMBB.addSuccessor(&DefaultMBB); addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB); return true; } bool IRTranslator::translateIndirectBr(const User &U, MachineIRBuilder &MIRBuilder) { const IndirectBrInst &BrInst = cast(U); const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress()); MIRBuilder.buildBrIndirect(Tgt); // Link successors. MachineBasicBlock &CurBB = MIRBuilder.getMBB(); for (const BasicBlock *Succ : BrInst.successors()) CurBB.addSuccessor(&getMBB(*Succ)); return true; } bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { const LoadInst &LI = cast(U); auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; Flags |= MachineMemOperand::MOLoad; if (DL->getTypeStoreSize(LI.getType()) == 0) return true; ArrayRef Regs = getOrCreateVRegs(LI); ArrayRef Offsets = *VMap.getOffsets(LI); unsigned Base = getOrCreateVReg(*LI.getPointerOperand()); for (unsigned i = 0; i < Regs.size(); ++i) { unsigned Addr = 0; MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8); MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); unsigned BaseAlign = getMemOpAlignment(LI); auto MMO = MF->getMachineMemOperand( Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, LI.getSyncScopeID(), LI.getOrdering()); MIRBuilder.buildLoad(Regs[i], Addr, *MMO); } return true; } bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { const StoreInst &SI = cast(U); auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; Flags |= MachineMemOperand::MOStore; if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) return true; ArrayRef Vals = getOrCreateVRegs(*SI.getValueOperand()); ArrayRef Offsets = *VMap.getOffsets(*SI.getValueOperand()); unsigned Base = getOrCreateVReg(*SI.getPointerOperand()); for (unsigned i = 0; i < Vals.size(); ++i) { unsigned Addr = 0; MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8); MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); unsigned BaseAlign = getMemOpAlignment(SI); auto MMO = MF->getMachineMemOperand( Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, SI.getSyncScopeID(), SI.getOrdering()); MIRBuilder.buildStore(Vals[i], Addr, *MMO); } return true; } static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { const Value *Src = U.getOperand(0); Type *Int32Ty = Type::getInt32Ty(U.getContext()); // getIndexedOffsetInType is designed for GEPs, so the first index is the // usual array element rather than looking into the actual aggregate. SmallVector Indices; Indices.push_back(ConstantInt::get(Int32Ty, 0)); if (const ExtractValueInst *EVI = dyn_cast(&U)) { for (auto Idx : EVI->indices()) Indices.push_back(ConstantInt::get(Int32Ty, Idx)); } else if (const InsertValueInst *IVI = dyn_cast(&U)) { for (auto Idx : IVI->indices()) Indices.push_back(ConstantInt::get(Int32Ty, Idx)); } else { for (unsigned i = 1; i < U.getNumOperands(); ++i) Indices.push_back(U.getOperand(i)); } return 8 * static_cast( DL.getIndexedOffsetInType(Src->getType(), Indices)); } bool IRTranslator::translateExtractValue(const User &U, MachineIRBuilder &MIRBuilder) { const Value *Src = U.getOperand(0); uint64_t Offset = getOffsetFromIndices(U, *DL); ArrayRef SrcRegs = getOrCreateVRegs(*Src); ArrayRef Offsets = *VMap.getOffsets(*Src); unsigned Idx = std::lower_bound(Offsets.begin(), Offsets.end(), Offset) - Offsets.begin(); auto &DstRegs = allocateVRegs(U); for (unsigned i = 0; i < DstRegs.size(); ++i) DstRegs[i] = SrcRegs[Idx++]; return true; } bool IRTranslator::translateInsertValue(const User &U, MachineIRBuilder &MIRBuilder) { const Value *Src = U.getOperand(0); uint64_t Offset = getOffsetFromIndices(U, *DL); auto &DstRegs = allocateVRegs(U); ArrayRef DstOffsets = *VMap.getOffsets(U); ArrayRef SrcRegs = getOrCreateVRegs(*Src); ArrayRef InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); auto InsertedIt = InsertedRegs.begin(); for (unsigned i = 0; i < DstRegs.size(); ++i) { if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) DstRegs[i] = *InsertedIt++; else DstRegs[i] = SrcRegs[i]; } return true; } bool IRTranslator::translateSelect(const User &U, MachineIRBuilder &MIRBuilder) { unsigned Tst = getOrCreateVReg(*U.getOperand(0)); ArrayRef ResRegs = getOrCreateVRegs(U); ArrayRef Op0Regs = getOrCreateVRegs(*U.getOperand(1)); ArrayRef Op1Regs = getOrCreateVRegs(*U.getOperand(2)); for (unsigned i = 0; i < ResRegs.size(); ++i) MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i]); return true; } bool IRTranslator::translateBitCast(const User &U, MachineIRBuilder &MIRBuilder) { // If we're bitcasting to the source type, we can reuse the source vreg. if (getLLTForType(*U.getOperand(0)->getType(), *DL) == getLLTForType(*U.getType(), *DL)) { unsigned SrcReg = getOrCreateVReg(*U.getOperand(0)); auto &Regs = *VMap.getVRegs(U); // If we already assigned a vreg for this bitcast, we can't change that. // Emit a copy to satisfy the users we already emitted. if (!Regs.empty()) MIRBuilder.buildCopy(Regs[0], SrcReg); else { Regs.push_back(SrcReg); VMap.getOffsets(U)->push_back(0); } return true; } return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); } bool IRTranslator::translateCast(unsigned Opcode, const User &U, MachineIRBuilder &MIRBuilder) { unsigned Op = getOrCreateVReg(*U.getOperand(0)); unsigned Res = getOrCreateVReg(U); MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op); return true; } bool IRTranslator::translateGetElementPtr(const User &U, MachineIRBuilder &MIRBuilder) { // FIXME: support vector GEPs. if (U.getType()->isVectorTy()) return false; Value &Op0 = *U.getOperand(0); unsigned BaseReg = getOrCreateVReg(Op0); Type *PtrIRTy = Op0.getType(); LLT PtrTy = getLLTForType(*PtrIRTy, *DL); Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); int64_t Offset = 0; for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); GTI != E; ++GTI) { const Value *Idx = GTI.getOperand(); if (StructType *StTy = GTI.getStructTypeOrNull()) { unsigned Field = cast(Idx)->getUniqueInteger().getZExtValue(); Offset += DL->getStructLayout(StTy)->getElementOffset(Field); continue; } else { uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); // If this is a scalar constant or a splat vector of constants, // handle it quickly. if (const auto *CI = dyn_cast(Idx)) { Offset += ElementSize * CI->getSExtValue(); continue; } if (Offset != 0) { unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); BaseReg = NewBaseReg; Offset = 0; } unsigned IdxReg = getOrCreateVReg(*Idx); if (MRI->getType(IdxReg) != OffsetTy) { unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); IdxReg = NewIdxReg; } // N = N + Idx * ElementSize; // Avoid doing it for ElementSize of 1. unsigned GepOffsetReg; if (ElementSize != 1) { unsigned ElementSizeReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize)); GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy); MIRBuilder.buildMul(GepOffsetReg, ElementSizeReg, IdxReg); } else GepOffsetReg = IdxReg; unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg); BaseReg = NewBaseReg; } } if (Offset != 0) { unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg); return true; } MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); return true; } bool IRTranslator::translateMemfunc(const CallInst &CI, MachineIRBuilder &MIRBuilder, unsigned ID) { LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL); Type *DstTy = CI.getArgOperand(0)->getType(); if (cast(DstTy)->getAddressSpace() != 0 || SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) return false; SmallVector Args; for (int i = 0; i < 3; ++i) { const auto &Arg = CI.getArgOperand(i); Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); } const char *Callee; switch (ID) { case Intrinsic::memmove: case Intrinsic::memcpy: { Type *SrcTy = CI.getArgOperand(1)->getType(); if(cast(SrcTy)->getAddressSpace() != 0) return false; Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove"; break; } case Intrinsic::memset: Callee = "memset"; break; default: return false; } return CLI->lowerCall(MIRBuilder, CI.getCallingConv(), MachineOperand::CreateES(Callee), CallLowering::ArgInfo(0, CI.getType()), Args); } void IRTranslator::getStackGuard(unsigned DstReg, MachineIRBuilder &MIRBuilder) { const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); MIB.addDef(DstReg); auto &TLI = *MF->getSubtarget().getTargetLowering(); Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); if (!Global) return; MachinePointerInfo MPInfo(Global); MachineInstr::mmo_iterator MemRefs = MF->allocateMemRefsArray(1); auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable; *MemRefs = MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, DL->getPointerABIAlignment(0)); MIB.setMemRefs(MemRefs, MemRefs + 1); } bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, MachineIRBuilder &MIRBuilder) { ArrayRef ResRegs = getOrCreateVRegs(CI); auto MIB = MIRBuilder.buildInstr(Op) .addDef(ResRegs[0]) .addDef(ResRegs[1]) .addUse(getOrCreateVReg(*CI.getOperand(0))) .addUse(getOrCreateVReg(*CI.getOperand(1))); if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) { unsigned Zero = getOrCreateVReg( *Constant::getNullValue(Type::getInt1Ty(CI.getContext()))); MIB.addUse(Zero); } return true; } bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, MachineIRBuilder &MIRBuilder) { switch (ID) { default: break; case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: // Stack coloring is not enabled in O0 (which we care about now) so we can // drop these. Make sure someone notices when we start compiling at higher // opts though. if (MF->getTarget().getOptLevel() != CodeGenOpt::None) return false; return true; case Intrinsic::dbg_declare: { const DbgDeclareInst &DI = cast(CI); assert(DI.getVariable() && "Missing variable"); const Value *Address = DI.getAddress(); if (!Address || isa(Address)) { LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); return true; } assert(DI.getVariable()->isValidLocationForIntrinsic( MIRBuilder.getDebugLoc()) && "Expected inlined-at fields to agree"); auto AI = dyn_cast(Address); if (AI && AI->isStaticAlloca()) { // Static allocas are tracked at the MF level, no need for DBG_VALUE // instructions (in fact, they get ignored if they *do* exist). MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), getOrCreateFrameIndex(*AI), DI.getDebugLoc()); } else MIRBuilder.buildDirectDbgValue(getOrCreateVReg(*Address), DI.getVariable(), DI.getExpression()); return true; } case Intrinsic::vaend: // No target I know of cares about va_end. Certainly no in-tree target // does. Simplest intrinsic ever! return true; case Intrinsic::vastart: { auto &TLI = *MF->getSubtarget().getTargetLowering(); Value *Ptr = CI.getArgOperand(0); unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; MIRBuilder.buildInstr(TargetOpcode::G_VASTART) .addUse(getOrCreateVReg(*Ptr)) .addMemOperand(MF->getMachineMemOperand( MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 0)); return true; } case Intrinsic::dbg_value: { // This form of DBG_VALUE is target-independent. const DbgValueInst &DI = cast(CI); const Value *V = DI.getValue(); assert(DI.getVariable()->isValidLocationForIntrinsic( MIRBuilder.getDebugLoc()) && "Expected inlined-at fields to agree"); if (!V) { // Currently the optimizer can produce this; insert an undef to // help debugging. Probably the optimizer should not do this. MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); } else if (const auto *CI = dyn_cast(V)) { MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); } else { unsigned Reg = getOrCreateVReg(*V); // FIXME: This does not handle register-indirect values at offset 0. The // direct/indirect thing shouldn't really be handled by something as // implicit as reg+noreg vs reg+imm in the first palce, but it seems // pretty baked in right now. MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); } return true; } case Intrinsic::uadd_with_overflow: return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDE, MIRBuilder); case Intrinsic::sadd_with_overflow: return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); case Intrinsic::usub_with_overflow: return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBE, MIRBuilder); case Intrinsic::ssub_with_overflow: return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); case Intrinsic::umul_with_overflow: return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); case Intrinsic::smul_with_overflow: return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); case Intrinsic::pow: MIRBuilder.buildInstr(TargetOpcode::G_FPOW) .addDef(getOrCreateVReg(CI)) .addUse(getOrCreateVReg(*CI.getArgOperand(0))) .addUse(getOrCreateVReg(*CI.getArgOperand(1))); return true; case Intrinsic::exp: MIRBuilder.buildInstr(TargetOpcode::G_FEXP) .addDef(getOrCreateVReg(CI)) .addUse(getOrCreateVReg(*CI.getArgOperand(0))); return true; case Intrinsic::exp2: MIRBuilder.buildInstr(TargetOpcode::G_FEXP2) .addDef(getOrCreateVReg(CI)) .addUse(getOrCreateVReg(*CI.getArgOperand(0))); return true; case Intrinsic::log: MIRBuilder.buildInstr(TargetOpcode::G_FLOG) .addDef(getOrCreateVReg(CI)) .addUse(getOrCreateVReg(*CI.getArgOperand(0))); return true; case Intrinsic::log2: MIRBuilder.buildInstr(TargetOpcode::G_FLOG2) .addDef(getOrCreateVReg(CI)) .addUse(getOrCreateVReg(*CI.getArgOperand(0))); return true; case Intrinsic::fabs: MIRBuilder.buildInstr(TargetOpcode::G_FABS) .addDef(getOrCreateVReg(CI)) .addUse(getOrCreateVReg(*CI.getArgOperand(0))); return true; case Intrinsic::fma: MIRBuilder.buildInstr(TargetOpcode::G_FMA) .addDef(getOrCreateVReg(CI)) .addUse(getOrCreateVReg(*CI.getArgOperand(0))) .addUse(getOrCreateVReg(*CI.getArgOperand(1))) .addUse(getOrCreateVReg(*CI.getArgOperand(2))); return true; case Intrinsic::fmuladd: { const TargetMachine &TM = MF->getTarget(); const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); unsigned Dst = getOrCreateVReg(CI); unsigned Op0 = getOrCreateVReg(*CI.getArgOperand(0)); unsigned Op1 = getOrCreateVReg(*CI.getArgOperand(1)); unsigned Op2 = getOrCreateVReg(*CI.getArgOperand(2)); if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) { // TODO: Revisit this to see if we should move this part of the // lowering to the combiner. MIRBuilder.buildInstr(TargetOpcode::G_FMA, Dst, Op0, Op1, Op2); } else { LLT Ty = getLLTForType(*CI.getType(), *DL); auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, Ty, Op0, Op1); MIRBuilder.buildInstr(TargetOpcode::G_FADD, Dst, FMul, Op2); } return true; } case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: return translateMemfunc(CI, MIRBuilder, ID); case Intrinsic::eh_typeid_for: { GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); unsigned Reg = getOrCreateVReg(CI); unsigned TypeID = MF->getTypeIDFor(GV); MIRBuilder.buildConstant(Reg, TypeID); return true; } case Intrinsic::objectsize: { // If we don't know by now, we're never going to know. const ConstantInt *Min = cast(CI.getArgOperand(1)); MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); return true; } case Intrinsic::stackguard: getStackGuard(getOrCreateVReg(CI), MIRBuilder); return true; case Intrinsic::stackprotector: { LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); getStackGuard(GuardVal, MIRBuilder); AllocaInst *Slot = cast(CI.getArgOperand(1)); MIRBuilder.buildStore( GuardVal, getOrCreateVReg(*Slot), *MF->getMachineMemOperand( MachinePointerInfo::getFixedStack(*MF, getOrCreateFrameIndex(*Slot)), MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, PtrTy.getSizeInBits() / 8, 8)); return true; } } return false; } bool IRTranslator::translateInlineAsm(const CallInst &CI, MachineIRBuilder &MIRBuilder) { const InlineAsm &IA = cast(*CI.getCalledValue()); if (!IA.getConstraintString().empty()) return false; unsigned ExtraInfo = 0; if (IA.hasSideEffects()) ExtraInfo |= InlineAsm::Extra_HasSideEffects; if (IA.getDialect() == InlineAsm::AD_Intel) ExtraInfo |= InlineAsm::Extra_AsmDialect; MIRBuilder.buildInstr(TargetOpcode::INLINEASM) .addExternalSymbol(IA.getAsmString().c_str()) .addImm(ExtraInfo); return true; } unsigned IRTranslator::packRegs(const Value &V, MachineIRBuilder &MIRBuilder) { ArrayRef Regs = getOrCreateVRegs(V); ArrayRef Offsets = *VMap.getOffsets(V); LLT BigTy = getLLTForType(*V.getType(), *DL); if (Regs.size() == 1) return Regs[0]; unsigned Dst = MRI->createGenericVirtualRegister(BigTy); MIRBuilder.buildUndef(Dst); for (unsigned i = 0; i < Regs.size(); ++i) { unsigned NewDst = MRI->createGenericVirtualRegister(BigTy); MIRBuilder.buildInsert(NewDst, Dst, Regs[i], Offsets[i]); Dst = NewDst; } return Dst; } void IRTranslator::unpackRegs(const Value &V, unsigned Src, MachineIRBuilder &MIRBuilder) { ArrayRef Regs = getOrCreateVRegs(V); ArrayRef Offsets = *VMap.getOffsets(V); for (unsigned i = 0; i < Regs.size(); ++i) MIRBuilder.buildExtract(Regs[i], Src, Offsets[i]); } bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { const CallInst &CI = cast(U); auto TII = MF->getTarget().getIntrinsicInfo(); const Function *F = CI.getCalledFunction(); // FIXME: support Windows dllimport function calls. if (F && F->hasDLLImportStorageClass()) return false; if (CI.isInlineAsm()) return translateInlineAsm(CI, MIRBuilder); Intrinsic::ID ID = Intrinsic::not_intrinsic; if (F && F->isIntrinsic()) { ID = F->getIntrinsicID(); if (TII && ID == Intrinsic::not_intrinsic) ID = static_cast(TII->getIntrinsicID(F)); } bool IsSplitType = valueIsSplit(CI); if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) { unsigned Res = IsSplitType ? MRI->createGenericVirtualRegister( getLLTForType(*CI.getType(), *DL)) : getOrCreateVReg(CI); SmallVector Args; for (auto &Arg: CI.arg_operands()) Args.push_back(packRegs(*Arg, MIRBuilder)); MF->getFrameInfo().setHasCalls(true); bool Success = CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() { return getOrCreateVReg(*CI.getCalledValue()); }); if (IsSplitType) unpackRegs(CI, Res, MIRBuilder); return Success; } assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); if (translateKnownIntrinsic(CI, ID, MIRBuilder)) return true; unsigned Res = 0; if (!CI.getType()->isVoidTy()) { if (IsSplitType) Res = MRI->createGenericVirtualRegister(getLLTForType(*CI.getType(), *DL)); else Res = getOrCreateVReg(CI); } MachineInstrBuilder MIB = MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory()); for (auto &Arg : CI.arg_operands()) { // Some intrinsics take metadata parameters. Reject them. if (isa(Arg)) return false; MIB.addUse(packRegs(*Arg, MIRBuilder)); } if (IsSplitType) unpackRegs(CI, Res, MIRBuilder); // Add a MachineMemOperand if it is a target mem intrinsic. const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); TargetLowering::IntrinsicInfo Info; // TODO: Add a GlobalISel version of getTgtMemIntrinsic. if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { uint64_t Size = Info.memVT.getStoreSize(); MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), Info.flags, Size, Info.align)); } return true; } bool IRTranslator::translateInvoke(const User &U, MachineIRBuilder &MIRBuilder) { const InvokeInst &I = cast(U); MCContext &Context = MF->getContext(); const BasicBlock *ReturnBB = I.getSuccessor(0); const BasicBlock *EHPadBB = I.getSuccessor(1); const Value *Callee = I.getCalledValue(); const Function *Fn = dyn_cast(Callee); if (isa(Callee)) return false; // FIXME: support invoking patchpoint and statepoint intrinsics. if (Fn && Fn->isIntrinsic()) return false; // FIXME: support whatever these are. if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) return false; // FIXME: support Windows exception handling. if (!isa(EHPadBB->front())) return false; // Emit the actual call, bracketed by EH_LABELs so that the MF knows about // the region covered by the try. MCSymbol *BeginSymbol = Context.createTempSymbol(); MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); unsigned Res = MRI->createGenericVirtualRegister(getLLTForType(*I.getType(), *DL)); SmallVector Args; for (auto &Arg: I.arg_operands()) Args.push_back(packRegs(*Arg, MIRBuilder)); if (!CLI->lowerCall(MIRBuilder, &I, Res, Args, [&]() { return getOrCreateVReg(*I.getCalledValue()); })) return false; unpackRegs(I, Res, MIRBuilder); MCSymbol *EndSymbol = Context.createTempSymbol(); MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); // FIXME: track probabilities. MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), &ReturnMBB = getMBB(*ReturnBB); MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); MIRBuilder.getMBB().addSuccessor(&ReturnMBB); MIRBuilder.getMBB().addSuccessor(&EHPadMBB); MIRBuilder.buildBr(ReturnMBB); return true; } bool IRTranslator::translateLandingPad(const User &U, MachineIRBuilder &MIRBuilder) { const LandingPadInst &LP = cast(U); MachineBasicBlock &MBB = MIRBuilder.getMBB(); addLandingPadInfo(LP, MBB); MBB.setIsEHPad(); // If there aren't registers to copy the values into (e.g., during SjLj // exceptions), then don't bother. auto &TLI = *MF->getSubtarget().getTargetLowering(); const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && TLI.getExceptionSelectorRegister(PersonalityFn) == 0) return true; // If landingpad's return type is token type, we don't create DAG nodes // for its exception pointer and selector value. The extraction of exception // pointer or selector value from token type landingpads is not currently // supported. if (LP.getType()->isTokenTy()) return true; // Add a label to mark the beginning of the landing pad. Deletion of the // landing pad can thus be detected via the MachineModuleInfo. MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) .addSym(MF->addLandingPad(&MBB)); LLT Ty = getLLTForType(*LP.getType(), *DL); unsigned Undef = MRI->createGenericVirtualRegister(Ty); MIRBuilder.buildUndef(Undef); SmallVector Tys; for (Type *Ty : cast(LP.getType())->elements()) Tys.push_back(getLLTForType(*Ty, *DL)); assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); // Mark exception register as live in. unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); if (!ExceptionReg) return false; MBB.addLiveIn(ExceptionReg); ArrayRef ResRegs = getOrCreateVRegs(LP); MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); if (!SelectorReg) return false; MBB.addLiveIn(SelectorReg); unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); MIRBuilder.buildCopy(PtrVReg, SelectorReg); MIRBuilder.buildCast(ResRegs[1], PtrVReg); return true; } bool IRTranslator::translateAlloca(const User &U, MachineIRBuilder &MIRBuilder) { auto &AI = cast(U); if (AI.isSwiftError()) return false; if (AI.isStaticAlloca()) { unsigned Res = getOrCreateVReg(AI); int FI = getOrCreateFrameIndex(AI); MIRBuilder.buildFrameIndex(Res, FI); return true; } // FIXME: support stack probing for Windows. if (MF->getTarget().getTargetTriple().isOSWindows()) return false; // Now we're in the harder dynamic case. Type *Ty = AI.getAllocatedType(); unsigned Align = std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); unsigned NumElts = getOrCreateVReg(*AI.getArraySize()); Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); if (MRI->getType(NumElts) != IntPtrTy) { unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); NumElts = ExtElts; } unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); unsigned TySize = getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty))); MIRBuilder.buildMul(AllocSize, NumElts, TySize); LLT PtrTy = getLLTForType(*AI.getType(), *DL); auto &TLI = *MF->getSubtarget().getTargetLowering(); unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy); MIRBuilder.buildCopy(SPTmp, SPReg); unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy); MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize); // Handle alignment. We have to realign if the allocation granule was smaller // than stack alignment, or the specific alloca requires more than stack // alignment. unsigned StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlignment(); Align = std::max(Align, StackAlign); if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) { // Round the size of the allocation up to the stack alignment size // by add SA-1 to the size. This doesn't overflow because we're computing // an address inside an alloca. unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy); MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align)); AllocTmp = AlignedAlloc; } MIRBuilder.buildCopy(SPReg, AllocTmp); MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp); MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); assert(MF->getFrameInfo().hasVarSizedObjects()); return true; } bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { // FIXME: We may need more info about the type. Because of how LLT works, // we're completely discarding the i64/double distinction here (amongst // others). Fortunately the ABIs I know of where that matters don't use va_arg // anyway but that's not guaranteed. MIRBuilder.buildInstr(TargetOpcode::G_VAARG) .addDef(getOrCreateVReg(U)) .addUse(getOrCreateVReg(*U.getOperand(0))) .addImm(DL->getABITypeAlignment(U.getType())); return true; } bool IRTranslator::translateInsertElement(const User &U, MachineIRBuilder &MIRBuilder) { // If it is a <1 x Ty> vector, use the scalar as it is // not a legal vector type in LLT. if (U.getType()->getVectorNumElements() == 1) { unsigned Elt = getOrCreateVReg(*U.getOperand(1)); auto &Regs = *VMap.getVRegs(U); if (Regs.empty()) { Regs.push_back(Elt); VMap.getOffsets(U)->push_back(0); } else { MIRBuilder.buildCopy(Regs[0], Elt); } return true; } unsigned Res = getOrCreateVReg(U); unsigned Val = getOrCreateVReg(*U.getOperand(0)); unsigned Elt = getOrCreateVReg(*U.getOperand(1)); unsigned Idx = getOrCreateVReg(*U.getOperand(2)); MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); return true; } bool IRTranslator::translateExtractElement(const User &U, MachineIRBuilder &MIRBuilder) { // If it is a <1 x Ty> vector, use the scalar as it is // not a legal vector type in LLT. if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { unsigned Elt = getOrCreateVReg(*U.getOperand(0)); auto &Regs = *VMap.getVRegs(U); if (Regs.empty()) { Regs.push_back(Elt); VMap.getOffsets(U)->push_back(0); } else { MIRBuilder.buildCopy(Regs[0], Elt); } return true; } unsigned Res = getOrCreateVReg(U); unsigned Val = getOrCreateVReg(*U.getOperand(0)); unsigned Idx = getOrCreateVReg(*U.getOperand(1)); MIRBuilder.buildExtractVectorElement(Res, Val, Idx); return true; } bool IRTranslator::translateShuffleVector(const User &U, MachineIRBuilder &MIRBuilder) { MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) .addDef(getOrCreateVReg(U)) .addUse(getOrCreateVReg(*U.getOperand(0))) .addUse(getOrCreateVReg(*U.getOperand(1))) .addUse(getOrCreateVReg(*U.getOperand(2))); return true; } bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { const PHINode &PI = cast(U); SmallVector Insts; for (auto Reg : getOrCreateVRegs(PI)) { auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, Reg); Insts.push_back(MIB.getInstr()); } PendingPHIs.emplace_back(&PI, std::move(Insts)); return true; } bool IRTranslator::translateAtomicCmpXchg(const User &U, MachineIRBuilder &MIRBuilder) { const AtomicCmpXchgInst &I = cast(U); if (I.isWeak()) return false; auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; Type *ResType = I.getType(); Type *ValType = ResType->Type::getStructElementType(0); auto Res = getOrCreateVRegs(I); unsigned OldValRes = Res[0]; unsigned SuccessRes = Res[1]; unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); unsigned Cmp = getOrCreateVReg(*I.getCompareOperand()); unsigned NewVal = getOrCreateVReg(*I.getNewValOperand()); MIRBuilder.buildAtomicCmpXchgWithSuccess( OldValRes, SuccessRes, Addr, Cmp, NewVal, *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, DL->getTypeStoreSize(ValType), getMemOpAlignment(I), AAMDNodes(), nullptr, I.getSyncScopeID(), I.getSuccessOrdering(), I.getFailureOrdering())); return true; } bool IRTranslator::translateAtomicRMW(const User &U, MachineIRBuilder &MIRBuilder) { const AtomicRMWInst &I = cast(U); auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; Type *ResType = I.getType(); unsigned Res = getOrCreateVReg(I); unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); unsigned Val = getOrCreateVReg(*I.getValOperand()); unsigned Opcode = 0; switch (I.getOperation()) { default: llvm_unreachable("Unknown atomicrmw op"); return false; case AtomicRMWInst::Xchg: Opcode = TargetOpcode::G_ATOMICRMW_XCHG; break; case AtomicRMWInst::Add: Opcode = TargetOpcode::G_ATOMICRMW_ADD; break; case AtomicRMWInst::Sub: Opcode = TargetOpcode::G_ATOMICRMW_SUB; break; case AtomicRMWInst::And: Opcode = TargetOpcode::G_ATOMICRMW_AND; break; case AtomicRMWInst::Nand: Opcode = TargetOpcode::G_ATOMICRMW_NAND; break; case AtomicRMWInst::Or: Opcode = TargetOpcode::G_ATOMICRMW_OR; break; case AtomicRMWInst::Xor: Opcode = TargetOpcode::G_ATOMICRMW_XOR; break; case AtomicRMWInst::Max: Opcode = TargetOpcode::G_ATOMICRMW_MAX; break; case AtomicRMWInst::Min: Opcode = TargetOpcode::G_ATOMICRMW_MIN; break; case AtomicRMWInst::UMax: Opcode = TargetOpcode::G_ATOMICRMW_UMAX; break; case AtomicRMWInst::UMin: Opcode = TargetOpcode::G_ATOMICRMW_UMIN; break; } MIRBuilder.buildAtomicRMW( Opcode, Res, Addr, Val, *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, DL->getTypeStoreSize(ResType), getMemOpAlignment(I), AAMDNodes(), nullptr, I.getSyncScopeID(), I.getOrdering())); return true; } void IRTranslator::finishPendingPhis() { for (auto &Phi : PendingPHIs) { const PHINode *PI = Phi.first; ArrayRef ComponentPHIs = Phi.second; // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator // won't create extra control flow here, otherwise we need to find the // dominating predecessor here (or perhaps force the weirder IRTranslators // to provide a simple boundary). SmallSet HandledPreds; for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { auto IRPred = PI->getIncomingBlock(i); if (HandledPreds.count(IRPred)) continue; HandledPreds.insert(IRPred); ArrayRef ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { assert(Pred->isSuccessor(ComponentPHIs[0]->getParent()) && "incorrect CFG at MachineBasicBlock level"); for (unsigned j = 0; j < ValRegs.size(); ++j) { MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); MIB.addUse(ValRegs[j]); MIB.addMBB(Pred); } } } } } bool IRTranslator::valueIsSplit(const Value &V, SmallVectorImpl *Offsets) { SmallVector SplitTys; computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); return SplitTys.size() > 1; } bool IRTranslator::translate(const Instruction &Inst) { CurBuilder.setDebugLoc(Inst.getDebugLoc()); switch(Inst.getOpcode()) { #define HANDLE_INST(NUM, OPCODE, CLASS) \ case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder); #include "llvm/IR/Instruction.def" default: return false; } } bool IRTranslator::translate(const Constant &C, unsigned Reg) { if (auto CI = dyn_cast(&C)) EntryBuilder.buildConstant(Reg, *CI); else if (auto CF = dyn_cast(&C)) EntryBuilder.buildFConstant(Reg, *CF); else if (isa(C)) EntryBuilder.buildUndef(Reg); else if (isa(C)) { // As we are trying to build a constant val of 0 into a pointer, // insert a cast to make them correct with respect to types. unsigned NullSize = DL->getTypeSizeInBits(C.getType()); auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); auto *ZeroVal = ConstantInt::get(ZeroTy, 0); unsigned ZeroReg = getOrCreateVReg(*ZeroVal); EntryBuilder.buildCast(Reg, ZeroReg); } else if (auto GV = dyn_cast(&C)) EntryBuilder.buildGlobalValue(Reg, GV); else if (auto CAZ = dyn_cast(&C)) { if (!CAZ->getType()->isVectorTy()) return false; // Return the scalar if it is a <1 x Ty> vector. if (CAZ->getNumElements() == 1) return translate(*CAZ->getElementValue(0u), Reg); std::vector Ops; for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { Constant &Elt = *CAZ->getElementValue(i); Ops.push_back(getOrCreateVReg(Elt)); } EntryBuilder.buildMerge(Reg, Ops); } else if (auto CV = dyn_cast(&C)) { // Return the scalar if it is a <1 x Ty> vector. if (CV->getNumElements() == 1) return translate(*CV->getElementAsConstant(0), Reg); std::vector Ops; for (unsigned i = 0; i < CV->getNumElements(); ++i) { Constant &Elt = *CV->getElementAsConstant(i); Ops.push_back(getOrCreateVReg(Elt)); } EntryBuilder.buildMerge(Reg, Ops); } else if (auto CE = dyn_cast(&C)) { switch(CE->getOpcode()) { #define HANDLE_INST(NUM, OPCODE, CLASS) \ case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder); #include "llvm/IR/Instruction.def" default: return false; } } else if (auto CV = dyn_cast(&C)) { if (CV->getNumOperands() == 1) return translate(*CV->getOperand(0), Reg); SmallVector Ops; for (unsigned i = 0; i < CV->getNumOperands(); ++i) { Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); } EntryBuilder.buildMerge(Reg, Ops); } else return false; return true; } void IRTranslator::finalizeFunction() { // Release the memory used by the different maps we // needed during the translation. PendingPHIs.clear(); VMap.reset(); FrameIndices.clear(); MachinePreds.clear(); // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid // destroying it twice (in ~IRTranslator() and ~LLVMContext()) EntryBuilder = MachineIRBuilder(); CurBuilder = MachineIRBuilder(); } bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { MF = &CurMF; const Function &F = MF->getFunction(); if (F.empty()) return false; CLI = MF->getSubtarget().getCallLowering(); CurBuilder.setMF(*MF); EntryBuilder.setMF(*MF); MRI = &MF->getRegInfo(); DL = &F.getParent()->getDataLayout(); TPC = &getAnalysis(); ORE = llvm::make_unique(&F); assert(PendingPHIs.empty() && "stale PHIs"); if (!DL->isLittleEndian()) { // Currently we don't properly handle big endian code. OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", F.getSubprogram(), &F.getEntryBlock()); R << "unable to translate in big endian mode"; reportTranslationError(*MF, *TPC, *ORE, R); } // Release the per-function state when we return, whether we succeeded or not. auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); // Setup a separate basic-block for the arguments and constants MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); MF->push_back(EntryBB); EntryBuilder.setMBB(*EntryBB); // Create all blocks, in IR order, to preserve the layout. for (const BasicBlock &BB: F) { auto *&MBB = BBToMBB[&BB]; MBB = MF->CreateMachineBasicBlock(&BB); MF->push_back(MBB); if (BB.hasAddressTaken()) MBB->setHasAddressTaken(); } // Make our arguments/constants entry block fallthrough to the IR entry block. EntryBB->addSuccessor(&getMBB(F.front())); // Lower the actual args into this basic block. SmallVector VRegArgs; for (const Argument &Arg: F.args()) { if (DL->getTypeStoreSize(Arg.getType()) == 0) continue; // Don't handle zero sized types. VRegArgs.push_back( MRI->createGenericVirtualRegister(getLLTForType(*Arg.getType(), *DL))); } // We don't currently support translating swifterror or swiftself functions. for (auto &Arg : F.args()) { if (Arg.hasSwiftErrorAttr() || Arg.hasSwiftSelfAttr()) { OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", F.getSubprogram(), &F.getEntryBlock()); R << "unable to lower arguments due to swifterror/swiftself: " << ore::NV("Prototype", F.getType()); reportTranslationError(*MF, *TPC, *ORE, R); return false; } } if (!CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs)) { OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", F.getSubprogram(), &F.getEntryBlock()); R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); reportTranslationError(*MF, *TPC, *ORE, R); return false; } auto ArgIt = F.arg_begin(); for (auto &VArg : VRegArgs) { // If the argument is an unsplit scalar then don't use unpackRegs to avoid // creating redundant copies. if (!valueIsSplit(*ArgIt, VMap.getOffsets(*ArgIt))) { auto &VRegs = *VMap.getVRegs(cast(*ArgIt)); assert(VRegs.empty() && "VRegs already populated?"); VRegs.push_back(VArg); } else { unpackRegs(*ArgIt, VArg, EntryBuilder); } ArgIt++; } // And translate the function! for (const BasicBlock &BB : F) { MachineBasicBlock &MBB = getMBB(BB); // Set the insertion point of all the following translations to // the end of this basic block. CurBuilder.setMBB(MBB); for (const Instruction &Inst : BB) { if (translate(Inst)) continue; OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", Inst.getDebugLoc(), &BB); R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); if (ORE->allowExtraAnalysis("gisel-irtranslator")) { std::string InstStrStorage; raw_string_ostream InstStr(InstStrStorage); InstStr << Inst; R << ": '" << InstStr.str() << "'"; } reportTranslationError(*MF, *TPC, *ORE, R); return false; } } finishPendingPhis(); // Merge the argument lowering and constants block with its single // successor, the LLVM-IR entry block. We want the basic block to // be maximal. assert(EntryBB->succ_size() == 1 && "Custom BB used for lowering should have only one successor"); // Get the successor of the current entry block. MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); assert(NewEntryBB.pred_size() == 1 && "LLVM-IR entry block has a predecessor!?"); // Move all the instruction from the current entry block to the // new entry block. NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), EntryBB->end()); // Update the live-in information for the new entry block. for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) NewEntryBB.addLiveIn(LiveIn); NewEntryBB.sortUniqueLiveIns(); // Get rid of the now empty basic block. EntryBB->removeSuccessor(&NewEntryBB); MF->remove(EntryBB); MF->DeleteMachineBasicBlock(EntryBB); assert(&MF->front() == &NewEntryBB && "New entry wasn't next in the list of basic block!"); // Initialize stack protector information. StackProtector &SP = getAnalysis(); SP.copyToMachineFrameInfo(MF->getFrameInfo()); return false; }