//===- DWARFContext.cpp ---------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h" #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" #include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h" #include "llvm/DebugInfo/DWARF/DWARFDebugArangeSet.h" #include "llvm/DebugInfo/DWARF/DWARFDebugAranges.h" #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h" #include "llvm/DebugInfo/DWARF/DWARFDebugLine.h" #include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h" #include "llvm/DebugInfo/DWARF/DWARFDebugMacro.h" #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" #include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h" #include "llvm/DebugInfo/DWARF/DWARFDie.h" #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" #include "llvm/DebugInfo/DWARF/DWARFGdbIndex.h" #include "llvm/DebugInfo/DWARF/DWARFSection.h" #include "llvm/DebugInfo/DWARF/DWARFUnitIndex.h" #include "llvm/DebugInfo/DWARF/DWARFVerifier.h" #include "llvm/Object/Decompressor.h" #include "llvm/Object/MachO.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Object/RelocVisitor.h" #include "llvm/Support/Casting.h" #include "llvm/Support/DataExtractor.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Error.h" #include "llvm/Support/Format.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include using namespace llvm; using namespace dwarf; using namespace object; #define DEBUG_TYPE "dwarf" typedef DWARFDebugLine::LineTable DWARFLineTable; typedef DILineInfoSpecifier::FileLineInfoKind FileLineInfoKind; typedef DILineInfoSpecifier::FunctionNameKind FunctionNameKind; uint64_t llvm::getRelocatedValue(const DataExtractor &Data, uint32_t Size, uint32_t *Off, const RelocAddrMap *Relocs) { if (!Relocs) return Data.getUnsigned(Off, Size); RelocAddrMap::const_iterator AI = Relocs->find(*Off); if (AI == Relocs->end()) return Data.getUnsigned(Off, Size); return Data.getUnsigned(Off, Size) + AI->second.second; } static void dumpAccelSection(raw_ostream &OS, StringRef Name, const DWARFSection& Section, StringRef StringSection, bool LittleEndian) { DataExtractor AccelSection(Section.Data, LittleEndian, 0); DataExtractor StrData(StringSection, LittleEndian, 0); OS << "\n." << Name << " contents:\n"; DWARFAcceleratorTable Accel(AccelSection, StrData, Section.Relocs); if (!Accel.extract()) return; Accel.dump(OS); } void DWARFContext::dump(raw_ostream &OS, DIDumpType DumpType, bool DumpEH, bool SummarizeTypes) { if (DumpType == DIDT_All || DumpType == DIDT_Abbrev) { OS << ".debug_abbrev contents:\n"; getDebugAbbrev()->dump(OS); } if (DumpType == DIDT_All || DumpType == DIDT_AbbrevDwo) if (const DWARFDebugAbbrev *D = getDebugAbbrevDWO()) { OS << "\n.debug_abbrev.dwo contents:\n"; D->dump(OS); } if (DumpType == DIDT_All || DumpType == DIDT_Info) { OS << "\n.debug_info contents:\n"; for (const auto &CU : compile_units()) CU->dump(OS); } if ((DumpType == DIDT_All || DumpType == DIDT_InfoDwo) && getNumDWOCompileUnits()) { OS << "\n.debug_info.dwo contents:\n"; for (const auto &DWOCU : dwo_compile_units()) DWOCU->dump(OS); } if ((DumpType == DIDT_All || DumpType == DIDT_Types) && getNumTypeUnits()) { OS << "\n.debug_types contents:\n"; for (const auto &TUS : type_unit_sections()) for (const auto &TU : TUS) TU->dump(OS, SummarizeTypes); } if ((DumpType == DIDT_All || DumpType == DIDT_TypesDwo) && getNumDWOTypeUnits()) { OS << "\n.debug_types.dwo contents:\n"; for (const auto &DWOTUS : dwo_type_unit_sections()) for (const auto &DWOTU : DWOTUS) DWOTU->dump(OS, SummarizeTypes); } if (DumpType == DIDT_All || DumpType == DIDT_Loc) { OS << "\n.debug_loc contents:\n"; getDebugLoc()->dump(OS); } if (DumpType == DIDT_All || DumpType == DIDT_LocDwo) { OS << "\n.debug_loc.dwo contents:\n"; getDebugLocDWO()->dump(OS); } if (DumpType == DIDT_All || DumpType == DIDT_Frames) { OS << "\n.debug_frame contents:\n"; getDebugFrame()->dump(OS); if (DumpEH) { OS << "\n.eh_frame contents:\n"; getEHFrame()->dump(OS); } } if (DumpType == DIDT_All || DumpType == DIDT_Macro) { OS << "\n.debug_macinfo contents:\n"; getDebugMacro()->dump(OS); } uint32_t offset = 0; if (DumpType == DIDT_All || DumpType == DIDT_Aranges) { OS << "\n.debug_aranges contents:\n"; DataExtractor arangesData(getARangeSection(), isLittleEndian(), 0); DWARFDebugArangeSet set; while (set.extract(arangesData, &offset)) set.dump(OS); } uint8_t savedAddressByteSize = 0; if (DumpType == DIDT_All || DumpType == DIDT_Line) { OS << "\n.debug_line contents:\n"; for (const auto &CU : compile_units()) { savedAddressByteSize = CU->getAddressByteSize(); auto CUDIE = CU->getUnitDIE(); if (!CUDIE) continue; if (auto StmtOffset = toSectionOffset(CUDIE.find(DW_AT_stmt_list))) { DataExtractor lineData(getLineSection().Data, isLittleEndian(), savedAddressByteSize); DWARFDebugLine::LineTable LineTable; uint32_t Offset = *StmtOffset; LineTable.parse(lineData, &getLineSection().Relocs, &Offset); LineTable.dump(OS); } } } if (DumpType == DIDT_All || DumpType == DIDT_CUIndex) { OS << "\n.debug_cu_index contents:\n"; getCUIndex().dump(OS); } if (DumpType == DIDT_All || DumpType == DIDT_TUIndex) { OS << "\n.debug_tu_index contents:\n"; getTUIndex().dump(OS); } if (DumpType == DIDT_All || DumpType == DIDT_LineDwo) { OS << "\n.debug_line.dwo contents:\n"; unsigned stmtOffset = 0; DataExtractor lineData(getLineDWOSection().Data, isLittleEndian(), savedAddressByteSize); DWARFDebugLine::LineTable LineTable; while (LineTable.Prologue.parse(lineData, &stmtOffset)) { LineTable.dump(OS); LineTable.clear(); } } if (DumpType == DIDT_All || DumpType == DIDT_Str) { OS << "\n.debug_str contents:\n"; DataExtractor strData(getStringSection(), isLittleEndian(), 0); offset = 0; uint32_t strOffset = 0; while (const char *s = strData.getCStr(&offset)) { OS << format("0x%8.8x: \"%s\"\n", strOffset, s); strOffset = offset; } } if ((DumpType == DIDT_All || DumpType == DIDT_StrDwo) && !getStringDWOSection().empty()) { OS << "\n.debug_str.dwo contents:\n"; DataExtractor strDWOData(getStringDWOSection(), isLittleEndian(), 0); offset = 0; uint32_t strDWOOffset = 0; while (const char *s = strDWOData.getCStr(&offset)) { OS << format("0x%8.8x: \"%s\"\n", strDWOOffset, s); strDWOOffset = offset; } } if (DumpType == DIDT_All || DumpType == DIDT_Ranges) { OS << "\n.debug_ranges contents:\n"; // In fact, different compile units may have different address byte // sizes, but for simplicity we just use the address byte size of the last // compile unit (there is no easy and fast way to associate address range // list and the compile unit it describes). DataExtractor rangesData(getRangeSection().Data, isLittleEndian(), savedAddressByteSize); offset = 0; DWARFDebugRangeList rangeList; while (rangeList.extract(rangesData, &offset, getRangeSection().Relocs)) rangeList.dump(OS); } if (DumpType == DIDT_All || DumpType == DIDT_Pubnames) DWARFDebugPubTable(getPubNamesSection(), isLittleEndian(), false) .dump("debug_pubnames", OS); if (DumpType == DIDT_All || DumpType == DIDT_Pubtypes) DWARFDebugPubTable(getPubTypesSection(), isLittleEndian(), false) .dump("debug_pubtypes", OS); if (DumpType == DIDT_All || DumpType == DIDT_GnuPubnames) DWARFDebugPubTable(getGnuPubNamesSection(), isLittleEndian(), true /* GnuStyle */) .dump("debug_gnu_pubnames", OS); if (DumpType == DIDT_All || DumpType == DIDT_GnuPubtypes) DWARFDebugPubTable(getGnuPubTypesSection(), isLittleEndian(), true /* GnuStyle */) .dump("debug_gnu_pubtypes", OS); if ((DumpType == DIDT_All || DumpType == DIDT_StrOffsetsDwo) && !getStringOffsetDWOSection().empty()) { OS << "\n.debug_str_offsets.dwo contents:\n"; DataExtractor strOffsetExt(getStringOffsetDWOSection(), isLittleEndian(), 0); offset = 0; uint64_t size = getStringOffsetDWOSection().size(); while (offset < size) { OS << format("0x%8.8x: ", offset); OS << format("%8.8x\n", strOffsetExt.getU32(&offset)); } } if ((DumpType == DIDT_All || DumpType == DIDT_GdbIndex) && !getGdbIndexSection().empty()) { OS << "\n.gnu_index contents:\n"; getGdbIndex().dump(OS); } if (DumpType == DIDT_All || DumpType == DIDT_AppleNames) dumpAccelSection(OS, "apple_names", getAppleNamesSection(), getStringSection(), isLittleEndian()); if (DumpType == DIDT_All || DumpType == DIDT_AppleTypes) dumpAccelSection(OS, "apple_types", getAppleTypesSection(), getStringSection(), isLittleEndian()); if (DumpType == DIDT_All || DumpType == DIDT_AppleNamespaces) dumpAccelSection(OS, "apple_namespaces", getAppleNamespacesSection(), getStringSection(), isLittleEndian()); if (DumpType == DIDT_All || DumpType == DIDT_AppleObjC) dumpAccelSection(OS, "apple_objc", getAppleObjCSection(), getStringSection(), isLittleEndian()); } DWARFDie DWARFContext::getDIEForOffset(uint32_t Offset) { parseCompileUnits(); if (auto *CU = CUs.getUnitForOffset(Offset)) return CU->getDIEForOffset(Offset); return DWARFDie(); } namespace { class Verifier { raw_ostream &OS; DWARFContext &DCtx; public: Verifier(raw_ostream &S, DWARFContext &D) : OS(S), DCtx(D) {} bool HandleDebugInfo() { bool Success = true; // A map that tracks all references (converted absolute references) so we // can verify each reference points to a valid DIE and not an offset that // lies between to valid DIEs. std::map> ReferenceToDIEOffsets; OS << "Verifying .debug_info...\n"; for (const auto &CU : DCtx.compile_units()) { unsigned NumDies = CU->getNumDIEs(); for (unsigned I = 0; I < NumDies; ++I) { auto Die = CU->getDIEAtIndex(I); const auto Tag = Die.getTag(); if (Tag == DW_TAG_null) continue; for (auto AttrValue : Die.attributes()) { const auto Attr = AttrValue.Attr; const auto Form = AttrValue.Value.getForm(); switch (Attr) { case DW_AT_ranges: // Make sure the offset in the DW_AT_ranges attribute is valid. if (auto SectionOffset = AttrValue.Value.getAsSectionOffset()) { if (*SectionOffset >= DCtx.getRangeSection().Data.size()) { Success = false; OS << "error: DW_AT_ranges offset is beyond .debug_ranges " "bounds:\n"; Die.dump(OS, 0); OS << "\n"; } } else { Success = false; OS << "error: DIE has invalid DW_AT_ranges encoding:\n"; Die.dump(OS, 0); OS << "\n"; } break; case DW_AT_stmt_list: // Make sure the offset in the DW_AT_stmt_list attribute is valid. if (auto SectionOffset = AttrValue.Value.getAsSectionOffset()) { if (*SectionOffset >= DCtx.getLineSection().Data.size()) { Success = false; OS << "error: DW_AT_stmt_list offset is beyond .debug_line " "bounds: " << format("0x%08" PRIx32, *SectionOffset) << "\n"; CU->getUnitDIE().dump(OS, 0); OS << "\n"; } } else { Success = false; OS << "error: DIE has invalid DW_AT_stmt_list encoding:\n"; Die.dump(OS, 0); OS << "\n"; } break; default: break; } switch (Form) { case DW_FORM_ref1: case DW_FORM_ref2: case DW_FORM_ref4: case DW_FORM_ref8: case DW_FORM_ref_udata: { // Verify all CU relative references are valid CU offsets. Optional RefVal = AttrValue.Value.getAsReference(); assert(RefVal); if (RefVal) { auto DieCU = Die.getDwarfUnit(); auto CUSize = DieCU->getNextUnitOffset() - DieCU->getOffset(); auto CUOffset = AttrValue.Value.getRawUValue(); if (CUOffset >= CUSize) { Success = false; OS << "error: " << FormEncodingString(Form) << " CU offset " << format("0x%08" PRIx32, CUOffset) << " is invalid (must be less than CU size of " << format("0x%08" PRIx32, CUSize) << "):\n"; Die.dump(OS, 0); OS << "\n"; } else { // Valid reference, but we will verify it points to an actual // DIE later. ReferenceToDIEOffsets[*RefVal].insert(Die.getOffset()); } } break; } case DW_FORM_ref_addr: { // Verify all absolute DIE references have valid offsets in the // .debug_info section. Optional RefVal = AttrValue.Value.getAsReference(); assert(RefVal); if (RefVal) { if(*RefVal >= DCtx.getInfoSection().Data.size()) { Success = false; OS << "error: DW_FORM_ref_addr offset beyond .debug_info " "bounds:\n"; Die.dump(OS, 0); OS << "\n"; } else { // Valid reference, but we will verify it points to an actual // DIE later. ReferenceToDIEOffsets[*RefVal].insert(Die.getOffset()); } } break; } case DW_FORM_strp: { auto SecOffset = AttrValue.Value.getAsSectionOffset(); assert(SecOffset); // DW_FORM_strp is a section offset. if (SecOffset && *SecOffset >= DCtx.getStringSection().size()) { Success = false; OS << "error: DW_FORM_strp offset beyond .debug_str bounds:\n"; Die.dump(OS, 0); OS << "\n"; } break; } default: break; } } } } // Take all references and make sure they point to an actual DIE by // getting the DIE by offset and emitting an error OS << "Verifying .debug_info references...\n"; for (auto Pair: ReferenceToDIEOffsets) { auto Die = DCtx.getDIEForOffset(Pair.first); if (Die) continue; Success = false; OS << "error: invalid DIE reference " << format("0x%08" PRIx64, Pair.first) << ". Offset is in between DIEs:\n"; for (auto Offset: Pair.second) { auto ReferencingDie = DCtx.getDIEForOffset(Offset); ReferencingDie.dump(OS, 0); OS << "\n"; } OS << "\n"; } return Success; } bool HandleDebugLine() { std::map StmtListToDie; bool Success = true; OS << "Verifying .debug_line...\n"; for (const auto &CU : DCtx.compile_units()) { uint32_t LineTableOffset = 0; auto CUDie = CU->getUnitDIE(); auto StmtFormValue = CUDie.find(DW_AT_stmt_list); if (!StmtFormValue) { // No line table for this compile unit. continue; } // Get the attribute value as a section offset. No need to produce an // error here if the encoding isn't correct because we validate this in // the .debug_info verifier. if (auto StmtSectionOffset = toSectionOffset(StmtFormValue)) { LineTableOffset = *StmtSectionOffset; if (LineTableOffset >= DCtx.getLineSection().Data.size()) { // Make sure we don't get a valid line table back if the offset // is wrong. assert(DCtx.getLineTableForUnit(CU.get()) == nullptr); // Skip this line table as it isn't valid. No need to create an error // here because we validate this in the .debug_info verifier. continue; } else { auto Iter = StmtListToDie.find(LineTableOffset); if (Iter != StmtListToDie.end()) { Success = false; OS << "error: two compile unit DIEs, " << format("0x%08" PRIx32, Iter->second.getOffset()) << " and " << format("0x%08" PRIx32, CUDie.getOffset()) << ", have the same DW_AT_stmt_list section offset:\n"; Iter->second.dump(OS, 0); CUDie.dump(OS, 0); OS << '\n'; // Already verified this line table before, no need to do it again. continue; } StmtListToDie[LineTableOffset] = CUDie; } } auto LineTable = DCtx.getLineTableForUnit(CU.get()); if (!LineTable) { Success = false; OS << "error: .debug_line[" << format("0x%08" PRIx32, LineTableOffset) << "] was not able to be parsed for CU:\n"; CUDie.dump(OS, 0); OS << '\n'; continue; } uint32_t MaxFileIndex = LineTable->Prologue.FileNames.size(); uint64_t PrevAddress = 0; uint32_t RowIndex = 0; for (const auto &Row : LineTable->Rows) { if (Row.Address < PrevAddress) { Success = false; OS << "error: .debug_line[" << format("0x%08" PRIx32, LineTableOffset) << "] row[" << RowIndex << "] decreases in address from previous row:\n"; DWARFDebugLine::Row::dumpTableHeader(OS); if (RowIndex > 0) LineTable->Rows[RowIndex - 1].dump(OS); Row.dump(OS); OS << '\n'; } if (Row.File > MaxFileIndex) { Success = false; OS << "error: .debug_line[" << format("0x%08" PRIx32, LineTableOffset) << "][" << RowIndex << "] has invalid file index " << Row.File << " (valid values are [1," << MaxFileIndex << "]):\n"; DWARFDebugLine::Row::dumpTableHeader(OS); Row.dump(OS); OS << '\n'; } if (Row.EndSequence) PrevAddress = 0; else PrevAddress = Row.Address; ++RowIndex; } } return Success; } }; } // anonymous namespace bool DWARFContext::verify(raw_ostream &OS, DIDumpType DumpType) { bool Success = true; DWARFVerifier verifier(OS, *this); if (DumpType == DIDT_All || DumpType == DIDT_Info) { if (!verifier.handleDebugInfo()) Success = false; } if (DumpType == DIDT_All || DumpType == DIDT_Line) { if (!verifier.handleDebugLine()) Success = false; } return Success; } const DWARFUnitIndex &DWARFContext::getCUIndex() { if (CUIndex) return *CUIndex; DataExtractor CUIndexData(getCUIndexSection(), isLittleEndian(), 0); CUIndex = llvm::make_unique(DW_SECT_INFO); CUIndex->parse(CUIndexData); return *CUIndex; } const DWARFUnitIndex &DWARFContext::getTUIndex() { if (TUIndex) return *TUIndex; DataExtractor TUIndexData(getTUIndexSection(), isLittleEndian(), 0); TUIndex = llvm::make_unique(DW_SECT_TYPES); TUIndex->parse(TUIndexData); return *TUIndex; } DWARFGdbIndex &DWARFContext::getGdbIndex() { if (GdbIndex) return *GdbIndex; DataExtractor GdbIndexData(getGdbIndexSection(), true /*LE*/, 0); GdbIndex = llvm::make_unique(); GdbIndex->parse(GdbIndexData); return *GdbIndex; } const DWARFDebugAbbrev *DWARFContext::getDebugAbbrev() { if (Abbrev) return Abbrev.get(); DataExtractor abbrData(getAbbrevSection(), isLittleEndian(), 0); Abbrev.reset(new DWARFDebugAbbrev()); Abbrev->extract(abbrData); return Abbrev.get(); } const DWARFDebugAbbrev *DWARFContext::getDebugAbbrevDWO() { if (AbbrevDWO) return AbbrevDWO.get(); DataExtractor abbrData(getAbbrevDWOSection(), isLittleEndian(), 0); AbbrevDWO.reset(new DWARFDebugAbbrev()); AbbrevDWO->extract(abbrData); return AbbrevDWO.get(); } const DWARFDebugLoc *DWARFContext::getDebugLoc() { if (Loc) return Loc.get(); DataExtractor LocData(getLocSection().Data, isLittleEndian(), 0); Loc.reset(new DWARFDebugLoc(getLocSection().Relocs)); // assume all compile units have the same address byte size if (getNumCompileUnits()) Loc->parse(LocData, getCompileUnitAtIndex(0)->getAddressByteSize()); return Loc.get(); } const DWARFDebugLocDWO *DWARFContext::getDebugLocDWO() { if (LocDWO) return LocDWO.get(); DataExtractor LocData(getLocDWOSection().Data, isLittleEndian(), 0); LocDWO.reset(new DWARFDebugLocDWO()); LocDWO->parse(LocData); return LocDWO.get(); } const DWARFDebugAranges *DWARFContext::getDebugAranges() { if (Aranges) return Aranges.get(); Aranges.reset(new DWARFDebugAranges()); Aranges->generate(this); return Aranges.get(); } const DWARFDebugFrame *DWARFContext::getDebugFrame() { if (DebugFrame) return DebugFrame.get(); // There's a "bug" in the DWARFv3 standard with respect to the target address // size within debug frame sections. While DWARF is supposed to be independent // of its container, FDEs have fields with size being "target address size", // which isn't specified in DWARF in general. It's only specified for CUs, but // .eh_frame can appear without a .debug_info section. Follow the example of // other tools (libdwarf) and extract this from the container (ObjectFile // provides this information). This problem is fixed in DWARFv4 // See this dwarf-discuss discussion for more details: // http://lists.dwarfstd.org/htdig.cgi/dwarf-discuss-dwarfstd.org/2011-December/001173.html DataExtractor debugFrameData(getDebugFrameSection(), isLittleEndian(), getAddressSize()); DebugFrame.reset(new DWARFDebugFrame(false /* IsEH */)); DebugFrame->parse(debugFrameData); return DebugFrame.get(); } const DWARFDebugFrame *DWARFContext::getEHFrame() { if (EHFrame) return EHFrame.get(); DataExtractor debugFrameData(getEHFrameSection(), isLittleEndian(), getAddressSize()); DebugFrame.reset(new DWARFDebugFrame(true /* IsEH */)); DebugFrame->parse(debugFrameData); return DebugFrame.get(); } const DWARFDebugMacro *DWARFContext::getDebugMacro() { if (Macro) return Macro.get(); DataExtractor MacinfoData(getMacinfoSection(), isLittleEndian(), 0); Macro.reset(new DWARFDebugMacro()); Macro->parse(MacinfoData); return Macro.get(); } const DWARFLineTable * DWARFContext::getLineTableForUnit(DWARFUnit *U) { if (!Line) Line.reset(new DWARFDebugLine(&getLineSection().Relocs)); auto UnitDIE = U->getUnitDIE(); if (!UnitDIE) return nullptr; auto Offset = toSectionOffset(UnitDIE.find(DW_AT_stmt_list)); if (!Offset) return nullptr; // No line table for this compile unit. uint32_t stmtOffset = *Offset + U->getLineTableOffset(); // See if the line table is cached. if (const DWARFLineTable *lt = Line->getLineTable(stmtOffset)) return lt; // We have to parse it first. DataExtractor lineData(U->getLineSection(), isLittleEndian(), U->getAddressByteSize()); return Line->getOrParseLineTable(lineData, stmtOffset); } void DWARFContext::parseCompileUnits() { CUs.parse(*this, getInfoSection()); } void DWARFContext::parseTypeUnits() { if (!TUs.empty()) return; for (const auto &I : getTypesSections()) { TUs.emplace_back(); TUs.back().parse(*this, I.second); } } void DWARFContext::parseDWOCompileUnits() { DWOCUs.parseDWO(*this, getInfoDWOSection()); } void DWARFContext::parseDWOTypeUnits() { if (!DWOTUs.empty()) return; for (const auto &I : getTypesDWOSections()) { DWOTUs.emplace_back(); DWOTUs.back().parseDWO(*this, I.second); } } DWARFCompileUnit *DWARFContext::getCompileUnitForOffset(uint32_t Offset) { parseCompileUnits(); return CUs.getUnitForOffset(Offset); } DWARFCompileUnit *DWARFContext::getCompileUnitForAddress(uint64_t Address) { // First, get the offset of the compile unit. uint32_t CUOffset = getDebugAranges()->findAddress(Address); // Retrieve the compile unit. return getCompileUnitForOffset(CUOffset); } static bool getFunctionNameAndStartLineForAddress(DWARFCompileUnit *CU, uint64_t Address, FunctionNameKind Kind, std::string &FunctionName, uint32_t &StartLine) { // The address may correspond to instruction in some inlined function, // so we have to build the chain of inlined functions and take the // name of the topmost function in it. SmallVector InlinedChain; CU->getInlinedChainForAddress(Address, InlinedChain); if (InlinedChain.empty()) return false; const DWARFDie &DIE = InlinedChain[0]; bool FoundResult = false; const char *Name = nullptr; if (Kind != FunctionNameKind::None && (Name = DIE.getSubroutineName(Kind))) { FunctionName = Name; FoundResult = true; } if (auto DeclLineResult = DIE.getDeclLine()) { StartLine = DeclLineResult; FoundResult = true; } return FoundResult; } DILineInfo DWARFContext::getLineInfoForAddress(uint64_t Address, DILineInfoSpecifier Spec) { DILineInfo Result; DWARFCompileUnit *CU = getCompileUnitForAddress(Address); if (!CU) return Result; getFunctionNameAndStartLineForAddress(CU, Address, Spec.FNKind, Result.FunctionName, Result.StartLine); if (Spec.FLIKind != FileLineInfoKind::None) { if (const DWARFLineTable *LineTable = getLineTableForUnit(CU)) LineTable->getFileLineInfoForAddress(Address, CU->getCompilationDir(), Spec.FLIKind, Result); } return Result; } DILineInfoTable DWARFContext::getLineInfoForAddressRange(uint64_t Address, uint64_t Size, DILineInfoSpecifier Spec) { DILineInfoTable Lines; DWARFCompileUnit *CU = getCompileUnitForAddress(Address); if (!CU) return Lines; std::string FunctionName = ""; uint32_t StartLine = 0; getFunctionNameAndStartLineForAddress(CU, Address, Spec.FNKind, FunctionName, StartLine); // If the Specifier says we don't need FileLineInfo, just // return the top-most function at the starting address. if (Spec.FLIKind == FileLineInfoKind::None) { DILineInfo Result; Result.FunctionName = FunctionName; Result.StartLine = StartLine; Lines.push_back(std::make_pair(Address, Result)); return Lines; } const DWARFLineTable *LineTable = getLineTableForUnit(CU); // Get the index of row we're looking for in the line table. std::vector RowVector; if (!LineTable->lookupAddressRange(Address, Size, RowVector)) return Lines; for (uint32_t RowIndex : RowVector) { // Take file number and line/column from the row. const DWARFDebugLine::Row &Row = LineTable->Rows[RowIndex]; DILineInfo Result; LineTable->getFileNameByIndex(Row.File, CU->getCompilationDir(), Spec.FLIKind, Result.FileName); Result.FunctionName = FunctionName; Result.Line = Row.Line; Result.Column = Row.Column; Result.StartLine = StartLine; Lines.push_back(std::make_pair(Row.Address, Result)); } return Lines; } DIInliningInfo DWARFContext::getInliningInfoForAddress(uint64_t Address, DILineInfoSpecifier Spec) { DIInliningInfo InliningInfo; DWARFCompileUnit *CU = getCompileUnitForAddress(Address); if (!CU) return InliningInfo; const DWARFLineTable *LineTable = nullptr; SmallVector InlinedChain; CU->getInlinedChainForAddress(Address, InlinedChain); if (InlinedChain.size() == 0) { // If there is no DIE for address (e.g. it is in unavailable .dwo file), // try to at least get file/line info from symbol table. if (Spec.FLIKind != FileLineInfoKind::None) { DILineInfo Frame; LineTable = getLineTableForUnit(CU); if (LineTable && LineTable->getFileLineInfoForAddress(Address, CU->getCompilationDir(), Spec.FLIKind, Frame)) InliningInfo.addFrame(Frame); } return InliningInfo; } uint32_t CallFile = 0, CallLine = 0, CallColumn = 0, CallDiscriminator = 0; for (uint32_t i = 0, n = InlinedChain.size(); i != n; i++) { DWARFDie &FunctionDIE = InlinedChain[i]; DILineInfo Frame; // Get function name if necessary. if (const char *Name = FunctionDIE.getSubroutineName(Spec.FNKind)) Frame.FunctionName = Name; if (auto DeclLineResult = FunctionDIE.getDeclLine()) Frame.StartLine = DeclLineResult; if (Spec.FLIKind != FileLineInfoKind::None) { if (i == 0) { // For the topmost frame, initialize the line table of this // compile unit and fetch file/line info from it. LineTable = getLineTableForUnit(CU); // For the topmost routine, get file/line info from line table. if (LineTable) LineTable->getFileLineInfoForAddress(Address, CU->getCompilationDir(), Spec.FLIKind, Frame); } else { // Otherwise, use call file, call line and call column from // previous DIE in inlined chain. if (LineTable) LineTable->getFileNameByIndex(CallFile, CU->getCompilationDir(), Spec.FLIKind, Frame.FileName); Frame.Line = CallLine; Frame.Column = CallColumn; Frame.Discriminator = CallDiscriminator; } // Get call file/line/column of a current DIE. if (i + 1 < n) { FunctionDIE.getCallerFrame(CallFile, CallLine, CallColumn, CallDiscriminator); } } InliningInfo.addFrame(Frame); } return InliningInfo; } static Error createError(const Twine &Reason, llvm::Error E) { return make_error(Reason + toString(std::move(E)), inconvertibleErrorCode()); } /// Returns the address of symbol relocation used against. Used for futher /// relocations computation. Symbol's section load address is taken in account if /// LoadedObjectInfo interface is provided. static Expected getSymbolAddress(const object::ObjectFile &Obj, const RelocationRef &Reloc, const LoadedObjectInfo *L) { uint64_t Ret = 0; object::section_iterator RSec = Obj.section_end(); object::symbol_iterator Sym = Reloc.getSymbol(); // First calculate the address of the symbol or section as it appears // in the object file if (Sym != Obj.symbol_end()) { Expected SymAddrOrErr = Sym->getAddress(); if (!SymAddrOrErr) return createError("error: failed to compute symbol address: ", SymAddrOrErr.takeError()); // Also remember what section this symbol is in for later auto SectOrErr = Sym->getSection(); if (!SectOrErr) return createError("error: failed to get symbol section: ", SectOrErr.takeError()); RSec = *SectOrErr; Ret = *SymAddrOrErr; } else if (auto *MObj = dyn_cast(&Obj)) { RSec = MObj->getRelocationSection(Reloc.getRawDataRefImpl()); Ret = RSec->getAddress(); } // If we are given load addresses for the sections, we need to adjust: // SymAddr = (Address of Symbol Or Section in File) - // (Address of Section in File) + // (Load Address of Section) // RSec is now either the section being targeted or the section // containing the symbol being targeted. In either case, // we need to perform the same computation. if (L && RSec != Obj.section_end()) if (uint64_t SectionLoadAddress = L->getSectionLoadAddress(*RSec)) Ret += SectionLoadAddress - RSec->getAddress(); return Ret; } static bool isRelocScattered(const object::ObjectFile &Obj, const RelocationRef &Reloc) { const MachOObjectFile *MachObj = dyn_cast(&Obj); if (!MachObj) return false; // MachO also has relocations that point to sections and // scattered relocations. auto RelocInfo = MachObj->getRelocation(Reloc.getRawDataRefImpl()); return MachObj->isRelocationScattered(RelocInfo); } DWARFContextInMemory::DWARFContextInMemory(const object::ObjectFile &Obj, const LoadedObjectInfo *L) : IsLittleEndian(Obj.isLittleEndian()), AddressSize(Obj.getBytesInAddress()) { for (const SectionRef &Section : Obj.sections()) { StringRef name; Section.getName(name); // Skip BSS and Virtual sections, they aren't interesting. bool IsBSS = Section.isBSS(); if (IsBSS) continue; bool IsVirtual = Section.isVirtual(); if (IsVirtual) continue; StringRef data; section_iterator RelocatedSection = Section.getRelocatedSection(); // Try to obtain an already relocated version of this section. // Else use the unrelocated section from the object file. We'll have to // apply relocations ourselves later. if (!L || !L->getLoadedSectionContents(*RelocatedSection,data)) Section.getContents(data); if (Decompressor::isCompressed(Section)) { Expected Decompressor = Decompressor::create(name, data, IsLittleEndian, AddressSize == 8); if (!Decompressor) continue; SmallString<32> Out; if (auto Err = Decompressor->decompress(Out)) continue; UncompressedSections.emplace_back(std::move(Out)); data = UncompressedSections.back(); } // Compressed sections names in GNU style starts from ".z", // at this point section is decompressed and we drop compression prefix. name = name.substr( name.find_first_not_of("._z")); // Skip ".", "z" and "_" prefixes. if (StringRef *SectionData = MapSectionToMember(name)) { *SectionData = data; if (name == "debug_ranges") { // FIXME: Use the other dwo range section when we emit it. RangeDWOSection.Data = data; } } else if (name == "debug_types") { // Find debug_types data by section rather than name as there are // multiple, comdat grouped, debug_types sections. TypesSections[Section].Data = data; } else if (name == "debug_types.dwo") { TypesDWOSections[Section].Data = data; } if (RelocatedSection == Obj.section_end()) continue; StringRef RelSecName; StringRef RelSecData; RelocatedSection->getName(RelSecName); // If the section we're relocating was relocated already by the JIT, // then we used the relocated version above, so we do not need to process // relocations for it now. if (L && L->getLoadedSectionContents(*RelocatedSection,RelSecData)) continue; // In Mach-o files, the relocations do not need to be applied if // there is no load offset to apply. The value read at the // relocation point already factors in the section address // (actually applying the relocations will produce wrong results // as the section address will be added twice). if (!L && isa(&Obj)) continue; RelSecName = RelSecName.substr( RelSecName.find_first_not_of("._")); // Skip . and _ prefixes. // TODO: Add support for relocations in other sections as needed. // Record relocations for the debug_info and debug_line sections. RelocAddrMap *Map = StringSwitch(RelSecName) .Case("debug_info", &InfoSection.Relocs) .Case("debug_loc", &LocSection.Relocs) .Case("debug_info.dwo", &InfoDWOSection.Relocs) .Case("debug_line", &LineSection.Relocs) .Case("debug_ranges", &RangeSection.Relocs) .Case("apple_names", &AppleNamesSection.Relocs) .Case("apple_types", &AppleTypesSection.Relocs) .Case("apple_namespaces", &AppleNamespacesSection.Relocs) .Case("apple_namespac", &AppleNamespacesSection.Relocs) .Case("apple_objc", &AppleObjCSection.Relocs) .Default(nullptr); if (!Map) { // Find debug_types relocs by section rather than name as there are // multiple, comdat grouped, debug_types sections. if (RelSecName == "debug_types") Map = &TypesSections[*RelocatedSection].Relocs; else if (RelSecName == "debug_types.dwo") Map = &TypesDWOSections[*RelocatedSection].Relocs; else continue; } if (Section.relocation_begin() != Section.relocation_end()) { uint64_t SectionSize = RelocatedSection->getSize(); for (const RelocationRef &Reloc : Section.relocations()) { // FIXME: it's not clear how to correctly handle scattered // relocations. if (isRelocScattered(Obj, Reloc)) continue; Expected SymAddrOrErr = getSymbolAddress(Obj, Reloc, L); if (!SymAddrOrErr) { errs() << toString(SymAddrOrErr.takeError()) << '\n'; continue; } object::RelocVisitor V(Obj); object::RelocToApply R(V.visit(Reloc.getType(), Reloc, *SymAddrOrErr)); if (V.error()) { SmallString<32> Name; Reloc.getTypeName(Name); errs() << "error: failed to compute relocation: " << Name << "\n"; continue; } uint64_t Address = Reloc.getOffset(); if (Address + R.Width > SectionSize) { errs() << "error: " << R.Width << "-byte relocation starting " << Address << " bytes into section " << name << " which is " << SectionSize << " bytes long.\n"; continue; } if (R.Width > 8) { errs() << "error: can't handle a relocation of more than 8 bytes at " "a time.\n"; continue; } DEBUG(dbgs() << "Writing " << format("%p", R.Value) << " at " << format("%p", Address) << " with width " << format("%d", R.Width) << "\n"); Map->insert(std::make_pair(Address, std::make_pair(R.Width, R.Value))); } } } } DWARFContextInMemory::DWARFContextInMemory( const StringMap> &Sections, uint8_t AddrSize, bool isLittleEndian) : IsLittleEndian(isLittleEndian), AddressSize(AddrSize) { for (const auto &SecIt : Sections) { if (StringRef *SectionData = MapSectionToMember(SecIt.first())) *SectionData = SecIt.second->getBuffer(); } } StringRef *DWARFContextInMemory::MapSectionToMember(StringRef Name) { return StringSwitch(Name) .Case("debug_info", &InfoSection.Data) .Case("debug_abbrev", &AbbrevSection) .Case("debug_loc", &LocSection.Data) .Case("debug_line", &LineSection.Data) .Case("debug_aranges", &ARangeSection) .Case("debug_frame", &DebugFrameSection) .Case("eh_frame", &EHFrameSection) .Case("debug_str", &StringSection) .Case("debug_ranges", &RangeSection.Data) .Case("debug_macinfo", &MacinfoSection) .Case("debug_pubnames", &PubNamesSection) .Case("debug_pubtypes", &PubTypesSection) .Case("debug_gnu_pubnames", &GnuPubNamesSection) .Case("debug_gnu_pubtypes", &GnuPubTypesSection) .Case("debug_info.dwo", &InfoDWOSection.Data) .Case("debug_abbrev.dwo", &AbbrevDWOSection) .Case("debug_loc.dwo", &LocDWOSection.Data) .Case("debug_line.dwo", &LineDWOSection.Data) .Case("debug_str.dwo", &StringDWOSection) .Case("debug_str_offsets.dwo", &StringOffsetDWOSection) .Case("debug_addr", &AddrSection) .Case("apple_names", &AppleNamesSection.Data) .Case("apple_types", &AppleTypesSection.Data) .Case("apple_namespaces", &AppleNamespacesSection.Data) .Case("apple_namespac", &AppleNamespacesSection.Data) .Case("apple_objc", &AppleObjCSection.Data) .Case("debug_cu_index", &CUIndexSection) .Case("debug_tu_index", &TUIndexSection) .Case("gdb_index", &GdbIndexSection) // Any more debug info sections go here. .Default(nullptr); } void DWARFContextInMemory::anchor() {}