//===--- Driver.cpp - Clang GCC Compatible Driver -----------------------*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "clang/Driver/Driver.h" #include "clang/Driver/Action.h" #include "clang/Driver/Arg.h" #include "clang/Driver/ArgList.h" #include "clang/Driver/Compilation.h" #include "clang/Driver/DriverDiagnostic.h" #include "clang/Driver/HostInfo.h" #include "clang/Driver/Job.h" #include "clang/Driver/OptTable.h" #include "clang/Driver/Option.h" #include "clang/Driver/Options.h" #include "clang/Driver/Tool.h" #include "clang/Driver/ToolChain.h" #include "clang/Driver/Types.h" #include "clang/Basic/Version.h" #include "llvm/ADT/StringSet.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/raw_ostream.h" #include "llvm/System/Path.h" #include "llvm/System/Program.h" #include "InputInfo.h" #include using namespace clang::driver; using namespace clang; // Used to set values for "production" clang, for releases. // #define USE_PRODUCTION_CLANG Driver::Driver(llvm::StringRef _Name, llvm::StringRef _Dir, llvm::StringRef _DefaultHostTriple, llvm::StringRef _DefaultImageName, bool IsProduction, Diagnostic &_Diags) : Opts(createDriverOptTable()), Diags(_Diags), Name(_Name), Dir(_Dir), DefaultHostTriple(_DefaultHostTriple), DefaultImageName(_DefaultImageName), Host(0), CCCIsCXX(false), CCCEcho(false), CCCPrintBindings(false), CCCGenericGCCName("gcc"), CCCUseClang(true), CCCUseClangCXX(true), CCCUseClangCPP(true), CCCUsePCH(true), SuppressMissingInputWarning(false) { if (IsProduction) { // In a "production" build, only use clang on architectures we expect to // work, and don't use clang C++. // // During development its more convenient to always have the driver use // clang, but we don't want users to be confused when things don't work, or // to file bugs for things we don't support. CCCClangArchs.insert(llvm::Triple::x86); CCCClangArchs.insert(llvm::Triple::x86_64); CCCClangArchs.insert(llvm::Triple::arm); CCCUseClangCXX = false; } } Driver::~Driver() { delete Opts; delete Host; } InputArgList *Driver::ParseArgStrings(const char **ArgBegin, const char **ArgEnd) { llvm::PrettyStackTraceString CrashInfo("Command line argument parsing"); unsigned MissingArgIndex, MissingArgCount; InputArgList *Args = getOpts().ParseArgs(ArgBegin, ArgEnd, MissingArgIndex, MissingArgCount); // Check for missing argument error. if (MissingArgCount) Diag(clang::diag::err_drv_missing_argument) << Args->getArgString(MissingArgIndex) << MissingArgCount; // Check for unsupported options. for (ArgList::const_iterator it = Args->begin(), ie = Args->end(); it != ie; ++it) { Arg *A = *it; if (A->getOption().isUnsupported()) { Diag(clang::diag::err_drv_unsupported_opt) << A->getAsString(*Args); continue; } } return Args; } Compilation *Driver::BuildCompilation(int argc, const char **argv) { llvm::PrettyStackTraceString CrashInfo("Compilation construction"); // FIXME: Handle environment options which effect driver behavior, somewhere // (client?). GCC_EXEC_PREFIX, COMPILER_PATH, LIBRARY_PATH, LPATH, // CC_PRINT_OPTIONS. // FIXME: What are we going to do with -V and -b? // FIXME: This stuff needs to go into the Compilation, not the driver. bool CCCPrintOptions = false, CCCPrintActions = false; const char **Start = argv + 1, **End = argv + argc; const char *HostTriple = DefaultHostTriple.c_str(); InputArgList *Args = ParseArgStrings(Start, End); // -no-canonical-prefixes is used very early in main. Args->ClaimAllArgs(options::OPT_no_canonical_prefixes); // Extract -ccc args. // // FIXME: We need to figure out where this behavior should live. Most of it // should be outside in the client; the parts that aren't should have proper // options, either by introducing new ones or by overloading gcc ones like -V // or -b. CCCPrintOptions = Args->hasArg(options::OPT_ccc_print_options); CCCPrintActions = Args->hasArg(options::OPT_ccc_print_phases); CCCPrintBindings = Args->hasArg(options::OPT_ccc_print_bindings); CCCIsCXX = Args->hasArg(options::OPT_ccc_cxx) || CCCIsCXX; CCCEcho = Args->hasArg(options::OPT_ccc_echo); if (const Arg *A = Args->getLastArg(options::OPT_ccc_gcc_name)) CCCGenericGCCName = A->getValue(*Args); CCCUseClangCXX = Args->hasFlag(options::OPT_ccc_clang_cxx, options::OPT_ccc_no_clang_cxx, CCCUseClangCXX); CCCUsePCH = Args->hasFlag(options::OPT_ccc_pch_is_pch, options::OPT_ccc_pch_is_pth); CCCUseClang = !Args->hasArg(options::OPT_ccc_no_clang); CCCUseClangCPP = !Args->hasArg(options::OPT_ccc_no_clang_cpp); if (const Arg *A = Args->getLastArg(options::OPT_ccc_clang_archs)) { llvm::StringRef Cur = A->getValue(*Args); CCCClangArchs.clear(); while (!Cur.empty()) { std::pair Split = Cur.split(','); if (!Split.first.empty()) { llvm::Triple::ArchType Arch = llvm::Triple(Split.first, "", "").getArch(); if (Arch == llvm::Triple::UnknownArch) { Diag(clang::diag::err_drv_invalid_arch_name) << Arch; continue; } CCCClangArchs.insert(Arch); } Cur = Split.second; } } if (const Arg *A = Args->getLastArg(options::OPT_ccc_host_triple)) HostTriple = A->getValue(*Args); if (const Arg *A = Args->getLastArg(options::OPT_ccc_install_dir)) Dir = A->getValue(*Args); Host = GetHostInfo(HostTriple); // The compilation takes ownership of Args. Compilation *C = new Compilation(*this, *Host->CreateToolChain(*Args), Args); // FIXME: This behavior shouldn't be here. if (CCCPrintOptions) { PrintOptions(C->getArgs()); return C; } if (!HandleImmediateArgs(*C)) return C; // Construct the list of abstract actions to perform for this compilation. We // avoid passing a Compilation here simply to enforce the abstraction that // pipelining is not host or toolchain dependent (other than the driver driver // test). if (Host->useDriverDriver()) BuildUniversalActions(C->getArgs(), C->getActions()); else BuildActions(C->getArgs(), C->getActions()); if (CCCPrintActions) { PrintActions(*C); return C; } BuildJobs(*C); return C; } int Driver::ExecuteCompilation(const Compilation &C) const { // Just print if -### was present. if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) { C.PrintJob(llvm::errs(), C.getJobs(), "\n", true); return 0; } // If there were errors building the compilation, quit now. if (getDiags().getNumErrors()) return 1; const Command *FailingCommand = 0; int Res = C.ExecuteJob(C.getJobs(), FailingCommand); // Remove temp files. C.CleanupFileList(C.getTempFiles()); // If the compilation failed, remove result files as well. if (Res != 0 && !C.getArgs().hasArg(options::OPT_save_temps)) C.CleanupFileList(C.getResultFiles(), true); // Print extra information about abnormal failures, if possible. if (Res) { // This is ad-hoc, but we don't want to be excessively noisy. If the result // status was 1, assume the command failed normally. In particular, if it // was the compiler then assume it gave a reasonable error code. Failures in // other tools are less common, and they generally have worse diagnostics, // so always print the diagnostic there. const Action &Source = FailingCommand->getSource(); bool IsFriendlyTool = (isa(Source) || isa(Source) || isa(Source) || isa(Source)); if (!IsFriendlyTool || Res != 1) { // FIXME: See FIXME above regarding result code interpretation. if (Res < 0) Diag(clang::diag::err_drv_command_signalled) << Source.getClassName() << -Res; else Diag(clang::diag::err_drv_command_failed) << Source.getClassName() << Res; } } return Res; } void Driver::PrintOptions(const ArgList &Args) const { unsigned i = 0; for (ArgList::const_iterator it = Args.begin(), ie = Args.end(); it != ie; ++it, ++i) { Arg *A = *it; llvm::errs() << "Option " << i << " - " << "Name: \"" << A->getOption().getName() << "\", " << "Values: {"; for (unsigned j = 0; j < A->getNumValues(); ++j) { if (j) llvm::errs() << ", "; llvm::errs() << '"' << A->getValue(Args, j) << '"'; } llvm::errs() << "}\n"; } } // FIXME: Move -ccc options to real options in the .td file (or eliminate), and // then move to using OptTable::PrintHelp. void Driver::PrintHelp(bool ShowHidden) const { getOpts().PrintHelp(llvm::outs(), Name.c_str(), "clang \"gcc-compatible\" driver", ShowHidden); } void Driver::PrintVersion(const Compilation &C, llvm::raw_ostream &OS) const { // FIXME: The following handlers should use a callback mechanism, we don't // know what the client would like to do. #ifdef CLANG_VENDOR OS << CLANG_VENDOR; #endif OS << "clang version " CLANG_VERSION_STRING " (" << getClangSubversionPath(); if (unsigned Revision = getClangSubversionRevision()) OS << " " << Revision; OS << ")" << '\n'; const ToolChain &TC = C.getDefaultToolChain(); OS << "Target: " << TC.getTripleString() << '\n'; // Print the threading model. // // FIXME: Implement correctly. OS << "Thread model: " << "posix" << '\n'; } bool Driver::HandleImmediateArgs(const Compilation &C) { // The order these options are handled in in gcc is all over the place, but we // don't expect inconsistencies w.r.t. that to matter in practice. if (C.getArgs().hasArg(options::OPT_dumpversion)) { llvm::outs() << CLANG_VERSION_STRING "\n"; return false; } if (C.getArgs().hasArg(options::OPT__help) || C.getArgs().hasArg(options::OPT__help_hidden)) { PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden)); return false; } if (C.getArgs().hasArg(options::OPT__version)) { // Follow gcc behavior and use stdout for --version and stderr for -v. PrintVersion(C, llvm::outs()); return false; } if (C.getArgs().hasArg(options::OPT_v) || C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) { PrintVersion(C, llvm::errs()); SuppressMissingInputWarning = true; } const ToolChain &TC = C.getDefaultToolChain(); if (C.getArgs().hasArg(options::OPT_print_search_dirs)) { llvm::outs() << "programs: ="; for (ToolChain::path_list::const_iterator it = TC.getProgramPaths().begin(), ie = TC.getProgramPaths().end(); it != ie; ++it) { if (it != TC.getProgramPaths().begin()) llvm::outs() << ':'; llvm::outs() << *it; } llvm::outs() << "\n"; llvm::outs() << "libraries: ="; for (ToolChain::path_list::const_iterator it = TC.getFilePaths().begin(), ie = TC.getFilePaths().end(); it != ie; ++it) { if (it != TC.getFilePaths().begin()) llvm::outs() << ':'; llvm::outs() << *it; } llvm::outs() << "\n"; return false; } // FIXME: The following handlers should use a callback mechanism, we don't // know what the client would like to do. if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) { llvm::outs() << GetFilePath(A->getValue(C.getArgs()), TC) << "\n"; return false; } if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) { llvm::outs() << GetProgramPath(A->getValue(C.getArgs()), TC) << "\n"; return false; } if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) { llvm::outs() << GetFilePath("libgcc.a", TC) << "\n"; return false; } if (C.getArgs().hasArg(options::OPT_print_multi_lib)) { // FIXME: We need tool chain support for this. llvm::outs() << ".;\n"; switch (C.getDefaultToolChain().getTriple().getArch()) { default: break; case llvm::Triple::x86_64: llvm::outs() << "x86_64;@m64" << "\n"; break; case llvm::Triple::ppc64: llvm::outs() << "ppc64;@m64" << "\n"; break; } return false; } // FIXME: What is the difference between print-multi-directory and // print-multi-os-directory? if (C.getArgs().hasArg(options::OPT_print_multi_directory) || C.getArgs().hasArg(options::OPT_print_multi_os_directory)) { switch (C.getDefaultToolChain().getTriple().getArch()) { default: case llvm::Triple::x86: case llvm::Triple::ppc: llvm::outs() << "." << "\n"; break; case llvm::Triple::x86_64: llvm::outs() << "x86_64" << "\n"; break; case llvm::Triple::ppc64: llvm::outs() << "ppc64" << "\n"; break; } return false; } return true; } static unsigned PrintActions1(const Compilation &C, Action *A, std::map &Ids) { if (Ids.count(A)) return Ids[A]; std::string str; llvm::raw_string_ostream os(str); os << Action::getClassName(A->getKind()) << ", "; if (InputAction *IA = dyn_cast(A)) { os << "\"" << IA->getInputArg().getValue(C.getArgs()) << "\""; } else if (BindArchAction *BIA = dyn_cast(A)) { os << '"' << (BIA->getArchName() ? BIA->getArchName() : C.getDefaultToolChain().getArchName()) << '"' << ", {" << PrintActions1(C, *BIA->begin(), Ids) << "}"; } else { os << "{"; for (Action::iterator it = A->begin(), ie = A->end(); it != ie;) { os << PrintActions1(C, *it, Ids); ++it; if (it != ie) os << ", "; } os << "}"; } unsigned Id = Ids.size(); Ids[A] = Id; llvm::errs() << Id << ": " << os.str() << ", " << types::getTypeName(A->getType()) << "\n"; return Id; } void Driver::PrintActions(const Compilation &C) const { std::map Ids; for (ActionList::const_iterator it = C.getActions().begin(), ie = C.getActions().end(); it != ie; ++it) PrintActions1(C, *it, Ids); } void Driver::BuildUniversalActions(const ArgList &Args, ActionList &Actions) const { llvm::PrettyStackTraceString CrashInfo("Building universal build actions"); // Collect the list of architectures. Duplicates are allowed, but should only // be handled once (in the order seen). llvm::StringSet<> ArchNames; llvm::SmallVector Archs; for (ArgList::const_iterator it = Args.begin(), ie = Args.end(); it != ie; ++it) { Arg *A = *it; if (A->getOption().matches(options::OPT_arch)) { // Validate the option here; we don't save the type here because its // particular spelling may participate in other driver choices. llvm::Triple::ArchType Arch = llvm::Triple::getArchTypeForDarwinArchName(A->getValue(Args)); if (Arch == llvm::Triple::UnknownArch) { Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args); continue; } A->claim(); if (ArchNames.insert(A->getValue(Args))) Archs.push_back(A->getValue(Args)); } } // When there is no explicit arch for this platform, make sure we still bind // the architecture (to the default) so that -Xarch_ is handled correctly. if (!Archs.size()) Archs.push_back(0); // FIXME: We killed off some others but these aren't yet detected in a // functional manner. If we added information to jobs about which "auxiliary" // files they wrote then we could detect the conflict these cause downstream. if (Archs.size() > 1) { // No recovery needed, the point of this is just to prevent // overwriting the same files. if (const Arg *A = Args.getLastArg(options::OPT_save_temps)) Diag(clang::diag::err_drv_invalid_opt_with_multiple_archs) << A->getAsString(Args); } ActionList SingleActions; BuildActions(Args, SingleActions); // Add in arch binding and lipo (if necessary) for every top level action. for (unsigned i = 0, e = SingleActions.size(); i != e; ++i) { Action *Act = SingleActions[i]; // Make sure we can lipo this kind of output. If not (and it is an actual // output) then we disallow, since we can't create an output file with the // right name without overwriting it. We could remove this oddity by just // changing the output names to include the arch, which would also fix // -save-temps. Compatibility wins for now. if (Archs.size() > 1 && !types::canLipoType(Act->getType())) Diag(clang::diag::err_drv_invalid_output_with_multiple_archs) << types::getTypeName(Act->getType()); ActionList Inputs; for (unsigned i = 0, e = Archs.size(); i != e; ++i) Inputs.push_back(new BindArchAction(Act, Archs[i])); // Lipo if necessary, we do it this way because we need to set the arch flag // so that -Xarch_ gets overwritten. if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing) Actions.append(Inputs.begin(), Inputs.end()); else Actions.push_back(new LipoJobAction(Inputs, Act->getType())); } } void Driver::BuildActions(const ArgList &Args, ActionList &Actions) const { llvm::PrettyStackTraceString CrashInfo("Building compilation actions"); // Start by constructing the list of inputs and their types. // Track the current user specified (-x) input. We also explicitly track the // argument used to set the type; we only want to claim the type when we // actually use it, so we warn about unused -x arguments. types::ID InputType = types::TY_Nothing; Arg *InputTypeArg = 0; llvm::SmallVector, 16> Inputs; for (ArgList::const_iterator it = Args.begin(), ie = Args.end(); it != ie; ++it) { Arg *A = *it; if (isa(A->getOption())) { const char *Value = A->getValue(Args); types::ID Ty = types::TY_INVALID; // Infer the input type if necessary. if (InputType == types::TY_Nothing) { // If there was an explicit arg for this, claim it. if (InputTypeArg) InputTypeArg->claim(); // stdin must be handled specially. if (memcmp(Value, "-", 2) == 0) { // If running with -E, treat as a C input (this changes the builtin // macros, for example). This may be overridden by -ObjC below. // // Otherwise emit an error but still use a valid type to avoid // spurious errors (e.g., no inputs). if (!Args.hasArgNoClaim(options::OPT_E)) Diag(clang::diag::err_drv_unknown_stdin_type); Ty = types::TY_C; } else { // Otherwise lookup by extension, and fallback to ObjectType if not // found. We use a host hook here because Darwin at least has its own // idea of what .s is. if (const char *Ext = strrchr(Value, '.')) Ty = Host->lookupTypeForExtension(Ext + 1); if (Ty == types::TY_INVALID) Ty = types::TY_Object; } // -ObjC and -ObjC++ override the default language, but only for "source // files". We just treat everything that isn't a linker input as a // source file. // // FIXME: Clean this up if we move the phase sequence into the type. if (Ty != types::TY_Object) { if (Args.hasArg(options::OPT_ObjC)) Ty = types::TY_ObjC; else if (Args.hasArg(options::OPT_ObjCXX)) Ty = types::TY_ObjCXX; } } else { assert(InputTypeArg && "InputType set w/o InputTypeArg"); InputTypeArg->claim(); Ty = InputType; } // Check that the file exists. It isn't clear this is worth doing, since // the tool presumably does this anyway, and this just adds an extra stat // to the equation, but this is gcc compatible. if (memcmp(Value, "-", 2) != 0 && !llvm::sys::Path(Value).exists()) Diag(clang::diag::err_drv_no_such_file) << A->getValue(Args); else Inputs.push_back(std::make_pair(Ty, A)); } else if (A->getOption().isLinkerInput()) { // Just treat as object type, we could make a special type for this if // necessary. Inputs.push_back(std::make_pair(types::TY_Object, A)); } else if (A->getOption().matches(options::OPT_x)) { InputTypeArg = A; InputType = types::lookupTypeForTypeSpecifier(A->getValue(Args)); // Follow gcc behavior and treat as linker input for invalid -x // options. Its not clear why we shouldn't just revert to unknown; but // this isn't very important, we might as well be bug comatible. if (!InputType) { Diag(clang::diag::err_drv_unknown_language) << A->getValue(Args); InputType = types::TY_Object; } } } if (!SuppressMissingInputWarning && Inputs.empty()) { Diag(clang::diag::err_drv_no_input_files); return; } // Determine which compilation mode we are in. We look for options which // affect the phase, starting with the earliest phases, and record which // option we used to determine the final phase. Arg *FinalPhaseArg = 0; phases::ID FinalPhase; // -{E,M,MM} only run the preprocessor. if ((FinalPhaseArg = Args.getLastArg(options::OPT_E)) || (FinalPhaseArg = Args.getLastArg(options::OPT_M)) || (FinalPhaseArg = Args.getLastArg(options::OPT_MM))) { FinalPhase = phases::Preprocess; // -{fsyntax-only,-analyze,emit-ast,S} only run up to the compiler. } else if ((FinalPhaseArg = Args.getLastArg(options::OPT_fsyntax_only)) || (FinalPhaseArg = Args.getLastArg(options::OPT__analyze, options::OPT__analyze_auto)) || (FinalPhaseArg = Args.getLastArg(options::OPT_emit_ast)) || (FinalPhaseArg = Args.getLastArg(options::OPT_S))) { FinalPhase = phases::Compile; // -c only runs up to the assembler. } else if ((FinalPhaseArg = Args.getLastArg(options::OPT_c))) { FinalPhase = phases::Assemble; // Otherwise do everything. } else FinalPhase = phases::Link; // Reject -Z* at the top level, these options should never have been exposed // by gcc. if (Arg *A = Args.getLastArg(options::OPT_Z_Joined)) Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args); // Construct the actions to perform. ActionList LinkerInputs; for (unsigned i = 0, e = Inputs.size(); i != e; ++i) { types::ID InputType = Inputs[i].first; const Arg *InputArg = Inputs[i].second; unsigned NumSteps = types::getNumCompilationPhases(InputType); assert(NumSteps && "Invalid number of steps!"); // If the first step comes after the final phase we are doing as part of // this compilation, warn the user about it. phases::ID InitialPhase = types::getCompilationPhase(InputType, 0); if (InitialPhase > FinalPhase) { // Claim here to avoid the more general unused warning. InputArg->claim(); // Special case '-E' warning on a previously preprocessed file to make // more sense. if (InitialPhase == phases::Compile && FinalPhase == phases::Preprocess && getPreprocessedType(InputType) == types::TY_INVALID) Diag(clang::diag::warn_drv_preprocessed_input_file_unused) << InputArg->getAsString(Args) << FinalPhaseArg->getOption().getName(); else Diag(clang::diag::warn_drv_input_file_unused) << InputArg->getAsString(Args) << getPhaseName(InitialPhase) << FinalPhaseArg->getOption().getName(); continue; } // Build the pipeline for this file. Action *Current = new InputAction(*InputArg, InputType); for (unsigned i = 0; i != NumSteps; ++i) { phases::ID Phase = types::getCompilationPhase(InputType, i); // We are done if this step is past what the user requested. if (Phase > FinalPhase) break; // Queue linker inputs. if (Phase == phases::Link) { assert(i + 1 == NumSteps && "linking must be final compilation step."); LinkerInputs.push_back(Current); Current = 0; break; } // Some types skip the assembler phase (e.g., llvm-bc), but we can't // encode this in the steps because the intermediate type depends on // arguments. Just special case here. if (Phase == phases::Assemble && Current->getType() != types::TY_PP_Asm) continue; // Otherwise construct the appropriate action. Current = ConstructPhaseAction(Args, Phase, Current); if (Current->getType() == types::TY_Nothing) break; } // If we ended with something, add to the output list. if (Current) Actions.push_back(Current); } // Add a link action if necessary. if (!LinkerInputs.empty()) Actions.push_back(new LinkJobAction(LinkerInputs, types::TY_Image)); // If we are linking, claim any options which are obviously only used for // compilation. if (FinalPhase == phases::Link) Args.ClaimAllArgs(options::OPT_CompileOnly_Group); } Action *Driver::ConstructPhaseAction(const ArgList &Args, phases::ID Phase, Action *Input) const { llvm::PrettyStackTraceString CrashInfo("Constructing phase actions"); // Build the appropriate action. switch (Phase) { case phases::Link: assert(0 && "link action invalid here."); case phases::Preprocess: { types::ID OutputTy; // -{M, MM} alter the output type. if (Args.hasArg(options::OPT_M) || Args.hasArg(options::OPT_MM)) { OutputTy = types::TY_Dependencies; } else { OutputTy = types::getPreprocessedType(Input->getType()); assert(OutputTy != types::TY_INVALID && "Cannot preprocess this input type!"); } return new PreprocessJobAction(Input, OutputTy); } case phases::Precompile: return new PrecompileJobAction(Input, types::TY_PCH); case phases::Compile: { bool HasO4 = false; if (const Arg *A = Args.getLastArg(options::OPT_O_Group)) HasO4 = A->getOption().matches(options::OPT_O4); if (Args.hasArg(options::OPT_fsyntax_only)) { return new CompileJobAction(Input, types::TY_Nothing); } else if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto)) { return new AnalyzeJobAction(Input, types::TY_Plist); } else if (Args.hasArg(options::OPT_emit_ast)) { return new CompileJobAction(Input, types::TY_AST); } else if (Args.hasArg(options::OPT_emit_llvm) || Args.hasArg(options::OPT_flto) || HasO4) { types::ID Output = Args.hasArg(options::OPT_S) ? types::TY_LLVMAsm : types::TY_LLVMBC; return new CompileJobAction(Input, Output); } else { return new CompileJobAction(Input, types::TY_PP_Asm); } } case phases::Assemble: return new AssembleJobAction(Input, types::TY_Object); } assert(0 && "invalid phase in ConstructPhaseAction"); return 0; } void Driver::BuildJobs(Compilation &C) const { llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); bool SaveTemps = C.getArgs().hasArg(options::OPT_save_temps); bool UsePipes = C.getArgs().hasArg(options::OPT_pipe); // FIXME: Pipes are forcibly disabled until we support executing them. if (!CCCPrintBindings) UsePipes = false; // -save-temps inhibits pipes. if (SaveTemps && UsePipes) Diag(clang::diag::warn_drv_pipe_ignored_with_save_temps); Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); // It is an error to provide a -o option if we are making multiple output // files. if (FinalOutput) { unsigned NumOutputs = 0; for (ActionList::const_iterator it = C.getActions().begin(), ie = C.getActions().end(); it != ie; ++it) if ((*it)->getType() != types::TY_Nothing) ++NumOutputs; if (NumOutputs > 1) { Diag(clang::diag::err_drv_output_argument_with_multiple_files); FinalOutput = 0; } } for (ActionList::const_iterator it = C.getActions().begin(), ie = C.getActions().end(); it != ie; ++it) { Action *A = *it; // If we are linking an image for multiple archs then the linker wants // -arch_multiple and -final_output . Unfortunately, this // doesn't fit in cleanly because we have to pass this information down. // // FIXME: This is a hack; find a cleaner way to integrate this into the // process. const char *LinkingOutput = 0; if (isa(A)) { if (FinalOutput) LinkingOutput = FinalOutput->getValue(C.getArgs()); else LinkingOutput = DefaultImageName.c_str(); } InputInfo II; BuildJobsForAction(C, A, &C.getDefaultToolChain(), /*BoundArch*/0, /*CanAcceptPipe*/ true, /*AtTopLevel*/ true, /*LinkingOutput*/ LinkingOutput, II); } // If the user passed -Qunused-arguments or there were errors, don't warn // about any unused arguments. if (Diags.getNumErrors() || C.getArgs().hasArg(options::OPT_Qunused_arguments)) return; // Claim -### here. (void) C.getArgs().hasArg(options::OPT__HASH_HASH_HASH); for (ArgList::const_iterator it = C.getArgs().begin(), ie = C.getArgs().end(); it != ie; ++it) { Arg *A = *it; // FIXME: It would be nice to be able to send the argument to the // Diagnostic, so that extra values, position, and so on could be printed. if (!A->isClaimed()) { if (A->getOption().hasNoArgumentUnused()) continue; // Suppress the warning automatically if this is just a flag, and it is an // instance of an argument we already claimed. const Option &Opt = A->getOption(); if (isa(Opt)) { bool DuplicateClaimed = false; for (arg_iterator it = C.getArgs().filtered_begin(&Opt), ie = C.getArgs().filtered_end(); it != ie; ++it) { if ((*it)->isClaimed()) { DuplicateClaimed = true; break; } } if (DuplicateClaimed) continue; } Diag(clang::diag::warn_drv_unused_argument) << A->getAsString(C.getArgs()); } } } void Driver::BuildJobsForAction(Compilation &C, const Action *A, const ToolChain *TC, const char *BoundArch, bool CanAcceptPipe, bool AtTopLevel, const char *LinkingOutput, InputInfo &Result) const { llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); bool UsePipes = C.getArgs().hasArg(options::OPT_pipe); // FIXME: Pipes are forcibly disabled until we support executing them. if (!CCCPrintBindings) UsePipes = false; if (const InputAction *IA = dyn_cast(A)) { // FIXME: It would be nice to not claim this here; maybe the old scheme of // just using Args was better? const Arg &Input = IA->getInputArg(); Input.claim(); if (isa(Input)) { const char *Name = Input.getValue(C.getArgs()); Result = InputInfo(Name, A->getType(), Name); } else Result = InputInfo(&Input, A->getType(), ""); return; } if (const BindArchAction *BAA = dyn_cast(A)) { const ToolChain *TC = &C.getDefaultToolChain(); std::string Arch; if (BAA->getArchName()) TC = Host->CreateToolChain(C.getArgs(), BAA->getArchName()); BuildJobsForAction(C, *BAA->begin(), TC, BAA->getArchName(), CanAcceptPipe, AtTopLevel, LinkingOutput, Result); return; } const JobAction *JA = cast(A); const Tool &T = TC->SelectTool(C, *JA); // See if we should use an integrated preprocessor. We do so when we have // exactly one input, since this is the only use case we care about // (irrelevant since we don't support combine yet). const ActionList *Inputs = &A->getInputs(); if (Inputs->size() == 1 && isa(*Inputs->begin())) { if (!C.getArgs().hasArg(options::OPT_no_integrated_cpp) && !C.getArgs().hasArg(options::OPT_traditional_cpp) && !C.getArgs().hasArg(options::OPT_save_temps) && T.hasIntegratedCPP()) { Inputs = &(*Inputs)[0]->getInputs(); } } // Only use pipes when there is exactly one input. bool TryToUsePipeInput = Inputs->size() == 1 && T.acceptsPipedInput(); InputInfoList InputInfos; for (ActionList::const_iterator it = Inputs->begin(), ie = Inputs->end(); it != ie; ++it) { InputInfo II; BuildJobsForAction(C, *it, TC, BoundArch, TryToUsePipeInput, /*AtTopLevel*/false, LinkingOutput, II); InputInfos.push_back(II); } // Determine if we should output to a pipe. bool OutputToPipe = false; if (CanAcceptPipe && T.canPipeOutput()) { // Some actions default to writing to a pipe if they are the top level phase // and there was no user override. // // FIXME: Is there a better way to handle this? if (AtTopLevel) { if (isa(A) && !C.getArgs().hasArg(options::OPT_o)) OutputToPipe = true; } else if (UsePipes) OutputToPipe = true; } // Figure out where to put the job (pipes). Job *Dest = &C.getJobs(); if (InputInfos[0].isPipe()) { assert(TryToUsePipeInput && "Unrequested pipe!"); assert(InputInfos.size() == 1 && "Unexpected pipe with multiple inputs."); Dest = &InputInfos[0].getPipe(); } // Always use the first input as the base input. const char *BaseInput = InputInfos[0].getBaseInput(); // Determine the place to write output to (nothing, pipe, or filename) and // where to put the new job. if (JA->getType() == types::TY_Nothing) { Result = InputInfo(A->getType(), BaseInput); } else if (OutputToPipe) { // Append to current piped job or create a new one as appropriate. PipedJob *PJ = dyn_cast(Dest); if (!PJ) { PJ = new PipedJob(); // FIXME: Temporary hack so that -ccc-print-bindings work until we have // pipe support. Please remove later. if (!CCCPrintBindings) cast(Dest)->addJob(PJ); Dest = PJ; } Result = InputInfo(PJ, A->getType(), BaseInput); } else { Result = InputInfo(GetNamedOutputPath(C, *JA, BaseInput, AtTopLevel), A->getType(), BaseInput); } if (CCCPrintBindings) { llvm::errs() << "# \"" << T.getToolChain().getTripleString() << '"' << " - \"" << T.getName() << "\", inputs: ["; for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) { llvm::errs() << InputInfos[i].getAsString(); if (i + 1 != e) llvm::errs() << ", "; } llvm::errs() << "], output: " << Result.getAsString() << "\n"; } else { T.ConstructJob(C, *JA, *Dest, Result, InputInfos, C.getArgsForToolChain(TC, BoundArch), LinkingOutput); } } const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA, const char *BaseInput, bool AtTopLevel) const { llvm::PrettyStackTraceString CrashInfo("Computing output path"); // Output to a user requested destination? if (AtTopLevel) { if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) return C.addResultFile(FinalOutput->getValue(C.getArgs())); } // Output to a temporary file? if (!AtTopLevel && !C.getArgs().hasArg(options::OPT_save_temps)) { std::string TmpName = GetTemporaryPath(types::getTypeTempSuffix(JA.getType())); return C.addTempFile(C.getArgs().MakeArgString(TmpName.c_str())); } llvm::sys::Path BasePath(BaseInput); std::string BaseName(BasePath.getLast()); // Determine what the derived output name should be. const char *NamedOutput; if (JA.getType() == types::TY_Image) { NamedOutput = DefaultImageName.c_str(); } else { const char *Suffix = types::getTypeTempSuffix(JA.getType()); assert(Suffix && "All types used for output should have a suffix."); std::string::size_type End = std::string::npos; if (!types::appendSuffixForType(JA.getType())) End = BaseName.rfind('.'); std::string Suffixed(BaseName.substr(0, End)); Suffixed += '.'; Suffixed += Suffix; NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str()); } // As an annoying special case, PCH generation doesn't strip the pathname. if (JA.getType() == types::TY_PCH) { BasePath.eraseComponent(); if (BasePath.isEmpty()) BasePath = NamedOutput; else BasePath.appendComponent(NamedOutput); return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str())); } else { return C.addResultFile(NamedOutput); } } std::string Driver::GetFilePath(const char *Name, const ToolChain &TC) const { const ToolChain::path_list &List = TC.getFilePaths(); for (ToolChain::path_list::const_iterator it = List.begin(), ie = List.end(); it != ie; ++it) { llvm::sys::Path P(*it); P.appendComponent(Name); if (P.exists()) return P.str(); } return Name; } std::string Driver::GetProgramPath(const char *Name, const ToolChain &TC, bool WantFile) const { const ToolChain::path_list &List = TC.getProgramPaths(); for (ToolChain::path_list::const_iterator it = List.begin(), ie = List.end(); it != ie; ++it) { llvm::sys::Path P(*it); P.appendComponent(Name); if (WantFile ? P.exists() : P.canExecute()) return P.str(); } // If all else failed, search the path. llvm::sys::Path P(llvm::sys::Program::FindProgramByName(Name)); if (!P.empty()) return P.str(); return Name; } std::string Driver::GetTemporaryPath(const char *Suffix) const { // FIXME: This is lame; sys::Path should provide this function (in particular, // it should know how to find the temporary files dir). std::string Error; const char *TmpDir = ::getenv("TMPDIR"); if (!TmpDir) TmpDir = ::getenv("TEMP"); if (!TmpDir) TmpDir = ::getenv("TMP"); if (!TmpDir) TmpDir = "/tmp"; llvm::sys::Path P(TmpDir); P.appendComponent("cc"); if (P.makeUnique(false, &Error)) { Diag(clang::diag::err_drv_unable_to_make_temp) << Error; return ""; } // FIXME: Grumble, makeUnique sometimes leaves the file around!? PR3837. P.eraseFromDisk(false, 0); P.appendSuffix(Suffix); return P.str(); } const HostInfo *Driver::GetHostInfo(const char *TripleStr) const { llvm::PrettyStackTraceString CrashInfo("Constructing host"); llvm::Triple Triple(TripleStr); switch (Triple.getOS()) { case llvm::Triple::AuroraUX: return createAuroraUXHostInfo(*this, Triple); case llvm::Triple::Darwin: return createDarwinHostInfo(*this, Triple); case llvm::Triple::DragonFly: return createDragonFlyHostInfo(*this, Triple); case llvm::Triple::OpenBSD: return createOpenBSDHostInfo(*this, Triple); case llvm::Triple::FreeBSD: return createFreeBSDHostInfo(*this, Triple); case llvm::Triple::Linux: return createLinuxHostInfo(*this, Triple); default: return createUnknownHostInfo(*this, Triple); } } bool Driver::ShouldUseClangCompiler(const Compilation &C, const JobAction &JA, const llvm::Triple &Triple) const { // Check if user requested no clang, or clang doesn't understand this type (we // only handle single inputs for now). if (!CCCUseClang || JA.size() != 1 || !types::isAcceptedByClang((*JA.begin())->getType())) return false; // Otherwise make sure this is an action clang understands. if (isa(JA)) { if (!CCCUseClangCPP) { Diag(clang::diag::warn_drv_not_using_clang_cpp); return false; } } else if (!isa(JA) && !isa(JA)) return false; // Use clang for C++? if (!CCCUseClangCXX && types::isCXX((*JA.begin())->getType())) { Diag(clang::diag::warn_drv_not_using_clang_cxx); return false; } // Always use clang for precompiling and AST generation, regardless of archs. if (isa(JA) || JA.getType() == types::TY_AST) return true; // Finally, don't use clang if this isn't one of the user specified archs to // build. if (!CCCClangArchs.empty() && !CCCClangArchs.count(Triple.getArch())) { Diag(clang::diag::warn_drv_not_using_clang_arch) << Triple.getArchName(); return false; } return true; } /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the /// grouped values as integers. Numbers which are not provided are set to 0. /// /// \return True if the entire string was parsed (9.2), or all groups were /// parsed (10.3.5extrastuff). bool Driver::GetReleaseVersion(const char *Str, unsigned &Major, unsigned &Minor, unsigned &Micro, bool &HadExtra) { HadExtra = false; Major = Minor = Micro = 0; if (*Str == '\0') return true; char *End; Major = (unsigned) strtol(Str, &End, 10); if (*Str != '\0' && *End == '\0') return true; if (*End != '.') return false; Str = End+1; Minor = (unsigned) strtol(Str, &End, 10); if (*Str != '\0' && *End == '\0') return true; if (*End != '.') return false; Str = End+1; Micro = (unsigned) strtol(Str, &End, 10); if (*Str != '\0' && *End == '\0') return true; if (Str == End) return false; HadExtra = true; return true; }