//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements extra semantic analysis beyond what is enforced // by the C type system. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "clang/Analysis/Analyses/PrintfFormatString.h" #include "clang/AST/ASTContext.h" #include "clang/AST/CharUnits.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtObjC.h" #include "clang/Lex/LiteralSupport.h" #include "clang/Lex/Preprocessor.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "clang/Basic/TargetBuiltins.h" #include using namespace clang; /// getLocationOfStringLiteralByte - Return a source location that points to the /// specified byte of the specified string literal. /// /// Strings are amazingly complex. They can be formed from multiple tokens and /// can have escape sequences in them in addition to the usual trigraph and /// escaped newline business. This routine handles this complexity. /// SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL, unsigned ByteNo) const { assert(!SL->isWide() && "This doesn't work for wide strings yet"); // Loop over all of the tokens in this string until we find the one that // contains the byte we're looking for. unsigned TokNo = 0; while (1) { assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!"); SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo); // Get the spelling of the string so that we can get the data that makes up // the string literal, not the identifier for the macro it is potentially // expanded through. SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc); // Re-lex the token to get its length and original spelling. std::pair LocInfo = SourceMgr.getDecomposedLoc(StrTokSpellingLoc); bool Invalid = false; llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid); if (Invalid) return StrTokSpellingLoc; const char *StrData = Buffer.data()+LocInfo.second; // Create a langops struct and enable trigraphs. This is sufficient for // relexing tokens. LangOptions LangOpts; LangOpts.Trigraphs = true; // Create a lexer starting at the beginning of this token. Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData, Buffer.end()); Token TheTok; TheLexer.LexFromRawLexer(TheTok); // Use the StringLiteralParser to compute the length of the string in bytes. StringLiteralParser SLP(&TheTok, 1, PP); unsigned TokNumBytes = SLP.GetStringLength(); // If the byte is in this token, return the location of the byte. if (ByteNo < TokNumBytes || (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) { unsigned Offset = StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP); // Now that we know the offset of the token in the spelling, use the // preprocessor to get the offset in the original source. return PP.AdvanceToTokenCharacter(StrTokLoc, Offset); } // Move to the next string token. ++TokNo; ByteNo -= TokNumBytes; } } /// CheckablePrintfAttr - does a function call have a "printf" attribute /// and arguments that merit checking? bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) { if (Format->getType() == "printf") return true; if (Format->getType() == "printf0") { // printf0 allows null "format" string; if so don't check format/args unsigned format_idx = Format->getFormatIdx() - 1; // Does the index refer to the implicit object argument? if (isa(TheCall)) { if (format_idx == 0) return false; --format_idx; } if (format_idx < TheCall->getNumArgs()) { Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts(); if (!Format->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) return true; } } return false; } Action::OwningExprResult Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { OwningExprResult TheCallResult(Owned(TheCall)); switch (BuiltinID) { case Builtin::BI__builtin___CFStringMakeConstantString: assert(TheCall->getNumArgs() == 1 && "Wrong # arguments to builtin CFStringMakeConstantString"); if (CheckObjCString(TheCall->getArg(0))) return ExprError(); break; case Builtin::BI__builtin_stdarg_start: case Builtin::BI__builtin_va_start: if (SemaBuiltinVAStart(TheCall)) return ExprError(); break; case Builtin::BI__builtin_isgreater: case Builtin::BI__builtin_isgreaterequal: case Builtin::BI__builtin_isless: case Builtin::BI__builtin_islessequal: case Builtin::BI__builtin_islessgreater: case Builtin::BI__builtin_isunordered: if (SemaBuiltinUnorderedCompare(TheCall)) return ExprError(); break; case Builtin::BI__builtin_fpclassify: if (SemaBuiltinFPClassification(TheCall, 6)) return ExprError(); break; case Builtin::BI__builtin_isfinite: case Builtin::BI__builtin_isinf: case Builtin::BI__builtin_isinf_sign: case Builtin::BI__builtin_isnan: case Builtin::BI__builtin_isnormal: if (SemaBuiltinFPClassification(TheCall, 1)) return ExprError(); break; case Builtin::BI__builtin_return_address: case Builtin::BI__builtin_frame_address: { llvm::APSInt Result; if (SemaBuiltinConstantArg(TheCall, 0, Result)) return ExprError(); break; } case Builtin::BI__builtin_eh_return_data_regno: { llvm::APSInt Result; if (SemaBuiltinConstantArg(TheCall, 0, Result)) return ExprError(); break; } case Builtin::BI__builtin_shufflevector: return SemaBuiltinShuffleVector(TheCall); // TheCall will be freed by the smart pointer here, but that's fine, since // SemaBuiltinShuffleVector guts it, but then doesn't release it. case Builtin::BI__builtin_prefetch: if (SemaBuiltinPrefetch(TheCall)) return ExprError(); break; case Builtin::BI__builtin_object_size: if (SemaBuiltinObjectSize(TheCall)) return ExprError(); break; case Builtin::BI__builtin_longjmp: if (SemaBuiltinLongjmp(TheCall)) return ExprError(); break; case Builtin::BI__sync_fetch_and_add: case Builtin::BI__sync_fetch_and_sub: case Builtin::BI__sync_fetch_and_or: case Builtin::BI__sync_fetch_and_and: case Builtin::BI__sync_fetch_and_xor: case Builtin::BI__sync_add_and_fetch: case Builtin::BI__sync_sub_and_fetch: case Builtin::BI__sync_and_and_fetch: case Builtin::BI__sync_or_and_fetch: case Builtin::BI__sync_xor_and_fetch: case Builtin::BI__sync_val_compare_and_swap: case Builtin::BI__sync_bool_compare_and_swap: case Builtin::BI__sync_lock_test_and_set: case Builtin::BI__sync_lock_release: if (SemaBuiltinAtomicOverloaded(TheCall)) return ExprError(); break; // Target specific builtins start here. case X86::BI__builtin_ia32_palignr128: case X86::BI__builtin_ia32_palignr: { llvm::APSInt Result; if (SemaBuiltinConstantArg(TheCall, 2, Result)) return ExprError(); break; } } return move(TheCallResult); } /// CheckFunctionCall - Check a direct function call for various correctness /// and safety properties not strictly enforced by the C type system. bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) { // Get the IdentifierInfo* for the called function. IdentifierInfo *FnInfo = FDecl->getIdentifier(); // None of the checks below are needed for functions that don't have // simple names (e.g., C++ conversion functions). if (!FnInfo) return false; // FIXME: This mechanism should be abstracted to be less fragile and // more efficient. For example, just map function ids to custom // handlers. // Printf checking. if (const FormatAttr *Format = FDecl->getAttr()) { if (CheckablePrintfAttr(Format, TheCall)) { bool HasVAListArg = Format->getFirstArg() == 0; CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1, HasVAListArg ? 0 : Format->getFirstArg() - 1); } } for (const NonNullAttr *NonNull = FDecl->getAttr(); NonNull; NonNull = NonNull->getNext()) CheckNonNullArguments(NonNull, TheCall); return false; } bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) { // Printf checking. const FormatAttr *Format = NDecl->getAttr(); if (!Format) return false; const VarDecl *V = dyn_cast(NDecl); if (!V) return false; QualType Ty = V->getType(); if (!Ty->isBlockPointerType()) return false; if (!CheckablePrintfAttr(Format, TheCall)) return false; bool HasVAListArg = Format->getFirstArg() == 0; CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1, HasVAListArg ? 0 : Format->getFirstArg() - 1); return false; } /// SemaBuiltinAtomicOverloaded - We have a call to a function like /// __sync_fetch_and_add, which is an overloaded function based on the pointer /// type of its first argument. The main ActOnCallExpr routines have already /// promoted the types of arguments because all of these calls are prototyped as /// void(...). /// /// This function goes through and does final semantic checking for these /// builtins, bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) { DeclRefExpr *DRE =cast(TheCall->getCallee()->IgnoreParenCasts()); FunctionDecl *FDecl = cast(DRE->getDecl()); // Ensure that we have at least one argument to do type inference from. if (TheCall->getNumArgs() < 1) return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least) << 0 << 1 << TheCall->getNumArgs() << TheCall->getCallee()->getSourceRange(); // Inspect the first argument of the atomic builtin. This should always be // a pointer type, whose element is an integral scalar or pointer type. // Because it is a pointer type, we don't have to worry about any implicit // casts here. Expr *FirstArg = TheCall->getArg(0); if (!FirstArg->getType()->isPointerType()) return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer) << FirstArg->getType() << FirstArg->getSourceRange(); QualType ValType = FirstArg->getType()->getAs()->getPointeeType(); if (!ValType->isIntegerType() && !ValType->isPointerType() && !ValType->isBlockPointerType()) return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr) << FirstArg->getType() << FirstArg->getSourceRange(); // We need to figure out which concrete builtin this maps onto. For example, // __sync_fetch_and_add with a 2 byte object turns into // __sync_fetch_and_add_2. #define BUILTIN_ROW(x) \ { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \ Builtin::BI##x##_8, Builtin::BI##x##_16 } static const unsigned BuiltinIndices[][5] = { BUILTIN_ROW(__sync_fetch_and_add), BUILTIN_ROW(__sync_fetch_and_sub), BUILTIN_ROW(__sync_fetch_and_or), BUILTIN_ROW(__sync_fetch_and_and), BUILTIN_ROW(__sync_fetch_and_xor), BUILTIN_ROW(__sync_add_and_fetch), BUILTIN_ROW(__sync_sub_and_fetch), BUILTIN_ROW(__sync_and_and_fetch), BUILTIN_ROW(__sync_or_and_fetch), BUILTIN_ROW(__sync_xor_and_fetch), BUILTIN_ROW(__sync_val_compare_and_swap), BUILTIN_ROW(__sync_bool_compare_and_swap), BUILTIN_ROW(__sync_lock_test_and_set), BUILTIN_ROW(__sync_lock_release) }; #undef BUILTIN_ROW // Determine the index of the size. unsigned SizeIndex; switch (Context.getTypeSizeInChars(ValType).getQuantity()) { case 1: SizeIndex = 0; break; case 2: SizeIndex = 1; break; case 4: SizeIndex = 2; break; case 8: SizeIndex = 3; break; case 16: SizeIndex = 4; break; default: return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size) << FirstArg->getType() << FirstArg->getSourceRange(); } // Each of these builtins has one pointer argument, followed by some number of // values (0, 1 or 2) followed by a potentially empty varags list of stuff // that we ignore. Find out which row of BuiltinIndices to read from as well // as the number of fixed args. unsigned BuiltinID = FDecl->getBuiltinID(); unsigned BuiltinIndex, NumFixed = 1; switch (BuiltinID) { default: assert(0 && "Unknown overloaded atomic builtin!"); case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break; case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break; case Builtin::BI__sync_fetch_and_or: BuiltinIndex = 2; break; case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break; case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break; case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break; case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break; case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break; case Builtin::BI__sync_or_and_fetch: BuiltinIndex = 8; break; case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break; case Builtin::BI__sync_val_compare_and_swap: BuiltinIndex = 10; NumFixed = 2; break; case Builtin::BI__sync_bool_compare_and_swap: BuiltinIndex = 11; NumFixed = 2; break; case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break; case Builtin::BI__sync_lock_release: BuiltinIndex = 13; NumFixed = 0; break; } // Now that we know how many fixed arguments we expect, first check that we // have at least that many. if (TheCall->getNumArgs() < 1+NumFixed) return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least) << 0 << 1+NumFixed << TheCall->getNumArgs() << TheCall->getCallee()->getSourceRange(); // Get the decl for the concrete builtin from this, we can tell what the // concrete integer type we should convert to is. unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex]; const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID); IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName); FunctionDecl *NewBuiltinDecl = cast(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID, TUScope, false, DRE->getLocStart())); const FunctionProtoType *BuiltinFT = NewBuiltinDecl->getType()->getAs(); ValType = BuiltinFT->getArgType(0)->getAs()->getPointeeType(); // If the first type needs to be converted (e.g. void** -> int*), do it now. if (BuiltinFT->getArgType(0) != FirstArg->getType()) { ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast); TheCall->setArg(0, FirstArg); } // Next, walk the valid ones promoting to the right type. for (unsigned i = 0; i != NumFixed; ++i) { Expr *Arg = TheCall->getArg(i+1); // If the argument is an implicit cast, then there was a promotion due to // "...", just remove it now. if (ImplicitCastExpr *ICE = dyn_cast(Arg)) { Arg = ICE->getSubExpr(); ICE->setSubExpr(0); ICE->Destroy(Context); TheCall->setArg(i+1, Arg); } // GCC does an implicit conversion to the pointer or integer ValType. This // can fail in some cases (1i -> int**), check for this error case now. CastExpr::CastKind Kind = CastExpr::CK_Unknown; CXXBaseSpecifierArray BasePath; if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, BasePath)) return true; // Okay, we have something that *can* be converted to the right type. Check // to see if there is a potentially weird extension going on here. This can // happen when you do an atomic operation on something like an char* and // pass in 42. The 42 gets converted to char. This is even more strange // for things like 45.123 -> char, etc. // FIXME: Do this check. ImpCastExprToType(Arg, ValType, Kind); TheCall->setArg(i+1, Arg); } // Switch the DeclRefExpr to refer to the new decl. DRE->setDecl(NewBuiltinDecl); DRE->setType(NewBuiltinDecl->getType()); // Set the callee in the CallExpr. // FIXME: This leaks the original parens and implicit casts. Expr *PromotedCall = DRE; UsualUnaryConversions(PromotedCall); TheCall->setCallee(PromotedCall); // Change the result type of the call to match the result type of the decl. TheCall->setType(NewBuiltinDecl->getResultType()); return false; } /// CheckObjCString - Checks that the argument to the builtin /// CFString constructor is correct /// FIXME: GCC currently emits the following warning: /// "warning: input conversion stopped due to an input byte that does not /// belong to the input codeset UTF-8" /// Note: It might also make sense to do the UTF-16 conversion here (would /// simplify the backend). bool Sema::CheckObjCString(Expr *Arg) { Arg = Arg->IgnoreParenCasts(); StringLiteral *Literal = dyn_cast(Arg); if (!Literal || Literal->isWide()) { Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant) << Arg->getSourceRange(); return true; } const char *Data = Literal->getStrData(); unsigned Length = Literal->getByteLength(); for (unsigned i = 0; i < Length; ++i) { if (!Data[i]) { Diag(getLocationOfStringLiteralByte(Literal, i), diag::warn_cfstring_literal_contains_nul_character) << Arg->getSourceRange(); break; } } return false; } /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity. /// Emit an error and return true on failure, return false on success. bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) { Expr *Fn = TheCall->getCallee(); if (TheCall->getNumArgs() > 2) { Diag(TheCall->getArg(2)->getLocStart(), diag::err_typecheck_call_too_many_args) << 0 /*function call*/ << 2 << TheCall->getNumArgs() << Fn->getSourceRange() << SourceRange(TheCall->getArg(2)->getLocStart(), (*(TheCall->arg_end()-1))->getLocEnd()); return true; } if (TheCall->getNumArgs() < 2) { return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least) << 0 /*function call*/ << 2 << TheCall->getNumArgs(); } // Determine whether the current function is variadic or not. BlockScopeInfo *CurBlock = getCurBlock(); bool isVariadic; if (CurBlock) isVariadic = CurBlock->isVariadic; else if (FunctionDecl *FD = getCurFunctionDecl()) isVariadic = FD->isVariadic(); else isVariadic = getCurMethodDecl()->isVariadic(); if (!isVariadic) { Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function); return true; } // Verify that the second argument to the builtin is the last argument of the // current function or method. bool SecondArgIsLastNamedArgument = false; const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts(); if (const DeclRefExpr *DR = dyn_cast(Arg)) { if (const ParmVarDecl *PV = dyn_cast(DR->getDecl())) { // FIXME: This isn't correct for methods (results in bogus warning). // Get the last formal in the current function. const ParmVarDecl *LastArg; if (CurBlock) LastArg = *(CurBlock->TheDecl->param_end()-1); else if (FunctionDecl *FD = getCurFunctionDecl()) LastArg = *(FD->param_end()-1); else LastArg = *(getCurMethodDecl()->param_end()-1); SecondArgIsLastNamedArgument = PV == LastArg; } } if (!SecondArgIsLastNamedArgument) Diag(TheCall->getArg(1)->getLocStart(), diag::warn_second_parameter_of_va_start_not_last_named_argument); return false; } /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and /// friends. This is declared to take (...), so we have to check everything. bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) { if (TheCall->getNumArgs() < 2) return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args) << 0 << 2 << TheCall->getNumArgs()/*function call*/; if (TheCall->getNumArgs() > 2) return Diag(TheCall->getArg(2)->getLocStart(), diag::err_typecheck_call_too_many_args) << 0 /*function call*/ << 2 << TheCall->getNumArgs() << SourceRange(TheCall->getArg(2)->getLocStart(), (*(TheCall->arg_end()-1))->getLocEnd()); Expr *OrigArg0 = TheCall->getArg(0); Expr *OrigArg1 = TheCall->getArg(1); // Do standard promotions between the two arguments, returning their common // type. QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false); // Make sure any conversions are pushed back into the call; this is // type safe since unordered compare builtins are declared as "_Bool // foo(...)". TheCall->setArg(0, OrigArg0); TheCall->setArg(1, OrigArg1); if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent()) return false; // If the common type isn't a real floating type, then the arguments were // invalid for this operation. if (!Res->isRealFloatingType()) return Diag(OrigArg0->getLocStart(), diag::err_typecheck_call_invalid_ordered_compare) << OrigArg0->getType() << OrigArg1->getType() << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd()); return false; } /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like /// __builtin_isnan and friends. This is declared to take (...), so we have /// to check everything. We expect the last argument to be a floating point /// value. bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) { if (TheCall->getNumArgs() < NumArgs) return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args) << 0 << NumArgs << TheCall->getNumArgs()/*function call*/; if (TheCall->getNumArgs() > NumArgs) return Diag(TheCall->getArg(NumArgs)->getLocStart(), diag::err_typecheck_call_too_many_args) << 0 /*function call*/ << NumArgs << TheCall->getNumArgs() << SourceRange(TheCall->getArg(NumArgs)->getLocStart(), (*(TheCall->arg_end()-1))->getLocEnd()); Expr *OrigArg = TheCall->getArg(NumArgs-1); if (OrigArg->isTypeDependent()) return false; // This operation requires a floating-point number if (!OrigArg->getType()->isRealFloatingType()) return Diag(OrigArg->getLocStart(), diag::err_typecheck_call_invalid_unary_fp) << OrigArg->getType() << OrigArg->getSourceRange(); return false; } /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector. // This is declared to take (...), so we have to check everything. Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) { if (TheCall->getNumArgs() < 3) return ExprError(Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least) << 0 /*function call*/ << 3 << TheCall->getNumArgs() << TheCall->getSourceRange()); unsigned numElements = std::numeric_limits::max(); if (!TheCall->getArg(0)->isTypeDependent() && !TheCall->getArg(1)->isTypeDependent()) { QualType FAType = TheCall->getArg(0)->getType(); QualType SAType = TheCall->getArg(1)->getType(); if (!FAType->isVectorType() || !SAType->isVectorType()) { Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector) << SourceRange(TheCall->getArg(0)->getLocStart(), TheCall->getArg(1)->getLocEnd()); return ExprError(); } if (!Context.hasSameUnqualifiedType(FAType, SAType)) { Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector) << SourceRange(TheCall->getArg(0)->getLocStart(), TheCall->getArg(1)->getLocEnd()); return ExprError(); } numElements = FAType->getAs()->getNumElements(); if (TheCall->getNumArgs() != numElements+2) { if (TheCall->getNumArgs() < numElements+2) return ExprError(Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args) << 0 /*function call*/ << numElements+2 << TheCall->getNumArgs() << TheCall->getSourceRange()); return ExprError(Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args) << 0 /*function call*/ << numElements+2 << TheCall->getNumArgs() << TheCall->getSourceRange()); } } for (unsigned i = 2; i < TheCall->getNumArgs(); i++) { if (TheCall->getArg(i)->isTypeDependent() || TheCall->getArg(i)->isValueDependent()) continue; llvm::APSInt Result; if (SemaBuiltinConstantArg(TheCall, i, Result)) return ExprError(); if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2) return ExprError(Diag(TheCall->getLocStart(), diag::err_shufflevector_argument_too_large) << TheCall->getArg(i)->getSourceRange()); } llvm::SmallVector exprs; for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) { exprs.push_back(TheCall->getArg(i)); TheCall->setArg(i, 0); } return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(), exprs.size(), exprs[0]->getType(), TheCall->getCallee()->getLocStart(), TheCall->getRParenLoc())); } /// SemaBuiltinPrefetch - Handle __builtin_prefetch. // This is declared to take (const void*, ...) and can take two // optional constant int args. bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) { unsigned NumArgs = TheCall->getNumArgs(); if (NumArgs > 3) return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args_at_most) << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); // Argument 0 is checked for us and the remaining arguments must be // constant integers. for (unsigned i = 1; i != NumArgs; ++i) { Expr *Arg = TheCall->getArg(i); llvm::APSInt Result; if (SemaBuiltinConstantArg(TheCall, i, Result)) return true; // FIXME: gcc issues a warning and rewrites these to 0. These // seems especially odd for the third argument since the default // is 3. if (i == 1) { if (Result.getLimitedValue() > 1) return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range) << "0" << "1" << Arg->getSourceRange(); } else { if (Result.getLimitedValue() > 3) return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range) << "0" << "3" << Arg->getSourceRange(); } } return false; } /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr /// TheCall is a constant expression. bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, llvm::APSInt &Result) { Expr *Arg = TheCall->getArg(ArgNum); DeclRefExpr *DRE =cast(TheCall->getCallee()->IgnoreParenCasts()); FunctionDecl *FDecl = cast(DRE->getDecl()); if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; if (!Arg->isIntegerConstantExpr(Result, Context)) return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type) << FDecl->getDeclName() << Arg->getSourceRange(); return false; } /// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr, /// int type). This simply type checks that type is one of the defined /// constants (0-3). // For compatability check 0-3, llvm only handles 0 and 2. bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) { llvm::APSInt Result; // Check constant-ness first. if (SemaBuiltinConstantArg(TheCall, 1, Result)) return true; Expr *Arg = TheCall->getArg(1); if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) { return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range) << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd()); } return false; } /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val). /// This checks that val is a constant 1. bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) { Expr *Arg = TheCall->getArg(1); llvm::APSInt Result; // TODO: This is less than ideal. Overload this to take a value. if (SemaBuiltinConstantArg(TheCall, 1, Result)) return true; if (Result != 1) return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val) << SourceRange(Arg->getLocStart(), Arg->getLocEnd()); return false; } // Handle i > 1 ? "x" : "y", recursivelly bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall, bool HasVAListArg, unsigned format_idx, unsigned firstDataArg) { if (E->isTypeDependent() || E->isValueDependent()) return false; switch (E->getStmtClass()) { case Stmt::ConditionalOperatorClass: { const ConditionalOperator *C = cast(E); return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg, format_idx, firstDataArg) && SemaCheckStringLiteral(C->getRHS(), TheCall, HasVAListArg, format_idx, firstDataArg); } case Stmt::ImplicitCastExprClass: { const ImplicitCastExpr *Expr = cast(E); return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg, format_idx, firstDataArg); } case Stmt::ParenExprClass: { const ParenExpr *Expr = cast(E); return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg, format_idx, firstDataArg); } case Stmt::DeclRefExprClass: { const DeclRefExpr *DR = cast(E); // As an exception, do not flag errors for variables binding to // const string literals. if (const VarDecl *VD = dyn_cast(DR->getDecl())) { bool isConstant = false; QualType T = DR->getType(); if (const ArrayType *AT = Context.getAsArrayType(T)) { isConstant = AT->getElementType().isConstant(Context); } else if (const PointerType *PT = T->getAs()) { isConstant = T.isConstant(Context) && PT->getPointeeType().isConstant(Context); } if (isConstant) { if (const Expr *Init = VD->getAnyInitializer()) return SemaCheckStringLiteral(Init, TheCall, HasVAListArg, format_idx, firstDataArg); } // For vprintf* functions (i.e., HasVAListArg==true), we add a // special check to see if the format string is a function parameter // of the function calling the printf function. If the function // has an attribute indicating it is a printf-like function, then we // should suppress warnings concerning non-literals being used in a call // to a vprintf function. For example: // // void // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){ // va_list ap; // va_start(ap, fmt); // vprintf(fmt, ap); // Do NOT emit a warning about "fmt". // ... // // // FIXME: We don't have full attribute support yet, so just check to see // if the argument is a DeclRefExpr that references a parameter. We'll // add proper support for checking the attribute later. if (HasVAListArg) if (isa(VD)) return true; } return false; } case Stmt::CallExprClass: { const CallExpr *CE = cast(E); if (const ImplicitCastExpr *ICE = dyn_cast(CE->getCallee())) { if (const DeclRefExpr *DRE = dyn_cast(ICE->getSubExpr())) { if (const FunctionDecl *FD = dyn_cast(DRE->getDecl())) { if (const FormatArgAttr *FA = FD->getAttr()) { unsigned ArgIndex = FA->getFormatIdx(); const Expr *Arg = CE->getArg(ArgIndex - 1); return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg, format_idx, firstDataArg); } } } } return false; } case Stmt::ObjCStringLiteralClass: case Stmt::StringLiteralClass: { const StringLiteral *StrE = NULL; if (const ObjCStringLiteral *ObjCFExpr = dyn_cast(E)) StrE = ObjCFExpr->getString(); else StrE = cast(E); if (StrE) { CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx, firstDataArg); return true; } return false; } default: return false; } } void Sema::CheckNonNullArguments(const NonNullAttr *NonNull, const CallExpr *TheCall) { for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end(); i != e; ++i) { const Expr *ArgExpr = TheCall->getArg(*i); if (ArgExpr->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg) << ArgExpr->getSourceRange(); } } /// CheckPrintfArguments - Check calls to printf (and similar functions) for /// correct use of format strings. /// /// HasVAListArg - A predicate indicating whether the printf-like /// function is passed an explicit va_arg argument (e.g., vprintf) /// /// format_idx - The index into Args for the format string. /// /// Improper format strings to functions in the printf family can be /// the source of bizarre bugs and very serious security holes. A /// good source of information is available in the following paper /// (which includes additional references): /// /// FormatGuard: Automatic Protection From printf Format String /// Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001. /// /// TODO: /// Functionality implemented: /// /// We can statically check the following properties for string /// literal format strings for non v.*printf functions (where the /// arguments are passed directly): // /// (1) Are the number of format conversions equal to the number of /// data arguments? /// /// (2) Does each format conversion correctly match the type of the /// corresponding data argument? /// /// Moreover, for all printf functions we can: /// /// (3) Check for a missing format string (when not caught by type checking). /// /// (4) Check for no-operation flags; e.g. using "#" with format /// conversion 'c' (TODO) /// /// (5) Check the use of '%n', a major source of security holes. /// /// (6) Check for malformed format conversions that don't specify anything. /// /// (7) Check for empty format strings. e.g: printf(""); /// /// (8) Check that the format string is a wide literal. /// /// All of these checks can be done by parsing the format string. /// void Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg, unsigned format_idx, unsigned firstDataArg) { const Expr *Fn = TheCall->getCallee(); // The way the format attribute works in GCC, the implicit this argument // of member functions is counted. However, it doesn't appear in our own // lists, so decrement format_idx in that case. if (isa(TheCall)) { // Catch a format attribute mistakenly referring to the object argument. if (format_idx == 0) return; --format_idx; if(firstDataArg != 0) --firstDataArg; } // CHECK: printf-like function is called with no format string. if (format_idx >= TheCall->getNumArgs()) { Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string) << Fn->getSourceRange(); return; } const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts(); // CHECK: format string is not a string literal. // // Dynamically generated format strings are difficult to // automatically vet at compile time. Requiring that format strings // are string literals: (1) permits the checking of format strings by // the compiler and thereby (2) can practically remove the source of // many format string exploits. // Format string can be either ObjC string (e.g. @"%d") or // C string (e.g. "%d") // ObjC string uses the same format specifiers as C string, so we can use // the same format string checking logic for both ObjC and C strings. if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx, firstDataArg)) return; // Literal format string found, check done! // If there are no arguments specified, warn with -Wformat-security, otherwise // warn only with -Wformat-nonliteral. if (TheCall->getNumArgs() == format_idx+1) Diag(TheCall->getArg(format_idx)->getLocStart(), diag::warn_printf_nonliteral_noargs) << OrigFormatExpr->getSourceRange(); else Diag(TheCall->getArg(format_idx)->getLocStart(), diag::warn_printf_nonliteral) << OrigFormatExpr->getSourceRange(); } namespace { class CheckPrintfHandler : public analyze_printf::FormatStringHandler { Sema &S; const StringLiteral *FExpr; const Expr *OrigFormatExpr; const unsigned FirstDataArg; const unsigned NumDataArgs; const bool IsObjCLiteral; const char *Beg; // Start of format string. const bool HasVAListArg; const CallExpr *TheCall; unsigned FormatIdx; llvm::BitVector CoveredArgs; bool usesPositionalArgs; bool atFirstArg; public: CheckPrintfHandler(Sema &s, const StringLiteral *fexpr, const Expr *origFormatExpr, unsigned firstDataArg, unsigned numDataArgs, bool isObjCLiteral, const char *beg, bool hasVAListArg, const CallExpr *theCall, unsigned formatIdx) : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), IsObjCLiteral(isObjCLiteral), Beg(beg), HasVAListArg(hasVAListArg), TheCall(theCall), FormatIdx(formatIdx), usesPositionalArgs(false), atFirstArg(true) { CoveredArgs.resize(numDataArgs); CoveredArgs.reset(); } void DoneProcessing(); void HandleIncompleteFormatSpecifier(const char *startSpecifier, unsigned specifierLen); bool HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS, const char *startSpecifier, unsigned specifierLen); virtual void HandleInvalidPosition(const char *startSpecifier, unsigned specifierLen, analyze_printf::PositionContext p); virtual void HandleZeroPosition(const char *startPos, unsigned posLen); void HandleNullChar(const char *nullCharacter); bool HandleFormatSpecifier(const analyze_printf::FormatSpecifier &FS, const char *startSpecifier, unsigned specifierLen); private: SourceRange getFormatStringRange(); SourceRange getFormatSpecifierRange(const char *startSpecifier, unsigned specifierLen); SourceLocation getLocationOfByte(const char *x); bool HandleAmount(const analyze_printf::OptionalAmount &Amt, unsigned k, const char *startSpecifier, unsigned specifierLen); void HandleFlags(const analyze_printf::FormatSpecifier &FS, llvm::StringRef flag, llvm::StringRef cspec, const char *startSpecifier, unsigned specifierLen); const Expr *getDataArg(unsigned i) const; }; } SourceRange CheckPrintfHandler::getFormatStringRange() { return OrigFormatExpr->getSourceRange(); } SourceRange CheckPrintfHandler:: getFormatSpecifierRange(const char *startSpecifier, unsigned specifierLen) { return SourceRange(getLocationOfByte(startSpecifier), getLocationOfByte(startSpecifier+specifierLen-1)); } SourceLocation CheckPrintfHandler::getLocationOfByte(const char *x) { return S.getLocationOfStringLiteralByte(FExpr, x - Beg); } void CheckPrintfHandler:: HandleIncompleteFormatSpecifier(const char *startSpecifier, unsigned specifierLen) { SourceLocation Loc = getLocationOfByte(startSpecifier); S.Diag(Loc, diag::warn_printf_incomplete_specifier) << getFormatSpecifierRange(startSpecifier, specifierLen); } void CheckPrintfHandler::HandleInvalidPosition(const char *startPos, unsigned posLen, analyze_printf::PositionContext p) { SourceLocation Loc = getLocationOfByte(startPos); S.Diag(Loc, diag::warn_printf_invalid_positional_specifier) << (unsigned) p << getFormatSpecifierRange(startPos, posLen); } void CheckPrintfHandler::HandleZeroPosition(const char *startPos, unsigned posLen) { SourceLocation Loc = getLocationOfByte(startPos); S.Diag(Loc, diag::warn_printf_zero_positional_specifier) << getFormatSpecifierRange(startPos, posLen); } bool CheckPrintfHandler:: HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS, const char *startSpecifier, unsigned specifierLen) { unsigned argIndex = FS.getArgIndex(); bool keepGoing = true; if (argIndex < NumDataArgs) { // Consider the argument coverered, even though the specifier doesn't // make sense. CoveredArgs.set(argIndex); } else { // If argIndex exceeds the number of data arguments we // don't issue a warning because that is just a cascade of warnings (and // they may have intended '%%' anyway). We don't want to continue processing // the format string after this point, however, as we will like just get // gibberish when trying to match arguments. keepGoing = false; } const analyze_printf::ConversionSpecifier &CS = FS.getConversionSpecifier(); SourceLocation Loc = getLocationOfByte(CS.getStart()); S.Diag(Loc, diag::warn_printf_invalid_conversion) << llvm::StringRef(CS.getStart(), CS.getLength()) << getFormatSpecifierRange(startSpecifier, specifierLen); return keepGoing; } void CheckPrintfHandler::HandleNullChar(const char *nullCharacter) { // The presence of a null character is likely an error. S.Diag(getLocationOfByte(nullCharacter), diag::warn_printf_format_string_contains_null_char) << getFormatStringRange(); } const Expr *CheckPrintfHandler::getDataArg(unsigned i) const { return TheCall->getArg(FirstDataArg + i); } void CheckPrintfHandler::HandleFlags(const analyze_printf::FormatSpecifier &FS, llvm::StringRef flag, llvm::StringRef cspec, const char *startSpecifier, unsigned specifierLen) { const analyze_printf::ConversionSpecifier &CS = FS.getConversionSpecifier(); S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_nonsensical_flag) << flag << cspec << getFormatSpecifierRange(startSpecifier, specifierLen); } bool CheckPrintfHandler::HandleAmount(const analyze_printf::OptionalAmount &Amt, unsigned k, const char *startSpecifier, unsigned specifierLen) { if (Amt.hasDataArgument()) { if (!HasVAListArg) { unsigned argIndex = Amt.getArgIndex(); if (argIndex >= NumDataArgs) { S.Diag(getLocationOfByte(Amt.getStart()), diag::warn_printf_asterisk_missing_arg) << k << getFormatSpecifierRange(startSpecifier, specifierLen); // Don't do any more checking. We will just emit // spurious errors. return false; } // Type check the data argument. It should be an 'int'. // Although not in conformance with C99, we also allow the argument to be // an 'unsigned int' as that is a reasonably safe case. GCC also // doesn't emit a warning for that case. CoveredArgs.set(argIndex); const Expr *Arg = getDataArg(argIndex); QualType T = Arg->getType(); const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context); assert(ATR.isValid()); if (!ATR.matchesType(S.Context, T)) { S.Diag(getLocationOfByte(Amt.getStart()), diag::warn_printf_asterisk_wrong_type) << k << ATR.getRepresentativeType(S.Context) << T << getFormatSpecifierRange(startSpecifier, specifierLen) << Arg->getSourceRange(); // Don't do any more checking. We will just emit // spurious errors. return false; } } } return true; } bool CheckPrintfHandler::HandleFormatSpecifier(const analyze_printf::FormatSpecifier &FS, const char *startSpecifier, unsigned specifierLen) { using namespace analyze_printf; const ConversionSpecifier &CS = FS.getConversionSpecifier(); if (atFirstArg) { atFirstArg = false; usesPositionalArgs = FS.usesPositionalArg(); } else if (usesPositionalArgs != FS.usesPositionalArg()) { // Cannot mix-and-match positional and non-positional arguments. S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_mix_positional_nonpositional_args) << getFormatSpecifierRange(startSpecifier, specifierLen); return false; } // First check if the field width, precision, and conversion specifier // have matching data arguments. if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0, startSpecifier, specifierLen)) { return false; } if (!HandleAmount(FS.getPrecision(), /* precision */ 1, startSpecifier, specifierLen)) { return false; } if (!CS.consumesDataArgument()) { // FIXME: Technically specifying a precision or field width here // makes no sense. Worth issuing a warning at some point. return true; } // Consume the argument. unsigned argIndex = FS.getArgIndex(); if (argIndex < NumDataArgs) { // The check to see if the argIndex is valid will come later. // We set the bit here because we may exit early from this // function if we encounter some other error. CoveredArgs.set(argIndex); } // Check for using an Objective-C specific conversion specifier // in a non-ObjC literal. if (!IsObjCLiteral && CS.isObjCArg()) { return HandleInvalidConversionSpecifier(FS, startSpecifier, specifierLen); } // Are we using '%n'? Issue a warning about this being // a possible security issue. if (CS.getKind() == ConversionSpecifier::OutIntPtrArg) { S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back) << getFormatSpecifierRange(startSpecifier, specifierLen); // Continue checking the other format specifiers. return true; } if (CS.getKind() == ConversionSpecifier::VoidPtrArg) { if (FS.getPrecision().getHowSpecified() != OptionalAmount::NotSpecified) S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_nonsensical_precision) << CS.getCharacters() << getFormatSpecifierRange(startSpecifier, specifierLen); } if (CS.getKind() == ConversionSpecifier::VoidPtrArg || CS.getKind() == ConversionSpecifier::CStrArg) { // FIXME: Instead of using "0", "+", etc., eventually get them from // the FormatSpecifier. if (FS.hasLeadingZeros()) HandleFlags(FS, "0", CS.getCharacters(), startSpecifier, specifierLen); if (FS.hasPlusPrefix()) HandleFlags(FS, "+", CS.getCharacters(), startSpecifier, specifierLen); if (FS.hasSpacePrefix()) HandleFlags(FS, " ", CS.getCharacters(), startSpecifier, specifierLen); } // The remaining checks depend on the data arguments. if (HasVAListArg) return true; if (argIndex >= NumDataArgs) { if (FS.usesPositionalArg()) { S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_positional_arg_exceeds_data_args) << (argIndex+1) << NumDataArgs << getFormatSpecifierRange(startSpecifier, specifierLen); } else { S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_insufficient_data_args) << getFormatSpecifierRange(startSpecifier, specifierLen); } // Don't do any more checking. return false; } // Now type check the data expression that matches the // format specifier. const Expr *Ex = getDataArg(argIndex); const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context); if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) { // Check if we didn't match because of an implicit cast from a 'char' // or 'short' to an 'int'. This is done because printf is a varargs // function. if (const ImplicitCastExpr *ICE = dyn_cast(Ex)) if (ICE->getType() == S.Context.IntTy) if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType())) return true; S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_conversion_argument_type_mismatch) << ATR.getRepresentativeType(S.Context) << Ex->getType() << getFormatSpecifierRange(startSpecifier, specifierLen) << Ex->getSourceRange(); } return true; } void CheckPrintfHandler::DoneProcessing() { // Does the number of data arguments exceed the number of // format conversions in the format string? if (!HasVAListArg) { // Find any arguments that weren't covered. CoveredArgs.flip(); signed notCoveredArg = CoveredArgs.find_first(); if (notCoveredArg >= 0) { assert((unsigned)notCoveredArg < NumDataArgs); S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(), diag::warn_printf_data_arg_not_used) << getFormatStringRange(); } } } void Sema::CheckPrintfString(const StringLiteral *FExpr, const Expr *OrigFormatExpr, const CallExpr *TheCall, bool HasVAListArg, unsigned format_idx, unsigned firstDataArg) { // CHECK: is the format string a wide literal? if (FExpr->isWide()) { Diag(FExpr->getLocStart(), diag::warn_printf_format_string_is_wide_literal) << OrigFormatExpr->getSourceRange(); return; } // Str - The format string. NOTE: this is NOT null-terminated! const char *Str = FExpr->getStrData(); // CHECK: empty format string? unsigned StrLen = FExpr->getByteLength(); if (StrLen == 0) { Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string) << OrigFormatExpr->getSourceRange(); return; } CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, TheCall->getNumArgs() - firstDataArg, isa(OrigFormatExpr), Str, HasVAListArg, TheCall, format_idx); if (!analyze_printf::ParseFormatString(H, Str, Str + StrLen)) H.DoneProcessing(); } //===--- CHECK: Return Address of Stack Variable --------------------------===// static DeclRefExpr* EvalVal(Expr *E); static DeclRefExpr* EvalAddr(Expr* E); /// CheckReturnStackAddr - Check if a return statement returns the address /// of a stack variable. void Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType, SourceLocation ReturnLoc) { // Perform checking for returned stack addresses. if (lhsType->isPointerType() || lhsType->isBlockPointerType()) { if (DeclRefExpr *DR = EvalAddr(RetValExp)) Diag(DR->getLocStart(), diag::warn_ret_stack_addr) << DR->getDecl()->getDeclName() << RetValExp->getSourceRange(); // Skip over implicit cast expressions when checking for block expressions. RetValExp = RetValExp->IgnoreParenCasts(); if (BlockExpr *C = dyn_cast(RetValExp)) if (C->hasBlockDeclRefExprs()) Diag(C->getLocStart(), diag::err_ret_local_block) << C->getSourceRange(); if (AddrLabelExpr *ALE = dyn_cast(RetValExp)) Diag(ALE->getLocStart(), diag::warn_ret_addr_label) << ALE->getSourceRange(); } else if (lhsType->isReferenceType()) { // Perform checking for stack values returned by reference. // Check for a reference to the stack if (DeclRefExpr *DR = EvalVal(RetValExp)) Diag(DR->getLocStart(), diag::warn_ret_stack_ref) << DR->getDecl()->getDeclName() << RetValExp->getSourceRange(); } } /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that /// check if the expression in a return statement evaluates to an address /// to a location on the stack. The recursion is used to traverse the /// AST of the return expression, with recursion backtracking when we /// encounter a subexpression that (1) clearly does not lead to the address /// of a stack variable or (2) is something we cannot determine leads to /// the address of a stack variable based on such local checking. /// /// EvalAddr processes expressions that are pointers that are used as /// references (and not L-values). EvalVal handles all other values. /// At the base case of the recursion is a check for a DeclRefExpr* in /// the refers to a stack variable. /// /// This implementation handles: /// /// * pointer-to-pointer casts /// * implicit conversions from array references to pointers /// * taking the address of fields /// * arbitrary interplay between "&" and "*" operators /// * pointer arithmetic from an address of a stack variable /// * taking the address of an array element where the array is on the stack static DeclRefExpr* EvalAddr(Expr *E) { // We should only be called for evaluating pointer expressions. assert((E->getType()->isAnyPointerType() || E->getType()->isBlockPointerType() || E->getType()->isObjCQualifiedIdType()) && "EvalAddr only works on pointers"); // Our "symbolic interpreter" is just a dispatch off the currently // viewed AST node. We then recursively traverse the AST by calling // EvalAddr and EvalVal appropriately. switch (E->getStmtClass()) { case Stmt::ParenExprClass: // Ignore parentheses. return EvalAddr(cast(E)->getSubExpr()); case Stmt::UnaryOperatorClass: { // The only unary operator that make sense to handle here // is AddrOf. All others don't make sense as pointers. UnaryOperator *U = cast(E); if (U->getOpcode() == UnaryOperator::AddrOf) return EvalVal(U->getSubExpr()); else return NULL; } case Stmt::BinaryOperatorClass: { // Handle pointer arithmetic. All other binary operators are not valid // in this context. BinaryOperator *B = cast(E); BinaryOperator::Opcode op = B->getOpcode(); if (op != BinaryOperator::Add && op != BinaryOperator::Sub) return NULL; Expr *Base = B->getLHS(); // Determine which argument is the real pointer base. It could be // the RHS argument instead of the LHS. if (!Base->getType()->isPointerType()) Base = B->getRHS(); assert (Base->getType()->isPointerType()); return EvalAddr(Base); } // For conditional operators we need to see if either the LHS or RHS are // valid DeclRefExpr*s. If one of them is valid, we return it. case Stmt::ConditionalOperatorClass: { ConditionalOperator *C = cast(E); // Handle the GNU extension for missing LHS. if (Expr *lhsExpr = C->getLHS()) if (DeclRefExpr* LHS = EvalAddr(lhsExpr)) return LHS; return EvalAddr(C->getRHS()); } // For casts, we need to handle conversions from arrays to // pointer values, and pointer-to-pointer conversions. case Stmt::ImplicitCastExprClass: case Stmt::CStyleCastExprClass: case Stmt::CXXFunctionalCastExprClass: { Expr* SubExpr = cast(E)->getSubExpr(); QualType T = SubExpr->getType(); if (SubExpr->getType()->isPointerType() || SubExpr->getType()->isBlockPointerType() || SubExpr->getType()->isObjCQualifiedIdType()) return EvalAddr(SubExpr); else if (T->isArrayType()) return EvalVal(SubExpr); else return 0; } // C++ casts. For dynamic casts, static casts, and const casts, we // are always converting from a pointer-to-pointer, so we just blow // through the cast. In the case the dynamic cast doesn't fail (and // return NULL), we take the conservative route and report cases // where we return the address of a stack variable. For Reinterpre // FIXME: The comment about is wrong; we're not always converting // from pointer to pointer. I'm guessing that this code should also // handle references to objects. case Stmt::CXXStaticCastExprClass: case Stmt::CXXDynamicCastExprClass: case Stmt::CXXConstCastExprClass: case Stmt::CXXReinterpretCastExprClass: { Expr *S = cast(E)->getSubExpr(); if (S->getType()->isPointerType() || S->getType()->isBlockPointerType()) return EvalAddr(S); else return NULL; } // Everything else: we simply don't reason about them. default: return NULL; } } /// EvalVal - This function is complements EvalAddr in the mutual recursion. /// See the comments for EvalAddr for more details. static DeclRefExpr* EvalVal(Expr *E) { // We should only be called for evaluating non-pointer expressions, or // expressions with a pointer type that are not used as references but instead // are l-values (e.g., DeclRefExpr with a pointer type). // Our "symbolic interpreter" is just a dispatch off the currently // viewed AST node. We then recursively traverse the AST by calling // EvalAddr and EvalVal appropriately. switch (E->getStmtClass()) { case Stmt::DeclRefExprClass: { // DeclRefExpr: the base case. When we hit a DeclRefExpr we are looking // at code that refers to a variable's name. We check if it has local // storage within the function, and if so, return the expression. DeclRefExpr *DR = cast(E); if (VarDecl *V = dyn_cast(DR->getDecl())) if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR; return NULL; } case Stmt::ParenExprClass: // Ignore parentheses. return EvalVal(cast(E)->getSubExpr()); case Stmt::UnaryOperatorClass: { // The only unary operator that make sense to handle here // is Deref. All others don't resolve to a "name." This includes // handling all sorts of rvalues passed to a unary operator. UnaryOperator *U = cast(E); if (U->getOpcode() == UnaryOperator::Deref) return EvalAddr(U->getSubExpr()); return NULL; } case Stmt::ArraySubscriptExprClass: { // Array subscripts are potential references to data on the stack. We // retrieve the DeclRefExpr* for the array variable if it indeed // has local storage. return EvalAddr(cast(E)->getBase()); } case Stmt::ConditionalOperatorClass: { // For conditional operators we need to see if either the LHS or RHS are // non-NULL DeclRefExpr's. If one is non-NULL, we return it. ConditionalOperator *C = cast(E); // Handle the GNU extension for missing LHS. if (Expr *lhsExpr = C->getLHS()) if (DeclRefExpr *LHS = EvalVal(lhsExpr)) return LHS; return EvalVal(C->getRHS()); } // Accesses to members are potential references to data on the stack. case Stmt::MemberExprClass: { MemberExpr *M = cast(E); // Check for indirect access. We only want direct field accesses. if (!M->isArrow()) return EvalVal(M->getBase()); else return NULL; } // Everything else: we simply don't reason about them. default: return NULL; } } //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===// /// Check for comparisons of floating point operands using != and ==. /// Issue a warning if these are no self-comparisons, as they are not likely /// to do what the programmer intended. void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) { bool EmitWarning = true; Expr* LeftExprSansParen = lex->IgnoreParens(); Expr* RightExprSansParen = rex->IgnoreParens(); // Special case: check for x == x (which is OK). // Do not emit warnings for such cases. if (DeclRefExpr* DRL = dyn_cast(LeftExprSansParen)) if (DeclRefExpr* DRR = dyn_cast(RightExprSansParen)) if (DRL->getDecl() == DRR->getDecl()) EmitWarning = false; // Special case: check for comparisons against literals that can be exactly // represented by APFloat. In such cases, do not emit a warning. This // is a heuristic: often comparison against such literals are used to // detect if a value in a variable has not changed. This clearly can // lead to false negatives. if (EmitWarning) { if (FloatingLiteral* FLL = dyn_cast(LeftExprSansParen)) { if (FLL->isExact()) EmitWarning = false; } else if (FloatingLiteral* FLR = dyn_cast(RightExprSansParen)){ if (FLR->isExact()) EmitWarning = false; } } // Check for comparisons with builtin types. if (EmitWarning) if (CallExpr* CL = dyn_cast(LeftExprSansParen)) if (CL->isBuiltinCall(Context)) EmitWarning = false; if (EmitWarning) if (CallExpr* CR = dyn_cast(RightExprSansParen)) if (CR->isBuiltinCall(Context)) EmitWarning = false; // Emit the diagnostic. if (EmitWarning) Diag(loc, diag::warn_floatingpoint_eq) << lex->getSourceRange() << rex->getSourceRange(); } //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===// //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===// namespace { /// Structure recording the 'active' range of an integer-valued /// expression. struct IntRange { /// The number of bits active in the int. unsigned Width; /// True if the int is known not to have negative values. bool NonNegative; IntRange() {} IntRange(unsigned Width, bool NonNegative) : Width(Width), NonNegative(NonNegative) {} // Returns the range of the bool type. static IntRange forBoolType() { return IntRange(1, true); } // Returns the range of an integral type. static IntRange forType(ASTContext &C, QualType T) { return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr()); } // Returns the range of an integeral type based on its canonical // representation. static IntRange forCanonicalType(ASTContext &C, const Type *T) { assert(T->isCanonicalUnqualified()); if (const VectorType *VT = dyn_cast(T)) T = VT->getElementType().getTypePtr(); if (const ComplexType *CT = dyn_cast(T)) T = CT->getElementType().getTypePtr(); if (const EnumType *ET = dyn_cast(T)) T = ET->getDecl()->getIntegerType().getTypePtr(); const BuiltinType *BT = cast(T); assert(BT->isInteger()); return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); } // Returns the supremum of two ranges: i.e. their conservative merge. static IntRange join(IntRange L, IntRange R) { return IntRange(std::max(L.Width, R.Width), L.NonNegative && R.NonNegative); } // Returns the infinum of two ranges: i.e. their aggressive merge. static IntRange meet(IntRange L, IntRange R) { return IntRange(std::min(L.Width, R.Width), L.NonNegative || R.NonNegative); } }; IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) { if (value.isSigned() && value.isNegative()) return IntRange(value.getMinSignedBits(), false); if (value.getBitWidth() > MaxWidth) value.trunc(MaxWidth); // isNonNegative() just checks the sign bit without considering // signedness. return IntRange(value.getActiveBits(), true); } IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty, unsigned MaxWidth) { if (result.isInt()) return GetValueRange(C, result.getInt(), MaxWidth); if (result.isVector()) { IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth); for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) { IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth); R = IntRange::join(R, El); } return R; } if (result.isComplexInt()) { IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth); IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth); return IntRange::join(R, I); } // This can happen with lossless casts to intptr_t of "based" lvalues. // Assume it might use arbitrary bits. // FIXME: The only reason we need to pass the type in here is to get // the sign right on this one case. It would be nice if APValue // preserved this. assert(result.isLValue()); return IntRange(MaxWidth, Ty->isUnsignedIntegerType()); } /// Pseudo-evaluate the given integer expression, estimating the /// range of values it might take. /// /// \param MaxWidth - the width to which the value will be truncated IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) { E = E->IgnoreParens(); // Try a full evaluation first. Expr::EvalResult result; if (E->Evaluate(result, C)) return GetValueRange(C, result.Val, E->getType(), MaxWidth); // I think we only want to look through implicit casts here; if the // user has an explicit widening cast, we should treat the value as // being of the new, wider type. if (ImplicitCastExpr *CE = dyn_cast(E)) { if (CE->getCastKind() == CastExpr::CK_NoOp) return GetExprRange(C, CE->getSubExpr(), MaxWidth); IntRange OutputTypeRange = IntRange::forType(C, CE->getType()); bool isIntegerCast = (CE->getCastKind() == CastExpr::CK_IntegralCast); if (!isIntegerCast && CE->getCastKind() == CastExpr::CK_Unknown) isIntegerCast = CE->getSubExpr()->getType()->isIntegerType(); // Assume that non-integer casts can span the full range of the type. if (!isIntegerCast) return OutputTypeRange; IntRange SubRange = GetExprRange(C, CE->getSubExpr(), std::min(MaxWidth, OutputTypeRange.Width)); // Bail out if the subexpr's range is as wide as the cast type. if (SubRange.Width >= OutputTypeRange.Width) return OutputTypeRange; // Otherwise, we take the smaller width, and we're non-negative if // either the output type or the subexpr is. return IntRange(SubRange.Width, SubRange.NonNegative || OutputTypeRange.NonNegative); } if (ConditionalOperator *CO = dyn_cast(E)) { // If we can fold the condition, just take that operand. bool CondResult; if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C)) return GetExprRange(C, CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), MaxWidth); // Otherwise, conservatively merge. IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth); IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth); return IntRange::join(L, R); } if (BinaryOperator *BO = dyn_cast(E)) { switch (BO->getOpcode()) { // Boolean-valued operations are single-bit and positive. case BinaryOperator::LAnd: case BinaryOperator::LOr: case BinaryOperator::LT: case BinaryOperator::GT: case BinaryOperator::LE: case BinaryOperator::GE: case BinaryOperator::EQ: case BinaryOperator::NE: return IntRange::forBoolType(); // The type of these compound assignments is the type of the LHS, // so the RHS is not necessarily an integer. case BinaryOperator::MulAssign: case BinaryOperator::DivAssign: case BinaryOperator::RemAssign: case BinaryOperator::AddAssign: case BinaryOperator::SubAssign: return IntRange::forType(C, E->getType()); // Operations with opaque sources are black-listed. case BinaryOperator::PtrMemD: case BinaryOperator::PtrMemI: return IntRange::forType(C, E->getType()); // Bitwise-and uses the *infinum* of the two source ranges. case BinaryOperator::And: case BinaryOperator::AndAssign: return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth), GetExprRange(C, BO->getRHS(), MaxWidth)); // Left shift gets black-listed based on a judgement call. case BinaryOperator::Shl: // ...except that we want to treat '1 << (blah)' as logically // positive. It's an important idiom. if (IntegerLiteral *I = dyn_cast(BO->getLHS()->IgnoreParenCasts())) { if (I->getValue() == 1) { IntRange R = IntRange::forType(C, E->getType()); return IntRange(R.Width, /*NonNegative*/ true); } } // fallthrough case BinaryOperator::ShlAssign: return IntRange::forType(C, E->getType()); // Right shift by a constant can narrow its left argument. case BinaryOperator::Shr: case BinaryOperator::ShrAssign: { IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth); // If the shift amount is a positive constant, drop the width by // that much. llvm::APSInt shift; if (BO->getRHS()->isIntegerConstantExpr(shift, C) && shift.isNonNegative()) { unsigned zext = shift.getZExtValue(); if (zext >= L.Width) L.Width = (L.NonNegative ? 0 : 1); else L.Width -= zext; } return L; } // Comma acts as its right operand. case BinaryOperator::Comma: return GetExprRange(C, BO->getRHS(), MaxWidth); // Black-list pointer subtractions. case BinaryOperator::Sub: if (BO->getLHS()->getType()->isPointerType()) return IntRange::forType(C, E->getType()); // fallthrough default: break; } // Treat every other operator as if it were closed on the // narrowest type that encompasses both operands. IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth); IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth); return IntRange::join(L, R); } if (UnaryOperator *UO = dyn_cast(E)) { switch (UO->getOpcode()) { // Boolean-valued operations are white-listed. case UnaryOperator::LNot: return IntRange::forBoolType(); // Operations with opaque sources are black-listed. case UnaryOperator::Deref: case UnaryOperator::AddrOf: // should be impossible case UnaryOperator::OffsetOf: return IntRange::forType(C, E->getType()); default: return GetExprRange(C, UO->getSubExpr(), MaxWidth); } } if (dyn_cast(E)) { IntRange::forType(C, E->getType()); } FieldDecl *BitField = E->getBitField(); if (BitField) { llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C); unsigned BitWidth = BitWidthAP.getZExtValue(); return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType()); } return IntRange::forType(C, E->getType()); } /// Checks whether the given value, which currently has the given /// source semantics, has the same value when coerced through the /// target semantics. bool IsSameFloatAfterCast(const llvm::APFloat &value, const llvm::fltSemantics &Src, const llvm::fltSemantics &Tgt) { llvm::APFloat truncated = value; bool ignored; truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored); truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored); return truncated.bitwiseIsEqual(value); } /// Checks whether the given value, which currently has the given /// source semantics, has the same value when coerced through the /// target semantics. /// /// The value might be a vector of floats (or a complex number). bool IsSameFloatAfterCast(const APValue &value, const llvm::fltSemantics &Src, const llvm::fltSemantics &Tgt) { if (value.isFloat()) return IsSameFloatAfterCast(value.getFloat(), Src, Tgt); if (value.isVector()) { for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt)) return false; return true; } assert(value.isComplexFloat()); return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) && IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt)); } } // end anonymous namespace /// \brief Implements -Wsign-compare. /// /// \param lex the left-hand expression /// \param rex the right-hand expression /// \param OpLoc the location of the joining operator /// \param BinOpc binary opcode or 0 void Sema::CheckSignCompare(Expr *lex, Expr *rex, SourceLocation OpLoc, const BinaryOperator::Opcode* BinOpc) { // Don't warn if we're in an unevaluated context. if (ExprEvalContexts.back().Context == Unevaluated) return; // If either expression is value-dependent, don't warn. We'll get another // chance at instantiation time. if (lex->isValueDependent() || rex->isValueDependent()) return; QualType lt = lex->getType(), rt = rex->getType(); // Only warn if both operands are integral. if (!lt->isIntegerType() || !rt->isIntegerType()) return; // In C, the width of a bitfield determines its type, and the // declared type only contributes the signedness. This duplicates // the work that will later be done by UsualUnaryConversions. // Eventually, this check will be reorganized in a way that avoids // this duplication. if (!getLangOptions().CPlusPlus) { QualType tmp; tmp = Context.isPromotableBitField(lex); if (!tmp.isNull()) lt = tmp; tmp = Context.isPromotableBitField(rex); if (!tmp.isNull()) rt = tmp; } if (const EnumType *E = lt->getAs()) lt = E->getDecl()->getPromotionType(); if (const EnumType *E = rt->getAs()) rt = E->getDecl()->getPromotionType(); // The rule is that the signed operand becomes unsigned, so isolate the // signed operand. Expr *signedOperand = lex, *unsignedOperand = rex; QualType signedType = lt, unsignedType = rt; if (lt->isSignedIntegerType()) { if (rt->isSignedIntegerType()) return; } else { if (!rt->isSignedIntegerType()) return; std::swap(signedOperand, unsignedOperand); std::swap(signedType, unsignedType); } unsigned unsignedWidth = Context.getIntWidth(unsignedType); unsigned signedWidth = Context.getIntWidth(signedType); // If the unsigned type is strictly smaller than the signed type, // then (1) the result type will be signed and (2) the unsigned // value will fit fully within the signed type, and thus the result // of the comparison will be exact. if (signedWidth > unsignedWidth) return; // Otherwise, calculate the effective ranges. IntRange signedRange = GetExprRange(Context, signedOperand, signedWidth); IntRange unsignedRange = GetExprRange(Context, unsignedOperand, unsignedWidth); // We should never be unable to prove that the unsigned operand is // non-negative. assert(unsignedRange.NonNegative && "unsigned range includes negative?"); // If the signed operand is non-negative, then the signed->unsigned // conversion won't change it. if (signedRange.NonNegative) { // Emit warnings for comparisons of unsigned to integer constant 0. // always false: x < 0 (or 0 > x) // always true: x >= 0 (or 0 <= x) llvm::APSInt X; if (BinOpc && signedOperand->isIntegerConstantExpr(X, Context) && X == 0) { if (signedOperand != lex) { if (*BinOpc == BinaryOperator::LT) { Diag(OpLoc, diag::warn_lunsigned_always_true_comparison) << "< 0" << "false" << lex->getSourceRange() << rex->getSourceRange(); } else if (*BinOpc == BinaryOperator::GE) { Diag(OpLoc, diag::warn_lunsigned_always_true_comparison) << ">= 0" << "true" << lex->getSourceRange() << rex->getSourceRange(); } } else { if (*BinOpc == BinaryOperator::GT) { Diag(OpLoc, diag::warn_runsigned_always_true_comparison) << "0 >" << "false" << lex->getSourceRange() << rex->getSourceRange(); } else if (*BinOpc == BinaryOperator::LE) { Diag(OpLoc, diag::warn_runsigned_always_true_comparison) << "0 <=" << "true" << lex->getSourceRange() << rex->getSourceRange(); } } } return; } // For (in)equality comparisons, if the unsigned operand is a // constant which cannot collide with a overflowed signed operand, // then reinterpreting the signed operand as unsigned will not // change the result of the comparison. if (BinOpc && (*BinOpc == BinaryOperator::EQ || *BinOpc == BinaryOperator::NE) && unsignedRange.Width < unsignedWidth) return; Diag(OpLoc, BinOpc ? diag::warn_mixed_sign_comparison : diag::warn_mixed_sign_conditional) << lt << rt << lex->getSourceRange() << rex->getSourceRange(); } /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) { S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange(); } /// Implements -Wconversion. void Sema::CheckImplicitConversion(Expr *E, QualType T) { // Don't diagnose in unevaluated contexts. if (ExprEvalContexts.back().Context == Sema::Unevaluated) return; // Don't diagnose for value-dependent expressions. if (E->isValueDependent()) return; const Type *Source = Context.getCanonicalType(E->getType()).getTypePtr(); const Type *Target = Context.getCanonicalType(T).getTypePtr(); // Never diagnose implicit casts to bool. if (Target->isSpecificBuiltinType(BuiltinType::Bool)) return; // Strip vector types. if (isa(Source)) { if (!isa(Target)) return DiagnoseImpCast(*this, E, T, diag::warn_impcast_vector_scalar); Source = cast(Source)->getElementType().getTypePtr(); Target = cast(Target)->getElementType().getTypePtr(); } // Strip complex types. if (isa(Source)) { if (!isa(Target)) return DiagnoseImpCast(*this, E, T, diag::warn_impcast_complex_scalar); Source = cast(Source)->getElementType().getTypePtr(); Target = cast(Target)->getElementType().getTypePtr(); } const BuiltinType *SourceBT = dyn_cast(Source); const BuiltinType *TargetBT = dyn_cast(Target); // If the source is floating point... if (SourceBT && SourceBT->isFloatingPoint()) { // ...and the target is floating point... if (TargetBT && TargetBT->isFloatingPoint()) { // ...then warn if we're dropping FP rank. // Builtin FP kinds are ordered by increasing FP rank. if (SourceBT->getKind() > TargetBT->getKind()) { // Don't warn about float constants that are precisely // representable in the target type. Expr::EvalResult result; if (E->Evaluate(result, Context)) { // Value might be a float, a float vector, or a float complex. if (IsSameFloatAfterCast(result.Val, Context.getFloatTypeSemantics(QualType(TargetBT, 0)), Context.getFloatTypeSemantics(QualType(SourceBT, 0)))) return; } DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_precision); } return; } // If the target is integral, always warn. if ((TargetBT && TargetBT->isInteger())) // TODO: don't warn for integer values? return DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_integer); return; } if (!Source->isIntegerType() || !Target->isIntegerType()) return; IntRange SourceRange = GetExprRange(Context, E, Context.getIntWidth(E->getType())); IntRange TargetRange = IntRange::forCanonicalType(Context, Target); // FIXME: also signed<->unsigned? if (SourceRange.Width > TargetRange.Width) { // People want to build with -Wshorten-64-to-32 and not -Wconversion // and by god we'll let them. if (SourceRange.Width == 64 && TargetRange.Width == 32) return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_64_32); return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_precision); } return; } /// CheckParmsForFunctionDef - Check that the parameters of the given /// function are appropriate for the definition of a function. This /// takes care of any checks that cannot be performed on the /// declaration itself, e.g., that the types of each of the function /// parameters are complete. bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) { bool HasInvalidParm = false; for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) { ParmVarDecl *Param = FD->getParamDecl(p); // C99 6.7.5.3p4: the parameters in a parameter type list in a // function declarator that is part of a function definition of // that function shall not have incomplete type. // // This is also C++ [dcl.fct]p6. if (!Param->isInvalidDecl() && RequireCompleteType(Param->getLocation(), Param->getType(), diag::err_typecheck_decl_incomplete_type)) { Param->setInvalidDecl(); HasInvalidParm = true; } // C99 6.9.1p5: If the declarator includes a parameter type list, the // declaration of each parameter shall include an identifier. if (Param->getIdentifier() == 0 && !Param->isImplicit() && !getLangOptions().CPlusPlus) Diag(Param->getLocation(), diag::err_parameter_name_omitted); // C99 6.7.5.3p12: // If the function declarator is not part of a definition of that // function, parameters may have incomplete type and may use the [*] // notation in their sequences of declarator specifiers to specify // variable length array types. QualType PType = Param->getOriginalType(); if (const ArrayType *AT = Context.getAsArrayType(PType)) { if (AT->getSizeModifier() == ArrayType::Star) { // FIXME: This diagnosic should point the the '[*]' if source-location // information is added for it. Diag(Param->getLocation(), diag::err_array_star_in_function_definition); } } } return HasInvalidParm; }