//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the Sema class, which performs semantic analysis and // builds ASTs. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_SEMA_H #define LLVM_CLANG_AST_SEMA_H #include "IdentifierResolver.h" #include "CXXFieldCollector.h" #include "SemaOverload.h" #include "SemaTemplate.h" #include "clang/AST/Attr.h" #include "clang/AST/DeclBase.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/Parse/Action.h" #include "clang/Sema/SemaDiagnostic.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/OwningPtr.h" #include #include #include #include namespace llvm { class APSInt; } namespace clang { class ASTContext; class ASTConsumer; class CodeCompleteConsumer; class Preprocessor; class Decl; class DeclContext; class DeclSpec; class ExternalSemaSource; class NamedDecl; class Stmt; class Expr; class InitListExpr; class ParenListExpr; class DesignatedInitExpr; class CallExpr; class DeclRefExpr; class VarDecl; class ParmVarDecl; class TypedefDecl; class FunctionDecl; class QualType; class LangOptions; class Token; class IntegerLiteral; class StringLiteral; class ArrayType; class LabelStmt; class SwitchStmt; class CXXTryStmt; class ExtVectorType; class TypedefDecl; class TemplateDecl; class TemplateArgument; class TemplateArgumentLoc; class TemplateArgumentList; class TemplateParameterList; class TemplateTemplateParmDecl; class ClassTemplatePartialSpecializationDecl; class ClassTemplateDecl; class ObjCInterfaceDecl; class ObjCCompatibleAliasDecl; class ObjCProtocolDecl; class ObjCImplDecl; class ObjCImplementationDecl; class ObjCCategoryImplDecl; class ObjCCategoryDecl; class ObjCIvarDecl; class ObjCMethodDecl; class ObjCPropertyDecl; class ObjCContainerDecl; class FunctionProtoType; class CXXBasePaths; class CXXTemporary; class LookupResult; /// BlockSemaInfo - When a block is being parsed, this contains information /// about the block. It is pointed to from Sema::CurBlock. struct BlockSemaInfo { llvm::SmallVector Params; bool hasPrototype; bool isVariadic; bool hasBlockDeclRefExprs; BlockDecl *TheDecl; /// TheScope - This is the scope for the block itself, which contains /// arguments etc. Scope *TheScope; /// ReturnType - This will get set to block result type, by looking at /// return types, if any, in the block body. QualType ReturnType; /// LabelMap - This is a mapping from label identifiers to the LabelStmt for /// it (which acts like the label decl in some ways). Forward referenced /// labels have a LabelStmt created for them with a null location & SubStmt. llvm::DenseMap LabelMap; /// SwitchStack - This is the current set of active switch statements in the /// block. llvm::SmallVector SwitchStack; /// SavedFunctionNeedsScopeChecking - This is the value of /// CurFunctionNeedsScopeChecking at the point when the block started. bool SavedFunctionNeedsScopeChecking; /// PrevBlockInfo - If this is nested inside another block, this points /// to the outer block. BlockSemaInfo *PrevBlockInfo; }; /// \brief Holds a QualType and a DeclaratorInfo* that came out of a declarator /// parsing. /// /// LocInfoType is a "transient" type, only needed for passing to/from Parser /// and Sema, when we want to preserve type source info for a parsed type. /// It will not participate in the type system semantics in any way. class LocInfoType : public Type { enum { // The last number that can fit in Type's TC. // Avoids conflict with an existing Type class. LocInfo = (1 << TypeClassBitSize) - 1 }; DeclaratorInfo *DeclInfo; LocInfoType(QualType ty, DeclaratorInfo *DInfo) : Type((TypeClass)LocInfo, ty, ty->isDependentType()), DeclInfo(DInfo) { assert(getTypeClass() == (TypeClass)LocInfo && "LocInfo didn't fit in TC?"); } friend class Sema; public: QualType getType() const { return getCanonicalTypeInternal(); } DeclaratorInfo *getDeclaratorInfo() const { return DeclInfo; } virtual void getAsStringInternal(std::string &Str, const PrintingPolicy &Policy) const; static bool classof(const Type *T) { return T->getTypeClass() == (TypeClass)LocInfo; } static bool classof(const LocInfoType *) { return true; } }; /// Sema - This implements semantic analysis and AST building for C. class Sema : public Action { Sema(const Sema&); // DO NOT IMPLEMENT void operator=(const Sema&); // DO NOT IMPLEMENT public: const LangOptions &LangOpts; Preprocessor &PP; ASTContext &Context; ASTConsumer &Consumer; Diagnostic &Diags; SourceManager &SourceMgr; /// \brief Source of additional semantic information. ExternalSemaSource *ExternalSource; /// \brief Code-completion consumer. CodeCompleteConsumer *CodeCompleter; /// CurContext - This is the current declaration context of parsing. DeclContext *CurContext; /// PreDeclaratorDC - Keeps the declaration context before switching to the /// context of a declarator's nested-name-specifier. DeclContext *PreDeclaratorDC; /// CurBlock - If inside of a block definition, this contains a pointer to /// the active block object that represents it. BlockSemaInfo *CurBlock; /// PackContext - Manages the stack for #pragma pack. An alignment /// of 0 indicates default alignment. void *PackContext; // Really a "PragmaPackStack*" /// FunctionLabelMap - This is a mapping from label identifiers to the /// LabelStmt for it (which acts like the label decl in some ways). Forward /// referenced labels have a LabelStmt created for them with a null location & /// SubStmt. /// /// Note that this should always be accessed through getLabelMap() in order /// to handle blocks properly. llvm::DenseMap FunctionLabelMap; /// FunctionSwitchStack - This is the current set of active switch statements /// in the top level function. Clients should always use getSwitchStack() to /// handle the case when they are in a block. llvm::SmallVector FunctionSwitchStack; /// ExprTemporaries - This is the stack of temporaries that are created by /// the current full expression. llvm::SmallVector ExprTemporaries; /// CurFunctionNeedsScopeChecking - This is set to true when a function or /// ObjC method body contains a VLA or an ObjC try block, which introduce /// scopes that need to be checked for goto conditions. If a function does /// not contain this, then it need not have the jump checker run on it. bool CurFunctionNeedsScopeChecking; /// ExtVectorDecls - This is a list all the extended vector types. This allows /// us to associate a raw vector type with one of the ext_vector type names. /// This is only necessary for issuing pretty diagnostics. llvm::SmallVector ExtVectorDecls; /// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes. llvm::OwningPtr FieldCollector; typedef llvm::SmallPtrSet RecordDeclSetTy; /// PureVirtualClassDiagSet - a set of class declarations which we have /// emitted a list of pure virtual functions. Used to prevent emitting the /// same list more than once. llvm::OwningPtr PureVirtualClassDiagSet; /// \brief A mapping from external names to the most recent /// locally-scoped external declaration with that name. /// /// This map contains external declarations introduced in local /// scoped, e.g., /// /// \code /// void f() { /// void foo(int, int); /// } /// \endcode /// /// Here, the name "foo" will be associated with the declaration on /// "foo" within f. This name is not visible outside of /// "f". However, we still find it in two cases: /// /// - If we are declaring another external with the name "foo", we /// can find "foo" as a previous declaration, so that the types /// of this external declaration can be checked for /// compatibility. /// /// - If we would implicitly declare "foo" (e.g., due to a call to /// "foo" in C when no prototype or definition is visible), then /// we find this declaration of "foo" and complain that it is /// not visible. llvm::DenseMap LocallyScopedExternalDecls; /// \brief The set of tentative declarations seen so far in this /// translation unit for which no definition has been seen. /// /// The tentative declarations are indexed by the name of the /// declaration, and only the most recent tentative declaration for /// a given variable will be recorded here. llvm::DenseMap TentativeDefinitions; std::vector TentativeDefinitionList; /// \brief The collection of delayed deprecation warnings. llvm::SmallVector, 8> DelayedDeprecationWarnings; /// \brief The depth of the current ParsingDeclaration stack. /// If nonzero, we are currently parsing a declaration (and /// hence should delay deprecation warnings). unsigned ParsingDeclDepth; /// WeakUndeclaredIdentifiers - Identifiers contained in /// #pragma weak before declared. rare. may alias another /// identifier, declared or undeclared class WeakInfo { IdentifierInfo *alias; // alias (optional) SourceLocation loc; // for diagnostics bool used; // identifier later declared? public: WeakInfo() : alias(0), loc(SourceLocation()), used(false) {} WeakInfo(IdentifierInfo *Alias, SourceLocation Loc) : alias(Alias), loc(Loc), used(false) {} inline IdentifierInfo * getAlias() const { return alias; } inline SourceLocation getLocation() const { return loc; } void setUsed(bool Used=true) { used = Used; } inline bool getUsed() { return used; } bool operator==(WeakInfo RHS) const { return alias == RHS.getAlias() && loc == RHS.getLocation(); } bool operator!=(WeakInfo RHS) const { return !(*this == RHS); } }; llvm::DenseMap WeakUndeclaredIdentifiers; /// WeakTopLevelDecl - Translation-unit scoped declarations generated by /// #pragma weak during processing of other Decls. /// I couldn't figure out a clean way to generate these in-line, so /// we store them here and handle separately -- which is a hack. /// It would be best to refactor this. llvm::SmallVector WeakTopLevelDecl; IdentifierResolver IdResolver; /// Translation Unit Scope - useful to Objective-C actions that need /// to lookup file scope declarations in the "ordinary" C decl namespace. /// For example, user-defined classes, built-in "id" type, etc. Scope *TUScope; /// \brief The C++ "std" namespace, where the standard library resides. NamespaceDecl *StdNamespace; /// \brief The C++ "std::bad_alloc" class, which is defined by the C++ /// standard library. CXXRecordDecl *StdBadAlloc; /// A flag to remember whether the implicit forms of operator new and delete /// have been declared. bool GlobalNewDeleteDeclared; /// The current expression evaluation context. ExpressionEvaluationContext ExprEvalContext; typedef std::vector > PotentiallyReferencedDecls; /// A stack of declarations, each element of which is a set of declarations /// that will be marked as referenced if the corresponding potentially /// potentially evaluated expression is potentially evaluated. Each element /// in the stack corresponds to a PotentiallyPotentiallyEvaluated expression /// evaluation context. std::list PotentiallyReferencedDeclStack; /// \brief Whether the code handled by Sema should be considered a /// complete translation unit or not. /// /// When true (which is generally the case), Sema will perform /// end-of-translation-unit semantic tasks (such as creating /// initializers for tentative definitions in C) once parsing has /// completed. This flag will be false when building PCH files, /// since a PCH file is by definition not a complete translation /// unit. bool CompleteTranslationUnit; llvm::BumpPtrAllocator BumpAlloc; /// \brief The number of SFINAE diagnostics that have been trapped. unsigned NumSFINAEErrors; typedef llvm::DenseMap MethodPool; /// Instance/Factory Method Pools - allows efficient lookup when typechecking /// messages to "id". We need to maintain a list, since selectors can have /// differing signatures across classes. In Cocoa, this happens to be /// extremely uncommon (only 1% of selectors are "overloaded"). MethodPool InstanceMethodPool; MethodPool FactoryMethodPool; MethodPool::iterator ReadMethodPool(Selector Sel, bool isInstance); /// Private Helper predicate to check for 'self'. bool isSelfExpr(Expr *RExpr); public: Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer, bool CompleteTranslationUnit = true, CodeCompleteConsumer *CompletionConsumer = 0); ~Sema() { if (PackContext) FreePackedContext(); } const LangOptions &getLangOptions() const { return LangOpts; } Diagnostic &getDiagnostics() const { return Diags; } SourceManager &getSourceManager() const { return SourceMgr; } /// \brief Helper class that creates diagnostics with optional /// template instantiation stacks. /// /// This class provides a wrapper around the basic DiagnosticBuilder /// class that emits diagnostics. SemaDiagnosticBuilder is /// responsible for emitting the diagnostic (as DiagnosticBuilder /// does) and, if the diagnostic comes from inside a template /// instantiation, printing the template instantiation stack as /// well. class SemaDiagnosticBuilder : public DiagnosticBuilder { Sema &SemaRef; unsigned DiagID; public: SemaDiagnosticBuilder(DiagnosticBuilder &DB, Sema &SemaRef, unsigned DiagID) : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) { } explicit SemaDiagnosticBuilder(Sema &SemaRef) : DiagnosticBuilder(DiagnosticBuilder::Suppress), SemaRef(SemaRef) { } ~SemaDiagnosticBuilder(); }; /// \brief Emit a diagnostic. SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) { if (isSFINAEContext() && Diagnostic::isBuiltinSFINAEDiag(DiagID)) { // If we encountered an error during template argument // deduction, and that error is one of the SFINAE errors, // suppress the diagnostic. ++NumSFINAEErrors; Diags.setLastDiagnosticIgnored(); return SemaDiagnosticBuilder(*this); } DiagnosticBuilder DB = Diags.Report(FullSourceLoc(Loc, SourceMgr), DiagID); return SemaDiagnosticBuilder(DB, *this, DiagID); } /// \brief Emit a partial diagnostic. SemaDiagnosticBuilder Diag(SourceLocation Loc, const PartialDiagnostic& PD); virtual void DeleteExpr(ExprTy *E); virtual void DeleteStmt(StmtTy *S); OwningExprResult Owned(Expr* E) { return OwningExprResult(*this, E); } OwningExprResult Owned(ExprResult R) { if (R.isInvalid()) return ExprError(); return OwningExprResult(*this, R.get()); } OwningStmtResult Owned(Stmt* S) { return OwningStmtResult(*this, S); } virtual void ActOnEndOfTranslationUnit(); /// getLabelMap() - Return the current label map. If we're in a block, we /// return it. llvm::DenseMap &getLabelMap() { return CurBlock ? CurBlock->LabelMap : FunctionLabelMap; } /// getSwitchStack - This is returns the switch stack for the current block or /// function. llvm::SmallVector &getSwitchStack() { return CurBlock ? CurBlock->SwitchStack : FunctionSwitchStack; } /// WeakTopLevelDeclDecls - access to #pragma weak-generated Decls llvm::SmallVector &WeakTopLevelDecls() { return WeakTopLevelDecl; } virtual void ActOnComment(SourceRange Comment); //===--------------------------------------------------------------------===// // Type Analysis / Processing: SemaType.cpp. // QualType adjustParameterType(QualType T); void ProcessTypeAttributeList(QualType &Result, const AttributeList *AL); QualType BuildPointerType(QualType T, unsigned Quals, SourceLocation Loc, DeclarationName Entity); QualType BuildReferenceType(QualType T, bool LValueRef, unsigned Quals, SourceLocation Loc, DeclarationName Entity); QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM, Expr *ArraySize, unsigned Quals, SourceRange Brackets, DeclarationName Entity); QualType BuildExtVectorType(QualType T, ExprArg ArraySize, SourceLocation AttrLoc); QualType BuildFunctionType(QualType T, QualType *ParamTypes, unsigned NumParamTypes, bool Variadic, unsigned Quals, SourceLocation Loc, DeclarationName Entity); QualType BuildMemberPointerType(QualType T, QualType Class, unsigned Quals, SourceLocation Loc, DeclarationName Entity); QualType BuildBlockPointerType(QualType T, unsigned Quals, SourceLocation Loc, DeclarationName Entity); QualType GetTypeForDeclarator(Declarator &D, Scope *S, DeclaratorInfo **DInfo = 0, TagDecl **OwnedDecl = 0); DeclaratorInfo *GetDeclaratorInfoForDeclarator(Declarator &D, QualType T); /// \brief Create a LocInfoType to hold the given QualType and DeclaratorInfo. QualType CreateLocInfoType(QualType T, DeclaratorInfo *DInfo); DeclarationName GetNameForDeclarator(Declarator &D); DeclarationName GetNameFromUnqualifiedId(UnqualifiedId &Name); static QualType GetTypeFromParser(TypeTy *Ty, DeclaratorInfo **DInfo = 0); bool CheckSpecifiedExceptionType(QualType T, const SourceRange &Range); bool CheckDistantExceptionSpec(QualType T); bool CheckEquivalentExceptionSpec( const FunctionProtoType *Old, SourceLocation OldLoc, const FunctionProtoType *New, SourceLocation NewLoc); bool CheckEquivalentExceptionSpec( const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID, const FunctionProtoType *Old, SourceLocation OldLoc, const FunctionProtoType *New, SourceLocation NewLoc); bool CheckExceptionSpecSubset( const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID, const FunctionProtoType *Superset, SourceLocation SuperLoc, const FunctionProtoType *Subset, SourceLocation SubLoc); bool CheckParamExceptionSpec(const PartialDiagnostic & NoteID, const FunctionProtoType *Target, SourceLocation TargetLoc, const FunctionProtoType *Source, SourceLocation SourceLoc); QualType ObjCGetTypeForMethodDefinition(DeclPtrTy D); bool UnwrapSimilarPointerTypes(QualType& T1, QualType& T2); virtual TypeResult ActOnTypeName(Scope *S, Declarator &D); bool RequireCompleteType(SourceLocation Loc, QualType T, const PartialDiagnostic &PD, std::pair Note = std::make_pair(SourceLocation(), PDiag())); QualType getQualifiedNameType(const CXXScopeSpec &SS, QualType T); QualType BuildTypeofExprType(Expr *E); QualType BuildDecltypeType(Expr *E); //===--------------------------------------------------------------------===// // Symbol table / Decl tracking callbacks: SemaDecl.cpp. // /// getDeclName - Return a pretty name for the specified decl if possible, or /// an empty string if not. This is used for pretty crash reporting. virtual std::string getDeclName(DeclPtrTy D); DeclGroupPtrTy ConvertDeclToDeclGroup(DeclPtrTy Ptr); virtual TypeTy *getTypeName(IdentifierInfo &II, SourceLocation NameLoc, Scope *S, const CXXScopeSpec *SS, bool isClassName = false); virtual DeclSpec::TST isTagName(IdentifierInfo &II, Scope *S); virtual bool DiagnoseUnknownTypeName(const IdentifierInfo &II, SourceLocation IILoc, Scope *S, const CXXScopeSpec *SS, TypeTy *&SuggestedType); virtual DeclPtrTy ActOnDeclarator(Scope *S, Declarator &D) { return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false); } DeclPtrTy HandleDeclarator(Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParameterLists, bool IsFunctionDefinition); void RegisterLocallyScopedExternCDecl(NamedDecl *ND, const LookupResult &Previous, Scope *S); void DiagnoseFunctionSpecifiers(Declarator& D); bool CheckRedeclaration(DeclContext *DC, DeclarationName Name, SourceLocation NameLoc, unsigned Diagnostic); NamedDecl* ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, QualType R, DeclaratorInfo *DInfo, LookupResult &Previous, bool &Redeclaration); NamedDecl* ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC, QualType R, DeclaratorInfo *DInfo, LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, bool &Redeclaration); void CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous, bool &Redeclaration); NamedDecl* ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC, QualType R, DeclaratorInfo *DInfo, LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, bool IsFunctionDefinition, bool &Redeclaration); void AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD); void CheckFunctionDeclaration(FunctionDecl *NewFD, LookupResult &Previous, bool IsExplicitSpecialization, bool &Redeclaration, bool &OverloadableAttrRequired); void CheckMain(FunctionDecl *FD); virtual DeclPtrTy ActOnParamDeclarator(Scope *S, Declarator &D); virtual void ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc, ExprArg defarg); virtual void ActOnParamUnparsedDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc, SourceLocation ArgLoc); virtual void ActOnParamDefaultArgumentError(DeclPtrTy param); bool SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg, SourceLocation EqualLoc); // Contains the locations of the beginning of unparsed default // argument locations. llvm::DenseMap UnparsedDefaultArgLocs; virtual void AddInitializerToDecl(DeclPtrTy dcl, ExprArg init); void AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit); void ActOnUninitializedDecl(DeclPtrTy dcl, bool TypeContainsUndeducedAuto); virtual void SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc); virtual DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, DeclPtrTy *Group, unsigned NumDecls); virtual void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, SourceLocation LocAfterDecls); virtual DeclPtrTy ActOnStartOfFunctionDef(Scope *S, Declarator &D); virtual DeclPtrTy ActOnStartOfFunctionDef(Scope *S, DeclPtrTy D); virtual void ActOnStartOfObjCMethodDef(Scope *S, DeclPtrTy D); virtual DeclPtrTy ActOnFinishFunctionBody(DeclPtrTy Decl, StmtArg Body); DeclPtrTy ActOnFinishFunctionBody(DeclPtrTy Decl, StmtArg Body, bool IsInstantiation); /// \brief Diagnose any unused parameters in the given sequence of /// ParmVarDecl pointers. template void DiagnoseUnusedParameters(InputIterator Param, InputIterator ParamEnd) { for (; Param != ParamEnd; ++Param) { if (!(*Param)->isUsed() && (*Param)->getDeclName() && !(*Param)->template hasAttr()) Diag((*Param)->getLocation(), diag::warn_unused_parameter) << (*Param)->getDeclName(); } } void DiagnoseInvalidJumps(Stmt *Body); virtual DeclPtrTy ActOnFileScopeAsmDecl(SourceLocation Loc, ExprArg expr); /// Scope actions. virtual void ActOnPopScope(SourceLocation Loc, Scope *S); virtual void ActOnTranslationUnitScope(SourceLocation Loc, Scope *S); /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with /// no declarator (e.g. "struct foo;") is parsed. virtual DeclPtrTy ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS); bool InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner, RecordDecl *AnonRecord); virtual DeclPtrTy BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, RecordDecl *Record); bool isAcceptableTagRedeclaration(const TagDecl *Previous, TagDecl::TagKind NewTag, SourceLocation NewTagLoc, const IdentifierInfo &Name); virtual DeclPtrTy ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, const CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, AttributeList *Attr, AccessSpecifier AS, MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl, bool &IsDependent); virtual TypeResult ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, const CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation TagLoc, SourceLocation NameLoc); virtual void ActOnDefs(Scope *S, DeclPtrTy TagD, SourceLocation DeclStart, IdentifierInfo *ClassName, llvm::SmallVectorImpl &Decls); virtual DeclPtrTy ActOnField(Scope *S, DeclPtrTy TagD, SourceLocation DeclStart, Declarator &D, ExprTy *BitfieldWidth); FieldDecl *HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart, Declarator &D, Expr *BitfieldWidth, AccessSpecifier AS); FieldDecl *CheckFieldDecl(DeclarationName Name, QualType T, DeclaratorInfo *DInfo, RecordDecl *Record, SourceLocation Loc, bool Mutable, Expr *BitfieldWidth, SourceLocation TSSL, AccessSpecifier AS, NamedDecl *PrevDecl, Declarator *D = 0); enum CXXSpecialMember { CXXDefaultConstructor = 0, CXXCopyConstructor = 1, CXXCopyAssignment = 2, CXXDestructor = 3 }; void DiagnoseNontrivial(const RecordType* Record, CXXSpecialMember mem); virtual DeclPtrTy ActOnIvar(Scope *S, SourceLocation DeclStart, DeclPtrTy IntfDecl, Declarator &D, ExprTy *BitfieldWidth, tok::ObjCKeywordKind visibility); // This is used for both record definitions and ObjC interface declarations. virtual void ActOnFields(Scope* S, SourceLocation RecLoc, DeclPtrTy TagDecl, DeclPtrTy *Fields, unsigned NumFields, SourceLocation LBrac, SourceLocation RBrac, AttributeList *AttrList); /// ActOnTagStartDefinition - Invoked when we have entered the /// scope of a tag's definition (e.g., for an enumeration, class, /// struct, or union). virtual void ActOnTagStartDefinition(Scope *S, DeclPtrTy TagDecl); /// ActOnTagFinishDefinition - Invoked once we have finished parsing /// the definition of a tag (enumeration, class, struct, or union). virtual void ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagDecl, SourceLocation RBraceLoc); EnumConstantDecl *CheckEnumConstant(EnumDecl *Enum, EnumConstantDecl *LastEnumConst, SourceLocation IdLoc, IdentifierInfo *Id, ExprArg val); virtual DeclPtrTy ActOnEnumConstant(Scope *S, DeclPtrTy EnumDecl, DeclPtrTy LastEnumConstant, SourceLocation IdLoc, IdentifierInfo *Id, SourceLocation EqualLoc, ExprTy *Val); virtual void ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc, SourceLocation RBraceLoc, DeclPtrTy EnumDecl, DeclPtrTy *Elements, unsigned NumElements, Scope *S, AttributeList *Attr); DeclContext *getContainingDC(DeclContext *DC); /// Set the current declaration context until it gets popped. void PushDeclContext(Scope *S, DeclContext *DC); void PopDeclContext(); /// EnterDeclaratorContext - Used when we must lookup names in the context /// of a declarator's nested name specifier. void EnterDeclaratorContext(Scope *S, DeclContext *DC); void ExitDeclaratorContext(Scope *S); DeclContext *getFunctionLevelDeclContext(); /// getCurFunctionDecl - If inside of a function body, this returns a pointer /// to the function decl for the function being parsed. If we're currently /// in a 'block', this returns the containing context. FunctionDecl *getCurFunctionDecl(); /// getCurMethodDecl - If inside of a method body, this returns a pointer to /// the method decl for the method being parsed. If we're currently /// in a 'block', this returns the containing context. ObjCMethodDecl *getCurMethodDecl(); /// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method /// or C function we're in, otherwise return null. If we're currently /// in a 'block', this returns the containing context. NamedDecl *getCurFunctionOrMethodDecl(); /// Add this decl to the scope shadowed decl chains. void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext = true); /// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true /// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns /// true if 'D' belongs to the given declaration context. bool isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S = 0); /// Finds the scope corresponding to the given decl context, if it /// happens to be an enclosing scope. Otherwise return NULL. Scope *getScopeForDeclContext(Scope *S, DeclContext *DC) { DeclContext *TargetDC = DC->getPrimaryContext(); do { if (DeclContext *ScopeDC = (DeclContext*) S->getEntity()) if (ScopeDC->getPrimaryContext() == TargetDC) return S; } while ((S = S->getParent())); return NULL; } /// OverloadingResult - Capture the result of performing overload /// resolution. enum OverloadingResult { OR_Success, ///< Overload resolution succeeded. OR_No_Viable_Function, ///< No viable function found. OR_Ambiguous, ///< Ambiguous candidates found. OR_Deleted ///< Overload resoltuion refers to a deleted function. }; /// Subroutines of ActOnDeclarator(). TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T, DeclaratorInfo *DInfo); void MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls); bool MergeFunctionDecl(FunctionDecl *New, Decl *Old); bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old); void MergeVarDecl(VarDecl *New, LookupResult &OldDecls); bool MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old); /// C++ Overloading. bool IsOverload(FunctionDecl *New, LookupResult &OldDecls, NamedDecl *&OldDecl); bool IsOverload(FunctionDecl *New, FunctionDecl *Old); ImplicitConversionSequence TryImplicitConversion(Expr* From, QualType ToType, bool SuppressUserConversions, bool AllowExplicit, bool ForceRValue, bool InOverloadResolution, bool UserCast = false); bool IsStandardConversion(Expr *From, QualType ToType, bool InOverloadResolution, StandardConversionSequence& SCS); bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType); bool IsFloatingPointPromotion(QualType FromType, QualType ToType); bool IsComplexPromotion(QualType FromType, QualType ToType); bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType, bool InOverloadResolution, QualType& ConvertedType, bool &IncompatibleObjC); bool isObjCPointerConversion(QualType FromType, QualType ToType, QualType& ConvertedType, bool &IncompatibleObjC); bool CheckPointerConversion(Expr *From, QualType ToType, CastExpr::CastKind &Kind, bool IgnoreBaseAccess); bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType, bool InOverloadResolution, QualType &ConvertedType); bool CheckMemberPointerConversion(Expr *From, QualType ToType, CastExpr::CastKind &Kind, bool IgnoreBaseAccess); bool IsQualificationConversion(QualType FromType, QualType ToType); OverloadingResult IsUserDefinedConversion(Expr *From, QualType ToType, UserDefinedConversionSequence& User, OverloadCandidateSet& Conversions, bool AllowConversionFunctions, bool AllowExplicit, bool ForceRValue, bool UserCast = false); bool DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType); ImplicitConversionSequence::CompareKind CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, const ImplicitConversionSequence& ICS2); ImplicitConversionSequence::CompareKind CompareStandardConversionSequences(const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2); ImplicitConversionSequence::CompareKind CompareQualificationConversions(const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2); ImplicitConversionSequence::CompareKind CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2); ImplicitConversionSequence TryCopyInitialization(Expr* From, QualType ToType, bool SuppressUserConversions, bool ForceRValue, bool InOverloadResolution); bool PerformCopyInitialization(Expr *&From, QualType ToType, const char *Flavor, bool Elidable = false); ImplicitConversionSequence TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method); bool PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method); ImplicitConversionSequence TryContextuallyConvertToBool(Expr *From); bool PerformContextuallyConvertToBool(Expr *&From); bool PerformObjectMemberConversion(Expr *&From, NamedDecl *Member); // Members have to be NamespaceDecl* or TranslationUnitDecl*. // TODO: make this is a typesafe union. typedef llvm::SmallPtrSet AssociatedNamespaceSet; typedef llvm::SmallPtrSet FunctionSet; typedef llvm::SmallPtrSet AssociatedClassSet; void AddOverloadCandidate(FunctionDecl *Function, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false, bool ForceRValue = false, bool PartialOverloading = false); void AddFunctionCandidates(const FunctionSet &Functions, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false); void AddMethodCandidate(NamedDecl *Decl, Expr *Object, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversion = false, bool ForceRValue = false); void AddMethodCandidate(CXXMethodDecl *Method, Expr *Object, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false, bool ForceRValue = false); void AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, bool HasExplicitTemplateArgs, const TemplateArgumentLoc *ExplicitTemplateArgs, unsigned NumExplicitTemplateArgs, Expr *Object, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false, bool ForceRValue = false); void AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, bool HasExplicitTemplateArgs, const TemplateArgumentLoc *ExplicitTemplateArgs, unsigned NumExplicitTemplateArgs, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false, bool ForceRValue = false); void AddConversionCandidate(CXXConversionDecl *Conversion, Expr *From, QualType ToType, OverloadCandidateSet& CandidateSet); void AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, Expr *From, QualType ToType, OverloadCandidateSet &CandidateSet); void AddSurrogateCandidate(CXXConversionDecl *Conversion, const FunctionProtoType *Proto, Expr *Object, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet); void AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S, SourceLocation OpLoc, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, SourceRange OpRange = SourceRange()); void AddMemberOperatorCandidates(OverloadedOperatorKind Op, SourceLocation OpLoc, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, SourceRange OpRange = SourceRange()); void AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool IsAssignmentOperator = false, unsigned NumContextualBoolArguments = 0); void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, SourceLocation OpLoc, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet); void AddArgumentDependentLookupCandidates(DeclarationName Name, Expr **Args, unsigned NumArgs, bool HasExplicitTemplateArgs, const TemplateArgumentLoc *ExplicitTemplateArgs, unsigned NumExplicitTemplateArgs, OverloadCandidateSet& CandidateSet, bool PartialOverloading = false); bool isBetterOverloadCandidate(const OverloadCandidate& Cand1, const OverloadCandidate& Cand2); OverloadingResult BestViableFunction(OverloadCandidateSet& CandidateSet, SourceLocation Loc, OverloadCandidateSet::iterator& Best); void PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, bool OnlyViable, const char *Opc=0, SourceLocation Loc=SourceLocation()); FunctionDecl *ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, bool Complain); Expr *FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn); void AddOverloadedCallCandidates(NamedDecl *Callee, DeclarationName &UnqualifiedName, bool &ArgumentDependentLookup, bool HasExplicitTemplateArgs, const TemplateArgumentLoc *ExplicitTemplateArgs, unsigned NumExplicitTemplateArgs, Expr **Args, unsigned NumArgs, OverloadCandidateSet &CandidateSet, bool PartialOverloading = false); FunctionDecl *ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee, DeclarationName UnqualifiedName, bool HasExplicitTemplateArgs, const TemplateArgumentLoc *ExplicitTemplateArgs, unsigned NumExplicitTemplateArgs, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc, bool &ArgumentDependentLookup); OwningExprResult CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned Opc, FunctionSet &Functions, ExprArg input); OwningExprResult CreateOverloadedBinOp(SourceLocation OpLoc, unsigned Opc, FunctionSet &Functions, Expr *LHS, Expr *RHS); OwningExprResult CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, SourceLocation RLoc, ExprArg Base,ExprArg Idx); ExprResult BuildCallToMemberFunction(Scope *S, Expr *MemExpr, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc); ExprResult BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc); OwningExprResult BuildOverloadedArrowExpr(Scope *S, ExprArg Base, SourceLocation OpLoc); /// CheckCallReturnType - Checks that a call expression's return type is /// complete. Returns true on failure. The location passed in is the location /// that best represents the call. bool CheckCallReturnType(QualType ReturnType, SourceLocation Loc, CallExpr *CE, FunctionDecl *FD); /// Helpers for dealing with blocks and functions. void CheckFallThroughForFunctionDef(Decl *D, Stmt *Body); void CheckFallThroughForBlock(QualType BlockTy, Stmt *Body); bool CheckParmsForFunctionDef(FunctionDecl *FD); void CheckCXXDefaultArguments(FunctionDecl *FD); void CheckExtraCXXDefaultArguments(Declarator &D); enum ControlFlowKind { NeverFallThrough = 0, MaybeFallThrough = 1, AlwaysFallThrough = 2, NeverFallThroughOrReturn = 3 }; ControlFlowKind CheckFallThrough(Stmt *); Scope *getNonFieldDeclScope(Scope *S); /// \name Name lookup /// /// These routines provide name lookup that is used during semantic /// analysis to resolve the various kinds of names (identifiers, /// overloaded operator names, constructor names, etc.) into zero or /// more declarations within a particular scope. The major entry /// points are LookupName, which performs unqualified name lookup, /// and LookupQualifiedName, which performs qualified name lookup. /// /// All name lookup is performed based on some specific criteria, /// which specify what names will be visible to name lookup and how /// far name lookup should work. These criteria are important both /// for capturing language semantics (certain lookups will ignore /// certain names, for example) and for performance, since name /// lookup is often a bottleneck in the compilation of C++. Name /// lookup criteria is specified via the LookupCriteria enumeration. /// /// The results of name lookup can vary based on the kind of name /// lookup performed, the current language, and the translation /// unit. In C, for example, name lookup will either return nothing /// (no entity found) or a single declaration. In C++, name lookup /// can additionally refer to a set of overloaded functions or /// result in an ambiguity. All of the possible results of name /// lookup are captured by the LookupResult class, which provides /// the ability to distinguish among them. //@{ /// @brief Describes the kind of name lookup to perform. enum LookupNameKind { /// Ordinary name lookup, which finds ordinary names (functions, /// variables, typedefs, etc.) in C and most kinds of names /// (functions, variables, members, types, etc.) in C++. LookupOrdinaryName = 0, /// Tag name lookup, which finds the names of enums, classes, /// structs, and unions. LookupTagName, /// Member name lookup, which finds the names of /// class/struct/union members. LookupMemberName, // Look up of an operator name (e.g., operator+) for use with // operator overloading. This lookup is similar to ordinary name // lookup, but will ignore any declarations that are class // members. LookupOperatorName, /// Look up of a name that precedes the '::' scope resolution /// operator in C++. This lookup completely ignores operator, /// function, and enumerator names (C++ [basic.lookup.qual]p1). LookupNestedNameSpecifierName, /// Look up a namespace name within a C++ using directive or /// namespace alias definition, ignoring non-namespace names (C++ /// [basic.lookup.udir]p1). LookupNamespaceName, /// Look up an ordinary name that is going to be redeclared as a /// name with linkage. This lookup ignores any declarations that /// are outside of the current scope unless they have linkage. See /// C99 6.2.2p4-5 and C++ [basic.link]p6. LookupRedeclarationWithLinkage, /// Look up the name of an Objective-C protocol. LookupObjCProtocolName, /// Look up the name of an Objective-C implementation LookupObjCImplementationName, /// Look up the name of an Objective-C category implementation LookupObjCCategoryImplName }; enum RedeclarationKind { NotForRedeclaration, ForRedeclaration }; private: bool CppLookupName(LookupResult &R, Scope *S); public: /// Determines whether D is a suitable lookup result according to the /// lookup criteria. static bool isAcceptableLookupResult(NamedDecl *D, LookupNameKind NameKind, unsigned IDNS) { switch (NameKind) { case Sema::LookupOrdinaryName: case Sema::LookupTagName: case Sema::LookupMemberName: case Sema::LookupRedeclarationWithLinkage: // FIXME: check linkage, scoping case Sema::LookupObjCProtocolName: case Sema::LookupObjCImplementationName: case Sema::LookupObjCCategoryImplName: return D->isInIdentifierNamespace(IDNS); case Sema::LookupOperatorName: return D->isInIdentifierNamespace(IDNS) && !D->getDeclContext()->isRecord(); case Sema::LookupNestedNameSpecifierName: return isa(D) || D->isInIdentifierNamespace(Decl::IDNS_Tag); case Sema::LookupNamespaceName: return isa(D) || isa(D); } assert(false && "isAcceptableLookupResult always returns before this point"); return false; } /// \brief Look up a name, looking for a single declaration. Return /// null if no unambiguous results were found. /// /// It is preferable to use the elaborated form and explicitly handle /// ambiguity and overloaded. NamedDecl *LookupSingleName(Scope *S, DeclarationName Name, LookupNameKind NameKind, RedeclarationKind Redecl = NotForRedeclaration); bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation = false); bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx); bool LookupParsedName(LookupResult &R, Scope *S, const CXXScopeSpec *SS, bool AllowBuiltinCreation = false, bool EnteringContext = false); ObjCProtocolDecl *LookupProtocol(IdentifierInfo *II); ObjCCategoryImplDecl *LookupObjCCategoryImpl(IdentifierInfo *II); void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, QualType T1, QualType T2, FunctionSet &Functions); void ArgumentDependentLookup(DeclarationName Name, bool Operator, Expr **Args, unsigned NumArgs, FunctionSet &Functions); void FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs, AssociatedNamespaceSet &AssociatedNamespaces, AssociatedClassSet &AssociatedClasses); bool DiagnoseAmbiguousLookup(LookupResult &Result); //@} ObjCInterfaceDecl *getObjCInterfaceDecl(IdentifierInfo *Id); NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, Scope *S, bool ForRedeclaration, SourceLocation Loc); NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II, Scope *S); void AddKnownFunctionAttributes(FunctionDecl *FD); // More parsing and symbol table subroutines. // Decl attributes - this routine is the top level dispatcher. void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD); void ProcessDeclAttributeList(Scope *S, Decl *D, const AttributeList *AttrList); void WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method, bool &IncompleteImpl); void WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethod, ObjCMethodDecl *IntfMethod); bool isPropertyReadonly(ObjCPropertyDecl *PropertyDecl, ObjCInterfaceDecl *IDecl); /// CheckProtocolMethodDefs - This routine checks unimplemented /// methods declared in protocol, and those referenced by it. /// \param IDecl - Used for checking for methods which may have been /// inherited. void CheckProtocolMethodDefs(SourceLocation ImpLoc, ObjCProtocolDecl *PDecl, bool& IncompleteImpl, const llvm::DenseSet &InsMap, const llvm::DenseSet &ClsMap, ObjCInterfaceDecl *IDecl); /// CheckImplementationIvars - This routine checks if the instance variables /// listed in the implelementation match those listed in the interface. void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, ObjCIvarDecl **Fields, unsigned nIvars, SourceLocation Loc); /// ImplMethodsVsClassMethods - This is main routine to warn if any method /// remains unimplemented in the class or category @implementation. void ImplMethodsVsClassMethods(ObjCImplDecl* IMPDecl, ObjCContainerDecl* IDecl, bool IncompleteImpl = false); /// AtomicPropertySetterGetterRules - This routine enforces the rule (via /// warning) when atomic property has one but not the other user-declared /// setter or getter. void AtomicPropertySetterGetterRules(ObjCImplDecl* IMPDecl, ObjCContainerDecl* IDecl); /// MatchTwoMethodDeclarations - Checks if two methods' type match and returns /// true, or false, accordingly. bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method, const ObjCMethodDecl *PrevMethod, bool matchBasedOnSizeAndAlignment = false); /// MatchAllMethodDeclarations - Check methods declaraed in interface or /// or protocol against those declared in their implementations. void MatchAllMethodDeclarations(const llvm::DenseSet &InsMap, const llvm::DenseSet &ClsMap, llvm::DenseSet &InsMapSeen, llvm::DenseSet &ClsMapSeen, ObjCImplDecl* IMPDecl, ObjCContainerDecl* IDecl, bool &IncompleteImpl, bool ImmediateClass); /// AddInstanceMethodToGlobalPool - All instance methods in a translation /// unit are added to a global pool. This allows us to efficiently associate /// a selector with a method declaraation for purposes of typechecking /// messages sent to "id" (where the class of the object is unknown). void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method); /// LookupInstanceMethodInGlobalPool - Returns the method and warns if /// there are multiple signatures. ObjCMethodDecl *LookupInstanceMethodInGlobalPool(Selector Sel, SourceRange R, bool warn=true); /// LookupFactoryMethodInGlobalPool - Returns the method and warns if /// there are multiple signatures. ObjCMethodDecl *LookupFactoryMethodInGlobalPool(Selector Sel, SourceRange R); /// AddFactoryMethodToGlobalPool - Same as above, but for factory methods. void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method); //===--------------------------------------------------------------------===// // Statement Parsing Callbacks: SemaStmt.cpp. public: virtual OwningStmtResult ActOnExprStmt(FullExprArg Expr); virtual OwningStmtResult ActOnNullStmt(SourceLocation SemiLoc); virtual OwningStmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R, MultiStmtArg Elts, bool isStmtExpr); virtual OwningStmtResult ActOnDeclStmt(DeclGroupPtrTy Decl, SourceLocation StartLoc, SourceLocation EndLoc); virtual OwningStmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprArg LHSVal, SourceLocation DotDotDotLoc, ExprArg RHSVal, SourceLocation ColonLoc); virtual void ActOnCaseStmtBody(StmtTy *CaseStmt, StmtArg SubStmt); virtual OwningStmtResult ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, StmtArg SubStmt, Scope *CurScope); virtual OwningStmtResult ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation ColonLoc, StmtArg SubStmt); virtual OwningStmtResult ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, StmtArg ThenVal, SourceLocation ElseLoc, StmtArg ElseVal); virtual OwningStmtResult ActOnStartOfSwitchStmt(ExprArg Cond); virtual OwningStmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch, StmtArg Body); virtual OwningStmtResult ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond, StmtArg Body); virtual OwningStmtResult ActOnDoStmt(SourceLocation DoLoc, StmtArg Body, SourceLocation WhileLoc, SourceLocation CondLParen, ExprArg Cond, SourceLocation CondRParen); virtual OwningStmtResult ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, StmtArg First, ExprArg Second, ExprArg Third, SourceLocation RParenLoc, StmtArg Body); virtual OwningStmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc, SourceLocation LParenLoc, StmtArg First, ExprArg Second, SourceLocation RParenLoc, StmtArg Body); virtual OwningStmtResult ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, IdentifierInfo *LabelII); virtual OwningStmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, ExprArg DestExp); virtual OwningStmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope); virtual OwningStmtResult ActOnBreakStmt(SourceLocation GotoLoc, Scope *CurScope); virtual OwningStmtResult ActOnReturnStmt(SourceLocation ReturnLoc, ExprArg RetValExp); OwningStmtResult ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp); virtual OwningStmtResult ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple, bool IsVolatile, unsigned NumOutputs, unsigned NumInputs, std::string *Names, MultiExprArg Constraints, MultiExprArg Exprs, ExprArg AsmString, MultiExprArg Clobbers, SourceLocation RParenLoc); virtual OwningStmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen, DeclPtrTy Parm, StmtArg Body, StmtArg CatchList); virtual OwningStmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body); virtual OwningStmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, StmtArg Try, StmtArg Catch, StmtArg Finally); virtual OwningStmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg Throw, Scope *CurScope); virtual OwningStmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr, StmtArg SynchBody); VarDecl *BuildExceptionDeclaration(Scope *S, QualType ExDeclType, DeclaratorInfo *DInfo, IdentifierInfo *Name, SourceLocation Loc, SourceRange Range); virtual DeclPtrTy ActOnExceptionDeclarator(Scope *S, Declarator &D); virtual OwningStmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclPtrTy ExDecl, StmtArg HandlerBlock); virtual OwningStmtResult ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock, MultiStmtArg Handlers); void DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock); /// DiagnoseUnusedExprResult - If the statement passed in is an expression /// whose result is unused, warn. void DiagnoseUnusedExprResult(const Stmt *S); ParsingDeclStackState PushParsingDeclaration(); void PopParsingDeclaration(ParsingDeclStackState S, DeclPtrTy D); void EmitDeprecationWarning(NamedDecl *D, SourceLocation Loc); //===--------------------------------------------------------------------===// // Expression Parsing Callbacks: SemaExpr.cpp. bool DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc); bool DiagnosePropertyAccessorMismatch(ObjCPropertyDecl *PD, ObjCMethodDecl *Getter, SourceLocation Loc); void DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, Expr **Args, unsigned NumArgs); void CheckSignCompare(Expr *LHS, Expr *RHS, SourceLocation Loc, const PartialDiagnostic &PD, bool Equality = false); virtual ExpressionEvaluationContext PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext); virtual void PopExpressionEvaluationContext(ExpressionEvaluationContext OldContext, ExpressionEvaluationContext NewContext); void MarkDeclarationReferenced(SourceLocation Loc, Decl *D); // Primary Expressions. virtual SourceRange getExprRange(ExprTy *E) const; virtual OwningExprResult ActOnIdExpression(Scope *S, const CXXScopeSpec &SS, UnqualifiedId &Name, bool HasTrailingLParen, bool IsAddressOfOperand); OwningExprResult BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc, bool TypeDependent, bool ValueDependent, const CXXScopeSpec *SS = 0); VarDecl *BuildAnonymousStructUnionMemberPath(FieldDecl *Field, llvm::SmallVectorImpl &Path); OwningExprResult BuildAnonymousStructUnionMemberReference(SourceLocation Loc, FieldDecl *Field, Expr *BaseObjectExpr = 0, SourceLocation OpLoc = SourceLocation()); OwningExprResult ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc, DeclarationName Name, bool HasTrailingLParen, const CXXScopeSpec *SS, bool isAddressOfOperand = false); OwningExprResult BuildDeclarationNameExpr(SourceLocation Loc, NamedDecl *D, bool HasTrailingLParen, const CXXScopeSpec *SS, bool isAddressOfOperand); virtual OwningExprResult ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind); virtual OwningExprResult ActOnNumericConstant(const Token &); virtual OwningExprResult ActOnCharacterConstant(const Token &); virtual OwningExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, ExprArg Val); virtual OwningExprResult ActOnParenListExpr(SourceLocation L, SourceLocation R, MultiExprArg Val); /// ActOnStringLiteral - The specified tokens were lexed as pasted string /// fragments (e.g. "foo" "bar" L"baz"). virtual OwningExprResult ActOnStringLiteral(const Token *Toks, unsigned NumToks); // Binary/Unary Operators. 'Tok' is the token for the operator. OwningExprResult CreateBuiltinUnaryOp(SourceLocation OpLoc, unsigned OpcIn, ExprArg InputArg); OwningExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc, UnaryOperator::Opcode Opc, ExprArg input); virtual OwningExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op, ExprArg Input); OwningExprResult CreateSizeOfAlignOfExpr(DeclaratorInfo *T, SourceLocation OpLoc, bool isSizeOf, SourceRange R); OwningExprResult CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc, bool isSizeOf, SourceRange R); virtual OwningExprResult ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType, void *TyOrEx, const SourceRange &ArgRange); bool CheckAlignOfExpr(Expr *E, SourceLocation OpLoc, const SourceRange &R); bool CheckSizeOfAlignOfOperand(QualType type, SourceLocation OpLoc, const SourceRange &R, bool isSizeof); virtual OwningExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Kind, ExprArg Input); virtual OwningExprResult ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc, ExprArg Idx, SourceLocation RLoc); OwningExprResult CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc, ExprArg Idx, SourceLocation RLoc); OwningExprResult BuildMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc, tok::TokenKind OpKind, SourceLocation MemberLoc, DeclarationName MemberName, DeclPtrTy ImplDecl, const CXXScopeSpec *SS = 0, NamedDecl *FirstQualifierInScope = 0) { // FIXME: Temporary helper while we migrate existing calls to // BuildMemberReferenceExpr to support explicitly-specified template // arguments. return BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind, MemberLoc, MemberName, false, SourceLocation(), 0, 0, SourceLocation(), ImplDecl, SS, FirstQualifierInScope); } OwningExprResult BuildMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc, tok::TokenKind OpKind, SourceLocation MemberLoc, DeclarationName MemberName, bool HasExplicitTemplateArgs, SourceLocation LAngleLoc, const TemplateArgumentLoc *ExplicitTemplateArgs, unsigned NumExplicitTemplateArgs, SourceLocation RAngleLoc, DeclPtrTy ImplDecl, const CXXScopeSpec *SS, NamedDecl *FirstQualifierInScope = 0); virtual OwningExprResult ActOnMemberAccessExpr(Scope *S, ExprArg Base, SourceLocation OpLoc, tok::TokenKind OpKind, const CXXScopeSpec &SS, UnqualifiedId &Member, DeclPtrTy ObjCImpDecl, bool HasTrailingLParen); virtual void ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl); bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, FunctionDecl *FDecl, const FunctionProtoType *Proto, Expr **Args, unsigned NumArgs, SourceLocation RParenLoc); void DeconstructCallFunction(Expr *FnExpr, NamedDecl *&Function, DeclarationName &Name, NestedNameSpecifier *&Qualifier, SourceRange &QualifierRange, bool &ArgumentDependentLookup, bool &HasExplicitTemplateArguments, const TemplateArgumentLoc *&ExplicitTemplateArgs, unsigned &NumExplicitTemplateArgs); /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments. /// This provides the location of the left/right parens and a list of comma /// locations. virtual OwningExprResult ActOnCallExpr(Scope *S, ExprArg Fn, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation *CommaLocs, SourceLocation RParenLoc); virtual OwningExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty, SourceLocation RParenLoc, ExprArg Op); OwningExprResult MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg ME); OwningExprResult ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc, SourceLocation RParenLoc, ExprArg E, QualType Ty); virtual OwningExprResult ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty, SourceLocation RParenLoc, ExprArg Op); virtual OwningExprResult ActOnInitList(SourceLocation LParenLoc, MultiExprArg InitList, SourceLocation RParenLoc); virtual OwningExprResult ActOnDesignatedInitializer(Designation &Desig, SourceLocation Loc, bool GNUSyntax, OwningExprResult Init); virtual OwningExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc, tok::TokenKind Kind, ExprArg LHS, ExprArg RHS); OwningExprResult BuildBinOp(Scope *S, SourceLocation OpLoc, BinaryOperator::Opcode Opc, Expr *lhs, Expr *rhs); OwningExprResult CreateBuiltinBinOp(SourceLocation TokLoc, unsigned Opc, Expr *lhs, Expr *rhs); /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null /// in the case of a the GNU conditional expr extension. virtual OwningExprResult ActOnConditionalOp(SourceLocation QuestionLoc, SourceLocation ColonLoc, ExprArg Cond, ExprArg LHS, ExprArg RHS); /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". virtual OwningExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc, IdentifierInfo *LabelII); virtual OwningExprResult ActOnStmtExpr(SourceLocation LPLoc, StmtArg SubStmt, SourceLocation RPLoc); // "({..})" /// __builtin_offsetof(type, a.b[123][456].c) virtual OwningExprResult ActOnBuiltinOffsetOf(Scope *S, SourceLocation BuiltinLoc, SourceLocation TypeLoc, TypeTy *Arg1, OffsetOfComponent *CompPtr, unsigned NumComponents, SourceLocation RParenLoc); // __builtin_types_compatible_p(type1, type2) virtual OwningExprResult ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc, TypeTy *arg1, TypeTy *arg2, SourceLocation RPLoc); // __builtin_choose_expr(constExpr, expr1, expr2) virtual OwningExprResult ActOnChooseExpr(SourceLocation BuiltinLoc, ExprArg cond, ExprArg expr1, ExprArg expr2, SourceLocation RPLoc); // __builtin_va_arg(expr, type) virtual OwningExprResult ActOnVAArg(SourceLocation BuiltinLoc, ExprArg expr, TypeTy *type, SourceLocation RPLoc); // __null virtual OwningExprResult ActOnGNUNullExpr(SourceLocation TokenLoc); //===------------------------- "Block" Extension ------------------------===// /// ActOnBlockStart - This callback is invoked when a block literal is /// started. virtual void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope); /// ActOnBlockArguments - This callback allows processing of block arguments. /// If there are no arguments, this is still invoked. virtual void ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope); /// ActOnBlockError - If there is an error parsing a block, this callback /// is invoked to pop the information about the block from the action impl. virtual void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope); /// ActOnBlockStmtExpr - This is called when the body of a block statement /// literal was successfully completed. ^(int x){...} virtual OwningExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtArg Body, Scope *CurScope); //===---------------------------- C++ Features --------------------------===// // Act on C++ namespaces virtual DeclPtrTy ActOnStartNamespaceDef(Scope *S, SourceLocation IdentLoc, IdentifierInfo *Ident, SourceLocation LBrace); virtual void ActOnFinishNamespaceDef(DeclPtrTy Dcl, SourceLocation RBrace); virtual DeclPtrTy ActOnUsingDirective(Scope *CurScope, SourceLocation UsingLoc, SourceLocation NamespcLoc, const CXXScopeSpec &SS, SourceLocation IdentLoc, IdentifierInfo *NamespcName, AttributeList *AttrList); void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir); virtual DeclPtrTy ActOnNamespaceAliasDef(Scope *CurScope, SourceLocation NamespaceLoc, SourceLocation AliasLoc, IdentifierInfo *Alias, const CXXScopeSpec &SS, SourceLocation IdentLoc, IdentifierInfo *Ident); NamedDecl *BuildUsingDeclaration(Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, const CXXScopeSpec &SS, SourceLocation IdentLoc, DeclarationName Name, AttributeList *AttrList, bool IsInstantiation, bool IsTypeName, SourceLocation TypenameLoc); virtual DeclPtrTy ActOnUsingDeclaration(Scope *CurScope, AccessSpecifier AS, SourceLocation UsingLoc, const CXXScopeSpec &SS, UnqualifiedId &Name, AttributeList *AttrList, bool IsTypeName, SourceLocation TypenameLoc); /// AddCXXDirectInitializerToDecl - This action is called immediately after /// ActOnDeclarator, when a C++ direct initializer is present. /// e.g: "int x(1);" virtual void AddCXXDirectInitializerToDecl(DeclPtrTy Dcl, SourceLocation LParenLoc, MultiExprArg Exprs, SourceLocation *CommaLocs, SourceLocation RParenLoc); /// InitializeVarWithConstructor - Creates an CXXConstructExpr /// and sets it as the initializer for the the passed in VarDecl. bool InitializeVarWithConstructor(VarDecl *VD, CXXConstructorDecl *Constructor, MultiExprArg Exprs); /// BuildCXXConstructExpr - Creates a complete call to a constructor, /// including handling of its default argument expressions. OwningExprResult BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, CXXConstructorDecl *Constructor, MultiExprArg Exprs); // FIXME: Can re remove this and have the above BuildCXXConstructExpr check if // the constructor can be elidable? OwningExprResult BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg Exprs); OwningExprResult BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Cons, QualType writtenTy, SourceLocation tyBeginLoc, MultiExprArg Args, SourceLocation rParenLoc); OwningExprResult BuildCXXCastArgument(SourceLocation CastLoc, QualType Ty, CastExpr::CastKind Kind, CXXMethodDecl *Method, ExprArg Arg); /// BuildCXXDefaultArgExpr - Creates a CXXDefaultArgExpr, instantiating /// the default expr if needed. OwningExprResult BuildCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD, ParmVarDecl *Param); /// FinalizeVarWithDestructor - Prepare for calling destructor on the /// constructed variable. void FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType); /// DefineImplicitDefaultConstructor - Checks for feasibility of /// defining this constructor as the default constructor. void DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *Constructor); /// DefineImplicitDestructor - Checks for feasibility of /// defining this destructor as the default destructor. void DefineImplicitDestructor(SourceLocation CurrentLocation, CXXDestructorDecl *Destructor); /// DefineImplicitCopyConstructor - Checks for feasibility of /// defining this constructor as the copy constructor. void DefineImplicitCopyConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *Constructor, unsigned TypeQuals); /// DefineImplicitOverloadedAssign - Checks for feasibility of /// defining implicit this overloaded assignment operator. void DefineImplicitOverloadedAssign(SourceLocation CurrentLocation, CXXMethodDecl *MethodDecl); /// getAssignOperatorMethod - Returns the default copy assignmment operator /// for the class. CXXMethodDecl *getAssignOperatorMethod(ParmVarDecl *Decl, CXXRecordDecl *ClassDecl); /// MaybeBindToTemporary - If the passed in expression has a record type with /// a non-trivial destructor, this will return CXXBindTemporaryExpr. Otherwise /// it simply returns the passed in expression. OwningExprResult MaybeBindToTemporary(Expr *E); /// InitializationKind - Represents which kind of C++ initialization /// [dcl.init] a routine is to perform. enum InitializationKind { IK_Direct, ///< Direct initialization IK_Copy, ///< Copy initialization IK_Default ///< Default initialization }; CXXConstructorDecl * TryInitializationByConstructor(QualType ClassType, Expr **Args, unsigned NumArgs, SourceLocation Loc, InitializationKind Kind); CXXConstructorDecl * PerformInitializationByConstructor(QualType ClassType, MultiExprArg ArgsPtr, SourceLocation Loc, SourceRange Range, DeclarationName InitEntity, InitializationKind Kind, ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs); bool CompleteConstructorCall(CXXConstructorDecl *Constructor, MultiExprArg ArgsPtr, SourceLocation Loc, ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs); /// ActOnCXXNamedCast - Parse {dynamic,static,reinterpret,const}_cast's. virtual OwningExprResult ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, SourceLocation LAngleBracketLoc, TypeTy *Ty, SourceLocation RAngleBracketLoc, SourceLocation LParenLoc, ExprArg E, SourceLocation RParenLoc); /// ActOnCXXTypeid - Parse typeid( something ). virtual OwningExprResult ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, bool isType, void *TyOrExpr, SourceLocation RParenLoc); //// ActOnCXXThis - Parse 'this' pointer. virtual OwningExprResult ActOnCXXThis(SourceLocation ThisLoc); /// ActOnCXXBoolLiteral - Parse {true,false} literals. virtual OwningExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind); /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. virtual OwningExprResult ActOnCXXNullPtrLiteral(SourceLocation Loc); //// ActOnCXXThrow - Parse throw expressions. virtual OwningExprResult ActOnCXXThrow(SourceLocation OpLoc, ExprArg expr); bool CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E); /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. /// Can be interpreted either as function-style casting ("int(x)") /// or class type construction ("ClassType(x,y,z)") /// or creation of a value-initialized type ("int()"). virtual OwningExprResult ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep, SourceLocation LParenLoc, MultiExprArg Exprs, SourceLocation *CommaLocs, SourceLocation RParenLoc); /// ActOnCXXNew - Parsed a C++ 'new' expression. virtual OwningExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, SourceLocation PlacementLParen, MultiExprArg PlacementArgs, SourceLocation PlacementRParen, bool ParenTypeId, Declarator &D, SourceLocation ConstructorLParen, MultiExprArg ConstructorArgs, SourceLocation ConstructorRParen); OwningExprResult BuildCXXNew(SourceLocation StartLoc, bool UseGlobal, SourceLocation PlacementLParen, MultiExprArg PlacementArgs, SourceLocation PlacementRParen, bool ParenTypeId, QualType AllocType, SourceLocation TypeLoc, SourceRange TypeRange, ExprArg ArraySize, SourceLocation ConstructorLParen, MultiExprArg ConstructorArgs, SourceLocation ConstructorRParen); bool CheckAllocatedType(QualType AllocType, SourceLocation Loc, SourceRange R); bool FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, bool UseGlobal, QualType AllocType, bool IsArray, Expr **PlaceArgs, unsigned NumPlaceArgs, FunctionDecl *&OperatorNew, FunctionDecl *&OperatorDelete); bool FindAllocationOverload(SourceLocation StartLoc, SourceRange Range, DeclarationName Name, Expr** Args, unsigned NumArgs, DeclContext *Ctx, bool AllowMissing, FunctionDecl *&Operator); void DeclareGlobalNewDelete(); void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return, QualType Argument); bool FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, DeclarationName Name, FunctionDecl* &Operator); /// ActOnCXXDelete - Parsed a C++ 'delete' expression virtual OwningExprResult ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, bool ArrayForm, ExprArg Operand); /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a /// C++ if/switch/while/for statement. /// e.g: "if (int x = f()) {...}" virtual OwningExprResult ActOnCXXConditionDeclarationExpr(Scope *S, SourceLocation StartLoc, Declarator &D, SourceLocation EqualLoc, ExprArg AssignExprVal); /// ActOnUnaryTypeTrait - Parsed one of the unary type trait support /// pseudo-functions. virtual OwningExprResult ActOnUnaryTypeTrait(UnaryTypeTrait OTT, SourceLocation KWLoc, SourceLocation LParen, TypeTy *Ty, SourceLocation RParen); virtual OwningExprResult ActOnStartCXXMemberReference(Scope *S, ExprArg Base, SourceLocation OpLoc, tok::TokenKind OpKind, TypeTy *&ObjectType); /// MaybeCreateCXXExprWithTemporaries - If the list of temporaries is /// non-empty, will create a new CXXExprWithTemporaries expression. /// Otherwise, just returs the passed in expression. Expr *MaybeCreateCXXExprWithTemporaries(Expr *SubExpr, bool ShouldDestroyTemporaries); virtual OwningExprResult ActOnFinishFullExpr(ExprArg Expr); bool RequireCompleteDeclContext(const CXXScopeSpec &SS); DeclContext *computeDeclContext(QualType T); DeclContext *computeDeclContext(const CXXScopeSpec &SS, bool EnteringContext = false); bool isDependentScopeSpecifier(const CXXScopeSpec &SS); CXXRecordDecl *getCurrentInstantiationOf(NestedNameSpecifier *NNS); bool isUnknownSpecialization(const CXXScopeSpec &SS); /// ActOnCXXGlobalScopeSpecifier - Return the object that represents the /// global scope ('::'). virtual CXXScopeTy *ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc); bool isAcceptableNestedNameSpecifier(NamedDecl *SD); NamedDecl *FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS); CXXScopeTy *BuildCXXNestedNameSpecifier(Scope *S, const CXXScopeSpec &SS, SourceLocation IdLoc, SourceLocation CCLoc, IdentifierInfo &II, QualType ObjectType, NamedDecl *ScopeLookupResult, bool EnteringContext); virtual CXXScopeTy *ActOnCXXNestedNameSpecifier(Scope *S, const CXXScopeSpec &SS, SourceLocation IdLoc, SourceLocation CCLoc, IdentifierInfo &II, TypeTy *ObjectType, bool EnteringContext); /// ActOnCXXNestedNameSpecifier - Called during parsing of a /// nested-name-specifier that involves a template-id, e.g., /// "foo::bar::", and now we need to build a scope /// specifier. \p SS is empty or the previously parsed nested-name /// part ("foo::"), \p Type is the already-parsed class template /// specialization (or other template-id that names a type), \p /// TypeRange is the source range where the type is located, and \p /// CCLoc is the location of the trailing '::'. virtual CXXScopeTy *ActOnCXXNestedNameSpecifier(Scope *S, const CXXScopeSpec &SS, TypeTy *Type, SourceRange TypeRange, SourceLocation CCLoc); /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global /// scope or nested-name-specifier) is parsed, part of a declarator-id. /// After this method is called, according to [C++ 3.4.3p3], names should be /// looked up in the declarator-id's scope, until the declarator is parsed and /// ActOnCXXExitDeclaratorScope is called. /// The 'SS' should be a non-empty valid CXXScopeSpec. virtual bool ActOnCXXEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS); /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well. /// Used to indicate that names should revert to being looked up in the /// defining scope. virtual void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS); /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an /// initializer for the declaration 'Dcl'. /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a /// static data member of class X, names should be looked up in the scope of /// class X. virtual void ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl); /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an /// initializer for the declaration 'Dcl'. virtual void ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl); // ParseObjCStringLiteral - Parse Objective-C string literals. virtual ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs, ExprTy **Strings, unsigned NumStrings); Expr *BuildObjCEncodeExpression(SourceLocation AtLoc, QualType EncodedType, SourceLocation RParenLoc); CXXMemberCallExpr *BuildCXXMemberCallExpr(Expr *Exp, CXXMethodDecl *Method); virtual ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc, SourceLocation EncodeLoc, SourceLocation LParenLoc, TypeTy *Ty, SourceLocation RParenLoc); // ParseObjCSelectorExpression - Build selector expression for @selector virtual ExprResult ParseObjCSelectorExpression(Selector Sel, SourceLocation AtLoc, SourceLocation SelLoc, SourceLocation LParenLoc, SourceLocation RParenLoc); // ParseObjCProtocolExpression - Build protocol expression for @protocol virtual ExprResult ParseObjCProtocolExpression(IdentifierInfo * ProtocolName, SourceLocation AtLoc, SourceLocation ProtoLoc, SourceLocation LParenLoc, SourceLocation RParenLoc); //===--------------------------------------------------------------------===// // C++ Declarations // virtual DeclPtrTy ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, SourceLocation LangLoc, const char *Lang, unsigned StrSize, SourceLocation LBraceLoc); virtual DeclPtrTy ActOnFinishLinkageSpecification(Scope *S, DeclPtrTy LinkageSpec, SourceLocation RBraceLoc); //===--------------------------------------------------------------------===// // C++ Classes // virtual bool isCurrentClassName(const IdentifierInfo &II, Scope *S, const CXXScopeSpec *SS); virtual DeclPtrTy ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, MultiTemplateParamsArg TemplateParameterLists, ExprTy *BitfieldWidth, ExprTy *Init, bool Deleted = false); virtual MemInitResult ActOnMemInitializer(DeclPtrTy ConstructorD, Scope *S, const CXXScopeSpec &SS, IdentifierInfo *MemberOrBase, TypeTy *TemplateTypeTy, SourceLocation IdLoc, SourceLocation LParenLoc, ExprTy **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc); MemInitResult BuildMemberInitializer(FieldDecl *Member, Expr **Args, unsigned NumArgs, SourceLocation IdLoc, SourceLocation RParenLoc); MemInitResult BuildBaseInitializer(QualType BaseType, Expr **Args, unsigned NumArgs, SourceLocation IdLoc, SourceLocation RParenLoc, CXXRecordDecl *ClassDecl); bool SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor, CXXBaseOrMemberInitializer **Initializers, unsigned NumInitializers, bool IsImplicitConstructor); /// MarkBaseAndMemberDestructorsReferenced - Given a destructor decl, /// mark all its non-trivial member and base destructor declarations /// as referenced. void MarkBaseAndMemberDestructorsReferenced(CXXDestructorDecl *Destructor); void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl); virtual void ActOnMemInitializers(DeclPtrTy ConstructorDecl, SourceLocation ColonLoc, MemInitTy **MemInits, unsigned NumMemInits); virtual void ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc, DeclPtrTy TagDecl, SourceLocation LBrac, SourceLocation RBrac); virtual void ActOnReenterTemplateScope(Scope *S, DeclPtrTy Template); virtual void ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy Method); virtual void ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy Param); virtual void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy Method); virtual DeclPtrTy ActOnStaticAssertDeclaration(SourceLocation AssertLoc, ExprArg AssertExpr, ExprArg AssertMessageExpr); DeclPtrTy ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, MultiTemplateParamsArg TemplateParams); DeclPtrTy ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition, MultiTemplateParamsArg TemplateParams); QualType CheckConstructorDeclarator(Declarator &D, QualType R, FunctionDecl::StorageClass& SC); void CheckConstructor(CXXConstructorDecl *Constructor); QualType CheckDestructorDeclarator(Declarator &D, FunctionDecl::StorageClass& SC); void CheckDestructor(CXXDestructorDecl *Destructor); void CheckConversionDeclarator(Declarator &D, QualType &R, FunctionDecl::StorageClass& SC); DeclPtrTy ActOnConversionDeclarator(CXXConversionDecl *Conversion); bool isImplicitMemberReference(const CXXScopeSpec *SS, NamedDecl *D, SourceLocation NameLoc, QualType &ThisType, QualType &MemberType); //===--------------------------------------------------------------------===// // C++ Derived Classes // /// ActOnBaseSpecifier - Parsed a base specifier CXXBaseSpecifier *CheckBaseSpecifier(CXXRecordDecl *Class, SourceRange SpecifierRange, bool Virtual, AccessSpecifier Access, QualType BaseType, SourceLocation BaseLoc); virtual BaseResult ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange, bool Virtual, AccessSpecifier Access, TypeTy *basetype, SourceLocation BaseLoc); bool AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases, unsigned NumBases); virtual void ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases, unsigned NumBases); bool IsDerivedFrom(QualType Derived, QualType Base); bool IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths); bool CheckDerivedToBaseConversion(QualType Derived, QualType Base, SourceLocation Loc, SourceRange Range, bool IgnoreAccess = false); bool CheckDerivedToBaseConversion(QualType Derived, QualType Base, unsigned InaccessibleBaseID, unsigned AmbigiousBaseConvID, SourceLocation Loc, SourceRange Range, DeclarationName Name); std::string getAmbiguousPathsDisplayString(CXXBasePaths &Paths); /// CheckOverridingFunctionReturnType - Checks whether the return types are /// covariant, according to C++ [class.virtual]p5. bool CheckOverridingFunctionReturnType(const CXXMethodDecl *New, const CXXMethodDecl *Old); /// CheckOverridingFunctionExceptionSpec - Checks whether the exception /// spec is a subset of base spec. bool CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New, const CXXMethodDecl *Old); //===--------------------------------------------------------------------===// // C++ Access Control // bool SetMemberAccessSpecifier(NamedDecl *MemberDecl, NamedDecl *PrevMemberDecl, AccessSpecifier LexicalAS); const CXXBaseSpecifier *FindInaccessibleBase(QualType Derived, QualType Base, CXXBasePaths &Paths, bool NoPrivileges = false); bool CheckBaseClassAccess(QualType Derived, QualType Base, unsigned InaccessibleBaseID, CXXBasePaths& Paths, SourceLocation AccessLoc, DeclarationName Name); enum AbstractDiagSelID { AbstractNone = -1, AbstractReturnType, AbstractParamType, AbstractVariableType, AbstractFieldType }; bool RequireNonAbstractType(SourceLocation Loc, QualType T, const PartialDiagnostic &PD, const CXXRecordDecl *CurrentRD = 0); bool RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID, AbstractDiagSelID SelID = AbstractNone, const CXXRecordDecl *CurrentRD = 0); //===--------------------------------------------------------------------===// // C++ Overloaded Operators [C++ 13.5] // bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl); //===--------------------------------------------------------------------===// // C++ Templates [C++ 14] // virtual TemplateNameKind isTemplateName(Scope *S, const CXXScopeSpec &SS, UnqualifiedId &Name, TypeTy *ObjectType, bool EnteringContext, TemplateTy &Template); bool DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl); TemplateDecl *AdjustDeclIfTemplate(DeclPtrTy &Decl); virtual DeclPtrTy ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, SourceLocation EllipsisLoc, SourceLocation KeyLoc, IdentifierInfo *ParamName, SourceLocation ParamNameLoc, unsigned Depth, unsigned Position); virtual void ActOnTypeParameterDefault(DeclPtrTy TypeParam, SourceLocation EqualLoc, SourceLocation DefaultLoc, TypeTy *Default); QualType CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc); virtual DeclPtrTy ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, unsigned Depth, unsigned Position); virtual void ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParam, SourceLocation EqualLoc, ExprArg Default); virtual DeclPtrTy ActOnTemplateTemplateParameter(Scope *S, SourceLocation TmpLoc, TemplateParamsTy *Params, IdentifierInfo *ParamName, SourceLocation ParamNameLoc, unsigned Depth, unsigned Position); virtual void ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParam, SourceLocation EqualLoc, const ParsedTemplateArgument &Default); virtual TemplateParamsTy * ActOnTemplateParameterList(unsigned Depth, SourceLocation ExportLoc, SourceLocation TemplateLoc, SourceLocation LAngleLoc, DeclPtrTy *Params, unsigned NumParams, SourceLocation RAngleLoc); bool CheckTemplateParameterList(TemplateParameterList *NewParams, TemplateParameterList *OldParams); TemplateParameterList * MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, const CXXScopeSpec &SS, TemplateParameterList **ParamLists, unsigned NumParamLists, bool &IsExplicitSpecialization); DeclResult CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, const CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, AttributeList *Attr, TemplateParameterList *TemplateParams, AccessSpecifier AS); void translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn, llvm::SmallVectorImpl &TempArgs); QualType CheckTemplateIdType(TemplateName Template, SourceLocation TemplateLoc, SourceLocation LAngleLoc, const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs, SourceLocation RAngleLoc); virtual TypeResult ActOnTemplateIdType(TemplateTy Template, SourceLocation TemplateLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc); virtual TypeResult ActOnTagTemplateIdType(TypeResult Type, TagUseKind TUK, DeclSpec::TST TagSpec, SourceLocation TagLoc); OwningExprResult BuildTemplateIdExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange, TemplateName Template, SourceLocation TemplateNameLoc, SourceLocation LAngleLoc, const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs, SourceLocation RAngleLoc); OwningExprResult ActOnTemplateIdExpr(const CXXScopeSpec &SS, TemplateTy Template, SourceLocation TemplateNameLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc); virtual TemplateTy ActOnDependentTemplateName(SourceLocation TemplateKWLoc, const CXXScopeSpec &SS, UnqualifiedId &Name, TypeTy *ObjectType); bool CheckClassTemplatePartialSpecializationArgs( TemplateParameterList *TemplateParams, const TemplateArgumentListBuilder &TemplateArgs, bool &MirrorsPrimaryTemplate); virtual DeclResult ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, const CXXScopeSpec &SS, TemplateTy Template, SourceLocation TemplateNameLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc, AttributeList *Attr, MultiTemplateParamsArg TemplateParameterLists); virtual DeclPtrTy ActOnTemplateDeclarator(Scope *S, MultiTemplateParamsArg TemplateParameterLists, Declarator &D); virtual DeclPtrTy ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, MultiTemplateParamsArg TemplateParameterLists, Declarator &D); bool CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, TemplateSpecializationKind NewTSK, NamedDecl *PrevDecl, TemplateSpecializationKind PrevTSK, SourceLocation PrevPointOfInstantiation, bool &SuppressNew); bool CheckFunctionTemplateSpecialization(FunctionDecl *FD, bool HasExplicitTemplateArgs, SourceLocation LAngleLoc, const TemplateArgumentLoc *ExplicitTemplateArgs, unsigned NumExplicitTemplateArgs, SourceLocation RAngleLoc, LookupResult &Previous); bool CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous); virtual DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, TemplateTy Template, SourceLocation TemplateNameLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc, AttributeList *Attr); virtual DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, AttributeList *Attr); virtual DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, Declarator &D); bool CheckTemplateArgument(NamedDecl *Param, const TemplateArgumentLoc &Arg, TemplateDecl *Template, SourceLocation TemplateLoc, SourceLocation RAngleLoc, TemplateArgumentListBuilder &Converted); bool CheckTemplateArgumentList(TemplateDecl *Template, SourceLocation TemplateLoc, SourceLocation LAngleLoc, const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs, SourceLocation RAngleLoc, bool PartialTemplateArgs, TemplateArgumentListBuilder &Converted); bool CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, const TemplateArgumentLoc &Arg, TemplateArgumentListBuilder &Converted); bool CheckTemplateArgument(TemplateTypeParmDecl *Param, DeclaratorInfo *Arg); bool CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg, NamedDecl *&Entity); bool CheckTemplateArgumentPointerToMember(Expr *Arg, TemplateArgument &Converted); bool CheckTemplateArgument(NonTypeTemplateParmDecl *Param, QualType InstantiatedParamType, Expr *&Arg, TemplateArgument &Converted); bool CheckTemplateArgument(TemplateTemplateParmDecl *Param, const TemplateArgumentLoc &Arg); /// \brief Enumeration describing how template parameter lists are compared /// for equality. enum TemplateParameterListEqualKind { /// \brief We are matching the template parameter lists of two templates /// that might be redeclarations. /// /// \code /// template struct X; /// template struct X; /// \endcode TPL_TemplateMatch, /// \brief We are matching the template parameter lists of two template /// template parameters as part of matching the template parameter lists /// of two templates that might be redeclarations. /// /// \code /// template class TT> struct X; /// template class Other> struct X; /// \endcode TPL_TemplateTemplateParmMatch, /// \brief We are matching the template parameter lists of a template /// template argument against the template parameter lists of a template /// template parameter. /// /// \code /// template class Metafun> struct X; /// template struct integer_c; /// X xic; /// \endcode TPL_TemplateTemplateArgumentMatch }; bool TemplateParameterListsAreEqual(TemplateParameterList *New, TemplateParameterList *Old, bool Complain, TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc = SourceLocation()); bool CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams); /// \brief Called when the parser has parsed a C++ typename /// specifier, e.g., "typename T::type". /// /// \param TypenameLoc the location of the 'typename' keyword /// \param SS the nested-name-specifier following the typename (e.g., 'T::'). /// \param II the identifier we're retrieving (e.g., 'type' in the example). /// \param IdLoc the location of the identifier. virtual TypeResult ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, const IdentifierInfo &II, SourceLocation IdLoc); /// \brief Called when the parser has parsed a C++ typename /// specifier that ends in a template-id, e.g., /// "typename MetaFun::template apply". /// /// \param TypenameLoc the location of the 'typename' keyword /// \param SS the nested-name-specifier following the typename (e.g., 'T::'). /// \param TemplateLoc the location of the 'template' keyword, if any. /// \param Ty the type that the typename specifier refers to. virtual TypeResult ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, SourceLocation TemplateLoc, TypeTy *Ty); QualType CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II, SourceRange Range); QualType RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc, DeclarationName Name); std::string getTemplateArgumentBindingsText(const TemplateParameterList *Params, const TemplateArgumentList &Args); std::string getTemplateArgumentBindingsText(const TemplateParameterList *Params, const TemplateArgument *Args, unsigned NumArgs); /// \brief Describes the result of template argument deduction. /// /// The TemplateDeductionResult enumeration describes the result of /// template argument deduction, as returned from /// DeduceTemplateArguments(). The separate TemplateDeductionInfo /// structure provides additional information about the results of /// template argument deduction, e.g., the deduced template argument /// list (if successful) or the specific template parameters or /// deduced arguments that were involved in the failure. enum TemplateDeductionResult { /// \brief Template argument deduction was successful. TDK_Success = 0, /// \brief Template argument deduction exceeded the maximum template /// instantiation depth (which has already been diagnosed). TDK_InstantiationDepth, /// \brief Template argument deduction did not deduce a value /// for every template parameter. TDK_Incomplete, /// \brief Template argument deduction produced inconsistent /// deduced values for the given template parameter. TDK_Inconsistent, /// \brief Template argument deduction failed due to inconsistent /// cv-qualifiers on a template parameter type that would /// otherwise be deduced, e.g., we tried to deduce T in "const T" /// but were given a non-const "X". TDK_InconsistentQuals, /// \brief Substitution of the deduced template argument values /// resulted in an error. TDK_SubstitutionFailure, /// \brief Substitution of the deduced template argument values /// into a non-deduced context produced a type or value that /// produces a type that does not match the original template /// arguments provided. TDK_NonDeducedMismatch, /// \brief When performing template argument deduction for a function /// template, there were too many call arguments. TDK_TooManyArguments, /// \brief When performing template argument deduction for a function /// template, there were too few call arguments. TDK_TooFewArguments, /// \brief The explicitly-specified template arguments were not valid /// template arguments for the given template. TDK_InvalidExplicitArguments }; /// \brief Provides information about an attempted template argument /// deduction, whose success or failure was described by a /// TemplateDeductionResult value. class TemplateDeductionInfo { /// \brief The context in which the template arguments are stored. ASTContext &Context; /// \brief The deduced template argument list. /// TemplateArgumentList *Deduced; // do not implement these TemplateDeductionInfo(const TemplateDeductionInfo&); TemplateDeductionInfo &operator=(const TemplateDeductionInfo&); public: TemplateDeductionInfo(ASTContext &Context) : Context(Context), Deduced(0) { } ~TemplateDeductionInfo() { // FIXME: if (Deduced) Deduced->Destroy(Context); } /// \brief Take ownership of the deduced template argument list. TemplateArgumentList *take() { TemplateArgumentList *Result = Deduced; Deduced = 0; return Result; } /// \brief Provide a new template argument list that contains the /// results of template argument deduction. void reset(TemplateArgumentList *NewDeduced) { // FIXME: if (Deduced) Deduced->Destroy(Context); Deduced = NewDeduced; } /// \brief The template parameter to which a template argument /// deduction failure refers. /// /// Depending on the result of template argument deduction, this /// template parameter may have different meanings: /// /// TDK_Incomplete: this is the first template parameter whose /// corresponding template argument was not deduced. /// /// TDK_Inconsistent: this is the template parameter for which /// two different template argument values were deduced. TemplateParameter Param; /// \brief The first template argument to which the template /// argument deduction failure refers. /// /// Depending on the result of the template argument deduction, /// this template argument may have different meanings: /// /// TDK_Inconsistent: this argument is the first value deduced /// for the corresponding template parameter. /// /// TDK_SubstitutionFailure: this argument is the template /// argument we were instantiating when we encountered an error. /// /// TDK_NonDeducedMismatch: this is the template argument /// provided in the source code. TemplateArgument FirstArg; /// \brief The second template argument to which the template /// argument deduction failure refers. /// /// FIXME: Finish documenting this. TemplateArgument SecondArg; }; TemplateDeductionResult DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, const TemplateArgumentList &TemplateArgs, TemplateDeductionInfo &Info); TemplateDeductionResult SubstituteExplicitTemplateArguments(FunctionTemplateDecl *FunctionTemplate, const TemplateArgumentLoc *ExplicitTemplateArgs, unsigned NumExplicitTemplateArgs, llvm::SmallVectorImpl &Deduced, llvm::SmallVectorImpl &ParamTypes, QualType *FunctionType, TemplateDeductionInfo &Info); TemplateDeductionResult FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate, llvm::SmallVectorImpl &Deduced, FunctionDecl *&Specialization, TemplateDeductionInfo &Info); TemplateDeductionResult DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, bool HasExplicitTemplateArgs, const TemplateArgumentLoc *ExplicitTemplateArgs, unsigned NumExplicitTemplateArgs, Expr **Args, unsigned NumArgs, FunctionDecl *&Specialization, TemplateDeductionInfo &Info); TemplateDeductionResult DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, bool HasExplicitTemplateArgs, const TemplateArgumentLoc *ExplicitTemplateArgs, unsigned NumExplicitTemplateArgs, QualType ArgFunctionType, FunctionDecl *&Specialization, TemplateDeductionInfo &Info); TemplateDeductionResult DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, QualType ToType, CXXConversionDecl *&Specialization, TemplateDeductionInfo &Info); FunctionTemplateDecl *getMoreSpecializedTemplate(FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, TemplatePartialOrderingContext TPOC); FunctionDecl *getMostSpecialized(FunctionDecl **Specializations, unsigned NumSpecializations, TemplatePartialOrderingContext TPOC, SourceLocation Loc, const PartialDiagnostic &NoneDiag, const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag, unsigned *Index = 0); ClassTemplatePartialSpecializationDecl * getMoreSpecializedPartialSpecialization( ClassTemplatePartialSpecializationDecl *PS1, ClassTemplatePartialSpecializationDecl *PS2); void MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, bool OnlyDeduced, unsigned Depth, llvm::SmallVectorImpl &Used); void MarkDeducedTemplateParameters(FunctionTemplateDecl *FunctionTemplate, llvm::SmallVectorImpl &Deduced); //===--------------------------------------------------------------------===// // C++ Template Instantiation // MultiLevelTemplateArgumentList getTemplateInstantiationArgs(NamedDecl *D, const TemplateArgumentList *Innermost = 0); /// \brief A template instantiation that is currently in progress. struct ActiveTemplateInstantiation { /// \brief The kind of template instantiation we are performing enum InstantiationKind { /// We are instantiating a template declaration. The entity is /// the declaration we're instantiating (e.g., a CXXRecordDecl). TemplateInstantiation, /// We are instantiating a default argument for a template /// parameter. The Entity is the template, and /// TemplateArgs/NumTemplateArguments provides the template /// arguments as specified. /// FIXME: Use a TemplateArgumentList DefaultTemplateArgumentInstantiation, /// We are instantiating a default argument for a function. /// The Entity is the ParmVarDecl, and TemplateArgs/NumTemplateArgs /// provides the template arguments as specified. DefaultFunctionArgumentInstantiation, /// We are substituting explicit template arguments provided for /// a function template. The entity is a FunctionTemplateDecl. ExplicitTemplateArgumentSubstitution, /// We are substituting template argument determined as part of /// template argument deduction for either a class template /// partial specialization or a function template. The /// Entity is either a ClassTemplatePartialSpecializationDecl or /// a FunctionTemplateDecl. DeducedTemplateArgumentSubstitution, /// We are substituting prior template arguments into a new /// template parameter. The template parameter itself is either a /// NonTypeTemplateParmDecl or a TemplateTemplateParmDecl. PriorTemplateArgumentSubstitution, /// We are checking the validity of a default template argument that /// has been used when naming a template-id. DefaultTemplateArgumentChecking } Kind; /// \brief The point of instantiation within the source code. SourceLocation PointOfInstantiation; /// \brief The template in which we are performing the instantiation, /// for substitutions of prior template arguments. TemplateDecl *Template; /// \brief The entity that is being instantiated. uintptr_t Entity; /// \brief The list of template arguments we are substituting, if they /// are not part of the entity. const TemplateArgument *TemplateArgs; /// \brief The number of template arguments in TemplateArgs. unsigned NumTemplateArgs; /// \brief The source range that covers the construct that cause /// the instantiation, e.g., the template-id that causes a class /// template instantiation. SourceRange InstantiationRange; ActiveTemplateInstantiation() : Kind(TemplateInstantiation), Template(0), Entity(0), TemplateArgs(0), NumTemplateArgs(0) {} /// \brief Determines whether this template is an actual instantiation /// that should be counted toward the maximum instantiation depth. bool isInstantiationRecord() const; friend bool operator==(const ActiveTemplateInstantiation &X, const ActiveTemplateInstantiation &Y) { if (X.Kind != Y.Kind) return false; if (X.Entity != Y.Entity) return false; switch (X.Kind) { case TemplateInstantiation: return true; case PriorTemplateArgumentSubstitution: case DefaultTemplateArgumentChecking: if (X.Template != Y.Template) return false; // Fall through case DefaultTemplateArgumentInstantiation: case ExplicitTemplateArgumentSubstitution: case DeducedTemplateArgumentSubstitution: case DefaultFunctionArgumentInstantiation: return X.TemplateArgs == Y.TemplateArgs; } return true; } friend bool operator!=(const ActiveTemplateInstantiation &X, const ActiveTemplateInstantiation &Y) { return !(X == Y); } }; /// \brief List of active template instantiations. /// /// This vector is treated as a stack. As one template instantiation /// requires another template instantiation, additional /// instantiations are pushed onto the stack up to a /// user-configurable limit LangOptions::InstantiationDepth. llvm::SmallVector ActiveTemplateInstantiations; /// \brief The number of ActiveTemplateInstantiation entries in /// \c ActiveTemplateInstantiations that are not actual instantiations and, /// therefore, should not be counted as part of the instantiation depth. unsigned NonInstantiationEntries; /// \brief The last template from which a template instantiation /// error or warning was produced. /// /// This value is used to suppress printing of redundant template /// instantiation backtraces when there are multiple errors in the /// same instantiation. FIXME: Does this belong in Sema? It's tough /// to implement it anywhere else. ActiveTemplateInstantiation LastTemplateInstantiationErrorContext; /// \brief A stack object to be created when performing template /// instantiation. /// /// Construction of an object of type \c InstantiatingTemplate /// pushes the current instantiation onto the stack of active /// instantiations. If the size of this stack exceeds the maximum /// number of recursive template instantiations, construction /// produces an error and evaluates true. /// /// Destruction of this object will pop the named instantiation off /// the stack. struct InstantiatingTemplate { /// \brief Note that we are instantiating a class template, /// function template, or a member thereof. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, Decl *Entity, SourceRange InstantiationRange = SourceRange()); /// \brief Note that we are instantiating a default argument in a /// template-id. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, TemplateDecl *Template, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs, SourceRange InstantiationRange = SourceRange()); /// \brief Note that we are instantiating a default argument in a /// template-id. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, FunctionTemplateDecl *FunctionTemplate, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs, ActiveTemplateInstantiation::InstantiationKind Kind, SourceRange InstantiationRange = SourceRange()); /// \brief Note that we are instantiating as part of template /// argument deduction for a class template partial /// specialization. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, ClassTemplatePartialSpecializationDecl *PartialSpec, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs, SourceRange InstantiationRange = SourceRange()); InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, ParmVarDecl *Param, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs, SourceRange InstantiationRange = SourceRange()); /// \brief Note that we are substituting prior template arguments into a /// non-type or template template parameter. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, TemplateDecl *Template, NonTypeTemplateParmDecl *Param, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs, SourceRange InstantiationRange); InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, TemplateDecl *Template, TemplateTemplateParmDecl *Param, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs, SourceRange InstantiationRange); /// \brief Note that we are checking the default template argument /// against the template parameter for a given template-id. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, TemplateDecl *Template, NamedDecl *Param, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs, SourceRange InstantiationRange); /// \brief Note that we have finished instantiating this template. void Clear(); ~InstantiatingTemplate() { Clear(); } /// \brief Determines whether we have exceeded the maximum /// recursive template instantiations. operator bool() const { return Invalid; } private: Sema &SemaRef; bool Invalid; bool CheckInstantiationDepth(SourceLocation PointOfInstantiation, SourceRange InstantiationRange); InstantiatingTemplate(const InstantiatingTemplate&); // not implemented InstantiatingTemplate& operator=(const InstantiatingTemplate&); // not implemented }; void PrintInstantiationStack(); /// \brief Determines whether we are currently in a context where /// template argument substitution failures are not considered /// errors. /// /// When this routine returns true, the emission of most diagnostics /// will be suppressed and there will be no local error recovery. bool isSFINAEContext() const; /// \brief RAII class used to determine whether SFINAE has /// trapped any errors that occur during template argument /// deduction. class SFINAETrap { Sema &SemaRef; unsigned PrevSFINAEErrors; public: explicit SFINAETrap(Sema &SemaRef) : SemaRef(SemaRef), PrevSFINAEErrors(SemaRef.NumSFINAEErrors) { } ~SFINAETrap() { SemaRef.NumSFINAEErrors = PrevSFINAEErrors; } /// \brief Determine whether any SFINAE errors have been trapped. bool hasErrorOccurred() const { return SemaRef.NumSFINAEErrors > PrevSFINAEErrors; } }; /// \brief A stack-allocated class that identifies which local /// variable declaration instantiations are present in this scope. /// /// A new instance of this class type will be created whenever we /// instantiate a new function declaration, which will have its own /// set of parameter declarations. class LocalInstantiationScope { /// \brief Reference to the semantic analysis that is performing /// this template instantiation. Sema &SemaRef; /// \brief A mapping from local declarations that occur /// within a template to their instantiations. /// /// This mapping is used during instantiation to keep track of, /// e.g., function parameter and variable declarations. For example, /// given: /// /// \code /// template T add(T x, T y) { return x + y; } /// \endcode /// /// when we instantiate add, we will introduce a mapping from /// the ParmVarDecl for 'x' that occurs in the template to the /// instantiated ParmVarDecl for 'x'. llvm::DenseMap LocalDecls; /// \brief The outer scope, in which contains local variable /// definitions from some other instantiation (that may not be /// relevant to this particular scope). LocalInstantiationScope *Outer; // This class is non-copyable LocalInstantiationScope(const LocalInstantiationScope &); LocalInstantiationScope &operator=(const LocalInstantiationScope &); public: LocalInstantiationScope(Sema &SemaRef, bool CombineWithOuterScope = false) : SemaRef(SemaRef), Outer(SemaRef.CurrentInstantiationScope) { if (!CombineWithOuterScope) SemaRef.CurrentInstantiationScope = this; else assert(SemaRef.CurrentInstantiationScope && "No outer instantiation scope?"); } ~LocalInstantiationScope() { SemaRef.CurrentInstantiationScope = Outer; } Decl *getInstantiationOf(const Decl *D) { Decl *Result = LocalDecls[D]; assert(Result && "declaration was not instantiated in this scope!"); return Result; } VarDecl *getInstantiationOf(const VarDecl *Var) { return cast(getInstantiationOf(cast(Var))); } ParmVarDecl *getInstantiationOf(const ParmVarDecl *Var) { return cast(getInstantiationOf(cast(Var))); } NonTypeTemplateParmDecl *getInstantiationOf( const NonTypeTemplateParmDecl *Var) { return cast(getInstantiationOf(cast(Var))); } void InstantiatedLocal(const Decl *D, Decl *Inst) { Decl *&Stored = LocalDecls[D]; assert(!Stored && "Already instantiated this local"); Stored = Inst; } }; /// \brief The current instantiation scope used to store local /// variables. LocalInstantiationScope *CurrentInstantiationScope; /// \brief An entity for which implicit template instantiation is required. /// /// The source location associated with the declaration is the first place in /// the source code where the declaration was "used". It is not necessarily /// the point of instantiation (which will be either before or after the /// namespace-scope declaration that triggered this implicit instantiation), /// However, it is the location that diagnostics should generally refer to, /// because users will need to know what code triggered the instantiation. typedef std::pair PendingImplicitInstantiation; /// \brief The queue of implicit template instantiations that are required /// but have not yet been performed. std::deque PendingImplicitInstantiations; void PerformPendingImplicitInstantiations(); DeclaratorInfo *SubstType(DeclaratorInfo *T, const MultiLevelTemplateArgumentList &TemplateArgs, SourceLocation Loc, DeclarationName Entity); QualType SubstType(QualType T, const MultiLevelTemplateArgumentList &TemplateArgs, SourceLocation Loc, DeclarationName Entity); OwningExprResult SubstExpr(Expr *E, const MultiLevelTemplateArgumentList &TemplateArgs); OwningStmtResult SubstStmt(Stmt *S, const MultiLevelTemplateArgumentList &TemplateArgs); Decl *SubstDecl(Decl *D, DeclContext *Owner, const MultiLevelTemplateArgumentList &TemplateArgs); bool SubstBaseSpecifiers(CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs); bool InstantiateClass(SourceLocation PointOfInstantiation, CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs, TemplateSpecializationKind TSK, bool Complain = true); bool InstantiateClassTemplateSpecialization(SourceLocation PointOfInstantiation, ClassTemplateSpecializationDecl *ClassTemplateSpec, TemplateSpecializationKind TSK, bool Complain = true); void InstantiateClassMembers(SourceLocation PointOfInstantiation, CXXRecordDecl *Instantiation, const MultiLevelTemplateArgumentList &TemplateArgs, TemplateSpecializationKind TSK); void InstantiateClassTemplateSpecializationMembers( SourceLocation PointOfInstantiation, ClassTemplateSpecializationDecl *ClassTemplateSpec, TemplateSpecializationKind TSK); NestedNameSpecifier * SubstNestedNameSpecifier(NestedNameSpecifier *NNS, SourceRange Range, const MultiLevelTemplateArgumentList &TemplateArgs); TemplateName SubstTemplateName(TemplateName Name, SourceLocation Loc, const MultiLevelTemplateArgumentList &TemplateArgs); bool Subst(const TemplateArgumentLoc &Arg, TemplateArgumentLoc &Result, const MultiLevelTemplateArgumentList &TemplateArgs); void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, FunctionDecl *Function, bool Recursive = false, bool DefinitionRequired = false); void InstantiateStaticDataMemberDefinition( SourceLocation PointOfInstantiation, VarDecl *Var, bool Recursive = false, bool DefinitionRequired = false); void InstantiateMemInitializers(CXXConstructorDecl *New, const CXXConstructorDecl *Tmpl, const MultiLevelTemplateArgumentList &TemplateArgs); NamedDecl *FindInstantiatedDecl(NamedDecl *D, const MultiLevelTemplateArgumentList &TemplateArgs); DeclContext *FindInstantiatedContext(DeclContext *DC, const MultiLevelTemplateArgumentList &TemplateArgs); // Objective-C declarations. virtual DeclPtrTy ActOnStartClassInterface(SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *SuperName, SourceLocation SuperLoc, const DeclPtrTy *ProtoRefs, unsigned NumProtoRefs, SourceLocation EndProtoLoc, AttributeList *AttrList); virtual DeclPtrTy ActOnCompatiblityAlias( SourceLocation AtCompatibilityAliasLoc, IdentifierInfo *AliasName, SourceLocation AliasLocation, IdentifierInfo *ClassName, SourceLocation ClassLocation); void CheckForwardProtocolDeclarationForCircularDependency( IdentifierInfo *PName, SourceLocation &PLoc, SourceLocation PrevLoc, const ObjCList &PList); virtual DeclPtrTy ActOnStartProtocolInterface( SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName, SourceLocation ProtocolLoc, const DeclPtrTy *ProtoRefNames, unsigned NumProtoRefs, SourceLocation EndProtoLoc, AttributeList *AttrList); virtual DeclPtrTy ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *CategoryName, SourceLocation CategoryLoc, const DeclPtrTy *ProtoRefs, unsigned NumProtoRefs, SourceLocation EndProtoLoc); virtual DeclPtrTy ActOnStartClassImplementation( SourceLocation AtClassImplLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *SuperClassname, SourceLocation SuperClassLoc); virtual DeclPtrTy ActOnStartCategoryImplementation( SourceLocation AtCatImplLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *CatName, SourceLocation CatLoc); virtual DeclPtrTy ActOnForwardClassDeclaration(SourceLocation Loc, IdentifierInfo **IdentList, SourceLocation *IdentLocs, unsigned NumElts); virtual DeclPtrTy ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, const IdentifierLocPair *IdentList, unsigned NumElts, AttributeList *attrList); virtual void FindProtocolDeclaration(bool WarnOnDeclarations, const IdentifierLocPair *ProtocolId, unsigned NumProtocols, llvm::SmallVectorImpl &Protocols); /// Ensure attributes are consistent with type. /// \param [in, out] Attributes The attributes to check; they will /// be modified to be consistent with \arg PropertyTy. void CheckObjCPropertyAttributes(QualType PropertyTy, SourceLocation Loc, unsigned &Attributes); void ProcessPropertyDecl(ObjCPropertyDecl *property, ObjCContainerDecl *DC); void DiagnosePropertyMismatch(ObjCPropertyDecl *Property, ObjCPropertyDecl *SuperProperty, const IdentifierInfo *Name); void ComparePropertiesInBaseAndSuper(ObjCInterfaceDecl *IDecl); void CompareMethodParamsInBaseAndSuper(Decl *IDecl, ObjCMethodDecl *MethodDecl, bool IsInstance); void MergeProtocolPropertiesIntoClass(Decl *CDecl, DeclPtrTy MergeProtocols); void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, ObjCInterfaceDecl *ID); void MergeOneProtocolPropertiesIntoClass(Decl *CDecl, ObjCProtocolDecl *PDecl); virtual void ActOnAtEnd(SourceLocation AtEndLoc, DeclPtrTy classDecl, DeclPtrTy *allMethods = 0, unsigned allNum = 0, DeclPtrTy *allProperties = 0, unsigned pNum = 0, DeclGroupPtrTy *allTUVars = 0, unsigned tuvNum = 0); virtual DeclPtrTy ActOnProperty(Scope *S, SourceLocation AtLoc, FieldDeclarator &FD, ObjCDeclSpec &ODS, Selector GetterSel, Selector SetterSel, DeclPtrTy ClassCategory, bool *OverridingProperty, tok::ObjCKeywordKind MethodImplKind); virtual DeclPtrTy ActOnPropertyImplDecl(SourceLocation AtLoc, SourceLocation PropertyLoc, bool ImplKind,DeclPtrTy ClassImplDecl, IdentifierInfo *PropertyId, IdentifierInfo *PropertyIvar); virtual DeclPtrTy ActOnMethodDeclaration( SourceLocation BeginLoc, // location of the + or -. SourceLocation EndLoc, // location of the ; or {. tok::TokenKind MethodType, DeclPtrTy ClassDecl, ObjCDeclSpec &ReturnQT, TypeTy *ReturnType, Selector Sel, // optional arguments. The number of types/arguments is obtained // from the Sel.getNumArgs(). ObjCArgInfo *ArgInfo, llvm::SmallVectorImpl &Cdecls, AttributeList *AttrList, tok::ObjCKeywordKind MethodImplKind, bool isVariadic = false); // Helper method for ActOnClassMethod/ActOnInstanceMethod. // Will search "local" class/category implementations for a method decl. // Will also search in class's root looking for instance method. // Returns 0 if no method is found. ObjCMethodDecl *LookupPrivateClassMethod(Selector Sel, ObjCInterfaceDecl *CDecl); ObjCMethodDecl *LookupPrivateInstanceMethod(Selector Sel, ObjCInterfaceDecl *ClassDecl); virtual OwningExprResult ActOnClassPropertyRefExpr( IdentifierInfo &receiverName, IdentifierInfo &propertyName, SourceLocation &receiverNameLoc, SourceLocation &propertyNameLoc); // ActOnClassMessage - used for both unary and keyword messages. // ArgExprs is optional - if it is present, the number of expressions // is obtained from NumArgs. virtual ExprResult ActOnClassMessage( Scope *S, IdentifierInfo *receivingClassName, Selector Sel, SourceLocation lbrac, SourceLocation receiverLoc, SourceLocation selectorLoc,SourceLocation rbrac, ExprTy **ArgExprs, unsigned NumArgs); // ActOnInstanceMessage - used for both unary and keyword messages. // ArgExprs is optional - if it is present, the number of expressions // is obtained from NumArgs. virtual ExprResult ActOnInstanceMessage( ExprTy *receiver, Selector Sel, SourceLocation lbrac, SourceLocation receiverLoc, SourceLocation rbrac, ExprTy **ArgExprs, unsigned NumArgs); /// ActOnPragmaPack - Called on well formed #pragma pack(...). virtual void ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name, ExprTy *Alignment, SourceLocation PragmaLoc, SourceLocation LParenLoc, SourceLocation RParenLoc); /// ActOnPragmaUnused - Called on well-formed '#pragma unused'. virtual void ActOnPragmaUnused(const Token *Identifiers, unsigned NumIdentifiers, Scope *curScope, SourceLocation PragmaLoc, SourceLocation LParenLoc, SourceLocation RParenLoc); NamedDecl *DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II); void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W); /// ActOnPragmaWeakID - Called on well formed #pragma weak ident. virtual void ActOnPragmaWeakID(IdentifierInfo* WeakName, SourceLocation PragmaLoc, SourceLocation WeakNameLoc); /// ActOnPragmaWeakAlias - Called on well formed #pragma weak ident = ident. virtual void ActOnPragmaWeakAlias(IdentifierInfo* WeakName, IdentifierInfo* AliasName, SourceLocation PragmaLoc, SourceLocation WeakNameLoc, SourceLocation AliasNameLoc); /// getPragmaPackAlignment() - Return the current alignment as specified by /// the current #pragma pack directive, or 0 if none is currently active. unsigned getPragmaPackAlignment() const; /// FreePackedContext - Deallocate and null out PackContext. void FreePackedContext(); /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit /// cast. If there is already an implicit cast, merge into the existing one. /// If isLvalue, the result of the cast is an lvalue. void ImpCastExprToType(Expr *&Expr, QualType Type, CastExpr::CastKind Kind, bool isLvalue = false); // UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts // functions and arrays to their respective pointers (C99 6.3.2.1). Expr *UsualUnaryConversions(Expr *&expr); // DefaultFunctionArrayConversion - converts functions and arrays // to their respective pointers (C99 6.3.2.1). void DefaultFunctionArrayConversion(Expr *&expr); // DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that // do not have a prototype. Integer promotions are performed on each // argument, and arguments that have type float are promoted to double. void DefaultArgumentPromotion(Expr *&Expr); // Used for emitting the right warning by DefaultVariadicArgumentPromotion enum VariadicCallType { VariadicFunction, VariadicBlock, VariadicMethod, VariadicConstructor }; // DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but // will warn if the resulting type is not a POD type. bool DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT); // UsualArithmeticConversions - performs the UsualUnaryConversions on it's // operands and then handles various conversions that are common to binary // operators (C99 6.3.1.8). If both operands aren't arithmetic, this // routine returns the first non-arithmetic type found. The client is // responsible for emitting appropriate error diagnostics. QualType UsualArithmeticConversions(Expr *&lExpr, Expr *&rExpr, bool isCompAssign = false); /// AssignConvertType - All of the 'assignment' semantic checks return this /// enum to indicate whether the assignment was allowed. These checks are /// done for simple assignments, as well as initialization, return from /// function, argument passing, etc. The query is phrased in terms of a /// source and destination type. enum AssignConvertType { /// Compatible - the types are compatible according to the standard. Compatible, /// PointerToInt - The assignment converts a pointer to an int, which we /// accept as an extension. PointerToInt, /// IntToPointer - The assignment converts an int to a pointer, which we /// accept as an extension. IntToPointer, /// FunctionVoidPointer - The assignment is between a function pointer and /// void*, which the standard doesn't allow, but we accept as an extension. FunctionVoidPointer, /// IncompatiblePointer - The assignment is between two pointers types that /// are not compatible, but we accept them as an extension. IncompatiblePointer, /// IncompatiblePointer - The assignment is between two pointers types which /// point to integers which have a different sign, but are otherwise identical. /// This is a subset of the above, but broken out because it's by far the most /// common case of incompatible pointers. IncompatiblePointerSign, /// CompatiblePointerDiscardsQualifiers - The assignment discards /// c/v/r qualifiers, which we accept as an extension. CompatiblePointerDiscardsQualifiers, /// IncompatibleNestedPointerQualifiers - The assignment is between two /// nested pointer types, and the qualifiers other than the first two /// levels differ e.g. char ** -> const char **, but we accept them as an /// extension. IncompatibleNestedPointerQualifiers, /// IncompatibleVectors - The assignment is between two vector types that /// have the same size, which we accept as an extension. IncompatibleVectors, /// IntToBlockPointer - The assignment converts an int to a block /// pointer. We disallow this. IntToBlockPointer, /// IncompatibleBlockPointer - The assignment is between two block /// pointers types that are not compatible. IncompatibleBlockPointer, /// IncompatibleObjCQualifiedId - The assignment is between a qualified /// id type and something else (that is incompatible with it). For example, /// "id " = "Foo *", where "Foo *" doesn't implement the XXX protocol. IncompatibleObjCQualifiedId, /// Incompatible - We reject this conversion outright, it is invalid to /// represent it in the AST. Incompatible }; /// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the /// assignment conversion type specified by ConvTy. This returns true if the /// conversion was invalid or false if the conversion was accepted. bool DiagnoseAssignmentResult(AssignConvertType ConvTy, SourceLocation Loc, QualType DstType, QualType SrcType, Expr *SrcExpr, const char *Flavor); /// CheckAssignmentConstraints - Perform type checking for assignment, /// argument passing, variable initialization, and function return values. /// This routine is only used by the following two methods. C99 6.5.16. AssignConvertType CheckAssignmentConstraints(QualType lhs, QualType rhs); // CheckSingleAssignmentConstraints - Currently used by // CheckAssignmentOperands, and ActOnReturnStmt. Prior to type checking, // this routine performs the default function/array converions. AssignConvertType CheckSingleAssignmentConstraints(QualType lhs, Expr *&rExpr); // \brief If the lhs type is a transparent union, check whether we // can initialize the transparent union with the given expression. AssignConvertType CheckTransparentUnionArgumentConstraints(QualType lhs, Expr *&rExpr); // Helper function for CheckAssignmentConstraints (C99 6.5.16.1p1) AssignConvertType CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType); // Helper function for CheckAssignmentConstraints involving two // block pointer types. AssignConvertType CheckBlockPointerTypesForAssignment(QualType lhsType, QualType rhsType); bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType); bool CheckExceptionSpecCompatibility(Expr *From, QualType ToType); bool PerformImplicitConversion(Expr *&From, QualType ToType, const char *Flavor, bool AllowExplicit = false, bool Elidable = false); bool PerformImplicitConversion(Expr *&From, QualType ToType, const char *Flavor, bool AllowExplicit, bool Elidable, ImplicitConversionSequence& ICS); bool PerformImplicitConversion(Expr *&From, QualType ToType, const ImplicitConversionSequence& ICS, const char *Flavor, bool IgnoreBaseAccess = false); bool PerformImplicitConversion(Expr *&From, QualType ToType, const StandardConversionSequence& SCS, const char *Flavor, bool IgnoreBaseAccess); bool BuildCXXDerivedToBaseExpr(Expr *&From, CastExpr::CastKind CastKind, const ImplicitConversionSequence& ICS, const char *Flavor); /// the following "Check" methods will return a valid/converted QualType /// or a null QualType (indicating an error diagnostic was issued). /// type checking binary operators (subroutines of CreateBuiltinBinOp). QualType InvalidOperands(SourceLocation l, Expr *&lex, Expr *&rex); QualType CheckPointerToMemberOperands( // C++ 5.5 Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isIndirect); QualType CheckMultiplyDivideOperands( // C99 6.5.5 Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false); QualType CheckRemainderOperands( // C99 6.5.5 Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false); QualType CheckAdditionOperands( // C99 6.5.6 Expr *&lex, Expr *&rex, SourceLocation OpLoc, QualType* CompLHSTy = 0); QualType CheckSubtractionOperands( // C99 6.5.6 Expr *&lex, Expr *&rex, SourceLocation OpLoc, QualType* CompLHSTy = 0); QualType CheckShiftOperands( // C99 6.5.7 Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false); QualType CheckCompareOperands( // C99 6.5.8/9 Expr *&lex, Expr *&rex, SourceLocation OpLoc, unsigned Opc, bool isRelational); QualType CheckBitwiseOperands( // C99 6.5.[10...12] Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false); QualType CheckLogicalOperands( // C99 6.5.[13,14] Expr *&lex, Expr *&rex, SourceLocation OpLoc); // CheckAssignmentOperands is used for both simple and compound assignment. // For simple assignment, pass both expressions and a null converted type. // For compound assignment, pass both expressions and the converted type. QualType CheckAssignmentOperands( // C99 6.5.16.[1,2] Expr *lex, Expr *&rex, SourceLocation OpLoc, QualType convertedType); QualType CheckCommaOperands( // C99 6.5.17 Expr *lex, Expr *&rex, SourceLocation OpLoc); QualType CheckConditionalOperands( // C99 6.5.15 Expr *&cond, Expr *&lhs, Expr *&rhs, SourceLocation questionLoc); QualType CXXCheckConditionalOperands( // C++ 5.16 Expr *&cond, Expr *&lhs, Expr *&rhs, SourceLocation questionLoc); QualType FindCompositePointerType(Expr *&E1, Expr *&E2); // C++ 5.9 /// type checking for vector binary operators. inline QualType CheckVectorOperands(SourceLocation l, Expr *&lex, Expr *&rex); inline QualType CheckVectorCompareOperands(Expr *&lex, Expr *&rx, SourceLocation l, bool isRel); /// type checking unary operators (subroutines of ActOnUnaryOp). /// C99 6.5.3.1, 6.5.3.2, 6.5.3.4 QualType CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc, bool isInc); QualType CheckAddressOfOperand(Expr *op, SourceLocation OpLoc); QualType CheckIndirectionOperand(Expr *op, SourceLocation OpLoc); QualType CheckRealImagOperand(Expr *&Op, SourceLocation OpLoc, bool isReal); /// type checking primary expressions. QualType CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc, const IdentifierInfo *Comp, SourceLocation CmpLoc); /// type checking declaration initializers (C99 6.7.8) bool CheckInitializerTypes(Expr *&simpleInit_or_initList, QualType &declType, SourceLocation InitLoc,DeclarationName InitEntity, bool DirectInit); bool CheckInitList(InitListExpr *&InitList, QualType &DeclType); bool CheckForConstantInitializer(Expr *e, QualType t); bool CheckValueInitialization(QualType Type, SourceLocation Loc); // type checking C++ declaration initializers (C++ [dcl.init]). /// ReferenceCompareResult - Expresses the result of comparing two /// types (cv1 T1 and cv2 T2) to determine their compatibility for the /// purposes of initialization by reference (C++ [dcl.init.ref]p4). enum ReferenceCompareResult { /// Ref_Incompatible - The two types are incompatible, so direct /// reference binding is not possible. Ref_Incompatible = 0, /// Ref_Related - The two types are reference-related, which means /// that their unqualified forms (T1 and T2) are either the same /// or T1 is a base class of T2. Ref_Related, /// Ref_Compatible_With_Added_Qualification - The two types are /// reference-compatible with added qualification, meaning that /// they are reference-compatible and the qualifiers on T1 (cv1) /// are greater than the qualifiers on T2 (cv2). Ref_Compatible_With_Added_Qualification, /// Ref_Compatible - The two types are reference-compatible and /// have equivalent qualifiers (cv1 == cv2). Ref_Compatible }; ReferenceCompareResult CompareReferenceRelationship(SourceLocation Loc, QualType T1, QualType T2, bool& DerivedToBase); bool CheckReferenceInit(Expr *&simpleInit_or_initList, QualType declType, SourceLocation DeclLoc, bool SuppressUserConversions, bool AllowExplicit, bool ForceRValue, ImplicitConversionSequence *ICS = 0, bool IgnoreBaseAccess = false); /// CheckCastTypes - Check type constraints for casting between types under /// C semantics, or forward to CXXCheckCStyleCast in C++. bool CheckCastTypes(SourceRange TyRange, QualType CastTy, Expr *&CastExpr, CastExpr::CastKind &Kind, CXXMethodDecl *& ConversionDecl, bool FunctionalStyle = false); // CheckVectorCast - check type constraints for vectors. // Since vectors are an extension, there are no C standard reference for this. // We allow casting between vectors and integer datatypes of the same size. // returns true if the cast is invalid bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty, CastExpr::CastKind &Kind); // CheckExtVectorCast - check type constraints for extended vectors. // Since vectors are an extension, there are no C standard reference for this. // We allow casting between vectors and integer datatypes of the same size, // or vectors and the element type of that vector. // returns true if the cast is invalid bool CheckExtVectorCast(SourceRange R, QualType VectorTy, Expr *&CastExpr, CastExpr::CastKind &Kind); /// CXXCheckCStyleCast - Check constraints of a C-style or function-style /// cast under C++ semantics. bool CXXCheckCStyleCast(SourceRange R, QualType CastTy, Expr *&CastExpr, CastExpr::CastKind &Kind, bool FunctionalStyle, CXXMethodDecl *&ConversionDecl); /// CheckMessageArgumentTypes - Check types in an Obj-C message send. /// \param Method - May be null. /// \param [out] ReturnType - The return type of the send. /// \return true iff there were any incompatible types. bool CheckMessageArgumentTypes(Expr **Args, unsigned NumArgs, Selector Sel, ObjCMethodDecl *Method, bool isClassMessage, SourceLocation lbrac, SourceLocation rbrac, QualType &ReturnType); /// CheckBooleanCondition - Diagnose problems involving the use of /// the given expression as a boolean condition (e.g. in an if /// statement). Also performs the standard function and array /// decays, possibly changing the input variable. /// /// \param Loc - A location associated with the condition, e.g. the /// 'if' keyword. /// \return true iff there were any errors bool CheckBooleanCondition(Expr *&CondExpr, SourceLocation Loc); /// DiagnoseAssignmentAsCondition - Given that an expression is /// being used as a boolean condition, warn if it's an assignment. void DiagnoseAssignmentAsCondition(Expr *E); /// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid. bool CheckCXXBooleanCondition(Expr *&CondExpr); /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have /// the specified width and sign. If an overflow occurs, detect it and emit /// the specified diagnostic. void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal, unsigned NewWidth, bool NewSign, SourceLocation Loc, unsigned DiagID); /// Checks that the Objective-C declaration is declared in the global scope. /// Emits an error and marks the declaration as invalid if it's not declared /// in the global scope. bool CheckObjCDeclScope(Decl *D); void InitBuiltinVaListType(); /// VerifyIntegerConstantExpression - verifies that an expression is an ICE, /// and reports the appropriate diagnostics. Returns false on success. /// Can optionally return the value of the expression. bool VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result = 0); /// VerifyBitField - verifies that a bit field expression is an ICE and has /// the correct width, and that the field type is valid. /// Returns false on success. /// Can optionally return whether the bit-field is of width 0 bool VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName, QualType FieldTy, const Expr *BitWidth, bool *ZeroWidth = 0); /// \name Code completion //@{ virtual void CodeCompleteOrdinaryName(Scope *S); virtual void CodeCompleteMemberReferenceExpr(Scope *S, ExprTy *Base, SourceLocation OpLoc, bool IsArrow); virtual void CodeCompleteTag(Scope *S, unsigned TagSpec); virtual void CodeCompleteCase(Scope *S); virtual void CodeCompleteCall(Scope *S, ExprTy *Fn, ExprTy **Args, unsigned NumArgs); virtual void CodeCompleteQualifiedId(Scope *S, const CXXScopeSpec &SS, bool EnteringContext); virtual void CodeCompleteUsing(Scope *S); virtual void CodeCompleteUsingDirective(Scope *S); virtual void CodeCompleteNamespaceDecl(Scope *S); virtual void CodeCompleteNamespaceAliasDecl(Scope *S); virtual void CodeCompleteOperatorName(Scope *S); virtual void CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS); virtual void CodeCompleteObjCPropertyGetter(Scope *S, DeclPtrTy ClassDecl, DeclPtrTy *Methods, unsigned NumMethods); virtual void CodeCompleteObjCPropertySetter(Scope *S, DeclPtrTy ClassDecl, DeclPtrTy *Methods, unsigned NumMethods); virtual void CodeCompleteObjCClassMessage(Scope *S, IdentifierInfo *FName, SourceLocation FNameLoc, IdentifierInfo **SelIdents, unsigned NumSelIdents); virtual void CodeCompleteObjCInstanceMessage(Scope *S, ExprTy *Receiver, IdentifierInfo **SelIdents, unsigned NumSelIdents); virtual void CodeCompleteObjCProtocolReferences(IdentifierLocPair *Protocols, unsigned NumProtocols); virtual void CodeCompleteObjCProtocolDecl(Scope *S); virtual void CodeCompleteObjCInterfaceDecl(Scope *S); virtual void CodeCompleteObjCSuperclass(Scope *S, IdentifierInfo *ClassName); virtual void CodeCompleteObjCImplementationDecl(Scope *S); virtual void CodeCompleteObjCInterfaceCategory(Scope *S, IdentifierInfo *ClassName); virtual void CodeCompleteObjCImplementationCategory(Scope *S, IdentifierInfo *ClassName); virtual void CodeCompleteObjCPropertyDefinition(Scope *S, DeclPtrTy ObjCImpDecl); virtual void CodeCompleteObjCPropertySynthesizeIvar(Scope *S, IdentifierInfo *PropertyName, DeclPtrTy ObjCImpDecl); //@} //===--------------------------------------------------------------------===// // Extra semantic analysis beyond the C type system private: bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall); bool CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall); SourceLocation getLocationOfStringLiteralByte(const StringLiteral *SL, unsigned ByteNo) const; bool CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall); bool CheckObjCString(Expr *Arg); Action::OwningExprResult CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool SemaBuiltinVAStart(CallExpr *TheCall); bool SemaBuiltinUnorderedCompare(CallExpr *TheCall); bool SemaBuiltinUnaryFP(CallExpr *TheCall); bool SemaBuiltinStackAddress(CallExpr *TheCall); public: // Used by C++ template instantiation. Action::OwningExprResult SemaBuiltinShuffleVector(CallExpr *TheCall); private: bool SemaBuiltinPrefetch(CallExpr *TheCall); bool SemaBuiltinObjectSize(CallExpr *TheCall); bool SemaBuiltinLongjmp(CallExpr *TheCall); bool SemaBuiltinAtomicOverloaded(CallExpr *TheCall); bool SemaBuiltinEHReturnDataRegNo(CallExpr *TheCall); bool SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall, bool HasVAListArg, unsigned format_idx, unsigned firstDataArg); void CheckPrintfString(const StringLiteral *FExpr, const Expr *OrigFormatExpr, const CallExpr *TheCall, bool HasVAListArg, unsigned format_idx, unsigned firstDataArg); void CheckNonNullArguments(const NonNullAttr *NonNull, const CallExpr *TheCall); void CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg, unsigned format_idx, unsigned firstDataArg); void CheckReturnStackAddr(Expr *RetValExp, QualType lhsType, SourceLocation ReturnLoc); void CheckFloatComparison(SourceLocation loc, Expr* lex, Expr* rex); }; //===--------------------------------------------------------------------===// // Typed version of Parser::ExprArg (smart pointer for wrapping Expr pointers). template class ExprOwningPtr : public Action::ExprArg { public: ExprOwningPtr(Sema *S, T *expr) : Action::ExprArg(*S, expr) {} void reset(T* p) { Action::ExprArg::operator=(p); } T* get() const { return static_cast(Action::ExprArg::get()); } T* take() { return static_cast(Action::ExprArg::take()); } T* release() { return take(); } T& operator*() const { return *get(); } T* operator->() const { return get(); } }; } // end namespace clang #endif