//===--- JumpDiagnostics.cpp - Analyze Jump Targets for VLA issues --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the JumpScopeChecker class, which is used to diagnose // jumps that enter a VLA scope in an invalid way. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "clang/AST/Expr.h" #include "clang/AST/StmtObjC.h" #include "clang/AST/StmtCXX.h" using namespace clang; namespace { /// JumpScopeChecker - This object is used by Sema to diagnose invalid jumps /// into VLA and other protected scopes. For example, this rejects: /// goto L; /// int a[n]; /// L: /// class JumpScopeChecker { Sema &S; /// GotoScope - This is a record that we use to keep track of all of the /// scopes that are introduced by VLAs and other things that scope jumps like /// gotos. This scope tree has nothing to do with the source scope tree, /// because you can have multiple VLA scopes per compound statement, and most /// compound statements don't introduce any scopes. struct GotoScope { /// ParentScope - The index in ScopeMap of the parent scope. This is 0 for /// the parent scope is the function body. unsigned ParentScope; /// Diag - The diagnostic to emit if there is a jump into this scope. unsigned Diag; /// Loc - Location to emit the diagnostic. SourceLocation Loc; GotoScope(unsigned parentScope, unsigned diag, SourceLocation L) : ParentScope(parentScope), Diag(diag), Loc(L) {} }; llvm::SmallVector Scopes; llvm::DenseMap LabelAndGotoScopes; llvm::SmallVector Jumps; public: JumpScopeChecker(Stmt *Body, Sema &S); private: void BuildScopeInformation(Stmt *S, unsigned ParentScope); void VerifyJumps(); void CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc, unsigned JumpDiag); }; } // end anonymous namespace JumpScopeChecker::JumpScopeChecker(Stmt *Body, Sema &s) : S(s) { // Add a scope entry for function scope. Scopes.push_back(GotoScope(~0U, ~0U, SourceLocation())); // Build information for the top level compound statement, so that we have a // defined scope record for every "goto" and label. BuildScopeInformation(Body, 0); // Check that all jumps we saw are kosher. VerifyJumps(); } /// GetDiagForGotoScopeDecl - If this decl induces a new goto scope, return a /// diagnostic that should be emitted if control goes over it. If not, return 0. static unsigned GetDiagForGotoScopeDecl(const Decl *D) { if (const VarDecl *VD = dyn_cast(D)) { if (VD->getType()->isVariablyModifiedType()) return diag::note_protected_by_vla; if (VD->hasAttr()) return diag::note_protected_by_cleanup; } else if (const TypedefDecl *TD = dyn_cast(D)) { if (TD->getUnderlyingType()->isVariablyModifiedType()) return diag::note_protected_by_vla_typedef; } return 0; } /// BuildScopeInformation - The statements from CI to CE are known to form a /// coherent VLA scope with a specified parent node. Walk through the /// statements, adding any labels or gotos to LabelAndGotoScopes and recursively /// walking the AST as needed. void JumpScopeChecker::BuildScopeInformation(Stmt *S, unsigned ParentScope) { // If we found a label, remember that it is in ParentScope scope. if (isa(S) || isa(S) || isa(S)) { LabelAndGotoScopes[S] = ParentScope; } else if (isa(S) || isa(S) || isa(S) || isa(S)) { // Remember both what scope a goto is in as well as the fact that we have // it. This makes the second scan not have to walk the AST again. LabelAndGotoScopes[S] = ParentScope; Jumps.push_back(S); } for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E; ++CI) { Stmt *SubStmt = *CI; if (SubStmt == 0) continue; // FIXME: diagnose jumps past initialization: required in C++, warning in C. // goto L; int X = 4; L: ; // If this is a declstmt with a VLA definition, it defines a scope from here // to the end of the containing context. if (DeclStmt *DS = dyn_cast(SubStmt)) { // The decl statement creates a scope if any of the decls in it are VLAs or // have the cleanup attribute. for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end(); I != E; ++I) { // If this decl causes a new scope, push and switch to it. if (unsigned Diag = GetDiagForGotoScopeDecl(*I)) { Scopes.push_back(GotoScope(ParentScope, Diag, (*I)->getLocation())); ParentScope = Scopes.size()-1; } // If the decl has an initializer, walk it with the potentially new // scope we just installed. if (VarDecl *VD = dyn_cast(*I)) if (Expr *Init = VD->getInit()) BuildScopeInformation(Init, ParentScope); } continue; } // Disallow jumps into any part of an @try statement by pushing a scope and // walking all sub-stmts in that scope. if (ObjCAtTryStmt *AT = dyn_cast(SubStmt)) { // Recursively walk the AST for the @try part. Scopes.push_back(GotoScope(ParentScope,diag::note_protected_by_objc_try, AT->getAtTryLoc())); if (Stmt *TryPart = AT->getTryBody()) BuildScopeInformation(TryPart, Scopes.size()-1); // Jump from the catch to the finally or try is not valid. for (ObjCAtCatchStmt *AC = AT->getCatchStmts(); AC; AC = AC->getNextCatchStmt()) { Scopes.push_back(GotoScope(ParentScope, diag::note_protected_by_objc_catch, AC->getAtCatchLoc())); // @catches are nested and it isn't BuildScopeInformation(AC->getCatchBody(), Scopes.size()-1); } // Jump from the finally to the try or catch is not valid. if (ObjCAtFinallyStmt *AF = AT->getFinallyStmt()) { Scopes.push_back(GotoScope(ParentScope, diag::note_protected_by_objc_finally, AF->getAtFinallyLoc())); BuildScopeInformation(AF, Scopes.size()-1); } continue; } // Disallow jumps into the protected statement of an @synchronized, but // allow jumps into the object expression it protects. if (ObjCAtSynchronizedStmt *AS = dyn_cast(SubStmt)){ // Recursively walk the AST for the @synchronized object expr, it is // evaluated in the normal scope. BuildScopeInformation(AS->getSynchExpr(), ParentScope); // Recursively walk the AST for the @synchronized part, protected by a new // scope. Scopes.push_back(GotoScope(ParentScope, diag::note_protected_by_objc_synchronized, AS->getAtSynchronizedLoc())); BuildScopeInformation(AS->getSynchBody(), Scopes.size()-1); continue; } // Disallow jumps into any part of a C++ try statement. This is pretty // much the same as for Obj-C. if (CXXTryStmt *TS = dyn_cast(SubStmt)) { Scopes.push_back(GotoScope(ParentScope, diag::note_protected_by_cxx_try, TS->getSourceRange().getBegin())); if (Stmt *TryBlock = TS->getTryBlock()) BuildScopeInformation(TryBlock, Scopes.size()-1); // Jump from the catch into the try is not allowed either. for(unsigned I = 0, E = TS->getNumHandlers(); I != E; ++I) { CXXCatchStmt *CS = TS->getHandler(I); Scopes.push_back(GotoScope(ParentScope, diag::note_protected_by_cxx_catch, CS->getSourceRange().getBegin())); BuildScopeInformation(CS->getHandlerBlock(), Scopes.size()-1); } continue; } // Recursively walk the AST. BuildScopeInformation(SubStmt, ParentScope); } } /// VerifyJumps - Verify each element of the Jumps array to see if they are /// valid, emitting diagnostics if not. void JumpScopeChecker::VerifyJumps() { while (!Jumps.empty()) { Stmt *Jump = Jumps.pop_back_val(); // With a goto, if (GotoStmt *GS = dyn_cast(Jump)) { CheckJump(GS, GS->getLabel(), GS->getGotoLoc(), diag::err_goto_into_protected_scope); continue; } if (SwitchStmt *SS = dyn_cast(Jump)) { for (SwitchCase *SC = SS->getSwitchCaseList(); SC; SC = SC->getNextSwitchCase()) { assert(LabelAndGotoScopes.count(SC) && "Case not visited?"); CheckJump(SS, SC, SC->getLocStart(), diag::err_switch_into_protected_scope); } continue; } unsigned DiagnosticScope; // We don't know where an indirect goto goes, require that it be at the // top level of scoping. if (IndirectGotoStmt *IG = dyn_cast(Jump)) { assert(LabelAndGotoScopes.count(Jump) && "Jump didn't get added to scopes?"); unsigned GotoScope = LabelAndGotoScopes[IG]; if (GotoScope == 0) continue; // indirect jump is ok. S.Diag(IG->getGotoLoc(), diag::err_indirect_goto_in_protected_scope); DiagnosticScope = GotoScope; } else { // We model &&Label as a jump for purposes of scope tracking. We actually // don't care *where* the address of label is, but we require the *label // itself* to be in scope 0. If it is nested inside of a VLA scope, then // it is possible for an indirect goto to illegally enter the VLA scope by // indirectly jumping to the label. assert(isa(Jump) && "Unknown jump type"); LabelStmt *TheLabel = cast(Jump)->getLabel(); assert(LabelAndGotoScopes.count(TheLabel) && "Referenced label didn't get added to scopes?"); unsigned LabelScope = LabelAndGotoScopes[TheLabel]; if (LabelScope == 0) continue; // Addr of label is ok. S.Diag(Jump->getLocStart(), diag::err_addr_of_label_in_protected_scope); DiagnosticScope = LabelScope; } // Report all the things that would be skipped over by this &&label or // indirect goto. while (DiagnosticScope != 0) { S.Diag(Scopes[DiagnosticScope].Loc, Scopes[DiagnosticScope].Diag); DiagnosticScope = Scopes[DiagnosticScope].ParentScope; } } } /// CheckJump - Validate that the specified jump statement is valid: that it is /// jumping within or out of its current scope, not into a deeper one. void JumpScopeChecker::CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc, unsigned JumpDiag) { assert(LabelAndGotoScopes.count(From) && "Jump didn't get added to scopes?"); unsigned FromScope = LabelAndGotoScopes[From]; assert(LabelAndGotoScopes.count(To) && "Jump didn't get added to scopes?"); unsigned ToScope = LabelAndGotoScopes[To]; // Common case: exactly the same scope, which is fine. if (FromScope == ToScope) return; // The only valid mismatch jump case happens when the jump is more deeply // nested inside the jump target. Do a quick scan to see if the jump is valid // because valid code is more common than invalid code. unsigned TestScope = Scopes[FromScope].ParentScope; while (TestScope != ~0U) { // If we found the jump target, then we're jumping out of our current scope, // which is perfectly fine. if (TestScope == ToScope) return; // Otherwise, scan up the hierarchy. TestScope = Scopes[TestScope].ParentScope; } // If we get here, then we know we have invalid code. Diagnose the bad jump, // and then emit a note at each VLA being jumped out of. S.Diag(DiagLoc, JumpDiag); // Eliminate the common prefix of the jump and the target. Start by // linearizing both scopes, reversing them as we go. std::vector FromScopes, ToScopes; for (TestScope = FromScope; TestScope != ~0U; TestScope = Scopes[TestScope].ParentScope) FromScopes.push_back(TestScope); for (TestScope = ToScope; TestScope != ~0U; TestScope = Scopes[TestScope].ParentScope) ToScopes.push_back(TestScope); // Remove any common entries (such as the top-level function scope). while (!FromScopes.empty() && FromScopes.back() == ToScopes.back()) { FromScopes.pop_back(); ToScopes.pop_back(); } // Emit diagnostics for whatever is left in ToScopes. for (unsigned i = 0, e = ToScopes.size(); i != e; ++i) S.Diag(Scopes[ToScopes[i]].Loc, Scopes[ToScopes[i]].Diag); } void Sema::DiagnoseInvalidJumps(Stmt *Body) { JumpScopeChecker(Body, *this); }