//===--- JumpDiagnostics.cpp - Analyze Jump Targets for VLA issues --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the JumpScopeChecker class, which is used to diagnose // jumps that enter a VLA scope in an invalid way. // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/Expr.h" #include "clang/AST/StmtObjC.h" #include "clang/AST/StmtCXX.h" #include "llvm/ADT/BitVector.h" using namespace clang; namespace { /// JumpScopeChecker - This object is used by Sema to diagnose invalid jumps /// into VLA and other protected scopes. For example, this rejects: /// goto L; /// int a[n]; /// L: /// class JumpScopeChecker { Sema &S; /// GotoScope - This is a record that we use to keep track of all of the /// scopes that are introduced by VLAs and other things that scope jumps like /// gotos. This scope tree has nothing to do with the source scope tree, /// because you can have multiple VLA scopes per compound statement, and most /// compound statements don't introduce any scopes. struct GotoScope { /// ParentScope - The index in ScopeMap of the parent scope. This is 0 for /// the parent scope is the function body. unsigned ParentScope; /// InDiag - The diagnostic to emit if there is a jump into this scope. unsigned InDiag; /// OutDiag - The diagnostic to emit if there is an indirect jump out /// of this scope. Direct jumps always clean up their current scope /// in an orderly way. unsigned OutDiag; /// Loc - Location to emit the diagnostic. SourceLocation Loc; GotoScope(unsigned parentScope, unsigned InDiag, unsigned OutDiag, SourceLocation L) : ParentScope(parentScope), InDiag(InDiag), OutDiag(OutDiag), Loc(L) {} }; llvm::SmallVector Scopes; llvm::DenseMap LabelAndGotoScopes; llvm::SmallVector Jumps; llvm::SmallVector IndirectJumps; llvm::SmallVector IndirectJumpTargets; public: JumpScopeChecker(Stmt *Body, Sema &S); private: void BuildScopeInformation(Decl *D, unsigned &ParentScope); void BuildScopeInformation(Stmt *S, unsigned ParentScope); void VerifyJumps(); void VerifyIndirectJumps(); void DiagnoseIndirectJump(IndirectGotoStmt *IG, unsigned IGScope, LabelStmt *Target, unsigned TargetScope); void CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc, unsigned JumpDiag); unsigned GetDeepestCommonScope(unsigned A, unsigned B); }; } // end anonymous namespace JumpScopeChecker::JumpScopeChecker(Stmt *Body, Sema &s) : S(s) { // Add a scope entry for function scope. Scopes.push_back(GotoScope(~0U, ~0U, ~0U, SourceLocation())); // Build information for the top level compound statement, so that we have a // defined scope record for every "goto" and label. BuildScopeInformation(Body, 0); // Check that all jumps we saw are kosher. VerifyJumps(); VerifyIndirectJumps(); } /// GetDeepestCommonScope - Finds the innermost scope enclosing the /// two scopes. unsigned JumpScopeChecker::GetDeepestCommonScope(unsigned A, unsigned B) { while (A != B) { // Inner scopes are created after outer scopes and therefore have // higher indices. if (A < B) { assert(Scopes[B].ParentScope < B); B = Scopes[B].ParentScope; } else { assert(Scopes[A].ParentScope < A); A = Scopes[A].ParentScope; } } return A; } /// GetDiagForGotoScopeDecl - If this decl induces a new goto scope, return a /// diagnostic that should be emitted if control goes over it. If not, return 0. static std::pair GetDiagForGotoScopeDecl(const Decl *D, bool isCPlusPlus) { if (const VarDecl *VD = dyn_cast(D)) { unsigned InDiag = 0, OutDiag = 0; if (VD->getType()->isVariablyModifiedType()) InDiag = diag::note_protected_by_vla; if (VD->hasAttr()) { InDiag = diag::note_protected_by___block; OutDiag = diag::note_exits___block; } else if (VD->hasAttr()) { InDiag = diag::note_protected_by_cleanup; OutDiag = diag::note_exits_cleanup; } else if (isCPlusPlus) { // FIXME: In C++0x, we have to check more conditions than "did we // just give it an initializer?". See 6.7p3. if (VD->hasLocalStorage() && VD->hasInit()) InDiag = diag::note_protected_by_variable_init; CanQualType T = VD->getType()->getCanonicalTypeUnqualified(); if (!T->isDependentType()) { while (CanQual AT = T->getAs()) T = AT->getElementType(); if (CanQual RT = T->getAs()) if (!cast(RT->getDecl())->hasTrivialDestructor()) OutDiag = diag::note_exits_dtor; } } return std::make_pair(InDiag, OutDiag); } if (const TypedefDecl *TD = dyn_cast(D)) { if (TD->getUnderlyingType()->isVariablyModifiedType()) return std::make_pair((unsigned) diag::note_protected_by_vla_typedef, 0); } return std::make_pair(0U, 0U); } /// \brief Build scope information for a declaration that is part of a DeclStmt. void JumpScopeChecker::BuildScopeInformation(Decl *D, unsigned &ParentScope) { bool isCPlusPlus = this->S.getLangOptions().CPlusPlus; // If this decl causes a new scope, push and switch to it. std::pair Diags = GetDiagForGotoScopeDecl(D, isCPlusPlus); if (Diags.first || Diags.second) { Scopes.push_back(GotoScope(ParentScope, Diags.first, Diags.second, D->getLocation())); ParentScope = Scopes.size()-1; } // If the decl has an initializer, walk it with the potentially new // scope we just installed. if (VarDecl *VD = dyn_cast(D)) if (Expr *Init = VD->getInit()) BuildScopeInformation(Init, ParentScope); } /// BuildScopeInformation - The statements from CI to CE are known to form a /// coherent VLA scope with a specified parent node. Walk through the /// statements, adding any labels or gotos to LabelAndGotoScopes and recursively /// walking the AST as needed. void JumpScopeChecker::BuildScopeInformation(Stmt *S, unsigned ParentScope) { bool SkipFirstSubStmt = false; // If we found a label, remember that it is in ParentScope scope. switch (S->getStmtClass()) { case Stmt::AddrLabelExprClass: IndirectJumpTargets.push_back(cast(S)->getLabel()); break; case Stmt::IndirectGotoStmtClass: LabelAndGotoScopes[S] = ParentScope; IndirectJumps.push_back(cast(S)); break; case Stmt::SwitchStmtClass: // Evaluate the condition variable before entering the scope of the switch // statement. if (VarDecl *Var = cast(S)->getConditionVariable()) { BuildScopeInformation(Var, ParentScope); SkipFirstSubStmt = true; } // Fall through case Stmt::GotoStmtClass: // Remember both what scope a goto is in as well as the fact that we have // it. This makes the second scan not have to walk the AST again. LabelAndGotoScopes[S] = ParentScope; Jumps.push_back(S); break; default: break; } for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E; ++CI) { if (SkipFirstSubStmt) { SkipFirstSubStmt = false; continue; } Stmt *SubStmt = *CI; if (SubStmt == 0) continue; // Cases, labels, and defaults aren't "scope parents". It's also // important to handle these iteratively instead of recursively in // order to avoid blowing out the stack. while (true) { Stmt *Next; if (isa(SubStmt)) Next = cast(SubStmt)->getSubStmt(); else if (isa(SubStmt)) Next = cast(SubStmt)->getSubStmt(); else if (isa(SubStmt)) Next = cast(SubStmt)->getSubStmt(); else break; LabelAndGotoScopes[SubStmt] = ParentScope; SubStmt = Next; } // If this is a declstmt with a VLA definition, it defines a scope from here // to the end of the containing context. if (DeclStmt *DS = dyn_cast(SubStmt)) { // The decl statement creates a scope if any of the decls in it are VLAs // or have the cleanup attribute. for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end(); I != E; ++I) BuildScopeInformation(*I, ParentScope); continue; } // Disallow jumps into any part of an @try statement by pushing a scope and // walking all sub-stmts in that scope. if (ObjCAtTryStmt *AT = dyn_cast(SubStmt)) { // Recursively walk the AST for the @try part. Scopes.push_back(GotoScope(ParentScope, diag::note_protected_by_objc_try, diag::note_exits_objc_try, AT->getAtTryLoc())); if (Stmt *TryPart = AT->getTryBody()) BuildScopeInformation(TryPart, Scopes.size()-1); // Jump from the catch to the finally or try is not valid. for (unsigned I = 0, N = AT->getNumCatchStmts(); I != N; ++I) { ObjCAtCatchStmt *AC = AT->getCatchStmt(I); Scopes.push_back(GotoScope(ParentScope, diag::note_protected_by_objc_catch, diag::note_exits_objc_catch, AC->getAtCatchLoc())); // @catches are nested and it isn't BuildScopeInformation(AC->getCatchBody(), Scopes.size()-1); } // Jump from the finally to the try or catch is not valid. if (ObjCAtFinallyStmt *AF = AT->getFinallyStmt()) { Scopes.push_back(GotoScope(ParentScope, diag::note_protected_by_objc_finally, diag::note_exits_objc_finally, AF->getAtFinallyLoc())); BuildScopeInformation(AF, Scopes.size()-1); } continue; } // Disallow jumps into the protected statement of an @synchronized, but // allow jumps into the object expression it protects. if (ObjCAtSynchronizedStmt *AS = dyn_cast(SubStmt)){ // Recursively walk the AST for the @synchronized object expr, it is // evaluated in the normal scope. BuildScopeInformation(AS->getSynchExpr(), ParentScope); // Recursively walk the AST for the @synchronized part, protected by a new // scope. Scopes.push_back(GotoScope(ParentScope, diag::note_protected_by_objc_synchronized, diag::note_exits_objc_synchronized, AS->getAtSynchronizedLoc())); BuildScopeInformation(AS->getSynchBody(), Scopes.size()-1); continue; } // Disallow jumps into any part of a C++ try statement. This is pretty // much the same as for Obj-C. if (CXXTryStmt *TS = dyn_cast(SubStmt)) { Scopes.push_back(GotoScope(ParentScope, diag::note_protected_by_cxx_try, diag::note_exits_cxx_try, TS->getSourceRange().getBegin())); if (Stmt *TryBlock = TS->getTryBlock()) BuildScopeInformation(TryBlock, Scopes.size()-1); // Jump from the catch into the try is not allowed either. for (unsigned I = 0, E = TS->getNumHandlers(); I != E; ++I) { CXXCatchStmt *CS = TS->getHandler(I); Scopes.push_back(GotoScope(ParentScope, diag::note_protected_by_cxx_catch, diag::note_exits_cxx_catch, CS->getSourceRange().getBegin())); BuildScopeInformation(CS->getHandlerBlock(), Scopes.size()-1); } continue; } // Recursively walk the AST. BuildScopeInformation(SubStmt, ParentScope); } } /// VerifyJumps - Verify each element of the Jumps array to see if they are /// valid, emitting diagnostics if not. void JumpScopeChecker::VerifyJumps() { while (!Jumps.empty()) { Stmt *Jump = Jumps.pop_back_val(); // With a goto, if (GotoStmt *GS = dyn_cast(Jump)) { CheckJump(GS, GS->getLabel(), GS->getGotoLoc(), diag::err_goto_into_protected_scope); continue; } SwitchStmt *SS = cast(Jump); for (SwitchCase *SC = SS->getSwitchCaseList(); SC; SC = SC->getNextSwitchCase()) { assert(LabelAndGotoScopes.count(SC) && "Case not visited?"); CheckJump(SS, SC, SC->getLocStart(), diag::err_switch_into_protected_scope); } } } /// VerifyIndirectJumps - Verify whether any possible indirect jump /// might cross a protection boundary. Unlike direct jumps, indirect /// jumps count cleanups as protection boundaries: since there's no /// way to know where the jump is going, we can't implicitly run the /// right cleanups the way we can with direct jumps. /// /// Thus, an indirect jump is "trivial" if it bypasses no /// initializations and no teardowns. More formally, an indirect jump /// from A to B is trivial if the path out from A to DCA(A,B) is /// trivial and the path in from DCA(A,B) to B is trivial, where /// DCA(A,B) is the deepest common ancestor of A and B. /// Jump-triviality is transitive but asymmetric. /// /// A path in is trivial if none of the entered scopes have an InDiag. /// A path out is trivial is none of the exited scopes have an OutDiag. /// /// Under these definitions, this function checks that the indirect /// jump between A and B is trivial for every indirect goto statement A /// and every label B whose address was taken in the function. void JumpScopeChecker::VerifyIndirectJumps() { if (IndirectJumps.empty()) return; // If there aren't any address-of-label expressions in this function, // complain about the first indirect goto. if (IndirectJumpTargets.empty()) { S.Diag(IndirectJumps[0]->getGotoLoc(), diag::err_indirect_goto_without_addrlabel); return; } // Collect a single representative of every scope containing an // indirect goto. For most code bases, this substantially cuts // down on the number of jump sites we'll have to consider later. typedef std::pair JumpScope; llvm::SmallVector JumpScopes; { llvm::DenseMap JumpScopesMap; for (llvm::SmallVectorImpl::iterator I = IndirectJumps.begin(), E = IndirectJumps.end(); I != E; ++I) { IndirectGotoStmt *IG = *I; assert(LabelAndGotoScopes.count(IG) && "indirect jump didn't get added to scopes?"); unsigned IGScope = LabelAndGotoScopes[IG]; IndirectGotoStmt *&Entry = JumpScopesMap[IGScope]; if (!Entry) Entry = IG; } JumpScopes.reserve(JumpScopesMap.size()); for (llvm::DenseMap::iterator I = JumpScopesMap.begin(), E = JumpScopesMap.end(); I != E; ++I) JumpScopes.push_back(*I); } // Collect a single representative of every scope containing a // label whose address was taken somewhere in the function. // For most code bases, there will be only one such scope. llvm::DenseMap TargetScopes; for (llvm::SmallVectorImpl::iterator I = IndirectJumpTargets.begin(), E = IndirectJumpTargets.end(); I != E; ++I) { LabelStmt *TheLabel = *I; assert(LabelAndGotoScopes.count(TheLabel) && "Referenced label didn't get added to scopes?"); unsigned LabelScope = LabelAndGotoScopes[TheLabel]; LabelStmt *&Target = TargetScopes[LabelScope]; if (!Target) Target = TheLabel; } // For each target scope, make sure it's trivially reachable from // every scope containing a jump site. // // A path between scopes always consists of exitting zero or more // scopes, then entering zero or more scopes. We build a set of // of scopes S from which the target scope can be trivially // entered, then verify that every jump scope can be trivially // exitted to reach a scope in S. llvm::BitVector Reachable(Scopes.size(), false); for (llvm::DenseMap::iterator TI = TargetScopes.begin(), TE = TargetScopes.end(); TI != TE; ++TI) { unsigned TargetScope = TI->first; LabelStmt *TargetLabel = TI->second; Reachable.reset(); // Mark all the enclosing scopes from which you can safely jump // into the target scope. 'Min' will end up being the index of // the shallowest such scope. unsigned Min = TargetScope; while (true) { Reachable.set(Min); // Don't go beyond the outermost scope. if (Min == 0) break; // Stop if we can't trivially enter the current scope. if (Scopes[Min].InDiag) break; Min = Scopes[Min].ParentScope; } // Walk through all the jump sites, checking that they can trivially // reach this label scope. for (llvm::SmallVectorImpl::iterator I = JumpScopes.begin(), E = JumpScopes.end(); I != E; ++I) { unsigned Scope = I->first; // Walk out the "scope chain" for this scope, looking for a scope // we've marked reachable. For well-formed code this amortizes // to O(JumpScopes.size() / Scopes.size()): we only iterate // when we see something unmarked, and in well-formed code we // mark everything we iterate past. bool IsReachable = false; while (true) { if (Reachable.test(Scope)) { // If we find something reachable, mark all the scopes we just // walked through as reachable. for (unsigned S = I->first; S != Scope; S = Scopes[S].ParentScope) Reachable.set(S); IsReachable = true; break; } // Don't walk out if we've reached the top-level scope or we've // gotten shallower than the shallowest reachable scope. if (Scope == 0 || Scope < Min) break; // Don't walk out through an out-diagnostic. if (Scopes[Scope].OutDiag) break; Scope = Scopes[Scope].ParentScope; } // Only diagnose if we didn't find something. if (IsReachable) continue; DiagnoseIndirectJump(I->second, I->first, TargetLabel, TargetScope); } } } /// Diagnose an indirect jump which is known to cross scopes. void JumpScopeChecker::DiagnoseIndirectJump(IndirectGotoStmt *Jump, unsigned JumpScope, LabelStmt *Target, unsigned TargetScope) { assert(JumpScope != TargetScope); S.Diag(Jump->getGotoLoc(), diag::warn_indirect_goto_in_protected_scope); S.Diag(Target->getIdentLoc(), diag::note_indirect_goto_target); unsigned Common = GetDeepestCommonScope(JumpScope, TargetScope); // Walk out the scope chain until we reach the common ancestor. for (unsigned I = JumpScope; I != Common; I = Scopes[I].ParentScope) if (Scopes[I].OutDiag) S.Diag(Scopes[I].Loc, Scopes[I].OutDiag); // Now walk into the scopes containing the label whose address was taken. for (unsigned I = TargetScope; I != Common; I = Scopes[I].ParentScope) if (Scopes[I].InDiag) S.Diag(Scopes[I].Loc, Scopes[I].InDiag); } /// CheckJump - Validate that the specified jump statement is valid: that it is /// jumping within or out of its current scope, not into a deeper one. void JumpScopeChecker::CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc, unsigned JumpDiag) { assert(LabelAndGotoScopes.count(From) && "Jump didn't get added to scopes?"); unsigned FromScope = LabelAndGotoScopes[From]; assert(LabelAndGotoScopes.count(To) && "Jump didn't get added to scopes?"); unsigned ToScope = LabelAndGotoScopes[To]; // Common case: exactly the same scope, which is fine. if (FromScope == ToScope) return; unsigned CommonScope = GetDeepestCommonScope(FromScope, ToScope); // It's okay to jump out from a nested scope. if (CommonScope == ToScope) return; // Pull out (and reverse) any scopes we might need to diagnose skipping. llvm::SmallVector ToScopes; for (unsigned I = ToScope; I != CommonScope; I = Scopes[I].ParentScope) if (Scopes[I].InDiag) ToScopes.push_back(I); // If the only scopes present are cleanup scopes, we're okay. if (ToScopes.empty()) return; S.Diag(DiagLoc, JumpDiag); // Emit diagnostics for whatever is left in ToScopes. for (unsigned i = 0, e = ToScopes.size(); i != e; ++i) S.Diag(Scopes[ToScopes[i]].Loc, Scopes[ToScopes[i]].InDiag); } void Sema::DiagnoseInvalidJumps(Stmt *Body) { (void)JumpScopeChecker(Body, *this); }