//===--- ASTUnit.cpp - ASTUnit utility ------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // ASTUnit Implementation. // //===----------------------------------------------------------------------===// #include "clang/Frontend/ASTUnit.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/DeclVisitor.h" #include "clang/AST/TypeOrdering.h" #include "clang/AST/StmtVisitor.h" #include "clang/Driver/Compilation.h" #include "clang/Driver/Driver.h" #include "clang/Driver/Job.h" #include "clang/Driver/ArgList.h" #include "clang/Driver/Options.h" #include "clang/Driver/Tool.h" #include "clang/Frontend/CompilerInstance.h" #include "clang/Frontend/FrontendActions.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/Frontend/FrontendOptions.h" #include "clang/Frontend/Utils.h" #include "clang/Serialization/ASTReader.h" #include "clang/Serialization/ASTSerializationListener.h" #include "clang/Serialization/ASTWriter.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/Preprocessor.h" #include "clang/Basic/TargetOptions.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/Diagnostic.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSet.h" #include "llvm/Support/Atomic.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Host.h" #include "llvm/Support/Path.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Timer.h" #include "llvm/Support/CrashRecoveryContext.h" #include #include #include using namespace clang; using llvm::TimeRecord; namespace { class SimpleTimer { bool WantTiming; TimeRecord Start; std::string Output; public: explicit SimpleTimer(bool WantTiming) : WantTiming(WantTiming) { if (WantTiming) Start = TimeRecord::getCurrentTime(); } void setOutput(const llvm::Twine &Output) { if (WantTiming) this->Output = Output.str(); } ~SimpleTimer() { if (WantTiming) { TimeRecord Elapsed = TimeRecord::getCurrentTime(); Elapsed -= Start; llvm::errs() << Output << ':'; Elapsed.print(Elapsed, llvm::errs()); llvm::errs() << '\n'; } } }; } /// \brief After failing to build a precompiled preamble (due to /// errors in the source that occurs in the preamble), the number of /// reparses during which we'll skip even trying to precompile the /// preamble. const unsigned DefaultPreambleRebuildInterval = 5; /// \brief Tracks the number of ASTUnit objects that are currently active. /// /// Used for debugging purposes only. static llvm::sys::cas_flag ActiveASTUnitObjects; ASTUnit::ASTUnit(bool _MainFileIsAST) : OnlyLocalDecls(false), CaptureDiagnostics(false), MainFileIsAST(_MainFileIsAST), CompleteTranslationUnit(true), WantTiming(getenv("LIBCLANG_TIMING")), OwnsRemappedFileBuffers(true), NumStoredDiagnosticsFromDriver(0), ConcurrencyCheckValue(CheckUnlocked), PreambleRebuildCounter(0), SavedMainFileBuffer(0), PreambleBuffer(0), ShouldCacheCodeCompletionResults(false), CompletionCacheTopLevelHashValue(0), PreambleTopLevelHashValue(0), CurrentTopLevelHashValue(0), UnsafeToFree(false) { if (getenv("LIBCLANG_OBJTRACKING")) { llvm::sys::AtomicIncrement(&ActiveASTUnitObjects); fprintf(stderr, "+++ %d translation units\n", ActiveASTUnitObjects); } } ASTUnit::~ASTUnit() { ConcurrencyCheckValue = CheckLocked; CleanTemporaryFiles(); if (!PreambleFile.empty()) llvm::sys::Path(PreambleFile).eraseFromDisk(); // Free the buffers associated with remapped files. We are required to // perform this operation here because we explicitly request that the // compiler instance *not* free these buffers for each invocation of the // parser. if (Invocation.getPtr() && OwnsRemappedFileBuffers) { PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts(); for (PreprocessorOptions::remapped_file_buffer_iterator FB = PPOpts.remapped_file_buffer_begin(), FBEnd = PPOpts.remapped_file_buffer_end(); FB != FBEnd; ++FB) delete FB->second; } delete SavedMainFileBuffer; delete PreambleBuffer; ClearCachedCompletionResults(); if (getenv("LIBCLANG_OBJTRACKING")) { llvm::sys::AtomicDecrement(&ActiveASTUnitObjects); fprintf(stderr, "--- %d translation units\n", ActiveASTUnitObjects); } } void ASTUnit::CleanTemporaryFiles() { for (unsigned I = 0, N = TemporaryFiles.size(); I != N; ++I) TemporaryFiles[I].eraseFromDisk(); TemporaryFiles.clear(); } /// \brief Determine the set of code-completion contexts in which this /// declaration should be shown. static unsigned getDeclShowContexts(NamedDecl *ND, const LangOptions &LangOpts, bool &IsNestedNameSpecifier) { IsNestedNameSpecifier = false; if (isa(ND)) ND = dyn_cast(ND->getUnderlyingDecl()); if (!ND) return 0; unsigned Contexts = 0; if (isa(ND) || isa(ND) || isa(ND) || isa(ND)) { // Types can appear in these contexts. if (LangOpts.CPlusPlus || !isa(ND)) Contexts |= (1 << (CodeCompletionContext::CCC_TopLevel - 1)) | (1 << (CodeCompletionContext::CCC_ObjCIvarList - 1)) | (1 << (CodeCompletionContext::CCC_ClassStructUnion - 1)) | (1 << (CodeCompletionContext::CCC_Statement - 1)) | (1 << (CodeCompletionContext::CCC_Type - 1)) | (1 << (CodeCompletionContext::CCC_ParenthesizedExpression - 1)); // In C++, types can appear in expressions contexts (for functional casts). if (LangOpts.CPlusPlus) Contexts |= (1 << (CodeCompletionContext::CCC_Expression - 1)); // In Objective-C, message sends can send interfaces. In Objective-C++, // all types are available due to functional casts. if (LangOpts.CPlusPlus || isa(ND)) Contexts |= (1 << (CodeCompletionContext::CCC_ObjCMessageReceiver - 1)); // Deal with tag names. if (isa(ND)) { Contexts |= (1 << (CodeCompletionContext::CCC_EnumTag - 1)); // Part of the nested-name-specifier in C++0x. if (LangOpts.CPlusPlus0x) IsNestedNameSpecifier = true; } else if (RecordDecl *Record = dyn_cast(ND)) { if (Record->isUnion()) Contexts |= (1 << (CodeCompletionContext::CCC_UnionTag - 1)); else Contexts |= (1 << (CodeCompletionContext::CCC_ClassOrStructTag - 1)); if (LangOpts.CPlusPlus) IsNestedNameSpecifier = true; } else if (isa(ND)) IsNestedNameSpecifier = true; } else if (isa(ND) || isa(ND)) { // Values can appear in these contexts. Contexts = (1 << (CodeCompletionContext::CCC_Statement - 1)) | (1 << (CodeCompletionContext::CCC_Expression - 1)) | (1 << (CodeCompletionContext::CCC_ParenthesizedExpression - 1)) | (1 << (CodeCompletionContext::CCC_ObjCMessageReceiver - 1)); } else if (isa(ND)) { Contexts = (1 << (CodeCompletionContext::CCC_ObjCProtocolName - 1)); } else if (isa(ND) || isa(ND)) { Contexts = (1 << (CodeCompletionContext::CCC_Namespace - 1)); // Part of the nested-name-specifier. IsNestedNameSpecifier = true; } return Contexts; } void ASTUnit::CacheCodeCompletionResults() { if (!TheSema) return; SimpleTimer Timer(WantTiming); Timer.setOutput("Cache global code completions for " + getMainFileName()); // Clear out the previous results. ClearCachedCompletionResults(); // Gather the set of global code completions. typedef CodeCompletionResult Result; llvm::SmallVector Results; CachedCompletionAllocator = new GlobalCodeCompletionAllocator; TheSema->GatherGlobalCodeCompletions(*CachedCompletionAllocator, Results); // Translate global code completions into cached completions. llvm::DenseMap CompletionTypes; for (unsigned I = 0, N = Results.size(); I != N; ++I) { switch (Results[I].Kind) { case Result::RK_Declaration: { bool IsNestedNameSpecifier = false; CachedCodeCompletionResult CachedResult; CachedResult.Completion = Results[I].CreateCodeCompletionString(*TheSema, *CachedCompletionAllocator); CachedResult.ShowInContexts = getDeclShowContexts(Results[I].Declaration, Ctx->getLangOptions(), IsNestedNameSpecifier); CachedResult.Priority = Results[I].Priority; CachedResult.Kind = Results[I].CursorKind; CachedResult.Availability = Results[I].Availability; // Keep track of the type of this completion in an ASTContext-agnostic // way. QualType UsageType = getDeclUsageType(*Ctx, Results[I].Declaration); if (UsageType.isNull()) { CachedResult.TypeClass = STC_Void; CachedResult.Type = 0; } else { CanQualType CanUsageType = Ctx->getCanonicalType(UsageType.getUnqualifiedType()); CachedResult.TypeClass = getSimplifiedTypeClass(CanUsageType); // Determine whether we have already seen this type. If so, we save // ourselves the work of formatting the type string by using the // temporary, CanQualType-based hash table to find the associated value. unsigned &TypeValue = CompletionTypes[CanUsageType]; if (TypeValue == 0) { TypeValue = CompletionTypes.size(); CachedCompletionTypes[QualType(CanUsageType).getAsString()] = TypeValue; } CachedResult.Type = TypeValue; } CachedCompletionResults.push_back(CachedResult); /// Handle nested-name-specifiers in C++. if (TheSema->Context.getLangOptions().CPlusPlus && IsNestedNameSpecifier && !Results[I].StartsNestedNameSpecifier) { // The contexts in which a nested-name-specifier can appear in C++. unsigned NNSContexts = (1 << (CodeCompletionContext::CCC_TopLevel - 1)) | (1 << (CodeCompletionContext::CCC_ObjCIvarList - 1)) | (1 << (CodeCompletionContext::CCC_ClassStructUnion - 1)) | (1 << (CodeCompletionContext::CCC_Statement - 1)) | (1 << (CodeCompletionContext::CCC_Expression - 1)) | (1 << (CodeCompletionContext::CCC_ObjCMessageReceiver - 1)) | (1 << (CodeCompletionContext::CCC_EnumTag - 1)) | (1 << (CodeCompletionContext::CCC_UnionTag - 1)) | (1 << (CodeCompletionContext::CCC_ClassOrStructTag - 1)) | (1 << (CodeCompletionContext::CCC_Type - 1)) | (1 << (CodeCompletionContext::CCC_PotentiallyQualifiedName - 1)) | (1 << (CodeCompletionContext::CCC_ParenthesizedExpression - 1)); if (isa(Results[I].Declaration) || isa(Results[I].Declaration)) NNSContexts |= (1 << (CodeCompletionContext::CCC_Namespace - 1)); if (unsigned RemainingContexts = NNSContexts & ~CachedResult.ShowInContexts) { // If there any contexts where this completion can be a // nested-name-specifier but isn't already an option, create a // nested-name-specifier completion. Results[I].StartsNestedNameSpecifier = true; CachedResult.Completion = Results[I].CreateCodeCompletionString(*TheSema, *CachedCompletionAllocator); CachedResult.ShowInContexts = RemainingContexts; CachedResult.Priority = CCP_NestedNameSpecifier; CachedResult.TypeClass = STC_Void; CachedResult.Type = 0; CachedCompletionResults.push_back(CachedResult); } } break; } case Result::RK_Keyword: case Result::RK_Pattern: // Ignore keywords and patterns; we don't care, since they are so // easily regenerated. break; case Result::RK_Macro: { CachedCodeCompletionResult CachedResult; CachedResult.Completion = Results[I].CreateCodeCompletionString(*TheSema, *CachedCompletionAllocator); CachedResult.ShowInContexts = (1 << (CodeCompletionContext::CCC_TopLevel - 1)) | (1 << (CodeCompletionContext::CCC_ObjCInterface - 1)) | (1 << (CodeCompletionContext::CCC_ObjCImplementation - 1)) | (1 << (CodeCompletionContext::CCC_ObjCIvarList - 1)) | (1 << (CodeCompletionContext::CCC_ClassStructUnion - 1)) | (1 << (CodeCompletionContext::CCC_Statement - 1)) | (1 << (CodeCompletionContext::CCC_Expression - 1)) | (1 << (CodeCompletionContext::CCC_ObjCMessageReceiver - 1)) | (1 << (CodeCompletionContext::CCC_MacroNameUse - 1)) | (1 << (CodeCompletionContext::CCC_PreprocessorExpression - 1)) | (1 << (CodeCompletionContext::CCC_ParenthesizedExpression - 1)) | (1 << (CodeCompletionContext::CCC_OtherWithMacros - 1)); CachedResult.Priority = Results[I].Priority; CachedResult.Kind = Results[I].CursorKind; CachedResult.Availability = Results[I].Availability; CachedResult.TypeClass = STC_Void; CachedResult.Type = 0; CachedCompletionResults.push_back(CachedResult); break; } } } // Save the current top-level hash value. CompletionCacheTopLevelHashValue = CurrentTopLevelHashValue; } void ASTUnit::ClearCachedCompletionResults() { CachedCompletionResults.clear(); CachedCompletionTypes.clear(); CachedCompletionAllocator = 0; } namespace { /// \brief Gathers information from ASTReader that will be used to initialize /// a Preprocessor. class ASTInfoCollector : public ASTReaderListener { LangOptions &LangOpt; HeaderSearch &HSI; std::string &TargetTriple; std::string &Predefines; unsigned &Counter; unsigned NumHeaderInfos; public: ASTInfoCollector(LangOptions &LangOpt, HeaderSearch &HSI, std::string &TargetTriple, std::string &Predefines, unsigned &Counter) : LangOpt(LangOpt), HSI(HSI), TargetTriple(TargetTriple), Predefines(Predefines), Counter(Counter), NumHeaderInfos(0) {} virtual bool ReadLanguageOptions(const LangOptions &LangOpts) { LangOpt = LangOpts; return false; } virtual bool ReadTargetTriple(llvm::StringRef Triple) { TargetTriple = Triple; return false; } virtual bool ReadPredefinesBuffer(const PCHPredefinesBlocks &Buffers, llvm::StringRef OriginalFileName, std::string &SuggestedPredefines, FileManager &FileMgr) { Predefines = Buffers[0].Data; for (unsigned I = 1, N = Buffers.size(); I != N; ++I) { Predefines += Buffers[I].Data; } return false; } virtual void ReadHeaderFileInfo(const HeaderFileInfo &HFI, unsigned ID) { HSI.setHeaderFileInfoForUID(HFI, NumHeaderInfos++); } virtual void ReadCounter(unsigned Value) { Counter = Value; } }; class StoredDiagnosticClient : public DiagnosticClient { llvm::SmallVectorImpl &StoredDiags; public: explicit StoredDiagnosticClient( llvm::SmallVectorImpl &StoredDiags) : StoredDiags(StoredDiags) { } virtual void HandleDiagnostic(Diagnostic::Level Level, const DiagnosticInfo &Info); }; /// \brief RAII object that optionally captures diagnostics, if /// there is no diagnostic client to capture them already. class CaptureDroppedDiagnostics { Diagnostic &Diags; StoredDiagnosticClient Client; DiagnosticClient *PreviousClient; public: CaptureDroppedDiagnostics(bool RequestCapture, Diagnostic &Diags, llvm::SmallVectorImpl &StoredDiags) : Diags(Diags), Client(StoredDiags), PreviousClient(0) { if (RequestCapture || Diags.getClient() == 0) { PreviousClient = Diags.takeClient(); Diags.setClient(&Client); } } ~CaptureDroppedDiagnostics() { if (Diags.getClient() == &Client) { Diags.takeClient(); Diags.setClient(PreviousClient); } } }; } // anonymous namespace void StoredDiagnosticClient::HandleDiagnostic(Diagnostic::Level Level, const DiagnosticInfo &Info) { // Default implementation (Warnings/errors count). DiagnosticClient::HandleDiagnostic(Level, Info); StoredDiags.push_back(StoredDiagnostic(Level, Info)); } const std::string &ASTUnit::getOriginalSourceFileName() { return OriginalSourceFile; } const std::string &ASTUnit::getASTFileName() { assert(isMainFileAST() && "Not an ASTUnit from an AST file!"); return static_cast(Ctx->getExternalSource())->getFileName(); } llvm::MemoryBuffer *ASTUnit::getBufferForFile(llvm::StringRef Filename, std::string *ErrorStr) { assert(FileMgr); return FileMgr->getBufferForFile(Filename, ErrorStr); } /// \brief Configure the diagnostics object for use with ASTUnit. void ASTUnit::ConfigureDiags(llvm::IntrusiveRefCntPtr &Diags, const char **ArgBegin, const char **ArgEnd, ASTUnit &AST, bool CaptureDiagnostics) { if (!Diags.getPtr()) { // No diagnostics engine was provided, so create our own diagnostics object // with the default options. DiagnosticOptions DiagOpts; DiagnosticClient *Client = 0; if (CaptureDiagnostics) Client = new StoredDiagnosticClient(AST.StoredDiagnostics); Diags = CompilerInstance::createDiagnostics(DiagOpts, ArgEnd- ArgBegin, ArgBegin, Client); } else if (CaptureDiagnostics) { Diags->setClient(new StoredDiagnosticClient(AST.StoredDiagnostics)); } } ASTUnit *ASTUnit::LoadFromASTFile(const std::string &Filename, llvm::IntrusiveRefCntPtr Diags, const FileSystemOptions &FileSystemOpts, bool OnlyLocalDecls, RemappedFile *RemappedFiles, unsigned NumRemappedFiles, bool CaptureDiagnostics) { llvm::OwningPtr AST(new ASTUnit(true)); // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar ASTUnitCleanup(AST.get()); llvm::CrashRecoveryContextCleanupRegistrar > DiagCleanup(Diags.getPtr()); ConfigureDiags(Diags, 0, 0, *AST, CaptureDiagnostics); AST->OnlyLocalDecls = OnlyLocalDecls; AST->CaptureDiagnostics = CaptureDiagnostics; AST->Diagnostics = Diags; AST->FileMgr = new FileManager(FileSystemOpts); AST->SourceMgr = new SourceManager(AST->getDiagnostics(), AST->getFileManager()); AST->HeaderInfo.reset(new HeaderSearch(AST->getFileManager())); for (unsigned I = 0; I != NumRemappedFiles; ++I) { FilenameOrMemBuf fileOrBuf = RemappedFiles[I].second; if (const llvm::MemoryBuffer * memBuf = fileOrBuf.dyn_cast()) { // Create the file entry for the file that we're mapping from. const FileEntry *FromFile = AST->getFileManager().getVirtualFile(RemappedFiles[I].first, memBuf->getBufferSize(), 0); if (!FromFile) { AST->getDiagnostics().Report(diag::err_fe_remap_missing_from_file) << RemappedFiles[I].first; delete memBuf; continue; } // Override the contents of the "from" file with the contents of // the "to" file. AST->getSourceManager().overrideFileContents(FromFile, memBuf); } else { const char *fname = fileOrBuf.get(); const FileEntry *ToFile = AST->FileMgr->getFile(fname); if (!ToFile) { AST->getDiagnostics().Report(diag::err_fe_remap_missing_to_file) << RemappedFiles[I].first << fname; continue; } // Create the file entry for the file that we're mapping from. const FileEntry *FromFile = AST->getFileManager().getVirtualFile(RemappedFiles[I].first, ToFile->getSize(), 0); if (!FromFile) { AST->getDiagnostics().Report(diag::err_fe_remap_missing_from_file) << RemappedFiles[I].first; delete memBuf; continue; } // Override the contents of the "from" file with the contents of // the "to" file. AST->getSourceManager().overrideFileContents(FromFile, ToFile); } } // Gather Info for preprocessor construction later on. LangOptions LangInfo; HeaderSearch &HeaderInfo = *AST->HeaderInfo.get(); std::string TargetTriple; std::string Predefines; unsigned Counter; llvm::OwningPtr Reader; Reader.reset(new ASTReader(AST->getSourceManager(), AST->getFileManager(), AST->getDiagnostics())); Reader->setListener(new ASTInfoCollector(LangInfo, HeaderInfo, TargetTriple, Predefines, Counter)); switch (Reader->ReadAST(Filename, ASTReader::MainFile)) { case ASTReader::Success: break; case ASTReader::Failure: case ASTReader::IgnorePCH: AST->getDiagnostics().Report(diag::err_fe_unable_to_load_pch); return NULL; } AST->OriginalSourceFile = Reader->getOriginalSourceFile(); // AST file loaded successfully. Now create the preprocessor. // Get information about the target being compiled for. // // FIXME: This is broken, we should store the TargetOptions in the AST file. TargetOptions TargetOpts; TargetOpts.ABI = ""; TargetOpts.CXXABI = ""; TargetOpts.CPU = ""; TargetOpts.Features.clear(); TargetOpts.Triple = TargetTriple; AST->Target = TargetInfo::CreateTargetInfo(AST->getDiagnostics(), TargetOpts); AST->PP = new Preprocessor(AST->getDiagnostics(), LangInfo, *AST->Target, AST->getSourceManager(), HeaderInfo); Preprocessor &PP = *AST->PP; PP.setPredefines(Reader->getSuggestedPredefines()); PP.setCounterValue(Counter); Reader->setPreprocessor(PP); // Create and initialize the ASTContext. AST->Ctx = new ASTContext(LangInfo, AST->getSourceManager(), *AST->Target, PP.getIdentifierTable(), PP.getSelectorTable(), PP.getBuiltinInfo(), /* size_reserve = */0); ASTContext &Context = *AST->Ctx; Reader->InitializeContext(Context); // Attach the AST reader to the AST context as an external AST // source, so that declarations will be deserialized from the // AST file as needed. ASTReader *ReaderPtr = Reader.get(); llvm::OwningPtr Source(Reader.take()); Context.setExternalSource(Source); // Create an AST consumer, even though it isn't used. AST->Consumer.reset(new ASTConsumer); // Create a semantic analysis object and tell the AST reader about it. AST->TheSema.reset(new Sema(PP, Context, *AST->Consumer)); AST->TheSema->Initialize(); ReaderPtr->InitializeSema(*AST->TheSema); return AST.take(); } namespace { /// \brief Preprocessor callback class that updates a hash value with the names /// of all macros that have been defined by the translation unit. class MacroDefinitionTrackerPPCallbacks : public PPCallbacks { unsigned &Hash; public: explicit MacroDefinitionTrackerPPCallbacks(unsigned &Hash) : Hash(Hash) { } virtual void MacroDefined(const Token &MacroNameTok, const MacroInfo *MI) { Hash = llvm::HashString(MacroNameTok.getIdentifierInfo()->getName(), Hash); } }; /// \brief Add the given declaration to the hash of all top-level entities. void AddTopLevelDeclarationToHash(Decl *D, unsigned &Hash) { if (!D) return; DeclContext *DC = D->getDeclContext(); if (!DC) return; if (!(DC->isTranslationUnit() || DC->getLookupParent()->isTranslationUnit())) return; if (NamedDecl *ND = dyn_cast(D)) { if (ND->getIdentifier()) Hash = llvm::HashString(ND->getIdentifier()->getName(), Hash); else if (DeclarationName Name = ND->getDeclName()) { std::string NameStr = Name.getAsString(); Hash = llvm::HashString(NameStr, Hash); } return; } if (ObjCForwardProtocolDecl *Forward = dyn_cast(D)) { for (ObjCForwardProtocolDecl::protocol_iterator P = Forward->protocol_begin(), PEnd = Forward->protocol_end(); P != PEnd; ++P) AddTopLevelDeclarationToHash(*P, Hash); return; } if (ObjCClassDecl *Class = llvm::dyn_cast(D)) { for (ObjCClassDecl::iterator I = Class->begin(), IEnd = Class->end(); I != IEnd; ++I) AddTopLevelDeclarationToHash(I->getInterface(), Hash); return; } } class TopLevelDeclTrackerConsumer : public ASTConsumer { ASTUnit &Unit; unsigned &Hash; public: TopLevelDeclTrackerConsumer(ASTUnit &_Unit, unsigned &Hash) : Unit(_Unit), Hash(Hash) { Hash = 0; } void HandleTopLevelDecl(DeclGroupRef D) { for (DeclGroupRef::iterator it = D.begin(), ie = D.end(); it != ie; ++it) { Decl *D = *it; // FIXME: Currently ObjC method declarations are incorrectly being // reported as top-level declarations, even though their DeclContext // is the containing ObjC @interface/@implementation. This is a // fundamental problem in the parser right now. if (isa(D)) continue; AddTopLevelDeclarationToHash(D, Hash); Unit.addTopLevelDecl(D); } } // We're not interested in "interesting" decls. void HandleInterestingDecl(DeclGroupRef) {} }; class TopLevelDeclTrackerAction : public ASTFrontendAction { public: ASTUnit &Unit; virtual ASTConsumer *CreateASTConsumer(CompilerInstance &CI, llvm::StringRef InFile) { CI.getPreprocessor().addPPCallbacks( new MacroDefinitionTrackerPPCallbacks(Unit.getCurrentTopLevelHashValue())); return new TopLevelDeclTrackerConsumer(Unit, Unit.getCurrentTopLevelHashValue()); } public: TopLevelDeclTrackerAction(ASTUnit &_Unit) : Unit(_Unit) {} virtual bool hasCodeCompletionSupport() const { return false; } virtual bool usesCompleteTranslationUnit() { return Unit.isCompleteTranslationUnit(); } }; class PrecompilePreambleConsumer : public PCHGenerator, public ASTSerializationListener { ASTUnit &Unit; unsigned &Hash; std::vector TopLevelDecls; public: PrecompilePreambleConsumer(ASTUnit &Unit, const Preprocessor &PP, bool Chaining, const char *isysroot, llvm::raw_ostream *Out) : PCHGenerator(PP, "", Chaining, isysroot, Out), Unit(Unit), Hash(Unit.getCurrentTopLevelHashValue()) { Hash = 0; } virtual void HandleTopLevelDecl(DeclGroupRef D) { for (DeclGroupRef::iterator it = D.begin(), ie = D.end(); it != ie; ++it) { Decl *D = *it; // FIXME: Currently ObjC method declarations are incorrectly being // reported as top-level declarations, even though their DeclContext // is the containing ObjC @interface/@implementation. This is a // fundamental problem in the parser right now. if (isa(D)) continue; AddTopLevelDeclarationToHash(D, Hash); TopLevelDecls.push_back(D); } } virtual void HandleTranslationUnit(ASTContext &Ctx) { PCHGenerator::HandleTranslationUnit(Ctx); if (!Unit.getDiagnostics().hasErrorOccurred()) { // Translate the top-level declarations we captured during // parsing into declaration IDs in the precompiled // preamble. This will allow us to deserialize those top-level // declarations when requested. for (unsigned I = 0, N = TopLevelDecls.size(); I != N; ++I) Unit.addTopLevelDeclFromPreamble( getWriter().getDeclID(TopLevelDecls[I])); } } virtual void SerializedPreprocessedEntity(PreprocessedEntity *Entity, uint64_t Offset) { Unit.addPreprocessedEntityFromPreamble(Offset); } virtual ASTSerializationListener *GetASTSerializationListener() { return this; } }; class PrecompilePreambleAction : public ASTFrontendAction { ASTUnit &Unit; public: explicit PrecompilePreambleAction(ASTUnit &Unit) : Unit(Unit) {} virtual ASTConsumer *CreateASTConsumer(CompilerInstance &CI, llvm::StringRef InFile) { std::string Sysroot; std::string OutputFile; llvm::raw_ostream *OS = 0; bool Chaining; if (GeneratePCHAction::ComputeASTConsumerArguments(CI, InFile, Sysroot, OutputFile, OS, Chaining)) return 0; const char *isysroot = CI.getFrontendOpts().RelocatablePCH ? Sysroot.c_str() : 0; CI.getPreprocessor().addPPCallbacks( new MacroDefinitionTrackerPPCallbacks(Unit.getCurrentTopLevelHashValue())); return new PrecompilePreambleConsumer(Unit, CI.getPreprocessor(), Chaining, isysroot, OS); } virtual bool hasCodeCompletionSupport() const { return false; } virtual bool hasASTFileSupport() const { return false; } virtual bool usesCompleteTranslationUnit() { return false; } }; } /// Parse the source file into a translation unit using the given compiler /// invocation, replacing the current translation unit. /// /// \returns True if a failure occurred that causes the ASTUnit not to /// contain any translation-unit information, false otherwise. bool ASTUnit::Parse(llvm::MemoryBuffer *OverrideMainBuffer) { delete SavedMainFileBuffer; SavedMainFileBuffer = 0; if (!Invocation) { delete OverrideMainBuffer; return true; } // Create the compiler instance to use for building the AST. llvm::OwningPtr Clang(new CompilerInstance()); // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar CICleanup(Clang.get()); Clang->setInvocation(&*Invocation); OriginalSourceFile = Clang->getFrontendOpts().Inputs[0].second; // Set up diagnostics, capturing any diagnostics that would // otherwise be dropped. Clang->setDiagnostics(&getDiagnostics()); // Create the target instance. Clang->getTargetOpts().Features = TargetFeatures; Clang->setTarget(TargetInfo::CreateTargetInfo(Clang->getDiagnostics(), Clang->getTargetOpts())); if (!Clang->hasTarget()) { delete OverrideMainBuffer; return true; } // Inform the target of the language options. // // FIXME: We shouldn't need to do this, the target should be immutable once // created. This complexity should be lifted elsewhere. Clang->getTarget().setForcedLangOptions(Clang->getLangOpts()); assert(Clang->getFrontendOpts().Inputs.size() == 1 && "Invocation must have exactly one source file!"); assert(Clang->getFrontendOpts().Inputs[0].first != IK_AST && "FIXME: AST inputs not yet supported here!"); assert(Clang->getFrontendOpts().Inputs[0].first != IK_LLVM_IR && "IR inputs not support here!"); // Configure the various subsystems. // FIXME: Should we retain the previous file manager? FileSystemOpts = Clang->getFileSystemOpts(); FileMgr = new FileManager(FileSystemOpts); SourceMgr = new SourceManager(getDiagnostics(), *FileMgr); TheSema.reset(); Ctx = 0; PP = 0; // Clear out old caches and data. TopLevelDecls.clear(); PreprocessedEntities.clear(); CleanTemporaryFiles(); PreprocessedEntitiesByFile.clear(); if (!OverrideMainBuffer) { StoredDiagnostics.erase( StoredDiagnostics.begin() + NumStoredDiagnosticsFromDriver, StoredDiagnostics.end()); TopLevelDeclsInPreamble.clear(); PreprocessedEntitiesInPreamble.clear(); } // Create a file manager object to provide access to and cache the filesystem. Clang->setFileManager(&getFileManager()); // Create the source manager. Clang->setSourceManager(&getSourceManager()); // If the main file has been overridden due to the use of a preamble, // make that override happen and introduce the preamble. PreprocessorOptions &PreprocessorOpts = Clang->getPreprocessorOpts(); std::string PriorImplicitPCHInclude; if (OverrideMainBuffer) { PreprocessorOpts.addRemappedFile(OriginalSourceFile, OverrideMainBuffer); PreprocessorOpts.PrecompiledPreambleBytes.first = Preamble.size(); PreprocessorOpts.PrecompiledPreambleBytes.second = PreambleEndsAtStartOfLine; PriorImplicitPCHInclude = PreprocessorOpts.ImplicitPCHInclude; PreprocessorOpts.ImplicitPCHInclude = PreambleFile; PreprocessorOpts.DisablePCHValidation = true; // The stored diagnostic has the old source manager in it; update // the locations to refer into the new source manager. Since we've // been careful to make sure that the source manager's state // before and after are identical, so that we can reuse the source // location itself. for (unsigned I = NumStoredDiagnosticsFromDriver, N = StoredDiagnostics.size(); I < N; ++I) { FullSourceLoc Loc(StoredDiagnostics[I].getLocation(), getSourceManager()); StoredDiagnostics[I].setLocation(Loc); } // Keep track of the override buffer; SavedMainFileBuffer = OverrideMainBuffer; } else { PreprocessorOpts.PrecompiledPreambleBytes.first = 0; PreprocessorOpts.PrecompiledPreambleBytes.second = false; } llvm::OwningPtr Act( new TopLevelDeclTrackerAction(*this)); // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar ActCleanup(Act.get()); if (!Act->BeginSourceFile(*Clang.get(), Clang->getFrontendOpts().Inputs[0].second, Clang->getFrontendOpts().Inputs[0].first)) goto error; Act->Execute(); // Steal the created target, context, and preprocessor. TheSema.reset(Clang->takeSema()); Consumer.reset(Clang->takeASTConsumer()); Ctx = &Clang->getASTContext(); PP = &Clang->getPreprocessor(); Clang->setSourceManager(0); Clang->setFileManager(0); Target = &Clang->getTarget(); Act->EndSourceFile(); // Remove the overridden buffer we used for the preamble. if (OverrideMainBuffer) { PreprocessorOpts.eraseRemappedFile( PreprocessorOpts.remapped_file_buffer_end() - 1); PreprocessorOpts.ImplicitPCHInclude = PriorImplicitPCHInclude; } return false; error: // Remove the overridden buffer we used for the preamble. if (OverrideMainBuffer) { PreprocessorOpts.eraseRemappedFile( PreprocessorOpts.remapped_file_buffer_end() - 1); PreprocessorOpts.ImplicitPCHInclude = PriorImplicitPCHInclude; delete OverrideMainBuffer; SavedMainFileBuffer = 0; } StoredDiagnostics.clear(); return true; } /// \brief Simple function to retrieve a path for a preamble precompiled header. static std::string GetPreamblePCHPath() { // FIXME: This is lame; sys::Path should provide this function (in particular, // it should know how to find the temporary files dir). // FIXME: This is really lame. I copied this code from the Driver! // FIXME: This is a hack so that we can override the preamble file during // crash-recovery testing, which is the only case where the preamble files // are not necessarily cleaned up. const char *TmpFile = ::getenv("CINDEXTEST_PREAMBLE_FILE"); if (TmpFile) return TmpFile; std::string Error; const char *TmpDir = ::getenv("TMPDIR"); if (!TmpDir) TmpDir = ::getenv("TEMP"); if (!TmpDir) TmpDir = ::getenv("TMP"); #ifdef LLVM_ON_WIN32 if (!TmpDir) TmpDir = ::getenv("USERPROFILE"); #endif if (!TmpDir) TmpDir = "/tmp"; llvm::sys::Path P(TmpDir); P.createDirectoryOnDisk(true); P.appendComponent("preamble"); P.appendSuffix("pch"); if (P.createTemporaryFileOnDisk()) return std::string(); return P.str(); } /// \brief Compute the preamble for the main file, providing the source buffer /// that corresponds to the main file along with a pair (bytes, start-of-line) /// that describes the preamble. std::pair > ASTUnit::ComputePreamble(CompilerInvocation &Invocation, unsigned MaxLines, bool &CreatedBuffer) { FrontendOptions &FrontendOpts = Invocation.getFrontendOpts(); PreprocessorOptions &PreprocessorOpts = Invocation.getPreprocessorOpts(); CreatedBuffer = false; // Try to determine if the main file has been remapped, either from the // command line (to another file) or directly through the compiler invocation // (to a memory buffer). llvm::MemoryBuffer *Buffer = 0; llvm::sys::PathWithStatus MainFilePath(FrontendOpts.Inputs[0].second); if (const llvm::sys::FileStatus *MainFileStatus = MainFilePath.getFileStatus()) { // Check whether there is a file-file remapping of the main file for (PreprocessorOptions::remapped_file_iterator M = PreprocessorOpts.remapped_file_begin(), E = PreprocessorOpts.remapped_file_end(); M != E; ++M) { llvm::sys::PathWithStatus MPath(M->first); if (const llvm::sys::FileStatus *MStatus = MPath.getFileStatus()) { if (MainFileStatus->uniqueID == MStatus->uniqueID) { // We found a remapping. Try to load the resulting, remapped source. if (CreatedBuffer) { delete Buffer; CreatedBuffer = false; } Buffer = getBufferForFile(M->second); if (!Buffer) return std::make_pair((llvm::MemoryBuffer*)0, std::make_pair(0, true)); CreatedBuffer = true; } } } // Check whether there is a file-buffer remapping. It supercedes the // file-file remapping. for (PreprocessorOptions::remapped_file_buffer_iterator M = PreprocessorOpts.remapped_file_buffer_begin(), E = PreprocessorOpts.remapped_file_buffer_end(); M != E; ++M) { llvm::sys::PathWithStatus MPath(M->first); if (const llvm::sys::FileStatus *MStatus = MPath.getFileStatus()) { if (MainFileStatus->uniqueID == MStatus->uniqueID) { // We found a remapping. if (CreatedBuffer) { delete Buffer; CreatedBuffer = false; } Buffer = const_cast(M->second); } } } } // If the main source file was not remapped, load it now. if (!Buffer) { Buffer = getBufferForFile(FrontendOpts.Inputs[0].second); if (!Buffer) return std::make_pair((llvm::MemoryBuffer*)0, std::make_pair(0, true)); CreatedBuffer = true; } return std::make_pair(Buffer, Lexer::ComputePreamble(Buffer, MaxLines)); } static llvm::MemoryBuffer *CreatePaddedMainFileBuffer(llvm::MemoryBuffer *Old, unsigned NewSize, llvm::StringRef NewName) { llvm::MemoryBuffer *Result = llvm::MemoryBuffer::getNewUninitMemBuffer(NewSize, NewName); memcpy(const_cast(Result->getBufferStart()), Old->getBufferStart(), Old->getBufferSize()); memset(const_cast(Result->getBufferStart()) + Old->getBufferSize(), ' ', NewSize - Old->getBufferSize() - 1); const_cast(Result->getBufferEnd())[-1] = '\n'; return Result; } /// \brief Attempt to build or re-use a precompiled preamble when (re-)parsing /// the source file. /// /// This routine will compute the preamble of the main source file. If a /// non-trivial preamble is found, it will precompile that preamble into a /// precompiled header so that the precompiled preamble can be used to reduce /// reparsing time. If a precompiled preamble has already been constructed, /// this routine will determine if it is still valid and, if so, avoid /// rebuilding the precompiled preamble. /// /// \param AllowRebuild When true (the default), this routine is /// allowed to rebuild the precompiled preamble if it is found to be /// out-of-date. /// /// \param MaxLines When non-zero, the maximum number of lines that /// can occur within the preamble. /// /// \returns If the precompiled preamble can be used, returns a newly-allocated /// buffer that should be used in place of the main file when doing so. /// Otherwise, returns a NULL pointer. llvm::MemoryBuffer *ASTUnit::getMainBufferWithPrecompiledPreamble( CompilerInvocation PreambleInvocation, bool AllowRebuild, unsigned MaxLines) { FrontendOptions &FrontendOpts = PreambleInvocation.getFrontendOpts(); PreprocessorOptions &PreprocessorOpts = PreambleInvocation.getPreprocessorOpts(); bool CreatedPreambleBuffer = false; std::pair > NewPreamble = ComputePreamble(PreambleInvocation, MaxLines, CreatedPreambleBuffer); // If ComputePreamble() Take ownership of the llvm::OwningPtr OwnedPreambleBuffer; if (CreatedPreambleBuffer) OwnedPreambleBuffer.reset(NewPreamble.first); if (!NewPreamble.second.first) { // We couldn't find a preamble in the main source. Clear out the current // preamble, if we have one. It's obviously no good any more. Preamble.clear(); if (!PreambleFile.empty()) { llvm::sys::Path(PreambleFile).eraseFromDisk(); PreambleFile.clear(); } // The next time we actually see a preamble, precompile it. PreambleRebuildCounter = 1; return 0; } if (!Preamble.empty()) { // We've previously computed a preamble. Check whether we have the same // preamble now that we did before, and that there's enough space in // the main-file buffer within the precompiled preamble to fit the // new main file. if (Preamble.size() == NewPreamble.second.first && PreambleEndsAtStartOfLine == NewPreamble.second.second && NewPreamble.first->getBufferSize() < PreambleReservedSize-2 && memcmp(&Preamble[0], NewPreamble.first->getBufferStart(), NewPreamble.second.first) == 0) { // The preamble has not changed. We may be able to re-use the precompiled // preamble. // Check that none of the files used by the preamble have changed. bool AnyFileChanged = false; // First, make a record of those files that have been overridden via // remapping or unsaved_files. llvm::StringMap > OverriddenFiles; for (PreprocessorOptions::remapped_file_iterator R = PreprocessorOpts.remapped_file_begin(), REnd = PreprocessorOpts.remapped_file_end(); !AnyFileChanged && R != REnd; ++R) { struct stat StatBuf; if (FileMgr->getNoncachedStatValue(R->second, StatBuf)) { // If we can't stat the file we're remapping to, assume that something // horrible happened. AnyFileChanged = true; break; } OverriddenFiles[R->first] = std::make_pair(StatBuf.st_size, StatBuf.st_mtime); } for (PreprocessorOptions::remapped_file_buffer_iterator R = PreprocessorOpts.remapped_file_buffer_begin(), REnd = PreprocessorOpts.remapped_file_buffer_end(); !AnyFileChanged && R != REnd; ++R) { // FIXME: Should we actually compare the contents of file->buffer // remappings? OverriddenFiles[R->first] = std::make_pair(R->second->getBufferSize(), 0); } // Check whether anything has changed. for (llvm::StringMap >::iterator F = FilesInPreamble.begin(), FEnd = FilesInPreamble.end(); !AnyFileChanged && F != FEnd; ++F) { llvm::StringMap >::iterator Overridden = OverriddenFiles.find(F->first()); if (Overridden != OverriddenFiles.end()) { // This file was remapped; check whether the newly-mapped file // matches up with the previous mapping. if (Overridden->second != F->second) AnyFileChanged = true; continue; } // The file was not remapped; check whether it has changed on disk. struct stat StatBuf; if (FileMgr->getNoncachedStatValue(F->first(), StatBuf)) { // If we can't stat the file, assume that something horrible happened. AnyFileChanged = true; } else if (StatBuf.st_size != F->second.first || StatBuf.st_mtime != F->second.second) AnyFileChanged = true; } if (!AnyFileChanged) { // Okay! We can re-use the precompiled preamble. // Set the state of the diagnostic object to mimic its state // after parsing the preamble. // FIXME: This won't catch any #pragma push warning changes that // have occurred in the preamble. getDiagnostics().Reset(); ProcessWarningOptions(getDiagnostics(), PreambleInvocation.getDiagnosticOpts()); getDiagnostics().setNumWarnings(NumWarningsInPreamble); if (StoredDiagnostics.size() > NumStoredDiagnosticsInPreamble) StoredDiagnostics.erase( StoredDiagnostics.begin() + NumStoredDiagnosticsInPreamble, StoredDiagnostics.end()); // Create a version of the main file buffer that is padded to // buffer size we reserved when creating the preamble. return CreatePaddedMainFileBuffer(NewPreamble.first, PreambleReservedSize, FrontendOpts.Inputs[0].second); } } // If we aren't allowed to rebuild the precompiled preamble, just // return now. if (!AllowRebuild) return 0; // We can't reuse the previously-computed preamble. Build a new one. Preamble.clear(); llvm::sys::Path(PreambleFile).eraseFromDisk(); PreambleRebuildCounter = 1; } else if (!AllowRebuild) { // We aren't allowed to rebuild the precompiled preamble; just // return now. return 0; } // If the preamble rebuild counter > 1, it's because we previously // failed to build a preamble and we're not yet ready to try // again. Decrement the counter and return a failure. if (PreambleRebuildCounter > 1) { --PreambleRebuildCounter; return 0; } // Create a temporary file for the precompiled preamble. In rare // circumstances, this can fail. std::string PreamblePCHPath = GetPreamblePCHPath(); if (PreamblePCHPath.empty()) { // Try again next time. PreambleRebuildCounter = 1; return 0; } // We did not previously compute a preamble, or it can't be reused anyway. SimpleTimer PreambleTimer(WantTiming); PreambleTimer.setOutput("Precompiling preamble"); // Create a new buffer that stores the preamble. The buffer also contains // extra space for the original contents of the file (which will be present // when we actually parse the file) along with more room in case the file // grows. PreambleReservedSize = NewPreamble.first->getBufferSize(); if (PreambleReservedSize < 4096) PreambleReservedSize = 8191; else PreambleReservedSize *= 2; // Save the preamble text for later; we'll need to compare against it for // subsequent reparses. Preamble.assign(NewPreamble.first->getBufferStart(), NewPreamble.first->getBufferStart() + NewPreamble.second.first); PreambleEndsAtStartOfLine = NewPreamble.second.second; delete PreambleBuffer; PreambleBuffer = llvm::MemoryBuffer::getNewUninitMemBuffer(PreambleReservedSize, FrontendOpts.Inputs[0].second); memcpy(const_cast(PreambleBuffer->getBufferStart()), NewPreamble.first->getBufferStart(), Preamble.size()); memset(const_cast(PreambleBuffer->getBufferStart()) + Preamble.size(), ' ', PreambleReservedSize - Preamble.size() - 1); const_cast(PreambleBuffer->getBufferEnd())[-1] = '\n'; // Remap the main source file to the preamble buffer. llvm::sys::PathWithStatus MainFilePath(FrontendOpts.Inputs[0].second); PreprocessorOpts.addRemappedFile(MainFilePath.str(), PreambleBuffer); // Tell the compiler invocation to generate a temporary precompiled header. FrontendOpts.ProgramAction = frontend::GeneratePCH; FrontendOpts.ChainedPCH = true; // FIXME: Generate the precompiled header into memory? FrontendOpts.OutputFile = PreamblePCHPath; PreprocessorOpts.PrecompiledPreambleBytes.first = 0; PreprocessorOpts.PrecompiledPreambleBytes.second = false; // Create the compiler instance to use for building the precompiled preamble. llvm::OwningPtr Clang(new CompilerInstance()); // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar CICleanup(Clang.get()); Clang->setInvocation(&PreambleInvocation); OriginalSourceFile = Clang->getFrontendOpts().Inputs[0].second; // Set up diagnostics, capturing all of the diagnostics produced. Clang->setDiagnostics(&getDiagnostics()); // Create the target instance. Clang->getTargetOpts().Features = TargetFeatures; Clang->setTarget(TargetInfo::CreateTargetInfo(Clang->getDiagnostics(), Clang->getTargetOpts())); if (!Clang->hasTarget()) { llvm::sys::Path(FrontendOpts.OutputFile).eraseFromDisk(); Preamble.clear(); PreambleRebuildCounter = DefaultPreambleRebuildInterval; PreprocessorOpts.eraseRemappedFile( PreprocessorOpts.remapped_file_buffer_end() - 1); return 0; } // Inform the target of the language options. // // FIXME: We shouldn't need to do this, the target should be immutable once // created. This complexity should be lifted elsewhere. Clang->getTarget().setForcedLangOptions(Clang->getLangOpts()); assert(Clang->getFrontendOpts().Inputs.size() == 1 && "Invocation must have exactly one source file!"); assert(Clang->getFrontendOpts().Inputs[0].first != IK_AST && "FIXME: AST inputs not yet supported here!"); assert(Clang->getFrontendOpts().Inputs[0].first != IK_LLVM_IR && "IR inputs not support here!"); // Clear out old caches and data. getDiagnostics().Reset(); ProcessWarningOptions(getDiagnostics(), Clang->getDiagnosticOpts()); StoredDiagnostics.erase( StoredDiagnostics.begin() + NumStoredDiagnosticsFromDriver, StoredDiagnostics.end()); TopLevelDecls.clear(); TopLevelDeclsInPreamble.clear(); PreprocessedEntities.clear(); PreprocessedEntitiesInPreamble.clear(); // Create a file manager object to provide access to and cache the filesystem. Clang->setFileManager(new FileManager(Clang->getFileSystemOpts())); // Create the source manager. Clang->setSourceManager(new SourceManager(getDiagnostics(), Clang->getFileManager())); llvm::OwningPtr Act; Act.reset(new PrecompilePreambleAction(*this)); if (!Act->BeginSourceFile(*Clang.get(), Clang->getFrontendOpts().Inputs[0].second, Clang->getFrontendOpts().Inputs[0].first)) { llvm::sys::Path(FrontendOpts.OutputFile).eraseFromDisk(); Preamble.clear(); PreambleRebuildCounter = DefaultPreambleRebuildInterval; PreprocessorOpts.eraseRemappedFile( PreprocessorOpts.remapped_file_buffer_end() - 1); return 0; } Act->Execute(); Act->EndSourceFile(); if (Diagnostics->hasErrorOccurred()) { // There were errors parsing the preamble, so no precompiled header was // generated. Forget that we even tried. // FIXME: Should we leave a note for ourselves to try again? llvm::sys::Path(FrontendOpts.OutputFile).eraseFromDisk(); Preamble.clear(); TopLevelDeclsInPreamble.clear(); PreprocessedEntities.clear(); PreprocessedEntitiesInPreamble.clear(); PreambleRebuildCounter = DefaultPreambleRebuildInterval; PreprocessorOpts.eraseRemappedFile( PreprocessorOpts.remapped_file_buffer_end() - 1); return 0; } // Keep track of the preamble we precompiled. PreambleFile = FrontendOpts.OutputFile; NumStoredDiagnosticsInPreamble = StoredDiagnostics.size(); NumWarningsInPreamble = getDiagnostics().getNumWarnings(); // Keep track of all of the files that the source manager knows about, // so we can verify whether they have changed or not. FilesInPreamble.clear(); SourceManager &SourceMgr = Clang->getSourceManager(); const llvm::MemoryBuffer *MainFileBuffer = SourceMgr.getBuffer(SourceMgr.getMainFileID()); for (SourceManager::fileinfo_iterator F = SourceMgr.fileinfo_begin(), FEnd = SourceMgr.fileinfo_end(); F != FEnd; ++F) { const FileEntry *File = F->second->OrigEntry; if (!File || F->second->getRawBuffer() == MainFileBuffer) continue; FilesInPreamble[File->getName()] = std::make_pair(F->second->getSize(), File->getModificationTime()); } PreambleRebuildCounter = 1; PreprocessorOpts.eraseRemappedFile( PreprocessorOpts.remapped_file_buffer_end() - 1); // If the hash of top-level entities differs from the hash of the top-level // entities the last time we rebuilt the preamble, clear out the completion // cache. if (CurrentTopLevelHashValue != PreambleTopLevelHashValue) { CompletionCacheTopLevelHashValue = 0; PreambleTopLevelHashValue = CurrentTopLevelHashValue; } return CreatePaddedMainFileBuffer(NewPreamble.first, PreambleReservedSize, FrontendOpts.Inputs[0].second); } void ASTUnit::RealizeTopLevelDeclsFromPreamble() { std::vector Resolved; Resolved.reserve(TopLevelDeclsInPreamble.size()); ExternalASTSource &Source = *getASTContext().getExternalSource(); for (unsigned I = 0, N = TopLevelDeclsInPreamble.size(); I != N; ++I) { // Resolve the declaration ID to an actual declaration, possibly // deserializing the declaration in the process. Decl *D = Source.GetExternalDecl(TopLevelDeclsInPreamble[I]); if (D) Resolved.push_back(D); } TopLevelDeclsInPreamble.clear(); TopLevelDecls.insert(TopLevelDecls.begin(), Resolved.begin(), Resolved.end()); } void ASTUnit::RealizePreprocessedEntitiesFromPreamble() { if (!PP) return; PreprocessingRecord *PPRec = PP->getPreprocessingRecord(); if (!PPRec) return; ExternalPreprocessingRecordSource *External = PPRec->getExternalSource(); if (!External) return; for (unsigned I = 0, N = PreprocessedEntitiesInPreamble.size(); I != N; ++I) { if (PreprocessedEntity *PE = External->ReadPreprocessedEntityAtOffset( PreprocessedEntitiesInPreamble[I])) PreprocessedEntities.push_back(PE); } if (PreprocessedEntities.empty()) return; PreprocessedEntities.insert(PreprocessedEntities.end(), PPRec->begin(true), PPRec->end(true)); } ASTUnit::pp_entity_iterator ASTUnit::pp_entity_begin() { if (!PreprocessedEntitiesInPreamble.empty() && PreprocessedEntities.empty()) RealizePreprocessedEntitiesFromPreamble(); if (PreprocessedEntities.empty()) if (PreprocessingRecord *PPRec = PP->getPreprocessingRecord()) return PPRec->begin(true); return PreprocessedEntities.begin(); } ASTUnit::pp_entity_iterator ASTUnit::pp_entity_end() { if (!PreprocessedEntitiesInPreamble.empty() && PreprocessedEntities.empty()) RealizePreprocessedEntitiesFromPreamble(); if (PreprocessedEntities.empty()) if (PreprocessingRecord *PPRec = PP->getPreprocessingRecord()) return PPRec->end(true); return PreprocessedEntities.end(); } unsigned ASTUnit::getMaxPCHLevel() const { if (!getOnlyLocalDecls()) return Decl::MaxPCHLevel; return 0; } llvm::StringRef ASTUnit::getMainFileName() const { return Invocation->getFrontendOpts().Inputs[0].second; } ASTUnit *ASTUnit::create(CompilerInvocation *CI, llvm::IntrusiveRefCntPtr Diags) { llvm::OwningPtr AST; AST.reset(new ASTUnit(false)); ConfigureDiags(Diags, 0, 0, *AST, /*CaptureDiagnostics=*/false); AST->Diagnostics = Diags; AST->Invocation = CI; AST->FileSystemOpts = CI->getFileSystemOpts(); AST->FileMgr = new FileManager(AST->FileSystemOpts); AST->SourceMgr = new SourceManager(*Diags, *AST->FileMgr); return AST.take(); } bool ASTUnit::LoadFromCompilerInvocation(bool PrecompilePreamble) { if (!Invocation) return true; // We'll manage file buffers ourselves. Invocation->getPreprocessorOpts().RetainRemappedFileBuffers = true; Invocation->getFrontendOpts().DisableFree = false; ProcessWarningOptions(getDiagnostics(), Invocation->getDiagnosticOpts()); // Save the target features. TargetFeatures = Invocation->getTargetOpts().Features; llvm::MemoryBuffer *OverrideMainBuffer = 0; if (PrecompilePreamble) { PreambleRebuildCounter = 2; OverrideMainBuffer = getMainBufferWithPrecompiledPreamble(*Invocation); } SimpleTimer ParsingTimer(WantTiming); ParsingTimer.setOutput("Parsing " + getMainFileName()); // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar MemBufferCleanup(OverrideMainBuffer); return Parse(OverrideMainBuffer); } ASTUnit *ASTUnit::LoadFromCompilerInvocation(CompilerInvocation *CI, llvm::IntrusiveRefCntPtr Diags, bool OnlyLocalDecls, bool CaptureDiagnostics, bool PrecompilePreamble, bool CompleteTranslationUnit, bool CacheCodeCompletionResults) { // Create the AST unit. llvm::OwningPtr AST; AST.reset(new ASTUnit(false)); ConfigureDiags(Diags, 0, 0, *AST, CaptureDiagnostics); AST->Diagnostics = Diags; AST->OnlyLocalDecls = OnlyLocalDecls; AST->CaptureDiagnostics = CaptureDiagnostics; AST->CompleteTranslationUnit = CompleteTranslationUnit; AST->ShouldCacheCodeCompletionResults = CacheCodeCompletionResults; AST->Invocation = CI; // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar ASTUnitCleanup(AST.get()); llvm::CrashRecoveryContextCleanupRegistrar > DiagCleanup(Diags.getPtr()); return AST->LoadFromCompilerInvocation(PrecompilePreamble)? 0 : AST.take(); } ASTUnit *ASTUnit::LoadFromCommandLine(const char **ArgBegin, const char **ArgEnd, llvm::IntrusiveRefCntPtr Diags, llvm::StringRef ResourceFilesPath, bool OnlyLocalDecls, bool CaptureDiagnostics, RemappedFile *RemappedFiles, unsigned NumRemappedFiles, bool RemappedFilesKeepOriginalName, bool PrecompilePreamble, bool CompleteTranslationUnit, bool CacheCodeCompletionResults, bool CXXPrecompilePreamble, bool CXXChainedPCH) { if (!Diags.getPtr()) { // No diagnostics engine was provided, so create our own diagnostics object // with the default options. DiagnosticOptions DiagOpts; Diags = CompilerInstance::createDiagnostics(DiagOpts, ArgEnd - ArgBegin, ArgBegin); } llvm::SmallVector StoredDiagnostics; llvm::IntrusiveRefCntPtr CI; { CaptureDroppedDiagnostics Capture(CaptureDiagnostics, *Diags, StoredDiagnostics); CI = clang::createInvocationFromCommandLine( llvm::ArrayRef(ArgBegin, ArgEnd-ArgBegin), Diags); if (!CI) return 0; } // Override any files that need remapping for (unsigned I = 0; I != NumRemappedFiles; ++I) { FilenameOrMemBuf fileOrBuf = RemappedFiles[I].second; if (const llvm::MemoryBuffer * memBuf = fileOrBuf.dyn_cast()) { CI->getPreprocessorOpts().addRemappedFile(RemappedFiles[I].first, memBuf); } else { const char *fname = fileOrBuf.get(); CI->getPreprocessorOpts().addRemappedFile(RemappedFiles[I].first, fname); } } CI->getPreprocessorOpts().RemappedFilesKeepOriginalName = RemappedFilesKeepOriginalName; // Override the resources path. CI->getHeaderSearchOpts().ResourceDir = ResourceFilesPath; // Check whether we should precompile the preamble and/or use chained PCH. // FIXME: This is a temporary hack while we debug C++ chained PCH. if (CI->getLangOpts().CPlusPlus) { PrecompilePreamble = PrecompilePreamble && CXXPrecompilePreamble; if (PrecompilePreamble && !CXXChainedPCH && !CI->getPreprocessorOpts().ImplicitPCHInclude.empty()) PrecompilePreamble = false; } // Create the AST unit. llvm::OwningPtr AST; AST.reset(new ASTUnit(false)); ConfigureDiags(Diags, ArgBegin, ArgEnd, *AST, CaptureDiagnostics); AST->Diagnostics = Diags; AST->FileSystemOpts = CI->getFileSystemOpts(); AST->FileMgr = new FileManager(AST->FileSystemOpts); AST->OnlyLocalDecls = OnlyLocalDecls; AST->CaptureDiagnostics = CaptureDiagnostics; AST->CompleteTranslationUnit = CompleteTranslationUnit; AST->ShouldCacheCodeCompletionResults = CacheCodeCompletionResults; AST->NumStoredDiagnosticsFromDriver = StoredDiagnostics.size(); AST->NumStoredDiagnosticsInPreamble = StoredDiagnostics.size(); AST->StoredDiagnostics.swap(StoredDiagnostics); AST->Invocation = CI; // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar ASTUnitCleanup(AST.get()); llvm::CrashRecoveryContextCleanupRegistrar > CICleanup(CI.getPtr()); llvm::CrashRecoveryContextCleanupRegistrar > DiagCleanup(Diags.getPtr()); return AST->LoadFromCompilerInvocation(PrecompilePreamble) ? 0 : AST.take(); } bool ASTUnit::Reparse(RemappedFile *RemappedFiles, unsigned NumRemappedFiles) { if (!Invocation) return true; SimpleTimer ParsingTimer(WantTiming); ParsingTimer.setOutput("Reparsing " + getMainFileName()); // Remap files. PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts(); PPOpts.DisableStatCache = true; for (PreprocessorOptions::remapped_file_buffer_iterator R = PPOpts.remapped_file_buffer_begin(), REnd = PPOpts.remapped_file_buffer_end(); R != REnd; ++R) { delete R->second; } Invocation->getPreprocessorOpts().clearRemappedFiles(); for (unsigned I = 0; I != NumRemappedFiles; ++I) { FilenameOrMemBuf fileOrBuf = RemappedFiles[I].second; if (const llvm::MemoryBuffer * memBuf = fileOrBuf.dyn_cast()) { Invocation->getPreprocessorOpts().addRemappedFile(RemappedFiles[I].first, memBuf); } else { const char *fname = fileOrBuf.get(); Invocation->getPreprocessorOpts().addRemappedFile(RemappedFiles[I].first, fname); } } // If we have a preamble file lying around, or if we might try to // build a precompiled preamble, do so now. llvm::MemoryBuffer *OverrideMainBuffer = 0; if (!PreambleFile.empty() || PreambleRebuildCounter > 0) OverrideMainBuffer = getMainBufferWithPrecompiledPreamble(*Invocation); // Clear out the diagnostics state. if (!OverrideMainBuffer) { getDiagnostics().Reset(); ProcessWarningOptions(getDiagnostics(), Invocation->getDiagnosticOpts()); } // Parse the sources bool Result = Parse(OverrideMainBuffer); // If we're caching global code-completion results, and the top-level // declarations have changed, clear out the code-completion cache. if (!Result && ShouldCacheCodeCompletionResults && CurrentTopLevelHashValue != CompletionCacheTopLevelHashValue) CacheCodeCompletionResults(); return Result; } //----------------------------------------------------------------------------// // Code completion //----------------------------------------------------------------------------// namespace { /// \brief Code completion consumer that combines the cached code-completion /// results from an ASTUnit with the code-completion results provided to it, /// then passes the result on to class AugmentedCodeCompleteConsumer : public CodeCompleteConsumer { unsigned NormalContexts; ASTUnit &AST; CodeCompleteConsumer &Next; public: AugmentedCodeCompleteConsumer(ASTUnit &AST, CodeCompleteConsumer &Next, bool IncludeMacros, bool IncludeCodePatterns, bool IncludeGlobals) : CodeCompleteConsumer(IncludeMacros, IncludeCodePatterns, IncludeGlobals, Next.isOutputBinary()), AST(AST), Next(Next) { // Compute the set of contexts in which we will look when we don't have // any information about the specific context. NormalContexts = (1 << (CodeCompletionContext::CCC_TopLevel - 1)) | (1 << (CodeCompletionContext::CCC_ObjCInterface - 1)) | (1 << (CodeCompletionContext::CCC_ObjCImplementation - 1)) | (1 << (CodeCompletionContext::CCC_ObjCIvarList - 1)) | (1 << (CodeCompletionContext::CCC_Statement - 1)) | (1 << (CodeCompletionContext::CCC_Expression - 1)) | (1 << (CodeCompletionContext::CCC_ObjCMessageReceiver - 1)) | (1 << (CodeCompletionContext::CCC_MemberAccess - 1)) | (1 << (CodeCompletionContext::CCC_ObjCProtocolName - 1)) | (1 << (CodeCompletionContext::CCC_ParenthesizedExpression - 1)) | (1 << (CodeCompletionContext::CCC_Recovery - 1)); if (AST.getASTContext().getLangOptions().CPlusPlus) NormalContexts |= (1 << (CodeCompletionContext::CCC_EnumTag - 1)) | (1 << (CodeCompletionContext::CCC_UnionTag - 1)) | (1 << (CodeCompletionContext::CCC_ClassOrStructTag - 1)); } virtual void ProcessCodeCompleteResults(Sema &S, CodeCompletionContext Context, CodeCompletionResult *Results, unsigned NumResults); virtual void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, OverloadCandidate *Candidates, unsigned NumCandidates) { Next.ProcessOverloadCandidates(S, CurrentArg, Candidates, NumCandidates); } virtual CodeCompletionAllocator &getAllocator() { return Next.getAllocator(); } }; } /// \brief Helper function that computes which global names are hidden by the /// local code-completion results. static void CalculateHiddenNames(const CodeCompletionContext &Context, CodeCompletionResult *Results, unsigned NumResults, ASTContext &Ctx, llvm::StringSet &HiddenNames){ bool OnlyTagNames = false; switch (Context.getKind()) { case CodeCompletionContext::CCC_Recovery: case CodeCompletionContext::CCC_TopLevel: case CodeCompletionContext::CCC_ObjCInterface: case CodeCompletionContext::CCC_ObjCImplementation: case CodeCompletionContext::CCC_ObjCIvarList: case CodeCompletionContext::CCC_ClassStructUnion: case CodeCompletionContext::CCC_Statement: case CodeCompletionContext::CCC_Expression: case CodeCompletionContext::CCC_ObjCMessageReceiver: case CodeCompletionContext::CCC_MemberAccess: case CodeCompletionContext::CCC_Namespace: case CodeCompletionContext::CCC_Type: case CodeCompletionContext::CCC_Name: case CodeCompletionContext::CCC_PotentiallyQualifiedName: case CodeCompletionContext::CCC_ParenthesizedExpression: break; case CodeCompletionContext::CCC_EnumTag: case CodeCompletionContext::CCC_UnionTag: case CodeCompletionContext::CCC_ClassOrStructTag: OnlyTagNames = true; break; case CodeCompletionContext::CCC_ObjCProtocolName: case CodeCompletionContext::CCC_MacroName: case CodeCompletionContext::CCC_MacroNameUse: case CodeCompletionContext::CCC_PreprocessorExpression: case CodeCompletionContext::CCC_PreprocessorDirective: case CodeCompletionContext::CCC_NaturalLanguage: case CodeCompletionContext::CCC_SelectorName: case CodeCompletionContext::CCC_TypeQualifiers: case CodeCompletionContext::CCC_Other: case CodeCompletionContext::CCC_OtherWithMacros: // We're looking for nothing, or we're looking for names that cannot // be hidden. return; } typedef CodeCompletionResult Result; for (unsigned I = 0; I != NumResults; ++I) { if (Results[I].Kind != Result::RK_Declaration) continue; unsigned IDNS = Results[I].Declaration->getUnderlyingDecl()->getIdentifierNamespace(); bool Hiding = false; if (OnlyTagNames) Hiding = (IDNS & Decl::IDNS_Tag); else { unsigned HiddenIDNS = (Decl::IDNS_Type | Decl::IDNS_Member | Decl::IDNS_Namespace | Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator); if (Ctx.getLangOptions().CPlusPlus) HiddenIDNS |= Decl::IDNS_Tag; Hiding = (IDNS & HiddenIDNS); } if (!Hiding) continue; DeclarationName Name = Results[I].Declaration->getDeclName(); if (IdentifierInfo *Identifier = Name.getAsIdentifierInfo()) HiddenNames.insert(Identifier->getName()); else HiddenNames.insert(Name.getAsString()); } } void AugmentedCodeCompleteConsumer::ProcessCodeCompleteResults(Sema &S, CodeCompletionContext Context, CodeCompletionResult *Results, unsigned NumResults) { // Merge the results we were given with the results we cached. bool AddedResult = false; unsigned InContexts = (Context.getKind() == CodeCompletionContext::CCC_Recovery? NormalContexts : (1 << (Context.getKind() - 1))); // Contains the set of names that are hidden by "local" completion results. llvm::StringSet HiddenNames; typedef CodeCompletionResult Result; llvm::SmallVector AllResults; for (ASTUnit::cached_completion_iterator C = AST.cached_completion_begin(), CEnd = AST.cached_completion_end(); C != CEnd; ++C) { // If the context we are in matches any of the contexts we are // interested in, we'll add this result. if ((C->ShowInContexts & InContexts) == 0) continue; // If we haven't added any results previously, do so now. if (!AddedResult) { CalculateHiddenNames(Context, Results, NumResults, S.Context, HiddenNames); AllResults.insert(AllResults.end(), Results, Results + NumResults); AddedResult = true; } // Determine whether this global completion result is hidden by a local // completion result. If so, skip it. if (C->Kind != CXCursor_MacroDefinition && HiddenNames.count(C->Completion->getTypedText())) continue; // Adjust priority based on similar type classes. unsigned Priority = C->Priority; CXCursorKind CursorKind = C->Kind; CodeCompletionString *Completion = C->Completion; if (!Context.getPreferredType().isNull()) { if (C->Kind == CXCursor_MacroDefinition) { Priority = getMacroUsagePriority(C->Completion->getTypedText(), S.getLangOptions(), Context.getPreferredType()->isAnyPointerType()); } else if (C->Type) { CanQualType Expected = S.Context.getCanonicalType( Context.getPreferredType().getUnqualifiedType()); SimplifiedTypeClass ExpectedSTC = getSimplifiedTypeClass(Expected); if (ExpectedSTC == C->TypeClass) { // We know this type is similar; check for an exact match. llvm::StringMap &CachedCompletionTypes = AST.getCachedCompletionTypes(); llvm::StringMap::iterator Pos = CachedCompletionTypes.find(QualType(Expected).getAsString()); if (Pos != CachedCompletionTypes.end() && Pos->second == C->Type) Priority /= CCF_ExactTypeMatch; else Priority /= CCF_SimilarTypeMatch; } } } // Adjust the completion string, if required. if (C->Kind == CXCursor_MacroDefinition && Context.getKind() == CodeCompletionContext::CCC_MacroNameUse) { // Create a new code-completion string that just contains the // macro name, without its arguments. CodeCompletionBuilder Builder(getAllocator(), CCP_CodePattern, C->Availability); Builder.AddTypedTextChunk(C->Completion->getTypedText()); CursorKind = CXCursor_NotImplemented; Priority = CCP_CodePattern; Completion = Builder.TakeString(); } AllResults.push_back(Result(Completion, Priority, CursorKind, C->Availability)); } // If we did not add any cached completion results, just forward the // results we were given to the next consumer. if (!AddedResult) { Next.ProcessCodeCompleteResults(S, Context, Results, NumResults); return; } Next.ProcessCodeCompleteResults(S, Context, AllResults.data(), AllResults.size()); } void ASTUnit::CodeComplete(llvm::StringRef File, unsigned Line, unsigned Column, RemappedFile *RemappedFiles, unsigned NumRemappedFiles, bool IncludeMacros, bool IncludeCodePatterns, CodeCompleteConsumer &Consumer, Diagnostic &Diag, LangOptions &LangOpts, SourceManager &SourceMgr, FileManager &FileMgr, llvm::SmallVectorImpl &StoredDiagnostics, llvm::SmallVectorImpl &OwnedBuffers) { if (!Invocation) return; SimpleTimer CompletionTimer(WantTiming); CompletionTimer.setOutput("Code completion @ " + File + ":" + llvm::Twine(Line) + ":" + llvm::Twine(Column)); llvm::IntrusiveRefCntPtr CCInvocation(new CompilerInvocation(*Invocation)); FrontendOptions &FrontendOpts = CCInvocation->getFrontendOpts(); PreprocessorOptions &PreprocessorOpts = CCInvocation->getPreprocessorOpts(); FrontendOpts.ShowMacrosInCodeCompletion = IncludeMacros && CachedCompletionResults.empty(); FrontendOpts.ShowCodePatternsInCodeCompletion = IncludeCodePatterns; FrontendOpts.ShowGlobalSymbolsInCodeCompletion = CachedCompletionResults.empty(); FrontendOpts.CodeCompletionAt.FileName = File; FrontendOpts.CodeCompletionAt.Line = Line; FrontendOpts.CodeCompletionAt.Column = Column; // Set the language options appropriately. LangOpts = CCInvocation->getLangOpts(); llvm::OwningPtr Clang(new CompilerInstance()); // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar CICleanup(Clang.get()); Clang->setInvocation(&*CCInvocation); OriginalSourceFile = Clang->getFrontendOpts().Inputs[0].second; // Set up diagnostics, capturing any diagnostics produced. Clang->setDiagnostics(&Diag); ProcessWarningOptions(Diag, CCInvocation->getDiagnosticOpts()); CaptureDroppedDiagnostics Capture(true, Clang->getDiagnostics(), StoredDiagnostics); // Create the target instance. Clang->getTargetOpts().Features = TargetFeatures; Clang->setTarget(TargetInfo::CreateTargetInfo(Clang->getDiagnostics(), Clang->getTargetOpts())); if (!Clang->hasTarget()) { Clang->setInvocation(0); return; } // Inform the target of the language options. // // FIXME: We shouldn't need to do this, the target should be immutable once // created. This complexity should be lifted elsewhere. Clang->getTarget().setForcedLangOptions(Clang->getLangOpts()); assert(Clang->getFrontendOpts().Inputs.size() == 1 && "Invocation must have exactly one source file!"); assert(Clang->getFrontendOpts().Inputs[0].first != IK_AST && "FIXME: AST inputs not yet supported here!"); assert(Clang->getFrontendOpts().Inputs[0].first != IK_LLVM_IR && "IR inputs not support here!"); // Use the source and file managers that we were given. Clang->setFileManager(&FileMgr); Clang->setSourceManager(&SourceMgr); // Remap files. PreprocessorOpts.clearRemappedFiles(); PreprocessorOpts.RetainRemappedFileBuffers = true; for (unsigned I = 0; I != NumRemappedFiles; ++I) { FilenameOrMemBuf fileOrBuf = RemappedFiles[I].second; if (const llvm::MemoryBuffer * memBuf = fileOrBuf.dyn_cast()) { PreprocessorOpts.addRemappedFile(RemappedFiles[I].first, memBuf); OwnedBuffers.push_back(memBuf); } else { const char *fname = fileOrBuf.get(); PreprocessorOpts.addRemappedFile(RemappedFiles[I].first, fname); } } // Use the code completion consumer we were given, but adding any cached // code-completion results. AugmentedCodeCompleteConsumer *AugmentedConsumer = new AugmentedCodeCompleteConsumer(*this, Consumer, FrontendOpts.ShowMacrosInCodeCompletion, FrontendOpts.ShowCodePatternsInCodeCompletion, FrontendOpts.ShowGlobalSymbolsInCodeCompletion); Clang->setCodeCompletionConsumer(AugmentedConsumer); // If we have a precompiled preamble, try to use it. We only allow // the use of the precompiled preamble if we're if the completion // point is within the main file, after the end of the precompiled // preamble. llvm::MemoryBuffer *OverrideMainBuffer = 0; if (!PreambleFile.empty()) { using llvm::sys::FileStatus; llvm::sys::PathWithStatus CompleteFilePath(File); llvm::sys::PathWithStatus MainPath(OriginalSourceFile); if (const FileStatus *CompleteFileStatus = CompleteFilePath.getFileStatus()) if (const FileStatus *MainStatus = MainPath.getFileStatus()) if (CompleteFileStatus->getUniqueID() == MainStatus->getUniqueID()) OverrideMainBuffer = getMainBufferWithPrecompiledPreamble(*CCInvocation, false, Line - 1); } // If the main file has been overridden due to the use of a preamble, // make that override happen and introduce the preamble. PreprocessorOpts.DisableStatCache = true; StoredDiagnostics.insert(StoredDiagnostics.end(), this->StoredDiagnostics.begin(), this->StoredDiagnostics.begin() + NumStoredDiagnosticsFromDriver); if (OverrideMainBuffer) { PreprocessorOpts.addRemappedFile(OriginalSourceFile, OverrideMainBuffer); PreprocessorOpts.PrecompiledPreambleBytes.first = Preamble.size(); PreprocessorOpts.PrecompiledPreambleBytes.second = PreambleEndsAtStartOfLine; PreprocessorOpts.ImplicitPCHInclude = PreambleFile; PreprocessorOpts.DisablePCHValidation = true; // The stored diagnostics have the old source manager. Copy them // to our output set of stored diagnostics, updating the source // manager to the one we were given. for (unsigned I = NumStoredDiagnosticsFromDriver, N = this->StoredDiagnostics.size(); I < N; ++I) { StoredDiagnostics.push_back(this->StoredDiagnostics[I]); FullSourceLoc Loc(StoredDiagnostics[I].getLocation(), SourceMgr); StoredDiagnostics[I].setLocation(Loc); } OwnedBuffers.push_back(OverrideMainBuffer); } else { PreprocessorOpts.PrecompiledPreambleBytes.first = 0; PreprocessorOpts.PrecompiledPreambleBytes.second = false; } llvm::OwningPtr Act; Act.reset(new SyntaxOnlyAction); if (Act->BeginSourceFile(*Clang.get(), Clang->getFrontendOpts().Inputs[0].second, Clang->getFrontendOpts().Inputs[0].first)) { Act->Execute(); Act->EndSourceFile(); } } bool ASTUnit::Save(llvm::StringRef File) { if (getDiagnostics().hasErrorOccurred()) return true; // FIXME: Can we somehow regenerate the stat cache here, or do we need to // unconditionally create a stat cache when we parse the file? std::string ErrorInfo; llvm::raw_fd_ostream Out(File.str().c_str(), ErrorInfo, llvm::raw_fd_ostream::F_Binary); if (!ErrorInfo.empty() || Out.has_error()) return true; serialize(Out); Out.close(); return Out.has_error(); } bool ASTUnit::serialize(llvm::raw_ostream &OS) { if (getDiagnostics().hasErrorOccurred()) return true; std::vector Buffer; llvm::BitstreamWriter Stream(Buffer); ASTWriter Writer(Stream); Writer.WriteAST(getSema(), 0, std::string(), 0); // Write the generated bitstream to "Out". if (!Buffer.empty()) OS.write((char *)&Buffer.front(), Buffer.size()); return false; }