//===- llvm/CodeGen/GlobalISel/RegisterBankInfo.cpp --------------*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file implements the RegisterBankInfo class. //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/iterator_range.h" #include "llvm/CodeGen/GlobalISel/RegisterBank.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/Type.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include // For std::max. #define DEBUG_TYPE "registerbankinfo" using namespace llvm; STATISTIC(NumPartialMappingsCreated, "Number of partial mappings dynamically created"); STATISTIC(NumPartialMappingsAccessed, "Number of partial mappings dynamically accessed"); STATISTIC(NumValueMappingsCreated, "Number of value mappings dynamically created"); STATISTIC(NumValueMappingsAccessed, "Number of value mappings dynamically accessed"); STATISTIC(NumOperandsMappingsCreated, "Number of operands mappings dynamically created"); STATISTIC(NumOperandsMappingsAccessed, "Number of operands mappings dynamically accessed"); STATISTIC(NumInstructionMappingsCreated, "Number of instruction mappings dynamically created"); STATISTIC(NumInstructionMappingsAccessed, "Number of instruction mappings dynamically accessed"); const unsigned RegisterBankInfo::DefaultMappingID = UINT_MAX; const unsigned RegisterBankInfo::InvalidMappingID = UINT_MAX - 1; //------------------------------------------------------------------------------ // RegisterBankInfo implementation. //------------------------------------------------------------------------------ RegisterBankInfo::RegisterBankInfo(RegisterBank **RegBanks, unsigned NumRegBanks) : RegBanks(RegBanks), NumRegBanks(NumRegBanks) { #ifndef NDEBUG for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) { assert(RegBanks[Idx] != nullptr && "Invalid RegisterBank"); assert(RegBanks[Idx]->isValid() && "RegisterBank should be valid"); } #endif // NDEBUG } bool RegisterBankInfo::verify(const TargetRegisterInfo &TRI) const { #ifndef NDEBUG for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) { const RegisterBank &RegBank = getRegBank(Idx); assert(Idx == RegBank.getID() && "ID does not match the index in the array"); LLVM_DEBUG(dbgs() << "Verify " << RegBank << '\n'); assert(RegBank.verify(TRI) && "RegBank is invalid"); } #endif // NDEBUG return true; } const RegisterBank * RegisterBankInfo::getRegBank(unsigned Reg, const MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI) const { if (TargetRegisterInfo::isPhysicalRegister(Reg)) return &getRegBankFromRegClass(getMinimalPhysRegClass(Reg, TRI)); assert(Reg && "NoRegister does not have a register bank"); const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg); if (auto *RB = RegClassOrBank.dyn_cast()) return RB; if (auto *RC = RegClassOrBank.dyn_cast()) return &getRegBankFromRegClass(*RC); return nullptr; } const TargetRegisterClass & RegisterBankInfo::getMinimalPhysRegClass(unsigned Reg, const TargetRegisterInfo &TRI) const { assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Reg must be a physreg"); const auto &RegRCIt = PhysRegMinimalRCs.find(Reg); if (RegRCIt != PhysRegMinimalRCs.end()) return *RegRCIt->second; const TargetRegisterClass *PhysRC = TRI.getMinimalPhysRegClass(Reg); PhysRegMinimalRCs[Reg] = PhysRC; return *PhysRC; } const RegisterBank *RegisterBankInfo::getRegBankFromConstraints( const MachineInstr &MI, unsigned OpIdx, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) const { // The mapping of the registers may be available via the // register class constraints. const TargetRegisterClass *RC = MI.getRegClassConstraint(OpIdx, &TII, &TRI); if (!RC) return nullptr; const RegisterBank &RegBank = getRegBankFromRegClass(*RC); // Sanity check that the target properly implemented getRegBankFromRegClass. assert(RegBank.covers(*RC) && "The mapping of the register bank does not make sense"); return &RegBank; } const TargetRegisterClass *RegisterBankInfo::constrainGenericRegister( unsigned Reg, const TargetRegisterClass &RC, MachineRegisterInfo &MRI) { // If the register already has a class, fallback to MRI::constrainRegClass. auto &RegClassOrBank = MRI.getRegClassOrRegBank(Reg); if (RegClassOrBank.is()) return MRI.constrainRegClass(Reg, &RC); const RegisterBank *RB = RegClassOrBank.get(); // Otherwise, all we can do is ensure the bank covers the class, and set it. if (RB && !RB->covers(RC)) return nullptr; // If nothing was set or the class is simply compatible, set it. MRI.setRegClass(Reg, &RC); return &RC; } /// Check whether or not \p MI should be treated like a copy /// for the mappings. /// Copy like instruction are special for mapping because /// they don't have actual register constraints. Moreover, /// they sometimes have register classes assigned and we can /// just use that instead of failing to provide a generic mapping. static bool isCopyLike(const MachineInstr &MI) { return MI.isCopy() || MI.isPHI() || MI.getOpcode() == TargetOpcode::REG_SEQUENCE; } const RegisterBankInfo::InstructionMapping & RegisterBankInfo::getInstrMappingImpl(const MachineInstr &MI) const { // For copies we want to walk over the operands and try to find one // that has a register bank since the instruction itself will not get // us any constraint. bool IsCopyLike = isCopyLike(MI); // For copy like instruction, only the mapping of the definition // is important. The rest is not constrained. unsigned NumOperandsForMapping = IsCopyLike ? 1 : MI.getNumOperands(); const MachineFunction &MF = *MI.getMF(); const TargetSubtargetInfo &STI = MF.getSubtarget(); const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); const MachineRegisterInfo &MRI = MF.getRegInfo(); // We may need to query the instruction encoding to guess the mapping. const TargetInstrInfo &TII = *STI.getInstrInfo(); // Before doing anything complicated check if the mapping is not // directly available. bool CompleteMapping = true; SmallVector OperandsMapping(NumOperandsForMapping); for (unsigned OpIdx = 0, EndIdx = MI.getNumOperands(); OpIdx != EndIdx; ++OpIdx) { const MachineOperand &MO = MI.getOperand(OpIdx); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; // The register bank of Reg is just a side effect of the current // excution and in particular, there is no reason to believe this // is the best default mapping for the current instruction. Keep // it as an alternative register bank if we cannot figure out // something. const RegisterBank *AltRegBank = getRegBank(Reg, MRI, TRI); // For copy-like instruction, we want to reuse the register bank // that is already set on Reg, if any, since those instructions do // not have any constraints. const RegisterBank *CurRegBank = IsCopyLike ? AltRegBank : nullptr; if (!CurRegBank) { // If this is a target specific instruction, we can deduce // the register bank from the encoding constraints. CurRegBank = getRegBankFromConstraints(MI, OpIdx, TII, TRI); if (!CurRegBank) { // All our attempts failed, give up. CompleteMapping = false; if (!IsCopyLike) // MI does not carry enough information to guess the mapping. return getInvalidInstructionMapping(); continue; } } const ValueMapping *ValMapping = &getValueMapping(0, getSizeInBits(Reg, MRI, TRI), *CurRegBank); if (IsCopyLike) { OperandsMapping[0] = ValMapping; CompleteMapping = true; break; } OperandsMapping[OpIdx] = ValMapping; } if (IsCopyLike && !CompleteMapping) // No way to deduce the type from what we have. return getInvalidInstructionMapping(); assert(CompleteMapping && "Setting an uncomplete mapping"); return getInstructionMapping( DefaultMappingID, /*Cost*/ 1, /*OperandsMapping*/ getOperandsMapping(OperandsMapping), NumOperandsForMapping); } /// Hashing function for PartialMapping. static hash_code hashPartialMapping(unsigned StartIdx, unsigned Length, const RegisterBank *RegBank) { return hash_combine(StartIdx, Length, RegBank ? RegBank->getID() : 0); } /// Overloaded version of hash_value for a PartialMapping. hash_code llvm::hash_value(const RegisterBankInfo::PartialMapping &PartMapping) { return hashPartialMapping(PartMapping.StartIdx, PartMapping.Length, PartMapping.RegBank); } const RegisterBankInfo::PartialMapping & RegisterBankInfo::getPartialMapping(unsigned StartIdx, unsigned Length, const RegisterBank &RegBank) const { ++NumPartialMappingsAccessed; hash_code Hash = hashPartialMapping(StartIdx, Length, &RegBank); const auto &It = MapOfPartialMappings.find(Hash); if (It != MapOfPartialMappings.end()) return *It->second; ++NumPartialMappingsCreated; auto &PartMapping = MapOfPartialMappings[Hash]; PartMapping = llvm::make_unique(StartIdx, Length, RegBank); return *PartMapping; } const RegisterBankInfo::ValueMapping & RegisterBankInfo::getValueMapping(unsigned StartIdx, unsigned Length, const RegisterBank &RegBank) const { return getValueMapping(&getPartialMapping(StartIdx, Length, RegBank), 1); } static hash_code hashValueMapping(const RegisterBankInfo::PartialMapping *BreakDown, unsigned NumBreakDowns) { if (LLVM_LIKELY(NumBreakDowns == 1)) return hash_value(*BreakDown); SmallVector Hashes(NumBreakDowns); for (unsigned Idx = 0; Idx != NumBreakDowns; ++Idx) Hashes.push_back(hash_value(BreakDown[Idx])); return hash_combine_range(Hashes.begin(), Hashes.end()); } const RegisterBankInfo::ValueMapping & RegisterBankInfo::getValueMapping(const PartialMapping *BreakDown, unsigned NumBreakDowns) const { ++NumValueMappingsAccessed; hash_code Hash = hashValueMapping(BreakDown, NumBreakDowns); const auto &It = MapOfValueMappings.find(Hash); if (It != MapOfValueMappings.end()) return *It->second; ++NumValueMappingsCreated; auto &ValMapping = MapOfValueMappings[Hash]; ValMapping = llvm::make_unique(BreakDown, NumBreakDowns); return *ValMapping; } template const RegisterBankInfo::ValueMapping * RegisterBankInfo::getOperandsMapping(Iterator Begin, Iterator End) const { ++NumOperandsMappingsAccessed; // The addresses of the value mapping are unique. // Therefore, we can use them directly to hash the operand mapping. hash_code Hash = hash_combine_range(Begin, End); auto &Res = MapOfOperandsMappings[Hash]; if (Res) return Res.get(); ++NumOperandsMappingsCreated; // Create the array of ValueMapping. // Note: this array will not hash to this instance of operands // mapping, because we use the pointer of the ValueMapping // to hash and we expect them to uniquely identify an instance // of value mapping. Res = llvm::make_unique(std::distance(Begin, End)); unsigned Idx = 0; for (Iterator It = Begin; It != End; ++It, ++Idx) { const ValueMapping *ValMap = *It; if (!ValMap) continue; Res[Idx] = *ValMap; } return Res.get(); } const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping( const SmallVectorImpl &OpdsMapping) const { return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end()); } const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping( std::initializer_list OpdsMapping) const { return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end()); } static hash_code hashInstructionMapping(unsigned ID, unsigned Cost, const RegisterBankInfo::ValueMapping *OperandsMapping, unsigned NumOperands) { return hash_combine(ID, Cost, OperandsMapping, NumOperands); } const RegisterBankInfo::InstructionMapping & RegisterBankInfo::getInstructionMappingImpl( bool IsInvalid, unsigned ID, unsigned Cost, const RegisterBankInfo::ValueMapping *OperandsMapping, unsigned NumOperands) const { assert(((IsInvalid && ID == InvalidMappingID && Cost == 0 && OperandsMapping == nullptr && NumOperands == 0) || !IsInvalid) && "Mismatch argument for invalid input"); ++NumInstructionMappingsAccessed; hash_code Hash = hashInstructionMapping(ID, Cost, OperandsMapping, NumOperands); const auto &It = MapOfInstructionMappings.find(Hash); if (It != MapOfInstructionMappings.end()) return *It->second; ++NumInstructionMappingsCreated; auto &InstrMapping = MapOfInstructionMappings[Hash]; if (IsInvalid) InstrMapping = llvm::make_unique(); else InstrMapping = llvm::make_unique( ID, Cost, OperandsMapping, NumOperands); return *InstrMapping; } const RegisterBankInfo::InstructionMapping & RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const { const RegisterBankInfo::InstructionMapping &Mapping = getInstrMappingImpl(MI); if (Mapping.isValid()) return Mapping; llvm_unreachable("The target must implement this"); } RegisterBankInfo::InstructionMappings RegisterBankInfo::getInstrPossibleMappings(const MachineInstr &MI) const { InstructionMappings PossibleMappings; // Put the default mapping first. PossibleMappings.push_back(&getInstrMapping(MI)); // Then the alternative mapping, if any. InstructionMappings AltMappings = getInstrAlternativeMappings(MI); for (const InstructionMapping *AltMapping : AltMappings) PossibleMappings.push_back(AltMapping); #ifndef NDEBUG for (const InstructionMapping *Mapping : PossibleMappings) assert(Mapping->verify(MI) && "Mapping is invalid"); #endif return PossibleMappings; } RegisterBankInfo::InstructionMappings RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr &MI) const { // No alternative for MI. return InstructionMappings(); } void RegisterBankInfo::applyDefaultMapping(const OperandsMapper &OpdMapper) { MachineInstr &MI = OpdMapper.getMI(); MachineRegisterInfo &MRI = OpdMapper.getMRI(); LLVM_DEBUG(dbgs() << "Applying default-like mapping\n"); for (unsigned OpIdx = 0, EndIdx = OpdMapper.getInstrMapping().getNumOperands(); OpIdx != EndIdx; ++OpIdx) { LLVM_DEBUG(dbgs() << "OpIdx " << OpIdx); MachineOperand &MO = MI.getOperand(OpIdx); if (!MO.isReg()) { LLVM_DEBUG(dbgs() << " is not a register, nothing to be done\n"); continue; } if (!MO.getReg()) { LLVM_DEBUG(dbgs() << " is %%noreg, nothing to be done\n"); continue; } assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns != 0 && "Invalid mapping"); assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns == 1 && "This mapping is too complex for this function"); iterator_range::const_iterator> NewRegs = OpdMapper.getVRegs(OpIdx); if (NewRegs.begin() == NewRegs.end()) { LLVM_DEBUG(dbgs() << " has not been repaired, nothing to be done\n"); continue; } unsigned OrigReg = MO.getReg(); unsigned NewReg = *NewRegs.begin(); LLVM_DEBUG(dbgs() << " changed, replace " << printReg(OrigReg, nullptr)); MO.setReg(NewReg); LLVM_DEBUG(dbgs() << " with " << printReg(NewReg, nullptr)); // The OperandsMapper creates plain scalar, we may have to fix that. // Check if the types match and if not, fix that. LLT OrigTy = MRI.getType(OrigReg); LLT NewTy = MRI.getType(NewReg); if (OrigTy != NewTy) { // The default mapping is not supposed to change the size of // the storage. However, right now we don't necessarily bump all // the types to storage size. For instance, we can consider // s16 G_AND legal whereas the storage size is going to be 32. assert(OrigTy.getSizeInBits() <= NewTy.getSizeInBits() && "Types with difference size cannot be handled by the default " "mapping"); LLVM_DEBUG(dbgs() << "\nChange type of new opd from " << NewTy << " to " << OrigTy); MRI.setType(NewReg, OrigTy); } LLVM_DEBUG(dbgs() << '\n'); } } unsigned RegisterBankInfo::getSizeInBits(unsigned Reg, const MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI) const { if (TargetRegisterInfo::isPhysicalRegister(Reg)) { // The size is not directly available for physical registers. // Instead, we need to access a register class that contains Reg and // get the size of that register class. // Because this is expensive, we'll cache the register class by calling auto *RC = &getMinimalPhysRegClass(Reg, TRI); assert(RC && "Expecting Register class"); return TRI.getRegSizeInBits(*RC); } return TRI.getRegSizeInBits(Reg, MRI); } //------------------------------------------------------------------------------ // Helper classes implementation. //------------------------------------------------------------------------------ #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void RegisterBankInfo::PartialMapping::dump() const { print(dbgs()); dbgs() << '\n'; } #endif bool RegisterBankInfo::PartialMapping::verify() const { assert(RegBank && "Register bank not set"); assert(Length && "Empty mapping"); assert((StartIdx <= getHighBitIdx()) && "Overflow, switch to APInt?"); // Check if the minimum width fits into RegBank. assert(RegBank->getSize() >= Length && "Register bank too small for Mask"); return true; } void RegisterBankInfo::PartialMapping::print(raw_ostream &OS) const { OS << "[" << StartIdx << ", " << getHighBitIdx() << "], RegBank = "; if (RegBank) OS << *RegBank; else OS << "nullptr"; } bool RegisterBankInfo::ValueMapping::verify(unsigned MeaningfulBitWidth) const { assert(NumBreakDowns && "Value mapped nowhere?!"); unsigned OrigValueBitWidth = 0; for (const RegisterBankInfo::PartialMapping &PartMap : *this) { // Check that each register bank is big enough to hold the partial value: // this check is done by PartialMapping::verify assert(PartMap.verify() && "Partial mapping is invalid"); // The original value should completely be mapped. // Thus the maximum accessed index + 1 is the size of the original value. OrigValueBitWidth = std::max(OrigValueBitWidth, PartMap.getHighBitIdx() + 1); } assert(OrigValueBitWidth >= MeaningfulBitWidth && "Meaningful bits not covered by the mapping"); APInt ValueMask(OrigValueBitWidth, 0); for (const RegisterBankInfo::PartialMapping &PartMap : *this) { // Check that the union of the partial mappings covers the whole value, // without overlaps. // The high bit is exclusive in the APInt API, thus getHighBitIdx + 1. APInt PartMapMask = APInt::getBitsSet(OrigValueBitWidth, PartMap.StartIdx, PartMap.getHighBitIdx() + 1); ValueMask ^= PartMapMask; assert((ValueMask & PartMapMask) == PartMapMask && "Some partial mappings overlap"); } assert(ValueMask.isAllOnesValue() && "Value is not fully mapped"); return true; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void RegisterBankInfo::ValueMapping::dump() const { print(dbgs()); dbgs() << '\n'; } #endif void RegisterBankInfo::ValueMapping::print(raw_ostream &OS) const { OS << "#BreakDown: " << NumBreakDowns << " "; bool IsFirst = true; for (const PartialMapping &PartMap : *this) { if (!IsFirst) OS << ", "; OS << '[' << PartMap << ']'; IsFirst = false; } } bool RegisterBankInfo::InstructionMapping::verify( const MachineInstr &MI) const { // Check that all the register operands are properly mapped. // Check the constructor invariant. // For PHI, we only care about mapping the definition. assert(NumOperands == (isCopyLike(MI) ? 1 : MI.getNumOperands()) && "NumOperands must match, see constructor"); assert(MI.getParent() && MI.getMF() && "MI must be connected to a MachineFunction"); const MachineFunction &MF = *MI.getMF(); const RegisterBankInfo *RBI = MF.getSubtarget().getRegBankInfo(); (void)RBI; for (unsigned Idx = 0; Idx < NumOperands; ++Idx) { const MachineOperand &MO = MI.getOperand(Idx); if (!MO.isReg()) { assert(!getOperandMapping(Idx).isValid() && "We should not care about non-reg mapping"); continue; } unsigned Reg = MO.getReg(); if (!Reg) continue; assert(getOperandMapping(Idx).isValid() && "We must have a mapping for reg operands"); const RegisterBankInfo::ValueMapping &MOMapping = getOperandMapping(Idx); (void)MOMapping; // Register size in bits. // This size must match what the mapping expects. assert(MOMapping.verify(RBI->getSizeInBits( Reg, MF.getRegInfo(), *MF.getSubtarget().getRegisterInfo())) && "Value mapping is invalid"); } return true; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void RegisterBankInfo::InstructionMapping::dump() const { print(dbgs()); dbgs() << '\n'; } #endif void RegisterBankInfo::InstructionMapping::print(raw_ostream &OS) const { OS << "ID: " << getID() << " Cost: " << getCost() << " Mapping: "; for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { const ValueMapping &ValMapping = getOperandMapping(OpIdx); if (OpIdx) OS << ", "; OS << "{ Idx: " << OpIdx << " Map: " << ValMapping << '}'; } } const int RegisterBankInfo::OperandsMapper::DontKnowIdx = -1; RegisterBankInfo::OperandsMapper::OperandsMapper( MachineInstr &MI, const InstructionMapping &InstrMapping, MachineRegisterInfo &MRI) : MRI(MRI), MI(MI), InstrMapping(InstrMapping) { unsigned NumOpds = InstrMapping.getNumOperands(); OpToNewVRegIdx.resize(NumOpds, OperandsMapper::DontKnowIdx); assert(InstrMapping.verify(MI) && "Invalid mapping for MI"); } iterator_range::iterator> RegisterBankInfo::OperandsMapper::getVRegsMem(unsigned OpIdx) { assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access"); unsigned NumPartialVal = getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns; int StartIdx = OpToNewVRegIdx[OpIdx]; if (StartIdx == OperandsMapper::DontKnowIdx) { // This is the first time we try to access OpIdx. // Create the cells that will hold all the partial values at the // end of the list of NewVReg. StartIdx = NewVRegs.size(); OpToNewVRegIdx[OpIdx] = StartIdx; for (unsigned i = 0; i < NumPartialVal; ++i) NewVRegs.push_back(0); } SmallVectorImpl::iterator End = getNewVRegsEnd(StartIdx, NumPartialVal); return make_range(&NewVRegs[StartIdx], End); } SmallVectorImpl::const_iterator RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx, unsigned NumVal) const { return const_cast(this)->getNewVRegsEnd(StartIdx, NumVal); } SmallVectorImpl::iterator RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx, unsigned NumVal) { assert((NewVRegs.size() == StartIdx + NumVal || NewVRegs.size() > StartIdx + NumVal) && "NewVRegs too small to contain all the partial mapping"); return NewVRegs.size() <= StartIdx + NumVal ? NewVRegs.end() : &NewVRegs[StartIdx + NumVal]; } void RegisterBankInfo::OperandsMapper::createVRegs(unsigned OpIdx) { assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access"); iterator_range::iterator> NewVRegsForOpIdx = getVRegsMem(OpIdx); const ValueMapping &ValMapping = getInstrMapping().getOperandMapping(OpIdx); const PartialMapping *PartMap = ValMapping.begin(); for (unsigned &NewVReg : NewVRegsForOpIdx) { assert(PartMap != ValMapping.end() && "Out-of-bound access"); assert(NewVReg == 0 && "Register has already been created"); // The new registers are always bound to scalar with the right size. // The actual type has to be set when the target does the mapping // of the instruction. // The rationale is that this generic code cannot guess how the // target plans to split the input type. NewVReg = MRI.createGenericVirtualRegister(LLT::scalar(PartMap->Length)); MRI.setRegBank(NewVReg, *PartMap->RegBank); ++PartMap; } } void RegisterBankInfo::OperandsMapper::setVRegs(unsigned OpIdx, unsigned PartialMapIdx, unsigned NewVReg) { assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access"); assert(getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns > PartialMapIdx && "Out-of-bound access for partial mapping"); // Make sure the memory is initialized for that operand. (void)getVRegsMem(OpIdx); assert(NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] == 0 && "This value is already set"); NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] = NewVReg; } iterator_range::const_iterator> RegisterBankInfo::OperandsMapper::getVRegs(unsigned OpIdx, bool ForDebug) const { (void)ForDebug; assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access"); int StartIdx = OpToNewVRegIdx[OpIdx]; if (StartIdx == OperandsMapper::DontKnowIdx) return make_range(NewVRegs.end(), NewVRegs.end()); unsigned PartMapSize = getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns; SmallVectorImpl::const_iterator End = getNewVRegsEnd(StartIdx, PartMapSize); iterator_range::const_iterator> Res = make_range(&NewVRegs[StartIdx], End); #ifndef NDEBUG for (unsigned VReg : Res) assert((VReg || ForDebug) && "Some registers are uninitialized"); #endif return Res; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void RegisterBankInfo::OperandsMapper::dump() const { print(dbgs(), true); dbgs() << '\n'; } #endif void RegisterBankInfo::OperandsMapper::print(raw_ostream &OS, bool ForDebug) const { unsigned NumOpds = getInstrMapping().getNumOperands(); if (ForDebug) { OS << "Mapping for " << getMI() << "\nwith " << getInstrMapping() << '\n'; // Print out the internal state of the index table. OS << "Populated indices (CellNumber, IndexInNewVRegs): "; bool IsFirst = true; for (unsigned Idx = 0; Idx != NumOpds; ++Idx) { if (OpToNewVRegIdx[Idx] != DontKnowIdx) { if (!IsFirst) OS << ", "; OS << '(' << Idx << ", " << OpToNewVRegIdx[Idx] << ')'; IsFirst = false; } } OS << '\n'; } else OS << "Mapping ID: " << getInstrMapping().getID() << ' '; OS << "Operand Mapping: "; // If we have a function, we can pretty print the name of the registers. // Otherwise we will print the raw numbers. const TargetRegisterInfo *TRI = getMI().getParent() && getMI().getMF() ? getMI().getMF()->getSubtarget().getRegisterInfo() : nullptr; bool IsFirst = true; for (unsigned Idx = 0; Idx != NumOpds; ++Idx) { if (OpToNewVRegIdx[Idx] == DontKnowIdx) continue; if (!IsFirst) OS << ", "; IsFirst = false; OS << '(' << printReg(getMI().getOperand(Idx).getReg(), TRI) << ", ["; bool IsFirstNewVReg = true; for (unsigned VReg : getVRegs(Idx)) { if (!IsFirstNewVReg) OS << ", "; IsFirstNewVReg = false; OS << printReg(VReg, TRI); } OS << "])"; } }