//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements decl-related attribute processing. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/Basic/TargetInfo.h" #include "clang/Parse/DeclSpec.h" #include using namespace clang; //===----------------------------------------------------------------------===// // Helper functions //===----------------------------------------------------------------------===// static const FunctionType *getFunctionType(Decl *d, bool blocksToo = true) { QualType Ty; if (ValueDecl *decl = dyn_cast(d)) Ty = decl->getType(); else if (FieldDecl *decl = dyn_cast(d)) Ty = decl->getType(); else if (TypedefDecl* decl = dyn_cast(d)) Ty = decl->getUnderlyingType(); else return 0; if (Ty->isFunctionPointerType()) Ty = Ty->getAsPointerType()->getPointeeType(); else if (blocksToo && Ty->isBlockPointerType()) Ty = Ty->getAsBlockPointerType()->getPointeeType(); return Ty->getAsFunctionType(); } // FIXME: We should provide an abstraction around a method or function // to provide the following bits of information. /// isFunctionOrMethod - Return true if the given decl has function /// type (function or function-typed variable) or an Objective-C /// method. static bool isFunctionOrMethod(Decl *d) { return getFunctionType(d, false) || isa(d); } /// isFunctionOrMethodOrBlock - Return true if the given decl has function /// type (function or function-typed variable) or an Objective-C /// method or a block. static bool isFunctionOrMethodOrBlock(Decl *d) { if (isFunctionOrMethod(d)) return true; // check for block is more involved. if (const VarDecl *V = dyn_cast(d)) { QualType Ty = V->getType(); return Ty->isBlockPointerType(); } return isa(d); } /// hasFunctionProto - Return true if the given decl has a argument /// information. This decl should have already passed /// isFunctionOrMethod or isFunctionOrMethodOrBlock. static bool hasFunctionProto(Decl *d) { if (const FunctionType *FnTy = getFunctionType(d)) return isa(FnTy); else { assert(isa(d) || isa(d)); return true; } } /// getFunctionOrMethodNumArgs - Return number of function or method /// arguments. It is an error to call this on a K&R function (use /// hasFunctionProto first). static unsigned getFunctionOrMethodNumArgs(Decl *d) { if (const FunctionType *FnTy = getFunctionType(d)) return cast(FnTy)->getNumArgs(); if (const BlockDecl *BD = dyn_cast(d)) return BD->getNumParams(); return cast(d)->param_size(); } static QualType getFunctionOrMethodArgType(Decl *d, unsigned Idx) { if (const FunctionType *FnTy = getFunctionType(d)) return cast(FnTy)->getArgType(Idx); if (const BlockDecl *BD = dyn_cast(d)) return BD->getParamDecl(Idx)->getType(); return cast(d)->param_begin()[Idx]->getType(); } static QualType getFunctionOrMethodResultType(Decl *d) { if (const FunctionType *FnTy = getFunctionType(d)) return cast(FnTy)->getResultType(); return cast(d)->getResultType(); } static bool isFunctionOrMethodVariadic(Decl *d) { if (const FunctionType *FnTy = getFunctionType(d)) { const FunctionProtoType *proto = cast(FnTy); return proto->isVariadic(); } else if (const BlockDecl *BD = dyn_cast(d)) return BD->IsVariadic(); else { return cast(d)->isVariadic(); } } static inline bool isNSStringType(QualType T, ASTContext &Ctx) { const PointerType *PT = T->getAsPointerType(); if (!PT) return false; const ObjCInterfaceType *ClsT =PT->getPointeeType()->getAsObjCInterfaceType(); if (!ClsT) return false; IdentifierInfo* ClsName = ClsT->getDecl()->getIdentifier(); // FIXME: Should we walk the chain of classes? return ClsName == &Ctx.Idents.get("NSString") || ClsName == &Ctx.Idents.get("NSMutableString"); } static inline bool isCFStringType(QualType T, ASTContext &Ctx) { const PointerType *PT = T->getAsPointerType(); if (!PT) return false; const RecordType *RT = PT->getPointeeType()->getAsRecordType(); if (!RT) return false; const RecordDecl *RD = RT->getDecl(); if (RD->getTagKind() != TagDecl::TK_struct) return false; return RD->getIdentifier() == &Ctx.Idents.get("__CFString"); } //===----------------------------------------------------------------------===// // Attribute Implementations //===----------------------------------------------------------------------===// // FIXME: All this manual attribute parsing code is gross. At the // least add some helper functions to check most argument patterns (# // and types of args). static void HandleExtVectorTypeAttr(Scope *scope, Decl *d, const AttributeList &Attr, Sema &S) { TypedefDecl *tDecl = dyn_cast(d); if (tDecl == 0) { S.Diag(Attr.getLoc(), diag::err_typecheck_ext_vector_not_typedef); return; } QualType curType = tDecl->getUnderlyingType(); Expr *sizeExpr; // Special case where the argument is a template id. if (Attr.getParameterName()) { sizeExpr = S.ActOnDeclarationNameExpr(scope, Attr.getLoc(), Attr.getParameterName(), false, 0, false).takeAs(); } else { // check the attribute arguments. if (Attr.getNumArgs() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } sizeExpr = static_cast(Attr.getArg(0)); } // Instantiate/Install the vector type, and let Sema build the type for us. // This will run the reguired checks. QualType T = S.BuildExtVectorType(curType, S.Owned(sizeExpr), Attr.getLoc()); if (!T.isNull()) { tDecl->setUnderlyingType(T); // Remember this typedef decl, we will need it later for diagnostics. S.ExtVectorDecls.push_back(tDecl); } } /// HandleVectorSizeAttribute - this attribute is only applicable to /// integral and float scalars, although arrays, pointers, and function /// return values are allowed in conjunction with this construct. Aggregates /// with this attribute are invalid, even if they are of the same size as a /// corresponding scalar. /// The raw attribute should contain precisely 1 argument, the vector size /// for the variable, measured in bytes. If curType and rawAttr are well /// formed, this routine will return a new vector type. static void HandleVectorSizeAttr(Decl *D, const AttributeList &Attr, Sema &S) { QualType CurType; if (ValueDecl *VD = dyn_cast(D)) CurType = VD->getType(); else if (TypedefDecl *TD = dyn_cast(D)) CurType = TD->getUnderlyingType(); else { S.Diag(D->getLocation(), diag::err_attr_wrong_decl) << "vector_size" << SourceRange(Attr.getLoc(), Attr.getLoc()); return; } // Check the attribute arugments. if (Attr.getNumArgs() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } Expr *sizeExpr = static_cast(Attr.getArg(0)); llvm::APSInt vecSize(32); if (!sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) << "vector_size" << sizeExpr->getSourceRange(); return; } // navigate to the base type - we need to provide for vector pointers, // vector arrays, and functions returning vectors. if (CurType->isPointerType() || CurType->isArrayType() || CurType->isFunctionType()) { S.Diag(Attr.getLoc(), diag::err_unsupported_vector_size) << CurType; return; /* FIXME: rebuild the type from the inside out, vectorizing the inner type. do { if (PointerType *PT = dyn_cast(canonType)) canonType = PT->getPointeeType().getTypePtr(); else if (ArrayType *AT = dyn_cast(canonType)) canonType = AT->getElementType().getTypePtr(); else if (FunctionType *FT = dyn_cast(canonType)) canonType = FT->getResultType().getTypePtr(); } while (canonType->isPointerType() || canonType->isArrayType() || canonType->isFunctionType()); */ } // the base type must be integer or float, and can't already be a vector. if (CurType->isVectorType() || (!CurType->isIntegerType() && !CurType->isRealFloatingType())) { S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType; return; } unsigned typeSize = static_cast(S.Context.getTypeSize(CurType)); // vecSize is specified in bytes - convert to bits. unsigned vectorSize = static_cast(vecSize.getZExtValue() * 8); // the vector size needs to be an integral multiple of the type size. if (vectorSize % typeSize) { S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size) << sizeExpr->getSourceRange(); return; } if (vectorSize == 0) { S.Diag(Attr.getLoc(), diag::err_attribute_zero_size) << sizeExpr->getSourceRange(); return; } // Success! Instantiate the vector type, the number of elements is > 0, and // not required to be a power of 2, unlike GCC. CurType = S.Context.getVectorType(CurType, vectorSize/typeSize); if (ValueDecl *VD = dyn_cast(D)) VD->setType(CurType); else cast(D)->setUnderlyingType(CurType); } static void HandlePackedAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() > 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } if (TagDecl *TD = dyn_cast(d)) TD->addAttr(S.Context, ::new (S.Context) PackedAttr(1)); else if (FieldDecl *FD = dyn_cast(d)) { // If the alignment is less than or equal to 8 bits, the packed attribute // has no effect. if (!FD->getType()->isIncompleteType() && S.Context.getTypeAlign(FD->getType()) <= 8) S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type) << Attr.getName() << FD->getType(); else FD->addAttr(S.Context, ::new (S.Context) PackedAttr(1)); } else S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); } static void HandleIBOutletAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() > 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } // The IBOutlet attribute only applies to instance variables of Objective-C // classes. if (isa(d) || isa(d)) d->addAttr(S.Context, ::new (S.Context) IBOutletAttr()); else S.Diag(Attr.getLoc(), diag::err_attribute_iboutlet); } static void HandleNonNullAttr(Decl *d, const AttributeList &Attr, Sema &S) { // GCC ignores the nonnull attribute on K&R style function // prototypes, so we ignore it as well if (!isFunctionOrMethod(d) || !hasFunctionProto(d)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 0 /*function*/; return; } unsigned NumArgs = getFunctionOrMethodNumArgs(d); // The nonnull attribute only applies to pointers. llvm::SmallVector NonNullArgs; for (AttributeList::arg_iterator I=Attr.arg_begin(), E=Attr.arg_end(); I!=E; ++I) { // The argument must be an integer constant expression. Expr *Ex = static_cast(*I); llvm::APSInt ArgNum(32); if (!Ex->isIntegerConstantExpr(ArgNum, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) << "nonnull" << Ex->getSourceRange(); return; } unsigned x = (unsigned) ArgNum.getZExtValue(); if (x < 1 || x > NumArgs) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) << "nonnull" << I.getArgNum() << Ex->getSourceRange(); return; } --x; // Is the function argument a pointer type? QualType T = getFunctionOrMethodArgType(d, x); if (!T->isPointerType() && !T->isBlockPointerType()) { // FIXME: Should also highlight argument in decl. S.Diag(Attr.getLoc(), diag::err_nonnull_pointers_only) << "nonnull" << Ex->getSourceRange(); continue; } NonNullArgs.push_back(x); } // If no arguments were specified to __attribute__((nonnull)) then all // pointer arguments have a nonnull attribute. if (NonNullArgs.empty()) { for (unsigned I = 0, E = getFunctionOrMethodNumArgs(d); I != E; ++I) { QualType T = getFunctionOrMethodArgType(d, I); if (T->isPointerType() || T->isBlockPointerType()) NonNullArgs.push_back(I); } if (NonNullArgs.empty()) { S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers); return; } } unsigned* start = &NonNullArgs[0]; unsigned size = NonNullArgs.size(); std::sort(start, start + size); d->addAttr(S.Context, ::new (S.Context) NonNullAttr(start, size)); } static void HandleAliasAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } Expr *Arg = static_cast(Attr.getArg(0)); Arg = Arg->IgnoreParenCasts(); StringLiteral *Str = dyn_cast(Arg); if (Str == 0 || Str->isWide()) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) << "alias" << 1; return; } const char *Alias = Str->getStrData(); unsigned AliasLen = Str->getByteLength(); // FIXME: check if target symbol exists in current file d->addAttr(S.Context, ::new (S.Context) AliasAttr(std::string(Alias, AliasLen))); } static void HandleAlwaysInlineAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } if (!isa(d)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 0 /*function*/; return; } d->addAttr(S.Context, ::new (S.Context) AlwaysInlineAttr()); } static bool HandleCommonNoReturnAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return false; } if (!isFunctionOrMethod(d) && !isa(d)) { ValueDecl *VD = dyn_cast(d); if (VD == 0 || !VD->getType()->isBlockPointerType()) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 0 /*function*/; return false; } } return true; } static void HandleNoReturnAttr(Decl *d, const AttributeList &Attr, Sema &S) { if (HandleCommonNoReturnAttr(d, Attr, S)) d->addAttr(S.Context, ::new (S.Context) NoReturnAttr()); } static void HandleAnalyzerNoReturnAttr(Decl *d, const AttributeList &Attr, Sema &S) { if (HandleCommonNoReturnAttr(d, Attr, S)) d->addAttr(S.Context, ::new (S.Context) AnalyzerNoReturnAttr()); } static void HandleUnusedAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } if (!isa(d) && !isFunctionOrMethod(d)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 2 /*variable and function*/; return; } d->addAttr(S.Context, ::new (S.Context) UnusedAttr()); } static void HandleUsedAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } if (const VarDecl *VD = dyn_cast(d)) { if (VD->hasLocalStorage() || VD->hasExternalStorage()) { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "used"; return; } } else if (!isFunctionOrMethod(d)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 2 /*variable and function*/; return; } d->addAttr(S.Context, ::new (S.Context) UsedAttr()); } static void HandleConstructorAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0 && Attr.getNumArgs() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << "0 or 1"; return; } int priority = 65535; // FIXME: Do not hardcode such constants. if (Attr.getNumArgs() > 0) { Expr *E = static_cast(Attr.getArg(0)); llvm::APSInt Idx(32); if (!E->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "constructor" << 1 << E->getSourceRange(); return; } priority = Idx.getZExtValue(); } if (!isa(d)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 0 /*function*/; return; } d->addAttr(S.Context, ::new (S.Context) ConstructorAttr(priority)); } static void HandleDestructorAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0 && Attr.getNumArgs() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << "0 or 1"; return; } int priority = 65535; // FIXME: Do not hardcode such constants. if (Attr.getNumArgs() > 0) { Expr *E = static_cast(Attr.getArg(0)); llvm::APSInt Idx(32); if (!E->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "destructor" << 1 << E->getSourceRange(); return; } priority = Idx.getZExtValue(); } if (!isa(d)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 0 /*function*/; return; } d->addAttr(S.Context, ::new (S.Context) DestructorAttr(priority)); } static void HandleDeprecatedAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } d->addAttr(S.Context, ::new (S.Context) DeprecatedAttr()); } static void HandleUnavailableAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } d->addAttr(S.Context, ::new (S.Context) UnavailableAttr()); } static void HandleVisibilityAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } Expr *Arg = static_cast(Attr.getArg(0)); Arg = Arg->IgnoreParenCasts(); StringLiteral *Str = dyn_cast(Arg); if (Str == 0 || Str->isWide()) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) << "visibility" << 1; return; } const char *TypeStr = Str->getStrData(); unsigned TypeLen = Str->getByteLength(); VisibilityAttr::VisibilityTypes type; if (TypeLen == 7 && !memcmp(TypeStr, "default", 7)) type = VisibilityAttr::DefaultVisibility; else if (TypeLen == 6 && !memcmp(TypeStr, "hidden", 6)) type = VisibilityAttr::HiddenVisibility; else if (TypeLen == 8 && !memcmp(TypeStr, "internal", 8)) type = VisibilityAttr::HiddenVisibility; // FIXME else if (TypeLen == 9 && !memcmp(TypeStr, "protected", 9)) type = VisibilityAttr::ProtectedVisibility; else { S.Diag(Attr.getLoc(), diag::warn_attribute_unknown_visibility) << TypeStr; return; } d->addAttr(S.Context, ::new (S.Context) VisibilityAttr(type)); } static void HandleObjCExceptionAttr(Decl *D, const AttributeList &Attr, Sema &S) { if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } ObjCInterfaceDecl *OCI = dyn_cast(D); if (OCI == 0) { S.Diag(Attr.getLoc(), diag::err_attribute_requires_objc_interface); return; } D->addAttr(S.Context, ::new (S.Context) ObjCExceptionAttr()); } static void HandleObjCNSObject(Decl *D, const AttributeList &Attr, Sema &S) { if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } if (TypedefDecl *TD = dyn_cast(D)) { QualType T = TD->getUnderlyingType(); if (!T->isPointerType() || !T->getAsPointerType()->getPointeeType()->isRecordType()) { S.Diag(TD->getLocation(), diag::err_nsobject_attribute); return; } } D->addAttr(S.Context, ::new (S.Context) ObjCNSObjectAttr()); } static void HandleOverloadableAttr(Decl *D, const AttributeList &Attr, Sema &S) { if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } if (!isa(D)) { S.Diag(Attr.getLoc(), diag::err_attribute_overloadable_not_function); return; } D->addAttr(S.Context, ::new (S.Context) OverloadableAttr()); } static void HandleBlocksAttr(Decl *d, const AttributeList &Attr, Sema &S) { if (!Attr.getParameterName()) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) << "blocks" << 1; return; } if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } BlocksAttr::BlocksAttrTypes type; if (Attr.getParameterName()->isStr("byref")) type = BlocksAttr::ByRef; else { S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported) << "blocks" << Attr.getParameterName(); return; } d->addAttr(S.Context, ::new (S.Context) BlocksAttr(type)); } static void HandleSentinelAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() > 2) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << "0, 1 or 2"; return; } int sentinel = 0; if (Attr.getNumArgs() > 0) { Expr *E = static_cast(Attr.getArg(0)); llvm::APSInt Idx(32); if (!E->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "sentinel" << 1 << E->getSourceRange(); return; } sentinel = Idx.getZExtValue(); if (sentinel < 0) { S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero) << E->getSourceRange(); return; } } int nullPos = 0; if (Attr.getNumArgs() > 1) { Expr *E = static_cast(Attr.getArg(1)); llvm::APSInt Idx(32); if (!E->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "sentinel" << 2 << E->getSourceRange(); return; } nullPos = Idx.getZExtValue(); if (nullPos > 1 || nullPos < 0) { // FIXME: This error message could be improved, it would be nice // to say what the bounds actually are. S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one) << E->getSourceRange(); return; } } if (FunctionDecl *FD = dyn_cast(d)) { const FunctionType *FT = FD->getType()->getAsFunctionType(); assert(FT && "FunctionDecl has non-function type?"); if (isa(FT)) { S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments); return; } if (!cast(FT)->isVariadic()) { S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; return; } } else if (ObjCMethodDecl *MD = dyn_cast(d)) { if (!MD->isVariadic()) { S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; return; } } else if (isa(d)) { // Note! BlockDecl is typeless. Variadic diagnostics // will be issued by the caller. ; } else if (const VarDecl *V = dyn_cast(d)) { QualType Ty = V->getType(); if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { const FunctionType *FT = Ty->isFunctionPointerType() ? getFunctionType(d) : Ty->getAsBlockPointerType()->getPointeeType()->getAsFunctionType(); if (!cast(FT)->isVariadic()) { int m = Ty->isFunctionPointerType() ? 0 : 1; S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m; return; } } else { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 6 /*function, method or block */; return; } } else { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 6 /*function, method or block */; return; } d->addAttr(S.Context, ::new (S.Context) SentinelAttr(sentinel, nullPos)); } static void HandleWarnUnusedResult(Decl *D, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } // TODO: could also be applied to methods? FunctionDecl *Fn = dyn_cast(D); if (!Fn) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 0 /*function*/; return; } Fn->addAttr(S.Context, ::new (S.Context) WarnUnusedResultAttr()); } static void HandleWeakAttr(Decl *D, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } // TODO: could also be applied to methods? if (!isa(D) && !isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 2 /*variable and function*/; return; } D->addAttr(S.Context, ::new (S.Context) WeakAttr()); } static void HandleWeakImportAttr(Decl *D, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } // weak_import only applies to variable & function declarations. bool isDef = false; if (VarDecl *VD = dyn_cast(D)) { isDef = (!VD->hasExternalStorage() || VD->getInit()); } else if (FunctionDecl *FD = dyn_cast(D)) { isDef = FD->getBody(S.Context); } else if (isa(D) || isa(D)) { // We ignore weak import on properties and methods return; } else { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 2 /*variable and function*/; return; } // Merge should handle any subsequent violations. if (isDef) { S.Diag(Attr.getLoc(), diag::warn_attribute_weak_import_invalid_on_definition) << "weak_import" << 2 /*variable and function*/; return; } D->addAttr(S.Context, ::new (S.Context) WeakImportAttr()); } static void HandleDLLImportAttr(Decl *D, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } // Attribute can be applied only to functions or variables. if (isa(D)) { D->addAttr(S.Context, ::new (S.Context) DLLImportAttr()); return; } FunctionDecl *FD = dyn_cast(D); if (!FD) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 2 /*variable and function*/; return; } // Currently, the dllimport attribute is ignored for inlined functions. // Warning is emitted. if (FD->isInline()) { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "dllimport"; return; } // The attribute is also overridden by a subsequent declaration as dllexport. // Warning is emitted. for (AttributeList *nextAttr = Attr.getNext(); nextAttr; nextAttr = nextAttr->getNext()) { if (nextAttr->getKind() == AttributeList::AT_dllexport) { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "dllimport"; return; } } if (D->getAttr(S.Context)) { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "dllimport"; return; } D->addAttr(S.Context, ::new (S.Context) DLLImportAttr()); } static void HandleDLLExportAttr(Decl *D, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } // Attribute can be applied only to functions or variables. if (isa(D)) { D->addAttr(S.Context, ::new (S.Context) DLLExportAttr()); return; } FunctionDecl *FD = dyn_cast(D); if (!FD) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 2 /*variable and function*/; return; } // Currently, the dllexport attribute is ignored for inlined functions, // unless the -fkeep-inline-functions flag has been used. Warning is emitted; if (FD->isInline()) { // FIXME: ... unless the -fkeep-inline-functions flag has been used. S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "dllexport"; return; } D->addAttr(S.Context, ::new (S.Context) DLLExportAttr()); } static void HandleReqdWorkGroupSize(Decl *D, const AttributeList &Attr, Sema &S) { // Attribute has 3 arguments. if (Attr.getNumArgs() != 3) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } unsigned WGSize[3]; for (unsigned i = 0; i < 3; ++i) { Expr *E = static_cast(Attr.getArg(i)); llvm::APSInt ArgNum(32); if (!E->isIntegerConstantExpr(ArgNum, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) << "reqd_work_group_size" << E->getSourceRange(); return; } WGSize[i] = (unsigned) ArgNum.getZExtValue(); } D->addAttr(S.Context, ::new (S.Context) ReqdWorkGroupSizeAttr(WGSize[0], WGSize[1], WGSize[2])); } static void HandleSectionAttr(Decl *D, const AttributeList &Attr, Sema &S) { // Attribute has no arguments. if (Attr.getNumArgs() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } // Make sure that there is a string literal as the sections's single // argument. StringLiteral *SE = dyn_cast(static_cast(Attr.getArg(0))); if (!SE) { // FIXME S.Diag(Attr.getLoc(), diag::err_attribute_annotate_no_string); return; } D->addAttr(S.Context, ::new (S.Context) SectionAttr(std::string(SE->getStrData(), SE->getByteLength()))); } static void HandleStdCallAttr(Decl *d, const AttributeList &Attr, Sema &S) { // Attribute has no arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } // Attribute can be applied only to functions. if (!isa(d)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 0 /*function*/; return; } // stdcall and fastcall attributes are mutually incompatible. if (d->getAttr(S.Context)) { S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible) << "stdcall" << "fastcall"; return; } d->addAttr(S.Context, ::new (S.Context) StdCallAttr()); } static void HandleFastCallAttr(Decl *d, const AttributeList &Attr, Sema &S) { // Attribute has no arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } if (!isa(d)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 0 /*function*/; return; } // stdcall and fastcall attributes are mutually incompatible. if (d->getAttr(S.Context)) { S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible) << "fastcall" << "stdcall"; return; } d->addAttr(S.Context, ::new (S.Context) FastCallAttr()); } static void HandleNothrowAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } d->addAttr(S.Context, ::new (S.Context) NoThrowAttr()); } static void HandleConstAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } d->addAttr(S.Context, ::new (S.Context) ConstAttr()); } static void HandlePureAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } d->addAttr(S.Context, ::new (S.Context) PureAttr()); } static void HandleCleanupAttr(Decl *d, const AttributeList &Attr, Sema &S) { // Match gcc which ignores cleanup attrs when compiling C++. if (S.getLangOptions().CPlusPlus) return; if (!Attr.getParameterName()) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } VarDecl *VD = dyn_cast(d); if (!VD || !VD->hasLocalStorage()) { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "cleanup"; return; } // Look up the function NamedDecl *CleanupDecl = S.LookupName(S.TUScope, Attr.getParameterName(), Sema::LookupOrdinaryName); if (!CleanupDecl) { S.Diag(Attr.getLoc(), diag::err_attribute_cleanup_arg_not_found) << Attr.getParameterName(); return; } FunctionDecl *FD = dyn_cast(CleanupDecl); if (!FD) { S.Diag(Attr.getLoc(), diag::err_attribute_cleanup_arg_not_function) << Attr.getParameterName(); return; } if (FD->getNumParams() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_cleanup_func_must_take_one_arg) << Attr.getParameterName(); return; } // We're currently more strict than GCC about what function types we accept. // If this ever proves to be a problem it should be easy to fix. QualType Ty = S.Context.getPointerType(VD->getType()); QualType ParamTy = FD->getParamDecl(0)->getType(); if (S.CheckAssignmentConstraints(ParamTy, Ty) != Sema::Compatible) { S.Diag(Attr.getLoc(), diag::err_attribute_cleanup_func_arg_incompatible_type) << Attr.getParameterName() << ParamTy << Ty; return; } d->addAttr(S.Context, ::new (S.Context) CleanupAttr(FD)); } /// Handle __attribute__((format_arg((idx)))) attribute /// based on http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html static void HandleFormatArgAttr(Decl *d, const AttributeList &Attr, Sema &S) { if (Attr.getNumArgs() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } if (!isFunctionOrMethod(d) || !hasFunctionProto(d)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 0 /*function*/; return; } // FIXME: in C++ the implicit 'this' function parameter also counts. // this is needed in order to be compatible with GCC // the index must start with 1. unsigned NumArgs = getFunctionOrMethodNumArgs(d); unsigned FirstIdx = 1; // checks for the 2nd argument Expr *IdxExpr = static_cast(Attr.getArg(0)); llvm::APSInt Idx(32); if (!IdxExpr->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "format" << 2 << IdxExpr->getSourceRange(); return; } if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) << "format" << 2 << IdxExpr->getSourceRange(); return; } unsigned ArgIdx = Idx.getZExtValue() - 1; // make sure the format string is really a string QualType Ty = getFunctionOrMethodArgType(d, ArgIdx); bool not_nsstring_type = !isNSStringType(Ty, S.Context); if (not_nsstring_type && !isCFStringType(Ty, S.Context) && (!Ty->isPointerType() || !Ty->getAsPointerType()->getPointeeType()->isCharType())) { // FIXME: Should highlight the actual expression that has the wrong type. S.Diag(Attr.getLoc(), diag::err_format_attribute_not) << (not_nsstring_type ? "a string type" : "an NSString") << IdxExpr->getSourceRange(); return; } Ty = getFunctionOrMethodResultType(d); if (!isNSStringType(Ty, S.Context) && !isCFStringType(Ty, S.Context) && (!Ty->isPointerType() || !Ty->getAsPointerType()->getPointeeType()->isCharType())) { // FIXME: Should highlight the actual expression that has the wrong type. S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not) << (not_nsstring_type ? "string type" : "NSString") << IdxExpr->getSourceRange(); return; } d->addAttr(S.Context, ::new (S.Context) FormatArgAttr(Idx.getZExtValue())); } /// Handle __attribute__((format(type,idx,firstarg))) attributes /// based on http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html static void HandleFormatAttr(Decl *d, const AttributeList &Attr, Sema &S) { if (!Attr.getParameterName()) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) << "format" << 1; return; } if (Attr.getNumArgs() != 2) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 3; return; } if (!isFunctionOrMethodOrBlock(d) || !hasFunctionProto(d)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 0 /*function*/; return; } // FIXME: in C++ the implicit 'this' function parameter also counts. // this is needed in order to be compatible with GCC // the index must start in 1 and the limit is numargs+1 unsigned NumArgs = getFunctionOrMethodNumArgs(d); unsigned FirstIdx = 1; const char *Format = Attr.getParameterName()->getName(); unsigned FormatLen = Attr.getParameterName()->getLength(); // Normalize the argument, __foo__ becomes foo. if (FormatLen > 4 && Format[0] == '_' && Format[1] == '_' && Format[FormatLen - 2] == '_' && Format[FormatLen - 1] == '_') { Format += 2; FormatLen -= 4; } bool Supported = false; bool is_NSString = false; bool is_strftime = false; bool is_CFString = false; switch (FormatLen) { default: break; case 5: Supported = !memcmp(Format, "scanf", 5); break; case 6: Supported = !memcmp(Format, "printf", 6); break; case 7: Supported = !memcmp(Format, "strfmon", 7); break; case 8: Supported = (is_strftime = !memcmp(Format, "strftime", 8)) || (is_NSString = !memcmp(Format, "NSString", 8)) || (is_CFString = !memcmp(Format, "CFString", 8)); break; } if (!Supported) { S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported) << "format" << Attr.getParameterName()->getName(); return; } // checks for the 2nd argument Expr *IdxExpr = static_cast(Attr.getArg(0)); llvm::APSInt Idx(32); if (!IdxExpr->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "format" << 2 << IdxExpr->getSourceRange(); return; } if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) << "format" << 2 << IdxExpr->getSourceRange(); return; } // FIXME: Do we need to bounds check? unsigned ArgIdx = Idx.getZExtValue() - 1; // make sure the format string is really a string QualType Ty = getFunctionOrMethodArgType(d, ArgIdx); if (is_CFString) { if (!isCFStringType(Ty, S.Context)) { S.Diag(Attr.getLoc(), diag::err_format_attribute_not) << "a CFString" << IdxExpr->getSourceRange(); return; } } else if (is_NSString) { // FIXME: do we need to check if the type is NSString*? What are the // semantics? if (!isNSStringType(Ty, S.Context)) { // FIXME: Should highlight the actual expression that has the wrong type. S.Diag(Attr.getLoc(), diag::err_format_attribute_not) << "an NSString" << IdxExpr->getSourceRange(); return; } } else if (!Ty->isPointerType() || !Ty->getAsPointerType()->getPointeeType()->isCharType()) { // FIXME: Should highlight the actual expression that has the wrong type. S.Diag(Attr.getLoc(), diag::err_format_attribute_not) << "a string type" << IdxExpr->getSourceRange(); return; } // check the 3rd argument Expr *FirstArgExpr = static_cast(Attr.getArg(1)); llvm::APSInt FirstArg(32); if (!FirstArgExpr->isIntegerConstantExpr(FirstArg, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "format" << 3 << FirstArgExpr->getSourceRange(); return; } // check if the function is variadic if the 3rd argument non-zero if (FirstArg != 0) { if (isFunctionOrMethodVariadic(d)) { ++NumArgs; // +1 for ... } else { S.Diag(d->getLocation(), diag::err_format_attribute_requires_variadic); return; } } // strftime requires FirstArg to be 0 because it doesn't read from any // variable the input is just the current time + the format string. if (is_strftime) { if (FirstArg != 0) { S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter) << FirstArgExpr->getSourceRange(); return; } // if 0 it disables parameter checking (to use with e.g. va_list) } else if (FirstArg != 0 && FirstArg != NumArgs) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) << "format" << 3 << FirstArgExpr->getSourceRange(); return; } d->addAttr(S.Context, ::new (S.Context) FormatAttr(std::string(Format, FormatLen), Idx.getZExtValue(), FirstArg.getZExtValue())); } static void HandleTransparentUnionAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } // Try to find the underlying union declaration. RecordDecl *RD = 0; TypedefDecl *TD = dyn_cast(d); if (TD && TD->getUnderlyingType()->isUnionType()) RD = TD->getUnderlyingType()->getAsUnionType()->getDecl(); else RD = dyn_cast(d); if (!RD || !RD->isUnion()) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 1 /*union*/; return; } if (!RD->isDefinition()) { S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_not_definition); return; } RecordDecl::field_iterator Field = RD->field_begin(S.Context), FieldEnd = RD->field_end(S.Context); if (Field == FieldEnd) { S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields); return; } FieldDecl *FirstField = *Field; QualType FirstType = FirstField->getType(); if (FirstType->isFloatingType() || FirstType->isVectorType()) { S.Diag(FirstField->getLocation(), diag::warn_transparent_union_attribute_floating); return; } uint64_t FirstSize = S.Context.getTypeSize(FirstType); uint64_t FirstAlign = S.Context.getTypeAlign(FirstType); for (; Field != FieldEnd; ++Field) { QualType FieldType = Field->getType(); if (S.Context.getTypeSize(FieldType) != FirstSize || S.Context.getTypeAlign(FieldType) != FirstAlign) { // Warn if we drop the attribute. bool isSize = S.Context.getTypeSize(FieldType) != FirstSize; unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType) : S.Context.getTypeAlign(FieldType); S.Diag(Field->getLocation(), diag::warn_transparent_union_attribute_field_size_align) << isSize << Field->getDeclName() << FieldBits; unsigned FirstBits = isSize? FirstSize : FirstAlign; S.Diag(FirstField->getLocation(), diag::note_transparent_union_first_field_size_align) << isSize << FirstBits; return; } } RD->addAttr(S.Context, ::new (S.Context) TransparentUnionAttr()); } static void HandleAnnotateAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } Expr *argExpr = static_cast(Attr.getArg(0)); StringLiteral *SE = dyn_cast(argExpr); // Make sure that there is a string literal as the annotation's single // argument. if (!SE) { S.Diag(Attr.getLoc(), diag::err_attribute_annotate_no_string); return; } d->addAttr(S.Context, ::new (S.Context) AnnotateAttr(std::string(SE->getStrData(), SE->getByteLength()))); } static void HandleAlignedAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() > 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } unsigned Align = 0; if (Attr.getNumArgs() == 0) { // FIXME: This should be the target specific maximum alignment. // (For now we just use 128 bits which is the maximum on X86). Align = 128; d->addAttr(S.Context, ::new (S.Context) AlignedAttr(Align)); return; } Expr *alignmentExpr = static_cast(Attr.getArg(0)); llvm::APSInt Alignment(32); if (!alignmentExpr->isIntegerConstantExpr(Alignment, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) << "aligned" << alignmentExpr->getSourceRange(); return; } if (!llvm::isPowerOf2_64(Alignment.getZExtValue())) { S.Diag(Attr.getLoc(), diag::err_attribute_aligned_not_power_of_two) << alignmentExpr->getSourceRange(); return; } d->addAttr(S.Context, ::new (S.Context) AlignedAttr(Alignment.getZExtValue() * 8)); } /// HandleModeAttr - This attribute modifies the width of a decl with /// primitive type. /// /// Despite what would be logical, the mode attribute is a decl attribute, /// not a type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make /// 'G' be HImode, not an intermediate pointer. /// static void HandleModeAttr(Decl *D, const AttributeList &Attr, Sema &S) { // This attribute isn't documented, but glibc uses it. It changes // the width of an int or unsigned int to the specified size. // Check that there aren't any arguments if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } IdentifierInfo *Name = Attr.getParameterName(); if (!Name) { S.Diag(Attr.getLoc(), diag::err_attribute_missing_parameter_name); return; } const char *Str = Name->getName(); unsigned Len = Name->getLength(); // Normalize the attribute name, __foo__ becomes foo. if (Len > 4 && Str[0] == '_' && Str[1] == '_' && Str[Len - 2] == '_' && Str[Len - 1] == '_') { Str += 2; Len -= 4; } unsigned DestWidth = 0; bool IntegerMode = true; bool ComplexMode = false; switch (Len) { case 2: switch (Str[0]) { case 'Q': DestWidth = 8; break; case 'H': DestWidth = 16; break; case 'S': DestWidth = 32; break; case 'D': DestWidth = 64; break; case 'X': DestWidth = 96; break; case 'T': DestWidth = 128; break; } if (Str[1] == 'F') { IntegerMode = false; } else if (Str[1] == 'C') { IntegerMode = false; ComplexMode = true; } else if (Str[1] != 'I') { DestWidth = 0; } break; case 4: // FIXME: glibc uses 'word' to define register_t; this is narrower than a // pointer on PIC16 and other embedded platforms. if (!memcmp(Str, "word", 4)) DestWidth = S.Context.Target.getPointerWidth(0); if (!memcmp(Str, "byte", 4)) DestWidth = S.Context.Target.getCharWidth(); break; case 7: if (!memcmp(Str, "pointer", 7)) DestWidth = S.Context.Target.getPointerWidth(0); break; } QualType OldTy; if (TypedefDecl *TD = dyn_cast(D)) OldTy = TD->getUnderlyingType(); else if (ValueDecl *VD = dyn_cast(D)) OldTy = VD->getType(); else { S.Diag(D->getLocation(), diag::err_attr_wrong_decl) << "mode" << SourceRange(Attr.getLoc(), Attr.getLoc()); return; } if (!OldTy->getAsBuiltinType() && !OldTy->isComplexType()) S.Diag(Attr.getLoc(), diag::err_mode_not_primitive); else if (IntegerMode) { if (!OldTy->isIntegralType()) S.Diag(Attr.getLoc(), diag::err_mode_wrong_type); } else if (ComplexMode) { if (!OldTy->isComplexType()) S.Diag(Attr.getLoc(), diag::err_mode_wrong_type); } else { if (!OldTy->isFloatingType()) S.Diag(Attr.getLoc(), diag::err_mode_wrong_type); } // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t // and friends, at least with glibc. // FIXME: Make sure 32/64-bit integers don't get defined to types of the wrong // width on unusual platforms. // FIXME: Make sure floating-point mappings are accurate // FIXME: Support XF and TF types QualType NewTy; switch (DestWidth) { case 0: S.Diag(Attr.getLoc(), diag::err_unknown_machine_mode) << Name; return; default: S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name; return; case 8: if (!IntegerMode) { S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name; return; } if (OldTy->isSignedIntegerType()) NewTy = S.Context.SignedCharTy; else NewTy = S.Context.UnsignedCharTy; break; case 16: if (!IntegerMode) { S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name; return; } if (OldTy->isSignedIntegerType()) NewTy = S.Context.ShortTy; else NewTy = S.Context.UnsignedShortTy; break; case 32: if (!IntegerMode) NewTy = S.Context.FloatTy; else if (OldTy->isSignedIntegerType()) NewTy = S.Context.IntTy; else NewTy = S.Context.UnsignedIntTy; break; case 64: if (!IntegerMode) NewTy = S.Context.DoubleTy; else if (OldTy->isSignedIntegerType()) NewTy = S.Context.LongLongTy; else NewTy = S.Context.UnsignedLongLongTy; break; case 96: NewTy = S.Context.LongDoubleTy; break; case 128: if (!IntegerMode) { S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name; return; } NewTy = S.Context.getFixedWidthIntType(128, OldTy->isSignedIntegerType()); break; } if (ComplexMode) { NewTy = S.Context.getComplexType(NewTy); } // Install the new type. if (TypedefDecl *TD = dyn_cast(D)) TD->setUnderlyingType(NewTy); else cast(D)->setType(NewTy); } static void HandleNodebugAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() > 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } if (!isFunctionOrMethod(d)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 0 /*function*/; return; } d->addAttr(S.Context, ::new (S.Context) NodebugAttr()); } static void HandleNoinlineAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } if (!isa(d)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 0 /*function*/; return; } d->addAttr(S.Context, ::new (S.Context) NoinlineAttr()); } static void HandleGNUInlineAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } FunctionDecl *Fn = dyn_cast(d); if (Fn == 0) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 0 /*function*/; return; } if (!Fn->isInline()) { S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline); return; } d->addAttr(S.Context, ::new (S.Context) GNUInlineAttr()); } static void HandleRegparmAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } if (!isFunctionOrMethod(d)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 0 /*function*/; return; } Expr *NumParamsExpr = static_cast(Attr.getArg(0)); llvm::APSInt NumParams(32); if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) << "regparm" << NumParamsExpr->getSourceRange(); return; } if (S.Context.Target.getRegParmMax() == 0) { S.Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform) << NumParamsExpr->getSourceRange(); return; } if (NumParams.getLimitedValue(255) > S.Context.Target.getRegParmMax()) { S.Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number) << S.Context.Target.getRegParmMax() << NumParamsExpr->getSourceRange(); return; } d->addAttr(S.Context, ::new (S.Context) RegparmAttr(NumParams.getZExtValue())); } //===----------------------------------------------------------------------===// // Checker-specific attribute handlers. //===----------------------------------------------------------------------===// static void HandleNSReturnsRetainedAttr(Decl *d, const AttributeList &Attr, Sema &S) { QualType RetTy; if (ObjCMethodDecl *MD = dyn_cast(d)) RetTy = MD->getResultType(); else if (FunctionDecl *FD = dyn_cast(d)) RetTy = FD->getResultType(); else { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << 3 /* function or method */; return; } if (!(S.Context.isObjCNSObjectType(RetTy) || RetTy->getAsPointerType())) { S.Diag(Attr.getLoc(), diag::warn_ns_attribute_wrong_return_type) << Attr.getName(); return; } switch (Attr.getKind()) { default: assert(0 && "invalid ownership attribute"); return; case AttributeList::AT_cf_returns_retained: d->addAttr(S.Context, ::new (S.Context) CFReturnsRetainedAttr()); return; case AttributeList::AT_ns_returns_retained: d->addAttr(S.Context, ::new (S.Context) NSReturnsRetainedAttr()); return; }; } //===----------------------------------------------------------------------===// // Top Level Sema Entry Points //===----------------------------------------------------------------------===// /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if /// the attribute applies to decls. If the attribute is a type attribute, just /// silently ignore it. static void ProcessDeclAttribute(Scope *scope, Decl *D, const AttributeList &Attr, Sema &S) { if (Attr.isDeclspecAttribute()) // FIXME: Try to deal with __declspec attributes! return; switch (Attr.getKind()) { case AttributeList::AT_IBOutlet: HandleIBOutletAttr (D, Attr, S); break; case AttributeList::AT_address_space: case AttributeList::AT_objc_gc: // Ignore these, these are type attributes, handled by ProcessTypeAttributes. break; case AttributeList::AT_alias: HandleAliasAttr (D, Attr, S); break; case AttributeList::AT_aligned: HandleAlignedAttr (D, Attr, S); break; case AttributeList::AT_always_inline: HandleAlwaysInlineAttr (D, Attr, S); break; case AttributeList::AT_analyzer_noreturn: HandleAnalyzerNoReturnAttr (D, Attr, S); break; case AttributeList::AT_annotate: HandleAnnotateAttr (D, Attr, S); break; case AttributeList::AT_constructor: HandleConstructorAttr(D, Attr, S); break; case AttributeList::AT_deprecated: HandleDeprecatedAttr(D, Attr, S); break; case AttributeList::AT_destructor: HandleDestructorAttr(D, Attr, S); break; case AttributeList::AT_dllexport: HandleDLLExportAttr (D, Attr, S); break; case AttributeList::AT_dllimport: HandleDLLImportAttr (D, Attr, S); break; case AttributeList::AT_ext_vector_type: HandleExtVectorTypeAttr(scope, D, Attr, S); break; case AttributeList::AT_fastcall: HandleFastCallAttr (D, Attr, S); break; case AttributeList::AT_format: HandleFormatAttr (D, Attr, S); break; case AttributeList::AT_format_arg: HandleFormatArgAttr (D, Attr, S); break; case AttributeList::AT_gnu_inline: HandleGNUInlineAttr(D, Attr, S); break; case AttributeList::AT_mode: HandleModeAttr (D, Attr, S); break; case AttributeList::AT_nonnull: HandleNonNullAttr (D, Attr, S); break; case AttributeList::AT_noreturn: HandleNoReturnAttr (D, Attr, S); break; case AttributeList::AT_nothrow: HandleNothrowAttr (D, Attr, S); break; // Checker-specific. case AttributeList::AT_ns_returns_retained: case AttributeList::AT_cf_returns_retained: HandleNSReturnsRetainedAttr(D, Attr, S); break; case AttributeList::AT_reqd_wg_size: HandleReqdWorkGroupSize(D, Attr, S); break; case AttributeList::AT_packed: HandlePackedAttr (D, Attr, S); break; case AttributeList::AT_section: HandleSectionAttr (D, Attr, S); break; case AttributeList::AT_stdcall: HandleStdCallAttr (D, Attr, S); break; case AttributeList::AT_unavailable: HandleUnavailableAttr(D, Attr, S); break; case AttributeList::AT_unused: HandleUnusedAttr (D, Attr, S); break; case AttributeList::AT_used: HandleUsedAttr (D, Attr, S); break; case AttributeList::AT_vector_size: HandleVectorSizeAttr(D, Attr, S); break; case AttributeList::AT_visibility: HandleVisibilityAttr(D, Attr, S); break; case AttributeList::AT_warn_unused_result: HandleWarnUnusedResult(D,Attr,S); break; case AttributeList::AT_weak: HandleWeakAttr (D, Attr, S); break; case AttributeList::AT_weak_import: HandleWeakImportAttr(D, Attr, S); break; case AttributeList::AT_transparent_union: HandleTransparentUnionAttr(D, Attr, S); break; case AttributeList::AT_objc_exception: HandleObjCExceptionAttr(D, Attr, S); break; case AttributeList::AT_overloadable:HandleOverloadableAttr(D, Attr, S); break; case AttributeList::AT_nsobject: HandleObjCNSObject (D, Attr, S); break; case AttributeList::AT_blocks: HandleBlocksAttr (D, Attr, S); break; case AttributeList::AT_sentinel: HandleSentinelAttr (D, Attr, S); break; case AttributeList::AT_const: HandleConstAttr (D, Attr, S); break; case AttributeList::AT_pure: HandlePureAttr (D, Attr, S); break; case AttributeList::AT_cleanup: HandleCleanupAttr (D, Attr, S); break; case AttributeList::AT_nodebug: HandleNodebugAttr (D, Attr, S); break; case AttributeList::AT_noinline: HandleNoinlineAttr (D, Attr, S); break; case AttributeList::AT_regparm: HandleRegparmAttr (D, Attr, S); break; case AttributeList::IgnoredAttribute: case AttributeList::AT_no_instrument_function: // Interacts with -pg. // Just ignore break; default: S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); break; } } /// ProcessDeclAttributeList - Apply all the decl attributes in the specified /// attribute list to the specified decl, ignoring any type attributes. void Sema::ProcessDeclAttributeList(Scope *S, Decl *D, const AttributeList *AttrList) { while (AttrList) { ProcessDeclAttribute(S, D, *AttrList, *this); AttrList = AttrList->getNext(); } } /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in /// it, apply them to D. This is a bit tricky because PD can have attributes /// specified in many different places, and we need to find and apply them all. void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) { // Apply decl attributes from the DeclSpec if present. if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes()) ProcessDeclAttributeList(S, D, Attrs); // Walk the declarator structure, applying decl attributes that were in a type // position to the decl itself. This handles cases like: // int *__attr__(x)** D; // when X is a decl attribute. for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs()) ProcessDeclAttributeList(S, D, Attrs); // Finally, apply any attributes on the decl itself. if (const AttributeList *Attrs = PD.getAttributes()) ProcessDeclAttributeList(S, D, Attrs); }