//===-- lib/Codegen/MachineRegisterInfo.cpp -------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implementation of the MachineRegisterInfo class. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/CommandLine.h" using namespace llvm; MachineRegisterInfo::MachineRegisterInfo(const TargetRegisterInfo &TRI) { VRegInfo.reserve(256); RegAllocHints.reserve(256); RegClass2VRegMap.resize(TRI.getNumRegClasses()+1); // RC ID starts at 1. UsedPhysRegs.resize(TRI.getNumRegs()); // Create the physreg use/def lists. PhysRegUseDefLists = new MachineOperand*[TRI.getNumRegs()]; memset(PhysRegUseDefLists, 0, sizeof(MachineOperand*)*TRI.getNumRegs()); } MachineRegisterInfo::~MachineRegisterInfo() { #ifndef NDEBUG for (unsigned i = 0, e = VRegInfo.size(); i != e; ++i) assert(VRegInfo[i].second == 0 && "Vreg use list non-empty still?"); for (unsigned i = 0, e = UsedPhysRegs.size(); i != e; ++i) assert(!PhysRegUseDefLists[i] && "PhysRegUseDefLists has entries after all instructions are deleted"); #endif delete [] PhysRegUseDefLists; } /// setRegClass - Set the register class of the specified virtual register. /// void MachineRegisterInfo::setRegClass(unsigned Reg, const TargetRegisterClass *RC) { unsigned VR = Reg; Reg -= TargetRegisterInfo::FirstVirtualRegister; assert(Reg < VRegInfo.size() && "Invalid vreg!"); const TargetRegisterClass *OldRC = VRegInfo[Reg].first; VRegInfo[Reg].first = RC; // Remove from old register class's vregs list. This may be slow but // fortunately this operation is rarely needed. std::vector &VRegs = RegClass2VRegMap[OldRC->getID()]; std::vector::iterator I=std::find(VRegs.begin(), VRegs.end(), VR); VRegs.erase(I); // Add to new register class's vregs list. RegClass2VRegMap[RC->getID()].push_back(VR); } /// createVirtualRegister - Create and return a new virtual register in the /// function with the specified register class. /// unsigned MachineRegisterInfo::createVirtualRegister(const TargetRegisterClass *RegClass){ assert(RegClass && "Cannot create register without RegClass!"); // Add a reg, but keep track of whether the vector reallocated or not. void *ArrayBase = VRegInfo.empty() ? 0 : &VRegInfo[0]; VRegInfo.push_back(std::make_pair(RegClass, (MachineOperand*)0)); RegAllocHints.push_back(std::make_pair(0, 0)); if (!((&VRegInfo[0] == ArrayBase || VRegInfo.size() == 1))) // The vector reallocated, handle this now. HandleVRegListReallocation(); unsigned VR = getLastVirtReg(); RegClass2VRegMap[RegClass->getID()].push_back(VR); return VR; } /// HandleVRegListReallocation - We just added a virtual register to the /// VRegInfo info list and it reallocated. Update the use/def lists info /// pointers. void MachineRegisterInfo::HandleVRegListReallocation() { // The back pointers for the vreg lists point into the previous vector. // Update them to point to their correct slots. for (unsigned i = 0, e = VRegInfo.size(); i != e; ++i) { MachineOperand *List = VRegInfo[i].second; if (!List) continue; // Update the back-pointer to be accurate once more. List->Contents.Reg.Prev = &VRegInfo[i].second; } } /// replaceRegWith - Replace all instances of FromReg with ToReg in the /// machine function. This is like llvm-level X->replaceAllUsesWith(Y), /// except that it also changes any definitions of the register as well. void MachineRegisterInfo::replaceRegWith(unsigned FromReg, unsigned ToReg) { assert(FromReg != ToReg && "Cannot replace a reg with itself"); // TODO: This could be more efficient by bulk changing the operands. for (reg_iterator I = reg_begin(FromReg), E = reg_end(); I != E; ) { MachineOperand &O = I.getOperand(); ++I; O.setReg(ToReg); } } /// getVRegDef - Return the machine instr that defines the specified virtual /// register or null if none is found. This assumes that the code is in SSA /// form, so there should only be one definition. MachineInstr *MachineRegisterInfo::getVRegDef(unsigned Reg) const { assert(Reg-TargetRegisterInfo::FirstVirtualRegister < VRegInfo.size() && "Invalid vreg!"); // Since we are in SSA form, we can use the first definition. if (!def_empty(Reg)) return &*def_begin(Reg); return 0; } bool MachineRegisterInfo::hasOneUse(unsigned RegNo) const { use_iterator UI = use_begin(RegNo); if (UI == use_end()) return false; return ++UI == use_end(); } bool MachineRegisterInfo::hasOneNonDBGUse(unsigned RegNo) const { use_nodbg_iterator UI = use_nodbg_begin(RegNo); if (UI == use_nodbg_end()) return false; return ++UI == use_nodbg_end(); } /// clearKillFlags - Iterate over all the uses of the given register and /// clear the kill flag from the MachineOperand. This function is used by /// optimization passes which extend register lifetimes and need only /// preserve conservative kill flag information. void MachineRegisterInfo::clearKillFlags(unsigned Reg) const { for (use_iterator UI = use_begin(Reg), UE = use_end(); UI != UE; ++UI) UI.getOperand().setIsKill(false); } bool MachineRegisterInfo::isLiveIn(unsigned Reg) const { for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I) if (I->first == Reg || I->second == Reg) return true; return false; } bool MachineRegisterInfo::isLiveOut(unsigned Reg) const { for (liveout_iterator I = liveout_begin(), E = liveout_end(); I != E; ++I) if (*I == Reg) return true; return false; } /// getLiveInPhysReg - If VReg is a live-in virtual register, return the /// corresponding live-in physical register. unsigned MachineRegisterInfo::getLiveInPhysReg(unsigned VReg) const { for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I) if (I->second == VReg) return I->first; return 0; } /// getLiveInVirtReg - If PReg is a live-in physical register, return the /// corresponding live-in physical register. unsigned MachineRegisterInfo::getLiveInVirtReg(unsigned PReg) const { for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I) if (I->first == PReg) return I->second; return 0; } static cl::opt SchedLiveInCopies("schedule-livein-copies", cl::Hidden, cl::desc("Schedule copies of livein registers"), cl::init(false)); /// EmitLiveInCopy - Emit a copy for a live in physical register. If the /// physical register has only a single copy use, then coalesced the copy /// if possible. static void EmitLiveInCopy(MachineBasicBlock *MBB, MachineBasicBlock::iterator &InsertPos, unsigned VirtReg, unsigned PhysReg, const TargetRegisterClass *RC, DenseMap &CopyRegMap, const MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, const TargetInstrInfo &TII) { unsigned NumUses = 0; MachineInstr *UseMI = NULL; for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg), UE = MRI.use_end(); UI != UE; ++UI) { UseMI = &*UI; if (++NumUses > 1) break; } // If the number of uses is not one, or the use is not a move instruction, // don't coalesce. Also, only coalesce away a virtual register to virtual // register copy. bool Coalesced = false; unsigned SrcReg, DstReg, SrcSubReg, DstSubReg; if (NumUses == 1 && TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) && TargetRegisterInfo::isVirtualRegister(DstReg)) { VirtReg = DstReg; Coalesced = true; } // Now find an ideal location to insert the copy. MachineBasicBlock::iterator Pos = InsertPos; while (Pos != MBB->begin()) { MachineInstr *PrevMI = prior(Pos); DenseMap::iterator RI = CopyRegMap.find(PrevMI); // copyRegToReg might emit multiple instructions to do a copy. unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second; if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg)) // This is what the BB looks like right now: // r1024 = mov r0 // ... // r1 = mov r1024 // // We want to insert "r1025 = mov r1". Inserting this copy below the // move to r1024 makes it impossible for that move to be coalesced. // // r1025 = mov r1 // r1024 = mov r0 // ... // r1 = mov 1024 // r2 = mov 1025 break; // Woot! Found a good location. --Pos; } bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC, DebugLoc()); assert(Emitted && "Unable to issue a live-in copy instruction!\n"); (void) Emitted; CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg)); if (Coalesced) { if (&*InsertPos == UseMI) ++InsertPos; MBB->erase(UseMI); } } /// EmitLiveInCopies - Emit copies to initialize livein virtual registers /// into the given entry block. void MachineRegisterInfo::EmitLiveInCopies(MachineBasicBlock *EntryMBB, const TargetRegisterInfo &TRI, const TargetInstrInfo &TII) { if (SchedLiveInCopies) { // Emit the copies at a heuristically-determined location in the block. DenseMap CopyRegMap; MachineBasicBlock::iterator InsertPos = EntryMBB->begin(); for (MachineRegisterInfo::livein_iterator LI = livein_begin(), E = livein_end(); LI != E; ++LI) if (LI->second) { const TargetRegisterClass *RC = getRegClass(LI->second); EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first, RC, CopyRegMap, *this, TRI, TII); } } else { // Emit the copies into the top of the block. for (MachineRegisterInfo::livein_iterator LI = livein_begin(), E = livein_end(); LI != E; ++LI) if (LI->second) { const TargetRegisterClass *RC = getRegClass(LI->second); bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(), LI->second, LI->first, RC, RC, DebugLoc()); assert(Emitted && "Unable to issue a live-in copy instruction!\n"); (void) Emitted; } } // Add function live-ins to entry block live-in set. for (MachineRegisterInfo::livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I) EntryMBB->addLiveIn(I->first); } void MachineRegisterInfo::closePhysRegsUsed(const TargetRegisterInfo &TRI) { for (int i = UsedPhysRegs.find_first(); i >= 0; i = UsedPhysRegs.find_next(i)) for (const unsigned *SS = TRI.getSubRegisters(i); unsigned SubReg = *SS; ++SS) if (SubReg > unsigned(i)) UsedPhysRegs.set(SubReg); } #ifndef NDEBUG void MachineRegisterInfo::dumpUses(unsigned Reg) const { for (use_iterator I = use_begin(Reg), E = use_end(); I != E; ++I) I.getOperand().getParent()->dump(); } #endif