//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provides Sema routines for C++ overloading. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "SemaInherit.h" #include "clang/Basic/Diagnostic.h" #include "clang/Lex/Preprocessor.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/TypeOrdering.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Compiler.h" #include namespace clang { /// GetConversionCategory - Retrieve the implicit conversion /// category corresponding to the given implicit conversion kind. ImplicitConversionCategory GetConversionCategory(ImplicitConversionKind Kind) { static const ImplicitConversionCategory Category[(int)ICK_Num_Conversion_Kinds] = { ICC_Identity, ICC_Lvalue_Transformation, ICC_Lvalue_Transformation, ICC_Lvalue_Transformation, ICC_Qualification_Adjustment, ICC_Promotion, ICC_Promotion, ICC_Promotion, ICC_Conversion, ICC_Conversion, ICC_Conversion, ICC_Conversion, ICC_Conversion, ICC_Conversion, ICC_Conversion, ICC_Conversion, ICC_Conversion, ICC_Conversion }; return Category[(int)Kind]; } /// GetConversionRank - Retrieve the implicit conversion rank /// corresponding to the given implicit conversion kind. ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { static const ImplicitConversionRank Rank[(int)ICK_Num_Conversion_Kinds] = { ICR_Exact_Match, ICR_Exact_Match, ICR_Exact_Match, ICR_Exact_Match, ICR_Exact_Match, ICR_Promotion, ICR_Promotion, ICR_Promotion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion }; return Rank[(int)Kind]; } /// GetImplicitConversionName - Return the name of this kind of /// implicit conversion. const char* GetImplicitConversionName(ImplicitConversionKind Kind) { static const char* Name[(int)ICK_Num_Conversion_Kinds] = { "No conversion", "Lvalue-to-rvalue", "Array-to-pointer", "Function-to-pointer", "Qualification", "Integral promotion", "Floating point promotion", "Complex promotion", "Integral conversion", "Floating conversion", "Complex conversion", "Floating-integral conversion", "Complex-real conversion", "Pointer conversion", "Pointer-to-member conversion", "Boolean conversion", "Compatible-types conversion", "Derived-to-base conversion" }; return Name[Kind]; } /// StandardConversionSequence - Set the standard conversion /// sequence to the identity conversion. void StandardConversionSequence::setAsIdentityConversion() { First = ICK_Identity; Second = ICK_Identity; Third = ICK_Identity; Deprecated = false; ReferenceBinding = false; DirectBinding = false; RRefBinding = false; CopyConstructor = 0; } /// getRank - Retrieve the rank of this standard conversion sequence /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the /// implicit conversions. ImplicitConversionRank StandardConversionSequence::getRank() const { ImplicitConversionRank Rank = ICR_Exact_Match; if (GetConversionRank(First) > Rank) Rank = GetConversionRank(First); if (GetConversionRank(Second) > Rank) Rank = GetConversionRank(Second); if (GetConversionRank(Third) > Rank) Rank = GetConversionRank(Third); return Rank; } /// isPointerConversionToBool - Determines whether this conversion is /// a conversion of a pointer or pointer-to-member to bool. This is /// used as part of the ranking of standard conversion sequences /// (C++ 13.3.3.2p4). bool StandardConversionSequence::isPointerConversionToBool() const { QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); // Note that FromType has not necessarily been transformed by the // array-to-pointer or function-to-pointer implicit conversions, so // check for their presence as well as checking whether FromType is // a pointer. if (ToType->isBooleanType() && (FromType->isPointerType() || FromType->isBlockPointerType() || First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) return true; return false; } /// isPointerConversionToVoidPointer - Determines whether this /// conversion is a conversion of a pointer to a void pointer. This is /// used as part of the ranking of standard conversion sequences (C++ /// 13.3.3.2p4). bool StandardConversionSequence:: isPointerConversionToVoidPointer(ASTContext& Context) const { QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); // Note that FromType has not necessarily been transformed by the // array-to-pointer implicit conversion, so check for its presence // and redo the conversion to get a pointer. if (First == ICK_Array_To_Pointer) FromType = Context.getArrayDecayedType(FromType); if (Second == ICK_Pointer_Conversion) if (const PointerType* ToPtrType = ToType->getAsPointerType()) return ToPtrType->getPointeeType()->isVoidType(); return false; } /// DebugPrint - Print this standard conversion sequence to standard /// error. Useful for debugging overloading issues. void StandardConversionSequence::DebugPrint() const { bool PrintedSomething = false; if (First != ICK_Identity) { fprintf(stderr, "%s", GetImplicitConversionName(First)); PrintedSomething = true; } if (Second != ICK_Identity) { if (PrintedSomething) { fprintf(stderr, " -> "); } fprintf(stderr, "%s", GetImplicitConversionName(Second)); if (CopyConstructor) { fprintf(stderr, " (by copy constructor)"); } else if (DirectBinding) { fprintf(stderr, " (direct reference binding)"); } else if (ReferenceBinding) { fprintf(stderr, " (reference binding)"); } PrintedSomething = true; } if (Third != ICK_Identity) { if (PrintedSomething) { fprintf(stderr, " -> "); } fprintf(stderr, "%s", GetImplicitConversionName(Third)); PrintedSomething = true; } if (!PrintedSomething) { fprintf(stderr, "No conversions required"); } } /// DebugPrint - Print this user-defined conversion sequence to standard /// error. Useful for debugging overloading issues. void UserDefinedConversionSequence::DebugPrint() const { if (Before.First || Before.Second || Before.Third) { Before.DebugPrint(); fprintf(stderr, " -> "); } fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str()); if (After.First || After.Second || After.Third) { fprintf(stderr, " -> "); After.DebugPrint(); } } /// DebugPrint - Print this implicit conversion sequence to standard /// error. Useful for debugging overloading issues. void ImplicitConversionSequence::DebugPrint() const { switch (ConversionKind) { case StandardConversion: fprintf(stderr, "Standard conversion: "); Standard.DebugPrint(); break; case UserDefinedConversion: fprintf(stderr, "User-defined conversion: "); UserDefined.DebugPrint(); break; case EllipsisConversion: fprintf(stderr, "Ellipsis conversion"); break; case BadConversion: fprintf(stderr, "Bad conversion"); break; } fprintf(stderr, "\n"); } // IsOverload - Determine whether the given New declaration is an // overload of the Old declaration. This routine returns false if New // and Old cannot be overloaded, e.g., if they are functions with the // same signature (C++ 1.3.10) or if the Old declaration isn't a // function (or overload set). When it does return false and Old is an // OverloadedFunctionDecl, MatchedDecl will be set to point to the // FunctionDecl that New cannot be overloaded with. // // Example: Given the following input: // // void f(int, float); // #1 // void f(int, int); // #2 // int f(int, int); // #3 // // When we process #1, there is no previous declaration of "f", // so IsOverload will not be used. // // When we process #2, Old is a FunctionDecl for #1. By comparing the // parameter types, we see that #1 and #2 are overloaded (since they // have different signatures), so this routine returns false; // MatchedDecl is unchanged. // // When we process #3, Old is an OverloadedFunctionDecl containing #1 // and #2. We compare the signatures of #3 to #1 (they're overloaded, // so we do nothing) and then #3 to #2. Since the signatures of #3 and // #2 are identical (return types of functions are not part of the // signature), IsOverload returns false and MatchedDecl will be set to // point to the FunctionDecl for #2. bool Sema::IsOverload(FunctionDecl *New, Decl* OldD, OverloadedFunctionDecl::function_iterator& MatchedDecl) { if (OverloadedFunctionDecl* Ovl = dyn_cast(OldD)) { // Is this new function an overload of every function in the // overload set? OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), FuncEnd = Ovl->function_end(); for (; Func != FuncEnd; ++Func) { if (!IsOverload(New, *Func, MatchedDecl)) { MatchedDecl = Func; return false; } } // This function overloads every function in the overload set. return true; } else if (FunctionTemplateDecl *Old = dyn_cast(OldD)) return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl); else if (FunctionDecl* Old = dyn_cast(OldD)) { FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); // C++ [temp.fct]p2: // A function template can be overloaded with other function templates // and with normal (non-template) functions. if ((OldTemplate == 0) != (NewTemplate == 0)) return true; // Is the function New an overload of the function Old? QualType OldQType = Context.getCanonicalType(Old->getType()); QualType NewQType = Context.getCanonicalType(New->getType()); // Compare the signatures (C++ 1.3.10) of the two functions to // determine whether they are overloads. If we find any mismatch // in the signature, they are overloads. // If either of these functions is a K&R-style function (no // prototype), then we consider them to have matching signatures. if (isa(OldQType.getTypePtr()) || isa(NewQType.getTypePtr())) return false; FunctionProtoType* OldType = cast(OldQType); FunctionProtoType* NewType = cast(NewQType); // The signature of a function includes the types of its // parameters (C++ 1.3.10), which includes the presence or absence // of the ellipsis; see C++ DR 357). if (OldQType != NewQType && (OldType->getNumArgs() != NewType->getNumArgs() || OldType->isVariadic() != NewType->isVariadic() || !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), NewType->arg_type_begin()))) return true; // C++ [temp.over.link]p4: // The signature of a function template consists of its function // signature, its return type and its template parameter list. The names // of the template parameters are significant only for establishing the // relationship between the template parameters and the rest of the // signature. // // We check the return type and template parameter lists for function // templates first; the remaining checks follow. if (NewTemplate && (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), OldTemplate->getTemplateParameters(), false, false, SourceLocation()) || OldType->getResultType() != NewType->getResultType())) return true; // If the function is a class member, its signature includes the // cv-qualifiers (if any) on the function itself. // // As part of this, also check whether one of the member functions // is static, in which case they are not overloads (C++ // 13.1p2). While not part of the definition of the signature, // this check is important to determine whether these functions // can be overloaded. CXXMethodDecl* OldMethod = dyn_cast(Old); CXXMethodDecl* NewMethod = dyn_cast(New); if (OldMethod && NewMethod && !OldMethod->isStatic() && !NewMethod->isStatic() && OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) return true; // The signatures match; this is not an overload. return false; } else { // (C++ 13p1): // Only function declarations can be overloaded; object and type // declarations cannot be overloaded. return false; } } /// TryImplicitConversion - Attempt to perform an implicit conversion /// from the given expression (Expr) to the given type (ToType). This /// function returns an implicit conversion sequence that can be used /// to perform the initialization. Given /// /// void f(float f); /// void g(int i) { f(i); } /// /// this routine would produce an implicit conversion sequence to /// describe the initialization of f from i, which will be a standard /// conversion sequence containing an lvalue-to-rvalue conversion (C++ /// 4.1) followed by a floating-integral conversion (C++ 4.9). // /// Note that this routine only determines how the conversion can be /// performed; it does not actually perform the conversion. As such, /// it will not produce any diagnostics if no conversion is available, /// but will instead return an implicit conversion sequence of kind /// "BadConversion". /// /// If @p SuppressUserConversions, then user-defined conversions are /// not permitted. /// If @p AllowExplicit, then explicit user-defined conversions are /// permitted. /// If @p ForceRValue, then overloading is performed as if From was an rvalue, /// no matter its actual lvalueness. ImplicitConversionSequence Sema::TryImplicitConversion(Expr* From, QualType ToType, bool SuppressUserConversions, bool AllowExplicit, bool ForceRValue) { ImplicitConversionSequence ICS; if (IsStandardConversion(From, ToType, ICS.Standard)) ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; else if (getLangOptions().CPlusPlus && IsUserDefinedConversion(From, ToType, ICS.UserDefined, !SuppressUserConversions, AllowExplicit, ForceRValue)) { ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion; // C++ [over.ics.user]p4: // A conversion of an expression of class type to the same class // type is given Exact Match rank, and a conversion of an // expression of class type to a base class of that type is // given Conversion rank, in spite of the fact that a copy // constructor (i.e., a user-defined conversion function) is // called for those cases. if (CXXConstructorDecl *Constructor = dyn_cast(ICS.UserDefined.ConversionFunction)) { QualType FromCanon = Context.getCanonicalType(From->getType().getUnqualifiedType()); QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { // Turn this into a "standard" conversion sequence, so that it // gets ranked with standard conversion sequences. ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; ICS.Standard.setAsIdentityConversion(); ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr(); ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr(); ICS.Standard.CopyConstructor = Constructor; if (ToCanon != FromCanon) ICS.Standard.Second = ICK_Derived_To_Base; } } // C++ [over.best.ics]p4: // However, when considering the argument of a user-defined // conversion function that is a candidate by 13.3.1.3 when // invoked for the copying of the temporary in the second step // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or // 13.3.1.6 in all cases, only standard conversion sequences and // ellipsis conversion sequences are allowed. if (SuppressUserConversions && ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion) ICS.ConversionKind = ImplicitConversionSequence::BadConversion; } else ICS.ConversionKind = ImplicitConversionSequence::BadConversion; return ICS; } /// IsStandardConversion - Determines whether there is a standard /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the /// expression From to the type ToType. Standard conversion sequences /// only consider non-class types; for conversions that involve class /// types, use TryImplicitConversion. If a conversion exists, SCS will /// contain the standard conversion sequence required to perform this /// conversion and this routine will return true. Otherwise, this /// routine will return false and the value of SCS is unspecified. bool Sema::IsStandardConversion(Expr* From, QualType ToType, StandardConversionSequence &SCS) { QualType FromType = From->getType(); // Standard conversions (C++ [conv]) SCS.setAsIdentityConversion(); SCS.Deprecated = false; SCS.IncompatibleObjC = false; SCS.FromTypePtr = FromType.getAsOpaquePtr(); SCS.CopyConstructor = 0; // There are no standard conversions for class types in C++, so // abort early. When overloading in C, however, we do permit if (FromType->isRecordType() || ToType->isRecordType()) { if (getLangOptions().CPlusPlus) return false; // When we're overloading in C, we allow, as standard conversions, } // The first conversion can be an lvalue-to-rvalue conversion, // array-to-pointer conversion, or function-to-pointer conversion // (C++ 4p1). // Lvalue-to-rvalue conversion (C++ 4.1): // An lvalue (3.10) of a non-function, non-array type T can be // converted to an rvalue. Expr::isLvalueResult argIsLvalue = From->isLvalue(Context); if (argIsLvalue == Expr::LV_Valid && !FromType->isFunctionType() && !FromType->isArrayType() && Context.getCanonicalType(FromType) != Context.OverloadTy) { SCS.First = ICK_Lvalue_To_Rvalue; // If T is a non-class type, the type of the rvalue is the // cv-unqualified version of T. Otherwise, the type of the rvalue // is T (C++ 4.1p1). C++ can't get here with class types; in C, we // just strip the qualifiers because they don't matter. // FIXME: Doesn't see through to qualifiers behind a typedef! FromType = FromType.getUnqualifiedType(); } // Array-to-pointer conversion (C++ 4.2) else if (FromType->isArrayType()) { SCS.First = ICK_Array_To_Pointer; // An lvalue or rvalue of type "array of N T" or "array of unknown // bound of T" can be converted to an rvalue of type "pointer to // T" (C++ 4.2p1). FromType = Context.getArrayDecayedType(FromType); if (IsStringLiteralToNonConstPointerConversion(From, ToType)) { // This conversion is deprecated. (C++ D.4). SCS.Deprecated = true; // For the purpose of ranking in overload resolution // (13.3.3.1.1), this conversion is considered an // array-to-pointer conversion followed by a qualification // conversion (4.4). (C++ 4.2p2) SCS.Second = ICK_Identity; SCS.Third = ICK_Qualification; SCS.ToTypePtr = ToType.getAsOpaquePtr(); return true; } } // Function-to-pointer conversion (C++ 4.3). else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { SCS.First = ICK_Function_To_Pointer; // An lvalue of function type T can be converted to an rvalue of // type "pointer to T." The result is a pointer to the // function. (C++ 4.3p1). FromType = Context.getPointerType(FromType); } // Address of overloaded function (C++ [over.over]). else if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, false)) { SCS.First = ICK_Function_To_Pointer; // We were able to resolve the address of the overloaded function, // so we can convert to the type of that function. FromType = Fn->getType(); if (ToType->isLValueReferenceType()) FromType = Context.getLValueReferenceType(FromType); else if (ToType->isRValueReferenceType()) FromType = Context.getRValueReferenceType(FromType); else if (ToType->isMemberPointerType()) { // Resolve address only succeeds if both sides are member pointers, // but it doesn't have to be the same class. See DR 247. // Note that this means that the type of &Derived::fn can be // Ret (Base::*)(Args) if the fn overload actually found is from the // base class, even if it was brought into the derived class via a // using declaration. The standard isn't clear on this issue at all. CXXMethodDecl *M = cast(Fn); FromType = Context.getMemberPointerType(FromType, Context.getTypeDeclType(M->getParent()).getTypePtr()); } else FromType = Context.getPointerType(FromType); } // We don't require any conversions for the first step. else { SCS.First = ICK_Identity; } // The second conversion can be an integral promotion, floating // point promotion, integral conversion, floating point conversion, // floating-integral conversion, pointer conversion, // pointer-to-member conversion, or boolean conversion (C++ 4p1). // For overloading in C, this can also be a "compatible-type" // conversion. bool IncompatibleObjC = false; if (Context.hasSameUnqualifiedType(FromType, ToType)) { // The unqualified versions of the types are the same: there's no // conversion to do. SCS.Second = ICK_Identity; } // Integral promotion (C++ 4.5). else if (IsIntegralPromotion(From, FromType, ToType)) { SCS.Second = ICK_Integral_Promotion; FromType = ToType.getUnqualifiedType(); } // Floating point promotion (C++ 4.6). else if (IsFloatingPointPromotion(FromType, ToType)) { SCS.Second = ICK_Floating_Promotion; FromType = ToType.getUnqualifiedType(); } // Complex promotion (Clang extension) else if (IsComplexPromotion(FromType, ToType)) { SCS.Second = ICK_Complex_Promotion; FromType = ToType.getUnqualifiedType(); } // Integral conversions (C++ 4.7). // FIXME: isIntegralType shouldn't be true for enums in C++. else if ((FromType->isIntegralType() || FromType->isEnumeralType()) && (ToType->isIntegralType() && !ToType->isEnumeralType())) { SCS.Second = ICK_Integral_Conversion; FromType = ToType.getUnqualifiedType(); } // Floating point conversions (C++ 4.8). else if (FromType->isFloatingType() && ToType->isFloatingType()) { SCS.Second = ICK_Floating_Conversion; FromType = ToType.getUnqualifiedType(); } // Complex conversions (C99 6.3.1.6) else if (FromType->isComplexType() && ToType->isComplexType()) { SCS.Second = ICK_Complex_Conversion; FromType = ToType.getUnqualifiedType(); } // Floating-integral conversions (C++ 4.9). // FIXME: isIntegralType shouldn't be true for enums in C++. else if ((FromType->isFloatingType() && ToType->isIntegralType() && !ToType->isBooleanType() && !ToType->isEnumeralType()) || ((FromType->isIntegralType() || FromType->isEnumeralType()) && ToType->isFloatingType())) { SCS.Second = ICK_Floating_Integral; FromType = ToType.getUnqualifiedType(); } // Complex-real conversions (C99 6.3.1.7) else if ((FromType->isComplexType() && ToType->isArithmeticType()) || (ToType->isComplexType() && FromType->isArithmeticType())) { SCS.Second = ICK_Complex_Real; FromType = ToType.getUnqualifiedType(); } // Pointer conversions (C++ 4.10). else if (IsPointerConversion(From, FromType, ToType, FromType, IncompatibleObjC)) { SCS.Second = ICK_Pointer_Conversion; SCS.IncompatibleObjC = IncompatibleObjC; } // Pointer to member conversions (4.11). else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) { SCS.Second = ICK_Pointer_Member; } // Boolean conversions (C++ 4.12). else if (ToType->isBooleanType() && (FromType->isArithmeticType() || FromType->isEnumeralType() || FromType->isPointerType() || FromType->isBlockPointerType() || FromType->isMemberPointerType() || FromType->isNullPtrType())) { SCS.Second = ICK_Boolean_Conversion; FromType = Context.BoolTy; } // Compatible conversions (Clang extension for C function overloading) else if (!getLangOptions().CPlusPlus && Context.typesAreCompatible(ToType, FromType)) { SCS.Second = ICK_Compatible_Conversion; } else { // No second conversion required. SCS.Second = ICK_Identity; } QualType CanonFrom; QualType CanonTo; // The third conversion can be a qualification conversion (C++ 4p1). if (IsQualificationConversion(FromType, ToType)) { SCS.Third = ICK_Qualification; FromType = ToType; CanonFrom = Context.getCanonicalType(FromType); CanonTo = Context.getCanonicalType(ToType); } else { // No conversion required SCS.Third = ICK_Identity; // C++ [over.best.ics]p6: // [...] Any difference in top-level cv-qualification is // subsumed by the initialization itself and does not constitute // a conversion. [...] CanonFrom = Context.getCanonicalType(FromType); CanonTo = Context.getCanonicalType(ToType); if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() && CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) { FromType = ToType; CanonFrom = CanonTo; } } // If we have not converted the argument type to the parameter type, // this is a bad conversion sequence. if (CanonFrom != CanonTo) return false; SCS.ToTypePtr = FromType.getAsOpaquePtr(); return true; } /// IsIntegralPromotion - Determines whether the conversion from the /// expression From (whose potentially-adjusted type is FromType) to /// ToType is an integral promotion (C++ 4.5). If so, returns true and /// sets PromotedType to the promoted type. bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { const BuiltinType *To = ToType->getAsBuiltinType(); // All integers are built-in. if (!To) { return false; } // An rvalue of type char, signed char, unsigned char, short int, or // unsigned short int can be converted to an rvalue of type int if // int can represent all the values of the source type; otherwise, // the source rvalue can be converted to an rvalue of type unsigned // int (C++ 4.5p1). if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) { if (// We can promote any signed, promotable integer type to an int (FromType->isSignedIntegerType() || // We can promote any unsigned integer type whose size is // less than int to an int. (!FromType->isSignedIntegerType() && Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { return To->getKind() == BuiltinType::Int; } return To->getKind() == BuiltinType::UInt; } // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) // can be converted to an rvalue of the first of the following types // that can represent all the values of its underlying type: int, // unsigned int, long, or unsigned long (C++ 4.5p2). if ((FromType->isEnumeralType() || FromType->isWideCharType()) && ToType->isIntegerType()) { // Determine whether the type we're converting from is signed or // unsigned. bool FromIsSigned; uint64_t FromSize = Context.getTypeSize(FromType); if (const EnumType *FromEnumType = FromType->getAsEnumType()) { QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType(); FromIsSigned = UnderlyingType->isSignedIntegerType(); } else { // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. FromIsSigned = true; } // The types we'll try to promote to, in the appropriate // order. Try each of these types. QualType PromoteTypes[6] = { Context.IntTy, Context.UnsignedIntTy, Context.LongTy, Context.UnsignedLongTy , Context.LongLongTy, Context.UnsignedLongLongTy }; for (int Idx = 0; Idx < 6; ++Idx) { uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); if (FromSize < ToSize || (FromSize == ToSize && FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { // We found the type that we can promote to. If this is the // type we wanted, we have a promotion. Otherwise, no // promotion. return Context.getCanonicalType(ToType).getUnqualifiedType() == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType(); } } } // An rvalue for an integral bit-field (9.6) can be converted to an // rvalue of type int if int can represent all the values of the // bit-field; otherwise, it can be converted to unsigned int if // unsigned int can represent all the values of the bit-field. If // the bit-field is larger yet, no integral promotion applies to // it. If the bit-field has an enumerated type, it is treated as any // other value of that type for promotion purposes (C++ 4.5p3). // FIXME: We should delay checking of bit-fields until we actually perform the // conversion. using llvm::APSInt; if (From) if (FieldDecl *MemberDecl = From->getBitField()) { APSInt BitWidth; if (FromType->isIntegralType() && !FromType->isEnumeralType() && MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); ToSize = Context.getTypeSize(ToType); // Are we promoting to an int from a bitfield that fits in an int? if (BitWidth < ToSize || (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { return To->getKind() == BuiltinType::Int; } // Are we promoting to an unsigned int from an unsigned bitfield // that fits into an unsigned int? if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { return To->getKind() == BuiltinType::UInt; } return false; } } // An rvalue of type bool can be converted to an rvalue of type int, // with false becoming zero and true becoming one (C++ 4.5p4). if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { return true; } return false; } /// IsFloatingPointPromotion - Determines whether the conversion from /// FromType to ToType is a floating point promotion (C++ 4.6). If so, /// returns true and sets PromotedType to the promoted type. bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { /// An rvalue of type float can be converted to an rvalue of type /// double. (C++ 4.6p1). if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType()) if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) { if (FromBuiltin->getKind() == BuiltinType::Float && ToBuiltin->getKind() == BuiltinType::Double) return true; // C99 6.3.1.5p1: // When a float is promoted to double or long double, or a // double is promoted to long double [...]. if (!getLangOptions().CPlusPlus && (FromBuiltin->getKind() == BuiltinType::Float || FromBuiltin->getKind() == BuiltinType::Double) && (ToBuiltin->getKind() == BuiltinType::LongDouble)) return true; } return false; } /// \brief Determine if a conversion is a complex promotion. /// /// A complex promotion is defined as a complex -> complex conversion /// where the conversion between the underlying real types is a /// floating-point or integral promotion. bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { const ComplexType *FromComplex = FromType->getAsComplexType(); if (!FromComplex) return false; const ComplexType *ToComplex = ToType->getAsComplexType(); if (!ToComplex) return false; return IsFloatingPointPromotion(FromComplex->getElementType(), ToComplex->getElementType()) || IsIntegralPromotion(0, FromComplex->getElementType(), ToComplex->getElementType()); } /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from /// the pointer type FromPtr to a pointer to type ToPointee, with the /// same type qualifiers as FromPtr has on its pointee type. ToType, /// if non-empty, will be a pointer to ToType that may or may not have /// the right set of qualifiers on its pointee. static QualType BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, QualType ToPointee, QualType ToType, ASTContext &Context) { QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); QualType CanonToPointee = Context.getCanonicalType(ToPointee); unsigned Quals = CanonFromPointee.getCVRQualifiers(); // Exact qualifier match -> return the pointer type we're converting to. if (CanonToPointee.getCVRQualifiers() == Quals) { // ToType is exactly what we need. Return it. if (ToType.getTypePtr()) return ToType; // Build a pointer to ToPointee. It has the right qualifiers // already. return Context.getPointerType(ToPointee); } // Just build a canonical type that has the right qualifiers. return Context.getPointerType(CanonToPointee.getQualifiedType(Quals)); } /// IsPointerConversion - Determines whether the conversion of the /// expression From, which has the (possibly adjusted) type FromType, /// can be converted to the type ToType via a pointer conversion (C++ /// 4.10). If so, returns true and places the converted type (that /// might differ from ToType in its cv-qualifiers at some level) into /// ConvertedType. /// /// This routine also supports conversions to and from block pointers /// and conversions with Objective-C's 'id', 'id', and /// pointers to interfaces. FIXME: Once we've determined the /// appropriate overloading rules for Objective-C, we may want to /// split the Objective-C checks into a different routine; however, /// GCC seems to consider all of these conversions to be pointer /// conversions, so for now they live here. IncompatibleObjC will be /// set if the conversion is an allowed Objective-C conversion that /// should result in a warning. bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, QualType& ConvertedType, bool &IncompatibleObjC) { IncompatibleObjC = false; if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) return true; // Conversion from a null pointer constant to any Objective-C pointer type. if (Context.isObjCObjectPointerType(ToType) && From->isNullPointerConstant(Context)) { ConvertedType = ToType; return true; } // Blocks: Block pointers can be converted to void*. if (FromType->isBlockPointerType() && ToType->isPointerType() && ToType->getAsPointerType()->getPointeeType()->isVoidType()) { ConvertedType = ToType; return true; } // Blocks: A null pointer constant can be converted to a block // pointer type. if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) { ConvertedType = ToType; return true; } // If the left-hand-side is nullptr_t, the right side can be a null // pointer constant. if (ToType->isNullPtrType() && From->isNullPointerConstant(Context)) { ConvertedType = ToType; return true; } const PointerType* ToTypePtr = ToType->getAsPointerType(); if (!ToTypePtr) return false; // A null pointer constant can be converted to a pointer type (C++ 4.10p1). if (From->isNullPointerConstant(Context)) { ConvertedType = ToType; return true; } // Beyond this point, both types need to be pointers. const PointerType *FromTypePtr = FromType->getAsPointerType(); if (!FromTypePtr) return false; QualType FromPointeeType = FromTypePtr->getPointeeType(); QualType ToPointeeType = ToTypePtr->getPointeeType(); // An rvalue of type "pointer to cv T," where T is an object type, // can be converted to an rvalue of type "pointer to cv void" (C++ // 4.10p2). if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) { ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, ToPointeeType, ToType, Context); return true; } // When we're overloading in C, we allow a special kind of pointer // conversion for compatible-but-not-identical pointee types. if (!getLangOptions().CPlusPlus && Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, ToPointeeType, ToType, Context); return true; } // C++ [conv.ptr]p3: // // An rvalue of type "pointer to cv D," where D is a class type, // can be converted to an rvalue of type "pointer to cv B," where // B is a base class (clause 10) of D. If B is an inaccessible // (clause 11) or ambiguous (10.2) base class of D, a program that // necessitates this conversion is ill-formed. The result of the // conversion is a pointer to the base class sub-object of the // derived class object. The null pointer value is converted to // the null pointer value of the destination type. // // Note that we do not check for ambiguity or inaccessibility // here. That is handled by CheckPointerConversion. if (getLangOptions().CPlusPlus && FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && IsDerivedFrom(FromPointeeType, ToPointeeType)) { ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, ToPointeeType, ToType, Context); return true; } return false; } /// isObjCPointerConversion - Determines whether this is an /// Objective-C pointer conversion. Subroutine of IsPointerConversion, /// with the same arguments and return values. bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, QualType& ConvertedType, bool &IncompatibleObjC) { if (!getLangOptions().ObjC1) return false; // Conversions with Objective-C's id<...>. if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) && ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) { ConvertedType = ToType; return true; } // Beyond this point, both types need to be pointers or block pointers. QualType ToPointeeType; const PointerType* ToTypePtr = ToType->getAsPointerType(); if (ToTypePtr) ToPointeeType = ToTypePtr->getPointeeType(); else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType()) ToPointeeType = ToBlockPtr->getPointeeType(); else return false; QualType FromPointeeType; const PointerType *FromTypePtr = FromType->getAsPointerType(); if (FromTypePtr) FromPointeeType = FromTypePtr->getPointeeType(); else if (const BlockPointerType *FromBlockPtr = FromType->getAsBlockPointerType()) FromPointeeType = FromBlockPtr->getPointeeType(); else return false; // Objective C++: We're able to convert from a pointer to an // interface to a pointer to a different interface. const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType(); const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType(); if (FromIface && ToIface && Context.canAssignObjCInterfaces(ToIface, FromIface)) { ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, ToPointeeType, ToType, Context); return true; } if (FromIface && ToIface && Context.canAssignObjCInterfaces(FromIface, ToIface)) { // Okay: this is some kind of implicit downcast of Objective-C // interfaces, which is permitted. However, we're going to // complain about it. IncompatibleObjC = true; ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, ToPointeeType, ToType, Context); return true; } // Objective C++: We're able to convert between "id" and a pointer // to any interface (in both directions). if ((FromIface && Context.isObjCIdStructType(ToPointeeType)) || (ToIface && Context.isObjCIdStructType(FromPointeeType))) { ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, ToPointeeType, ToType, Context); return true; } // Objective C++: Allow conversions between the Objective-C "id" and // "Class", in either direction. if ((Context.isObjCIdStructType(FromPointeeType) && Context.isObjCClassStructType(ToPointeeType)) || (Context.isObjCClassStructType(FromPointeeType) && Context.isObjCIdStructType(ToPointeeType))) { ConvertedType = ToType; return true; } // If we have pointers to pointers, recursively check whether this // is an Objective-C conversion. if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, IncompatibleObjC)) { // We always complain about this conversion. IncompatibleObjC = true; ConvertedType = ToType; return true; } // If we have pointers to functions or blocks, check whether the only // differences in the argument and result types are in Objective-C // pointer conversions. If so, we permit the conversion (but // complain about it). const FunctionProtoType *FromFunctionType = FromPointeeType->getAsFunctionProtoType(); const FunctionProtoType *ToFunctionType = ToPointeeType->getAsFunctionProtoType(); if (FromFunctionType && ToFunctionType) { // If the function types are exactly the same, this isn't an // Objective-C pointer conversion. if (Context.getCanonicalType(FromPointeeType) == Context.getCanonicalType(ToPointeeType)) return false; // Perform the quick checks that will tell us whether these // function types are obviously different. if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) return false; bool HasObjCConversion = false; if (Context.getCanonicalType(FromFunctionType->getResultType()) == Context.getCanonicalType(ToFunctionType->getResultType())) { // Okay, the types match exactly. Nothing to do. } else if (isObjCPointerConversion(FromFunctionType->getResultType(), ToFunctionType->getResultType(), ConvertedType, IncompatibleObjC)) { // Okay, we have an Objective-C pointer conversion. HasObjCConversion = true; } else { // Function types are too different. Abort. return false; } // Check argument types. for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); ArgIdx != NumArgs; ++ArgIdx) { QualType FromArgType = FromFunctionType->getArgType(ArgIdx); QualType ToArgType = ToFunctionType->getArgType(ArgIdx); if (Context.getCanonicalType(FromArgType) == Context.getCanonicalType(ToArgType)) { // Okay, the types match exactly. Nothing to do. } else if (isObjCPointerConversion(FromArgType, ToArgType, ConvertedType, IncompatibleObjC)) { // Okay, we have an Objective-C pointer conversion. HasObjCConversion = true; } else { // Argument types are too different. Abort. return false; } } if (HasObjCConversion) { // We had an Objective-C conversion. Allow this pointer // conversion, but complain about it. ConvertedType = ToType; IncompatibleObjC = true; return true; } } return false; } /// CheckPointerConversion - Check the pointer conversion from the /// expression From to the type ToType. This routine checks for /// ambiguous (FIXME: or inaccessible) derived-to-base pointer /// conversions for which IsPointerConversion has already returned /// true. It returns true and produces a diagnostic if there was an /// error, or returns false otherwise. bool Sema::CheckPointerConversion(Expr *From, QualType ToType) { QualType FromType = From->getType(); if (const PointerType *FromPtrType = FromType->getAsPointerType()) if (const PointerType *ToPtrType = ToType->getAsPointerType()) { QualType FromPointeeType = FromPtrType->getPointeeType(), ToPointeeType = ToPtrType->getPointeeType(); // Objective-C++ conversions are always okay. // FIXME: We should have a different class of conversions for the // Objective-C++ implicit conversions. if (Context.isObjCIdStructType(FromPointeeType) || Context.isObjCIdStructType(ToPointeeType) || Context.isObjCClassStructType(FromPointeeType) || Context.isObjCClassStructType(ToPointeeType)) return false; if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType()) { // We must have a derived-to-base conversion. Check an // ambiguous or inaccessible conversion. return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, From->getExprLoc(), From->getSourceRange()); } } return false; } /// IsMemberPointerConversion - Determines whether the conversion of the /// expression From, which has the (possibly adjusted) type FromType, can be /// converted to the type ToType via a member pointer conversion (C++ 4.11). /// If so, returns true and places the converted type (that might differ from /// ToType in its cv-qualifiers at some level) into ConvertedType. bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType, QualType &ConvertedType) { const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType(); if (!ToTypePtr) return false; // A null pointer constant can be converted to a member pointer (C++ 4.11p1) if (From->isNullPointerConstant(Context)) { ConvertedType = ToType; return true; } // Otherwise, both types have to be member pointers. const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType(); if (!FromTypePtr) return false; // A pointer to member of B can be converted to a pointer to member of D, // where D is derived from B (C++ 4.11p2). QualType FromClass(FromTypePtr->getClass(), 0); QualType ToClass(ToTypePtr->getClass(), 0); // FIXME: What happens when these are dependent? Is this function even called? if (IsDerivedFrom(ToClass, FromClass)) { ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), ToClass.getTypePtr()); return true; } return false; } /// CheckMemberPointerConversion - Check the member pointer conversion from the /// expression From to the type ToType. This routine checks for ambiguous or /// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions /// for which IsMemberPointerConversion has already returned true. It returns /// true and produces a diagnostic if there was an error, or returns false /// otherwise. bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) { QualType FromType = From->getType(); const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType(); if (!FromPtrType) return false; const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType(); assert(ToPtrType && "No member pointer cast has a target type " "that is not a member pointer."); QualType FromClass = QualType(FromPtrType->getClass(), 0); QualType ToClass = QualType(ToPtrType->getClass(), 0); // FIXME: What about dependent types? assert(FromClass->isRecordType() && "Pointer into non-class."); assert(ToClass->isRecordType() && "Pointer into non-class."); BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, /*DetectVirtual=*/true); bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); assert(DerivationOkay && "Should not have been called if derivation isn't OK."); (void)DerivationOkay; if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). getUnqualifiedType())) { // Derivation is ambiguous. Redo the check to find the exact paths. Paths.clear(); Paths.setRecordingPaths(true); bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths); assert(StillOkay && "Derivation changed due to quantum fluctuation."); (void)StillOkay; std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); return true; } if (const RecordType *VBase = Paths.getDetectedVirtual()) { Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) << FromClass << ToClass << QualType(VBase, 0) << From->getSourceRange(); return true; } return false; } /// IsQualificationConversion - Determines whether the conversion from /// an rvalue of type FromType to ToType is a qualification conversion /// (C++ 4.4). bool Sema::IsQualificationConversion(QualType FromType, QualType ToType) { FromType = Context.getCanonicalType(FromType); ToType = Context.getCanonicalType(ToType); // If FromType and ToType are the same type, this is not a // qualification conversion. if (FromType == ToType) return false; // (C++ 4.4p4): // A conversion can add cv-qualifiers at levels other than the first // in multi-level pointers, subject to the following rules: [...] bool PreviousToQualsIncludeConst = true; bool UnwrappedAnyPointer = false; while (UnwrapSimilarPointerTypes(FromType, ToType)) { // Within each iteration of the loop, we check the qualifiers to // determine if this still looks like a qualification // conversion. Then, if all is well, we unwrap one more level of // pointers or pointers-to-members and do it all again // until there are no more pointers or pointers-to-members left to // unwrap. UnwrappedAnyPointer = true; // -- for every j > 0, if const is in cv 1,j then const is in cv // 2,j, and similarly for volatile. if (!ToType.isAtLeastAsQualifiedAs(FromType)) return false; // -- if the cv 1,j and cv 2,j are different, then const is in // every cv for 0 < k < j. if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() && !PreviousToQualsIncludeConst) return false; // Keep track of whether all prior cv-qualifiers in the "to" type // include const. PreviousToQualsIncludeConst = PreviousToQualsIncludeConst && ToType.isConstQualified(); } // We are left with FromType and ToType being the pointee types // after unwrapping the original FromType and ToType the same number // of types. If we unwrapped any pointers, and if FromType and // ToType have the same unqualified type (since we checked // qualifiers above), then this is a qualification conversion. return UnwrappedAnyPointer && FromType.getUnqualifiedType() == ToType.getUnqualifiedType(); } /// Determines whether there is a user-defined conversion sequence /// (C++ [over.ics.user]) that converts expression From to the type /// ToType. If such a conversion exists, User will contain the /// user-defined conversion sequence that performs such a conversion /// and this routine will return true. Otherwise, this routine returns /// false and User is unspecified. /// /// \param AllowConversionFunctions true if the conversion should /// consider conversion functions at all. If false, only constructors /// will be considered. /// /// \param AllowExplicit true if the conversion should consider C++0x /// "explicit" conversion functions as well as non-explicit conversion /// functions (C++0x [class.conv.fct]p2). /// /// \param ForceRValue true if the expression should be treated as an rvalue /// for overload resolution. bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType, UserDefinedConversionSequence& User, bool AllowConversionFunctions, bool AllowExplicit, bool ForceRValue) { OverloadCandidateSet CandidateSet; if (const RecordType *ToRecordType = ToType->getAsRecordType()) { if (CXXRecordDecl *ToRecordDecl = dyn_cast(ToRecordType->getDecl())) { // C++ [over.match.ctor]p1: // When objects of class type are direct-initialized (8.5), or // copy-initialized from an expression of the same or a // derived class type (8.5), overload resolution selects the // constructor. [...] For copy-initialization, the candidate // functions are all the converting constructors (12.3.1) of // that class. The argument list is the expression-list within // the parentheses of the initializer. DeclarationName ConstructorName = Context.DeclarationNames.getCXXConstructorName( Context.getCanonicalType(ToType).getUnqualifiedType()); DeclContext::lookup_iterator Con, ConEnd; for (llvm::tie(Con, ConEnd) = ToRecordDecl->lookup(ConstructorName); Con != ConEnd; ++Con) { CXXConstructorDecl *Constructor = cast(*Con); if (Constructor->isConvertingConstructor()) AddOverloadCandidate(Constructor, &From, 1, CandidateSet, /*SuppressUserConversions=*/true, ForceRValue); } } } if (!AllowConversionFunctions) { // Don't allow any conversion functions to enter the overload set. } else if (const RecordType *FromRecordType = From->getType()->getAsRecordType()) { if (CXXRecordDecl *FromRecordDecl = dyn_cast(FromRecordType->getDecl())) { // Add all of the conversion functions as candidates. // FIXME: Look for conversions in base classes! OverloadedFunctionDecl *Conversions = FromRecordDecl->getConversionFunctions(); for (OverloadedFunctionDecl::function_iterator Func = Conversions->function_begin(); Func != Conversions->function_end(); ++Func) { CXXConversionDecl *Conv = cast(*Func); if (AllowExplicit || !Conv->isExplicit()) AddConversionCandidate(Conv, From, ToType, CandidateSet); } } } OverloadCandidateSet::iterator Best; switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) { case OR_Success: // Record the standard conversion we used and the conversion function. if (CXXConstructorDecl *Constructor = dyn_cast(Best->Function)) { // C++ [over.ics.user]p1: // If the user-defined conversion is specified by a // constructor (12.3.1), the initial standard conversion // sequence converts the source type to the type required by // the argument of the constructor. // // FIXME: What about ellipsis conversions? QualType ThisType = Constructor->getThisType(Context); User.Before = Best->Conversions[0].Standard; User.ConversionFunction = Constructor; User.After.setAsIdentityConversion(); User.After.FromTypePtr = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr(); User.After.ToTypePtr = ToType.getAsOpaquePtr(); return true; } else if (CXXConversionDecl *Conversion = dyn_cast(Best->Function)) { // C++ [over.ics.user]p1: // // [...] If the user-defined conversion is specified by a // conversion function (12.3.2), the initial standard // conversion sequence converts the source type to the // implicit object parameter of the conversion function. User.Before = Best->Conversions[0].Standard; User.ConversionFunction = Conversion; // C++ [over.ics.user]p2: // The second standard conversion sequence converts the // result of the user-defined conversion to the target type // for the sequence. Since an implicit conversion sequence // is an initialization, the special rules for // initialization by user-defined conversion apply when // selecting the best user-defined conversion for a // user-defined conversion sequence (see 13.3.3 and // 13.3.3.1). User.After = Best->FinalConversion; return true; } else { assert(false && "Not a constructor or conversion function?"); return false; } case OR_No_Viable_Function: case OR_Deleted: // No conversion here! We're done. return false; case OR_Ambiguous: // FIXME: See C++ [over.best.ics]p10 for the handling of // ambiguous conversion sequences. return false; } return false; } /// CompareImplicitConversionSequences - Compare two implicit /// conversion sequences to determine whether one is better than the /// other or if they are indistinguishable (C++ 13.3.3.2). ImplicitConversionSequence::CompareKind Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, const ImplicitConversionSequence& ICS2) { // (C++ 13.3.3.2p2): When comparing the basic forms of implicit // conversion sequences (as defined in 13.3.3.1) // -- a standard conversion sequence (13.3.3.1.1) is a better // conversion sequence than a user-defined conversion sequence or // an ellipsis conversion sequence, and // -- a user-defined conversion sequence (13.3.3.1.2) is a better // conversion sequence than an ellipsis conversion sequence // (13.3.3.1.3). // if (ICS1.ConversionKind < ICS2.ConversionKind) return ImplicitConversionSequence::Better; else if (ICS2.ConversionKind < ICS1.ConversionKind) return ImplicitConversionSequence::Worse; // Two implicit conversion sequences of the same form are // indistinguishable conversion sequences unless one of the // following rules apply: (C++ 13.3.3.2p3): if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion) return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard); else if (ICS1.ConversionKind == ImplicitConversionSequence::UserDefinedConversion) { // User-defined conversion sequence U1 is a better conversion // sequence than another user-defined conversion sequence U2 if // they contain the same user-defined conversion function or // constructor and if the second standard conversion sequence of // U1 is better than the second standard conversion sequence of // U2 (C++ 13.3.3.2p3). if (ICS1.UserDefined.ConversionFunction == ICS2.UserDefined.ConversionFunction) return CompareStandardConversionSequences(ICS1.UserDefined.After, ICS2.UserDefined.After); } return ImplicitConversionSequence::Indistinguishable; } /// CompareStandardConversionSequences - Compare two standard /// conversion sequences to determine whether one is better than the /// other or if they are indistinguishable (C++ 13.3.3.2p3). ImplicitConversionSequence::CompareKind Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2) { // Standard conversion sequence S1 is a better conversion sequence // than standard conversion sequence S2 if (C++ 13.3.3.2p3): // -- S1 is a proper subsequence of S2 (comparing the conversion // sequences in the canonical form defined by 13.3.3.1.1, // excluding any Lvalue Transformation; the identity conversion // sequence is considered to be a subsequence of any // non-identity conversion sequence) or, if not that, if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third) // Neither is a proper subsequence of the other. Do nothing. ; else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) || (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) || (SCS1.Second == ICK_Identity && SCS1.Third == ICK_Identity)) // SCS1 is a proper subsequence of SCS2. return ImplicitConversionSequence::Better; else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) || (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) || (SCS2.Second == ICK_Identity && SCS2.Third == ICK_Identity)) // SCS2 is a proper subsequence of SCS1. return ImplicitConversionSequence::Worse; // -- the rank of S1 is better than the rank of S2 (by the rules // defined below), or, if not that, ImplicitConversionRank Rank1 = SCS1.getRank(); ImplicitConversionRank Rank2 = SCS2.getRank(); if (Rank1 < Rank2) return ImplicitConversionSequence::Better; else if (Rank2 < Rank1) return ImplicitConversionSequence::Worse; // (C++ 13.3.3.2p4): Two conversion sequences with the same rank // are indistinguishable unless one of the following rules // applies: // A conversion that is not a conversion of a pointer, or // pointer to member, to bool is better than another conversion // that is such a conversion. if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) return SCS2.isPointerConversionToBool() ? ImplicitConversionSequence::Better : ImplicitConversionSequence::Worse; // C++ [over.ics.rank]p4b2: // // If class B is derived directly or indirectly from class A, // conversion of B* to A* is better than conversion of B* to // void*, and conversion of A* to void* is better than conversion // of B* to void*. bool SCS1ConvertsToVoid = SCS1.isPointerConversionToVoidPointer(Context); bool SCS2ConvertsToVoid = SCS2.isPointerConversionToVoidPointer(Context); if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { // Exactly one of the conversion sequences is a conversion to // a void pointer; it's the worse conversion. return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better : ImplicitConversionSequence::Worse; } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { // Neither conversion sequence converts to a void pointer; compare // their derived-to-base conversions. if (ImplicitConversionSequence::CompareKind DerivedCK = CompareDerivedToBaseConversions(SCS1, SCS2)) return DerivedCK; } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { // Both conversion sequences are conversions to void // pointers. Compare the source types to determine if there's an // inheritance relationship in their sources. QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); // Adjust the types we're converting from via the array-to-pointer // conversion, if we need to. if (SCS1.First == ICK_Array_To_Pointer) FromType1 = Context.getArrayDecayedType(FromType1); if (SCS2.First == ICK_Array_To_Pointer) FromType2 = Context.getArrayDecayedType(FromType2); QualType FromPointee1 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType(); QualType FromPointee2 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType(); if (IsDerivedFrom(FromPointee2, FromPointee1)) return ImplicitConversionSequence::Better; else if (IsDerivedFrom(FromPointee1, FromPointee2)) return ImplicitConversionSequence::Worse; // Objective-C++: If one interface is more specific than the // other, it is the better one. const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType(); const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType(); if (FromIface1 && FromIface1) { if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) return ImplicitConversionSequence::Better; else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) return ImplicitConversionSequence::Worse; } } // Compare based on qualification conversions (C++ 13.3.3.2p3, // bullet 3). if (ImplicitConversionSequence::CompareKind QualCK = CompareQualificationConversions(SCS1, SCS2)) return QualCK; if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { // C++0x [over.ics.rank]p3b4: // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an // implicit object parameter of a non-static member function declared // without a ref-qualifier, and S1 binds an rvalue reference to an // rvalue and S2 binds an lvalue reference. // FIXME: We don't know if we're dealing with the implicit object parameter, // or if the member function in this case has a ref qualifier. // (Of course, we don't have ref qualifiers yet.) if (SCS1.RRefBinding != SCS2.RRefBinding) return SCS1.RRefBinding ? ImplicitConversionSequence::Better : ImplicitConversionSequence::Worse; // C++ [over.ics.rank]p3b4: // -- S1 and S2 are reference bindings (8.5.3), and the types to // which the references refer are the same type except for // top-level cv-qualifiers, and the type to which the reference // initialized by S2 refers is more cv-qualified than the type // to which the reference initialized by S1 refers. QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); T1 = Context.getCanonicalType(T1); T2 = Context.getCanonicalType(T2); if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) { if (T2.isMoreQualifiedThan(T1)) return ImplicitConversionSequence::Better; else if (T1.isMoreQualifiedThan(T2)) return ImplicitConversionSequence::Worse; } } return ImplicitConversionSequence::Indistinguishable; } /// CompareQualificationConversions - Compares two standard conversion /// sequences to determine whether they can be ranked based on their /// qualification conversions (C++ 13.3.3.2p3 bullet 3). ImplicitConversionSequence::CompareKind Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2) { // C++ 13.3.3.2p3: // -- S1 and S2 differ only in their qualification conversion and // yield similar types T1 and T2 (C++ 4.4), respectively, and the // cv-qualification signature of type T1 is a proper subset of // the cv-qualification signature of type T2, and S1 is not the // deprecated string literal array-to-pointer conversion (4.2). if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) return ImplicitConversionSequence::Indistinguishable; // FIXME: the example in the standard doesn't use a qualification // conversion (!) QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); T1 = Context.getCanonicalType(T1); T2 = Context.getCanonicalType(T2); // If the types are the same, we won't learn anything by unwrapped // them. if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) return ImplicitConversionSequence::Indistinguishable; ImplicitConversionSequence::CompareKind Result = ImplicitConversionSequence::Indistinguishable; while (UnwrapSimilarPointerTypes(T1, T2)) { // Within each iteration of the loop, we check the qualifiers to // determine if this still looks like a qualification // conversion. Then, if all is well, we unwrap one more level of // pointers or pointers-to-members and do it all again // until there are no more pointers or pointers-to-members left // to unwrap. This essentially mimics what // IsQualificationConversion does, but here we're checking for a // strict subset of qualifiers. if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) // The qualifiers are the same, so this doesn't tell us anything // about how the sequences rank. ; else if (T2.isMoreQualifiedThan(T1)) { // T1 has fewer qualifiers, so it could be the better sequence. if (Result == ImplicitConversionSequence::Worse) // Neither has qualifiers that are a subset of the other's // qualifiers. return ImplicitConversionSequence::Indistinguishable; Result = ImplicitConversionSequence::Better; } else if (T1.isMoreQualifiedThan(T2)) { // T2 has fewer qualifiers, so it could be the better sequence. if (Result == ImplicitConversionSequence::Better) // Neither has qualifiers that are a subset of the other's // qualifiers. return ImplicitConversionSequence::Indistinguishable; Result = ImplicitConversionSequence::Worse; } else { // Qualifiers are disjoint. return ImplicitConversionSequence::Indistinguishable; } // If the types after this point are equivalent, we're done. if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) break; } // Check that the winning standard conversion sequence isn't using // the deprecated string literal array to pointer conversion. switch (Result) { case ImplicitConversionSequence::Better: if (SCS1.Deprecated) Result = ImplicitConversionSequence::Indistinguishable; break; case ImplicitConversionSequence::Indistinguishable: break; case ImplicitConversionSequence::Worse: if (SCS2.Deprecated) Result = ImplicitConversionSequence::Indistinguishable; break; } return Result; } /// CompareDerivedToBaseConversions - Compares two standard conversion /// sequences to determine whether they can be ranked based on their /// various kinds of derived-to-base conversions (C++ /// [over.ics.rank]p4b3). As part of these checks, we also look at /// conversions between Objective-C interface types. ImplicitConversionSequence::CompareKind Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2) { QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); // Adjust the types we're converting from via the array-to-pointer // conversion, if we need to. if (SCS1.First == ICK_Array_To_Pointer) FromType1 = Context.getArrayDecayedType(FromType1); if (SCS2.First == ICK_Array_To_Pointer) FromType2 = Context.getArrayDecayedType(FromType2); // Canonicalize all of the types. FromType1 = Context.getCanonicalType(FromType1); ToType1 = Context.getCanonicalType(ToType1); FromType2 = Context.getCanonicalType(FromType2); ToType2 = Context.getCanonicalType(ToType2); // C++ [over.ics.rank]p4b3: // // If class B is derived directly or indirectly from class A and // class C is derived directly or indirectly from B, // // For Objective-C, we let A, B, and C also be Objective-C // interfaces. // Compare based on pointer conversions. if (SCS1.Second == ICK_Pointer_Conversion && SCS2.Second == ICK_Pointer_Conversion && /*FIXME: Remove if Objective-C id conversions get their own rank*/ FromType1->isPointerType() && FromType2->isPointerType() && ToType1->isPointerType() && ToType2->isPointerType()) { QualType FromPointee1 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType(); QualType ToPointee1 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType(); QualType FromPointee2 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType(); QualType ToPointee2 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType(); const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType(); const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType(); const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType(); const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType(); // -- conversion of C* to B* is better than conversion of C* to A*, if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { if (IsDerivedFrom(ToPointee1, ToPointee2)) return ImplicitConversionSequence::Better; else if (IsDerivedFrom(ToPointee2, ToPointee1)) return ImplicitConversionSequence::Worse; if (ToIface1 && ToIface2) { if (Context.canAssignObjCInterfaces(ToIface2, ToIface1)) return ImplicitConversionSequence::Better; else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2)) return ImplicitConversionSequence::Worse; } } // -- conversion of B* to A* is better than conversion of C* to A*, if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { if (IsDerivedFrom(FromPointee2, FromPointee1)) return ImplicitConversionSequence::Better; else if (IsDerivedFrom(FromPointee1, FromPointee2)) return ImplicitConversionSequence::Worse; if (FromIface1 && FromIface2) { if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) return ImplicitConversionSequence::Better; else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) return ImplicitConversionSequence::Worse; } } } // Compare based on reference bindings. if (SCS1.ReferenceBinding && SCS2.ReferenceBinding && SCS1.Second == ICK_Derived_To_Base) { // -- binding of an expression of type C to a reference of type // B& is better than binding an expression of type C to a // reference of type A&, if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() && ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) { if (IsDerivedFrom(ToType1, ToType2)) return ImplicitConversionSequence::Better; else if (IsDerivedFrom(ToType2, ToType1)) return ImplicitConversionSequence::Worse; } // -- binding of an expression of type B to a reference of type // A& is better than binding an expression of type C to a // reference of type A&, if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() && ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) { if (IsDerivedFrom(FromType2, FromType1)) return ImplicitConversionSequence::Better; else if (IsDerivedFrom(FromType1, FromType2)) return ImplicitConversionSequence::Worse; } } // FIXME: conversion of A::* to B::* is better than conversion of // A::* to C::*, // FIXME: conversion of B::* to C::* is better than conversion of // A::* to C::*, and if (SCS1.CopyConstructor && SCS2.CopyConstructor && SCS1.Second == ICK_Derived_To_Base) { // -- conversion of C to B is better than conversion of C to A, if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() && ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) { if (IsDerivedFrom(ToType1, ToType2)) return ImplicitConversionSequence::Better; else if (IsDerivedFrom(ToType2, ToType1)) return ImplicitConversionSequence::Worse; } // -- conversion of B to A is better than conversion of C to A. if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() && ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) { if (IsDerivedFrom(FromType2, FromType1)) return ImplicitConversionSequence::Better; else if (IsDerivedFrom(FromType1, FromType2)) return ImplicitConversionSequence::Worse; } } return ImplicitConversionSequence::Indistinguishable; } /// TryCopyInitialization - Try to copy-initialize a value of type /// ToType from the expression From. Return the implicit conversion /// sequence required to pass this argument, which may be a bad /// conversion sequence (meaning that the argument cannot be passed to /// a parameter of this type). If @p SuppressUserConversions, then we /// do not permit any user-defined conversion sequences. If @p ForceRValue, /// then we treat @p From as an rvalue, even if it is an lvalue. ImplicitConversionSequence Sema::TryCopyInitialization(Expr *From, QualType ToType, bool SuppressUserConversions, bool ForceRValue) { if (ToType->isReferenceType()) { ImplicitConversionSequence ICS; CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions, /*AllowExplicit=*/false, ForceRValue); return ICS; } else { return TryImplicitConversion(From, ToType, SuppressUserConversions, ForceRValue); } } /// PerformCopyInitialization - Copy-initialize an object of type @p ToType with /// the expression @p From. Returns true (and emits a diagnostic) if there was /// an error, returns false if the initialization succeeded. Elidable should /// be true when the copy may be elided (C++ 12.8p15). Overload resolution works /// differently in C++0x for this case. bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType, const char* Flavor, bool Elidable) { if (!getLangOptions().CPlusPlus) { // In C, argument passing is the same as performing an assignment. QualType FromType = From->getType(); AssignConvertType ConvTy = CheckSingleAssignmentConstraints(ToType, From); if (ConvTy != Compatible && CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible) ConvTy = Compatible; return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType, FromType, From, Flavor); } if (ToType->isReferenceType()) return CheckReferenceInit(From, ToType); if (!PerformImplicitConversion(From, ToType, Flavor, /*AllowExplicit=*/false, Elidable)) return false; return Diag(From->getSourceRange().getBegin(), diag::err_typecheck_convert_incompatible) << ToType << From->getType() << Flavor << From->getSourceRange(); } /// TryObjectArgumentInitialization - Try to initialize the object /// parameter of the given member function (@c Method) from the /// expression @p From. ImplicitConversionSequence Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) { QualType ClassType = Context.getTypeDeclType(Method->getParent()); unsigned MethodQuals = Method->getTypeQualifiers(); QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals); // Set up the conversion sequence as a "bad" conversion, to allow us // to exit early. ImplicitConversionSequence ICS; ICS.Standard.setAsIdentityConversion(); ICS.ConversionKind = ImplicitConversionSequence::BadConversion; // We need to have an object of class type. QualType FromType = From->getType(); if (const PointerType *PT = FromType->getAsPointerType()) FromType = PT->getPointeeType(); assert(FromType->isRecordType()); // The implicit object parmeter is has the type "reference to cv X", // where X is the class of which the function is a member // (C++ [over.match.funcs]p4). However, when finding an implicit // conversion sequence for the argument, we are not allowed to // create temporaries or perform user-defined conversions // (C++ [over.match.funcs]p5). We perform a simplified version of // reference binding here, that allows class rvalues to bind to // non-constant references. // First check the qualifiers. We don't care about lvalue-vs-rvalue // with the implicit object parameter (C++ [over.match.funcs]p5). QualType FromTypeCanon = Context.getCanonicalType(FromType); if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() && !ImplicitParamType.isAtLeastAsQualifiedAs(FromType)) return ICS; // Check that we have either the same type or a derived type. It // affects the conversion rank. QualType ClassTypeCanon = Context.getCanonicalType(ClassType); if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType()) ICS.Standard.Second = ICK_Identity; else if (IsDerivedFrom(FromType, ClassType)) ICS.Standard.Second = ICK_Derived_To_Base; else return ICS; // Success. Mark this as a reference binding. ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr(); ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr(); ICS.Standard.ReferenceBinding = true; ICS.Standard.DirectBinding = true; ICS.Standard.RRefBinding = false; return ICS; } /// PerformObjectArgumentInitialization - Perform initialization of /// the implicit object parameter for the given Method with the given /// expression. bool Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) { QualType FromRecordType, DestType; QualType ImplicitParamRecordType = Method->getThisType(Context)->getAsPointerType()->getPointeeType(); if (const PointerType *PT = From->getType()->getAsPointerType()) { FromRecordType = PT->getPointeeType(); DestType = Method->getThisType(Context); } else { FromRecordType = From->getType(); DestType = ImplicitParamRecordType; } ImplicitConversionSequence ICS = TryObjectArgumentInitialization(From, Method); if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion) return Diag(From->getSourceRange().getBegin(), diag::err_implicit_object_parameter_init) << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); if (ICS.Standard.Second == ICK_Derived_To_Base && CheckDerivedToBaseConversion(FromRecordType, ImplicitParamRecordType, From->getSourceRange().getBegin(), From->getSourceRange())) return true; ImpCastExprToType(From, DestType, /*isLvalue=*/true); return false; } /// TryContextuallyConvertToBool - Attempt to contextually convert the /// expression From to bool (C++0x [conv]p3). ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) { return TryImplicitConversion(From, Context.BoolTy, false, true); } /// PerformContextuallyConvertToBool - Perform a contextual conversion /// of the expression From to bool (C++0x [conv]p3). bool Sema::PerformContextuallyConvertToBool(Expr *&From) { ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From); if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting")) return false; return Diag(From->getSourceRange().getBegin(), diag::err_typecheck_bool_condition) << From->getType() << From->getSourceRange(); } /// AddOverloadCandidate - Adds the given function to the set of /// candidate functions, using the given function call arguments. If /// @p SuppressUserConversions, then don't allow user-defined /// conversions via constructors or conversion operators. /// If @p ForceRValue, treat all arguments as rvalues. This is a slightly /// hacky way to implement the overloading rules for elidable copy /// initialization in C++0x (C++0x 12.8p15). void Sema::AddOverloadCandidate(FunctionDecl *Function, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions, bool ForceRValue) { const FunctionProtoType* Proto = dyn_cast(Function->getType()->getAsFunctionType()); assert(Proto && "Functions without a prototype cannot be overloaded"); assert(!isa(Function) && "Use AddConversionCandidate for conversion functions"); assert(!Function->getDescribedFunctionTemplate() && "Use AddTemplateOverloadCandidate for function templates"); if (CXXMethodDecl *Method = dyn_cast(Function)) { if (!isa(Method)) { // If we get here, it's because we're calling a member function // that is named without a member access expression (e.g., // "this->f") that was either written explicitly or created // implicitly. This can happen with a qualified call to a member // function, e.g., X::f(). We use a NULL object as the implied // object argument (C++ [over.call.func]p3). AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet, SuppressUserConversions, ForceRValue); return; } // We treat a constructor like a non-member function, since its object // argument doesn't participate in overload resolution. } // Add this candidate CandidateSet.push_back(OverloadCandidate()); OverloadCandidate& Candidate = CandidateSet.back(); Candidate.Function = Function; Candidate.Viable = true; Candidate.IsSurrogate = false; Candidate.IgnoreObjectArgument = false; unsigned NumArgsInProto = Proto->getNumArgs(); // (C++ 13.3.2p2): A candidate function having fewer than m // parameters is viable only if it has an ellipsis in its parameter // list (8.3.5). if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { Candidate.Viable = false; return; } // (C++ 13.3.2p2): A candidate function having more than m parameters // is viable only if the (m+1)st parameter has a default argument // (8.3.6). For the purposes of overload resolution, the // parameter list is truncated on the right, so that there are // exactly m parameters. unsigned MinRequiredArgs = Function->getMinRequiredArguments(); if (NumArgs < MinRequiredArgs) { // Not enough arguments. Candidate.Viable = false; return; } // Determine the implicit conversion sequences for each of the // arguments. Candidate.Conversions.resize(NumArgs); for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { if (ArgIdx < NumArgsInProto) { // (C++ 13.3.2p3): for F to be a viable function, there shall // exist for each argument an implicit conversion sequence // (13.3.3.1) that converts that argument to the corresponding // parameter of F. QualType ParamType = Proto->getArgType(ArgIdx); Candidate.Conversions[ArgIdx] = TryCopyInitialization(Args[ArgIdx], ParamType, SuppressUserConversions, ForceRValue); if (Candidate.Conversions[ArgIdx].ConversionKind == ImplicitConversionSequence::BadConversion) { Candidate.Viable = false; break; } } else { // (C++ 13.3.2p2): For the purposes of overload resolution, any // argument for which there is no corresponding parameter is // considered to ""match the ellipsis" (C+ 13.3.3.1.3). Candidate.Conversions[ArgIdx].ConversionKind = ImplicitConversionSequence::EllipsisConversion; } } } /// \brief Add all of the function declarations in the given function set to /// the overload canddiate set. void Sema::AddFunctionCandidates(const FunctionSet &Functions, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions) { for (FunctionSet::const_iterator F = Functions.begin(), FEnd = Functions.end(); F != FEnd; ++F) { if (FunctionDecl *FD = dyn_cast(*F)) AddOverloadCandidate(FD, Args, NumArgs, CandidateSet, SuppressUserConversions); else AddTemplateOverloadCandidate(cast(*F), /*FIXME: explicit args */false, 0, 0, Args, NumArgs, CandidateSet, SuppressUserConversions); } } /// AddMethodCandidate - Adds the given C++ member function to the set /// of candidate functions, using the given function call arguments /// and the object argument (@c Object). For example, in a call /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't /// allow user-defined conversions via constructors or conversion /// operators. If @p ForceRValue, treat all arguments as rvalues. This is /// a slightly hacky way to implement the overloading rules for elidable copy /// initialization in C++0x (C++0x 12.8p15). void Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions, bool ForceRValue) { const FunctionProtoType* Proto = dyn_cast(Method->getType()->getAsFunctionType()); assert(Proto && "Methods without a prototype cannot be overloaded"); assert(!isa(Method) && "Use AddConversionCandidate for conversion functions"); assert(!isa(Method) && "Use AddOverloadCandidate for constructors"); // Add this candidate CandidateSet.push_back(OverloadCandidate()); OverloadCandidate& Candidate = CandidateSet.back(); Candidate.Function = Method; Candidate.IsSurrogate = false; Candidate.IgnoreObjectArgument = false; unsigned NumArgsInProto = Proto->getNumArgs(); // (C++ 13.3.2p2): A candidate function having fewer than m // parameters is viable only if it has an ellipsis in its parameter // list (8.3.5). if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { Candidate.Viable = false; return; } // (C++ 13.3.2p2): A candidate function having more than m parameters // is viable only if the (m+1)st parameter has a default argument // (8.3.6). For the purposes of overload resolution, the // parameter list is truncated on the right, so that there are // exactly m parameters. unsigned MinRequiredArgs = Method->getMinRequiredArguments(); if (NumArgs < MinRequiredArgs) { // Not enough arguments. Candidate.Viable = false; return; } Candidate.Viable = true; Candidate.Conversions.resize(NumArgs + 1); if (Method->isStatic() || !Object) // The implicit object argument is ignored. Candidate.IgnoreObjectArgument = true; else { // Determine the implicit conversion sequence for the object // parameter. Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method); if (Candidate.Conversions[0].ConversionKind == ImplicitConversionSequence::BadConversion) { Candidate.Viable = false; return; } } // Determine the implicit conversion sequences for each of the // arguments. for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { if (ArgIdx < NumArgsInProto) { // (C++ 13.3.2p3): for F to be a viable function, there shall // exist for each argument an implicit conversion sequence // (13.3.3.1) that converts that argument to the corresponding // parameter of F. QualType ParamType = Proto->getArgType(ArgIdx); Candidate.Conversions[ArgIdx + 1] = TryCopyInitialization(Args[ArgIdx], ParamType, SuppressUserConversions, ForceRValue); if (Candidate.Conversions[ArgIdx + 1].ConversionKind == ImplicitConversionSequence::BadConversion) { Candidate.Viable = false; break; } } else { // (C++ 13.3.2p2): For the purposes of overload resolution, any // argument for which there is no corresponding parameter is // considered to ""match the ellipsis" (C+ 13.3.3.1.3). Candidate.Conversions[ArgIdx + 1].ConversionKind = ImplicitConversionSequence::EllipsisConversion; } } } /// \brief Add a C++ function template as a candidate in the candidate set, /// using template argument deduction to produce an appropriate function /// template specialization. void Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, bool HasExplicitTemplateArgs, const TemplateArgument *ExplicitTemplateArgs, unsigned NumExplicitTemplateArgs, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions, bool ForceRValue) { // C++ [over.match.funcs]p7: // In each case where a candidate is a function template, candidate // function template specializations are generated using template argument // deduction (14.8.3, 14.8.2). Those candidates are then handled as // candidate functions in the usual way.113) A given name can refer to one // or more function templates and also to a set of overloaded non-template // functions. In such a case, the candidate functions generated from each // function template are combined with the set of non-template candidate // functions. TemplateDeductionInfo Info(Context); FunctionDecl *Specialization = 0; if (TemplateDeductionResult Result = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs, ExplicitTemplateArgs, NumExplicitTemplateArgs, Args, NumArgs, Specialization, Info)) { // FIXME: Record what happened with template argument deduction, so // that we can give the user a beautiful diagnostic. (void)Result; return; } // Add the function template specialization produced by template argument // deduction as a candidate. assert(Specialization && "Missing function template specialization?"); AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet, SuppressUserConversions, ForceRValue); } /// AddConversionCandidate - Add a C++ conversion function as a /// candidate in the candidate set (C++ [over.match.conv], /// C++ [over.match.copy]). From is the expression we're converting from, /// and ToType is the type that we're eventually trying to convert to /// (which may or may not be the same type as the type that the /// conversion function produces). void Sema::AddConversionCandidate(CXXConversionDecl *Conversion, Expr *From, QualType ToType, OverloadCandidateSet& CandidateSet) { // Add this candidate CandidateSet.push_back(OverloadCandidate()); OverloadCandidate& Candidate = CandidateSet.back(); Candidate.Function = Conversion; Candidate.IsSurrogate = false; Candidate.IgnoreObjectArgument = false; Candidate.FinalConversion.setAsIdentityConversion(); Candidate.FinalConversion.FromTypePtr = Conversion->getConversionType().getAsOpaquePtr(); Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr(); // Determine the implicit conversion sequence for the implicit // object parameter. Candidate.Viable = true; Candidate.Conversions.resize(1); Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion); if (Candidate.Conversions[0].ConversionKind == ImplicitConversionSequence::BadConversion) { Candidate.Viable = false; return; } // To determine what the conversion from the result of calling the // conversion function to the type we're eventually trying to // convert to (ToType), we need to synthesize a call to the // conversion function and attempt copy initialization from it. This // makes sure that we get the right semantics with respect to // lvalues/rvalues and the type. Fortunately, we can allocate this // call on the stack and we don't need its arguments to be // well-formed. DeclRefExpr ConversionRef(Conversion, Conversion->getType(), SourceLocation()); ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()), &ConversionRef, false); // Note that it is safe to allocate CallExpr on the stack here because // there are 0 arguments (i.e., nothing is allocated using ASTContext's // allocator). CallExpr Call(Context, &ConversionFn, 0, 0, Conversion->getConversionType().getNonReferenceType(), SourceLocation()); ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true); switch (ICS.ConversionKind) { case ImplicitConversionSequence::StandardConversion: Candidate.FinalConversion = ICS.Standard; break; case ImplicitConversionSequence::BadConversion: Candidate.Viable = false; break; default: assert(false && "Can only end up with a standard conversion sequence or failure"); } } /// AddSurrogateCandidate - Adds a "surrogate" candidate function that /// converts the given @c Object to a function pointer via the /// conversion function @c Conversion, and then attempts to call it /// with the given arguments (C++ [over.call.object]p2-4). Proto is /// the type of function that we'll eventually be calling. void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, const FunctionProtoType *Proto, Expr *Object, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet) { CandidateSet.push_back(OverloadCandidate()); OverloadCandidate& Candidate = CandidateSet.back(); Candidate.Function = 0; Candidate.Surrogate = Conversion; Candidate.Viable = true; Candidate.IsSurrogate = true; Candidate.IgnoreObjectArgument = false; Candidate.Conversions.resize(NumArgs + 1); // Determine the implicit conversion sequence for the implicit // object parameter. ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(Object, Conversion); if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) { Candidate.Viable = false; return; } // The first conversion is actually a user-defined conversion whose // first conversion is ObjectInit's standard conversion (which is // effectively a reference binding). Record it as such. Candidate.Conversions[0].ConversionKind = ImplicitConversionSequence::UserDefinedConversion; Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; Candidate.Conversions[0].UserDefined.After = Candidate.Conversions[0].UserDefined.Before; Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); // Find the unsigned NumArgsInProto = Proto->getNumArgs(); // (C++ 13.3.2p2): A candidate function having fewer than m // parameters is viable only if it has an ellipsis in its parameter // list (8.3.5). if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { Candidate.Viable = false; return; } // Function types don't have any default arguments, so just check if // we have enough arguments. if (NumArgs < NumArgsInProto) { // Not enough arguments. Candidate.Viable = false; return; } // Determine the implicit conversion sequences for each of the // arguments. for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { if (ArgIdx < NumArgsInProto) { // (C++ 13.3.2p3): for F to be a viable function, there shall // exist for each argument an implicit conversion sequence // (13.3.3.1) that converts that argument to the corresponding // parameter of F. QualType ParamType = Proto->getArgType(ArgIdx); Candidate.Conversions[ArgIdx + 1] = TryCopyInitialization(Args[ArgIdx], ParamType, /*SuppressUserConversions=*/false); if (Candidate.Conversions[ArgIdx + 1].ConversionKind == ImplicitConversionSequence::BadConversion) { Candidate.Viable = false; break; } } else { // (C++ 13.3.2p2): For the purposes of overload resolution, any // argument for which there is no corresponding parameter is // considered to ""match the ellipsis" (C+ 13.3.3.1.3). Candidate.Conversions[ArgIdx + 1].ConversionKind = ImplicitConversionSequence::EllipsisConversion; } } } // FIXME: This will eventually be removed, once we've migrated all of the // operator overloading logic over to the scheme used by binary operators, which // works for template instantiation. void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S, SourceLocation OpLoc, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, SourceRange OpRange) { FunctionSet Functions; QualType T1 = Args[0]->getType(); QualType T2; if (NumArgs > 1) T2 = Args[1]->getType(); DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); if (S) LookupOverloadedOperatorName(Op, S, T1, T2, Functions); ArgumentDependentLookup(OpName, Args, NumArgs, Functions); AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet); AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange); AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet); } /// \brief Add overload candidates for overloaded operators that are /// member functions. /// /// Add the overloaded operator candidates that are member functions /// for the operator Op that was used in an operator expression such /// as "x Op y". , Args/NumArgs provides the operator arguments, and /// CandidateSet will store the added overload candidates. (C++ /// [over.match.oper]). void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, SourceLocation OpLoc, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, SourceRange OpRange) { DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); // C++ [over.match.oper]p3: // For a unary operator @ with an operand of a type whose // cv-unqualified version is T1, and for a binary operator @ with // a left operand of a type whose cv-unqualified version is T1 and // a right operand of a type whose cv-unqualified version is T2, // three sets of candidate functions, designated member // candidates, non-member candidates and built-in candidates, are // constructed as follows: QualType T1 = Args[0]->getType(); QualType T2; if (NumArgs > 1) T2 = Args[1]->getType(); // -- If T1 is a class type, the set of member candidates is the // result of the qualified lookup of T1::operator@ // (13.3.1.1.1); otherwise, the set of member candidates is // empty. // FIXME: Lookup in base classes, too! if (const RecordType *T1Rec = T1->getAsRecordType()) { DeclContext::lookup_const_iterator Oper, OperEnd; for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName); Oper != OperEnd; ++Oper) AddMethodCandidate(cast(*Oper), Args[0], Args+1, NumArgs - 1, CandidateSet, /*SuppressUserConversions=*/false); } } /// AddBuiltinCandidate - Add a candidate for a built-in /// operator. ResultTy and ParamTys are the result and parameter types /// of the built-in candidate, respectively. Args and NumArgs are the /// arguments being passed to the candidate. IsAssignmentOperator /// should be true when this built-in candidate is an assignment /// operator. NumContextualBoolArguments is the number of arguments /// (at the beginning of the argument list) that will be contextually /// converted to bool. void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool IsAssignmentOperator, unsigned NumContextualBoolArguments) { // Add this candidate CandidateSet.push_back(OverloadCandidate()); OverloadCandidate& Candidate = CandidateSet.back(); Candidate.Function = 0; Candidate.IsSurrogate = false; Candidate.IgnoreObjectArgument = false; Candidate.BuiltinTypes.ResultTy = ResultTy; for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; // Determine the implicit conversion sequences for each of the // arguments. Candidate.Viable = true; Candidate.Conversions.resize(NumArgs); for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { // C++ [over.match.oper]p4: // For the built-in assignment operators, conversions of the // left operand are restricted as follows: // -- no temporaries are introduced to hold the left operand, and // -- no user-defined conversions are applied to the left // operand to achieve a type match with the left-most // parameter of a built-in candidate. // // We block these conversions by turning off user-defined // conversions, since that is the only way that initialization of // a reference to a non-class type can occur from something that // is not of the same type. if (ArgIdx < NumContextualBoolArguments) { assert(ParamTys[ArgIdx] == Context.BoolTy && "Contextual conversion to bool requires bool type"); Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]); } else { Candidate.Conversions[ArgIdx] = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], ArgIdx == 0 && IsAssignmentOperator); } if (Candidate.Conversions[ArgIdx].ConversionKind == ImplicitConversionSequence::BadConversion) { Candidate.Viable = false; break; } } } /// BuiltinCandidateTypeSet - A set of types that will be used for the /// candidate operator functions for built-in operators (C++ /// [over.built]). The types are separated into pointer types and /// enumeration types. class BuiltinCandidateTypeSet { /// TypeSet - A set of types. typedef llvm::SmallPtrSet TypeSet; /// PointerTypes - The set of pointer types that will be used in the /// built-in candidates. TypeSet PointerTypes; /// MemberPointerTypes - The set of member pointer types that will be /// used in the built-in candidates. TypeSet MemberPointerTypes; /// EnumerationTypes - The set of enumeration types that will be /// used in the built-in candidates. TypeSet EnumerationTypes; /// Context - The AST context in which we will build the type sets. ASTContext &Context; bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty); bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); public: /// iterator - Iterates through the types that are part of the set. typedef TypeSet::iterator iterator; BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { } void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions, bool AllowExplicitConversions); /// pointer_begin - First pointer type found; iterator pointer_begin() { return PointerTypes.begin(); } /// pointer_end - Past the last pointer type found; iterator pointer_end() { return PointerTypes.end(); } /// member_pointer_begin - First member pointer type found; iterator member_pointer_begin() { return MemberPointerTypes.begin(); } /// member_pointer_end - Past the last member pointer type found; iterator member_pointer_end() { return MemberPointerTypes.end(); } /// enumeration_begin - First enumeration type found; iterator enumeration_begin() { return EnumerationTypes.begin(); } /// enumeration_end - Past the last enumeration type found; iterator enumeration_end() { return EnumerationTypes.end(); } }; /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to /// the set of pointer types along with any more-qualified variants of /// that type. For example, if @p Ty is "int const *", this routine /// will add "int const *", "int const volatile *", "int const /// restrict *", and "int const volatile restrict *" to the set of /// pointer types. Returns true if the add of @p Ty itself succeeded, /// false otherwise. bool BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) { // Insert this type. if (!PointerTypes.insert(Ty)) return false; if (const PointerType *PointerTy = Ty->getAsPointerType()) { QualType PointeeTy = PointerTy->getPointeeType(); // FIXME: Optimize this so that we don't keep trying to add the same types. // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all // pointer conversions that don't cast away constness? if (!PointeeTy.isConstQualified()) AddPointerWithMoreQualifiedTypeVariants (Context.getPointerType(PointeeTy.withConst())); if (!PointeeTy.isVolatileQualified()) AddPointerWithMoreQualifiedTypeVariants (Context.getPointerType(PointeeTy.withVolatile())); if (!PointeeTy.isRestrictQualified()) AddPointerWithMoreQualifiedTypeVariants (Context.getPointerType(PointeeTy.withRestrict())); } return true; } /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty /// to the set of pointer types along with any more-qualified variants of /// that type. For example, if @p Ty is "int const *", this routine /// will add "int const *", "int const volatile *", "int const /// restrict *", and "int const volatile restrict *" to the set of /// pointer types. Returns true if the add of @p Ty itself succeeded, /// false otherwise. bool BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( QualType Ty) { // Insert this type. if (!MemberPointerTypes.insert(Ty)) return false; if (const MemberPointerType *PointerTy = Ty->getAsMemberPointerType()) { QualType PointeeTy = PointerTy->getPointeeType(); const Type *ClassTy = PointerTy->getClass(); // FIXME: Optimize this so that we don't keep trying to add the same types. if (!PointeeTy.isConstQualified()) AddMemberPointerWithMoreQualifiedTypeVariants (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy)); if (!PointeeTy.isVolatileQualified()) AddMemberPointerWithMoreQualifiedTypeVariants (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy)); if (!PointeeTy.isRestrictQualified()) AddMemberPointerWithMoreQualifiedTypeVariants (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy)); } return true; } /// AddTypesConvertedFrom - Add each of the types to which the type @p /// Ty can be implicit converted to the given set of @p Types. We're /// primarily interested in pointer types and enumeration types. We also /// take member pointer types, for the conditional operator. /// AllowUserConversions is true if we should look at the conversion /// functions of a class type, and AllowExplicitConversions if we /// should also include the explicit conversion functions of a class /// type. void BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions, bool AllowExplicitConversions) { // Only deal with canonical types. Ty = Context.getCanonicalType(Ty); // Look through reference types; they aren't part of the type of an // expression for the purposes of conversions. if (const ReferenceType *RefTy = Ty->getAsReferenceType()) Ty = RefTy->getPointeeType(); // We don't care about qualifiers on the type. Ty = Ty.getUnqualifiedType(); if (const PointerType *PointerTy = Ty->getAsPointerType()) { QualType PointeeTy = PointerTy->getPointeeType(); // Insert our type, and its more-qualified variants, into the set // of types. if (!AddPointerWithMoreQualifiedTypeVariants(Ty)) return; // Add 'cv void*' to our set of types. if (!Ty->isVoidType()) { QualType QualVoid = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers()); AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid)); } // If this is a pointer to a class type, add pointers to its bases // (with the same level of cv-qualification as the original // derived class, of course). if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) { CXXRecordDecl *ClassDecl = cast(PointeeRec->getDecl()); for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) { QualType BaseTy = Context.getCanonicalType(Base->getType()); BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers()); // Add the pointer type, recursively, so that we get all of // the indirect base classes, too. AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false); } } } else if (Ty->isMemberPointerType()) { // Member pointers are far easier, since the pointee can't be converted. if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) return; } else if (Ty->isEnumeralType()) { EnumerationTypes.insert(Ty); } else if (AllowUserConversions) { if (const RecordType *TyRec = Ty->getAsRecordType()) { CXXRecordDecl *ClassDecl = cast(TyRec->getDecl()); // FIXME: Visit conversion functions in the base classes, too. OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions(); for (OverloadedFunctionDecl::function_iterator Func = Conversions->function_begin(); Func != Conversions->function_end(); ++Func) { CXXConversionDecl *Conv = cast(*Func); if (AllowExplicitConversions || !Conv->isExplicit()) AddTypesConvertedFrom(Conv->getConversionType(), false, false); } } } } /// AddBuiltinOperatorCandidates - Add the appropriate built-in /// operator overloads to the candidate set (C++ [over.built]), based /// on the operator @p Op and the arguments given. For example, if the /// operator is a binary '+', this routine might add "int /// operator+(int, int)" to cover integer addition. void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet) { // The set of "promoted arithmetic types", which are the arithmetic // types are that preserved by promotion (C++ [over.built]p2). Note // that the first few of these types are the promoted integral // types; these types need to be first. // FIXME: What about complex? const unsigned FirstIntegralType = 0; const unsigned LastIntegralType = 13; const unsigned FirstPromotedIntegralType = 7, LastPromotedIntegralType = 13; const unsigned FirstPromotedArithmeticType = 7, LastPromotedArithmeticType = 16; const unsigned NumArithmeticTypes = 16; QualType ArithmeticTypes[NumArithmeticTypes] = { Context.BoolTy, Context.CharTy, Context.WCharTy, Context.SignedCharTy, Context.ShortTy, Context.UnsignedCharTy, Context.UnsignedShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy, Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy }; // Find all of the types that the arguments can convert to, but only // if the operator we're looking at has built-in operator candidates // that make use of these types. BuiltinCandidateTypeSet CandidateTypes(Context); if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual || Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual || Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal || Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript || Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus || (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) { for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), true, (Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe)); } bool isComparison = false; switch (Op) { case OO_None: case NUM_OVERLOADED_OPERATORS: assert(false && "Expected an overloaded operator"); break; case OO_Star: // '*' is either unary or binary if (NumArgs == 1) goto UnaryStar; else goto BinaryStar; break; case OO_Plus: // '+' is either unary or binary if (NumArgs == 1) goto UnaryPlus; else goto BinaryPlus; break; case OO_Minus: // '-' is either unary or binary if (NumArgs == 1) goto UnaryMinus; else goto BinaryMinus; break; case OO_Amp: // '&' is either unary or binary if (NumArgs == 1) goto UnaryAmp; else goto BinaryAmp; case OO_PlusPlus: case OO_MinusMinus: // C++ [over.built]p3: // // For every pair (T, VQ), where T is an arithmetic type, and VQ // is either volatile or empty, there exist candidate operator // functions of the form // // VQ T& operator++(VQ T&); // T operator++(VQ T&, int); // // C++ [over.built]p4: // // For every pair (T, VQ), where T is an arithmetic type other // than bool, and VQ is either volatile or empty, there exist // candidate operator functions of the form // // VQ T& operator--(VQ T&); // T operator--(VQ T&, int); for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); Arith < NumArithmeticTypes; ++Arith) { QualType ArithTy = ArithmeticTypes[Arith]; QualType ParamTypes[2] = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; // Non-volatile version. if (NumArgs == 1) AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); else AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); // Volatile version ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile()); if (NumArgs == 1) AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); else AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); } // C++ [over.built]p5: // // For every pair (T, VQ), where T is a cv-qualified or // cv-unqualified object type, and VQ is either volatile or // empty, there exist candidate operator functions of the form // // T*VQ& operator++(T*VQ&); // T*VQ& operator--(T*VQ&); // T* operator++(T*VQ&, int); // T* operator--(T*VQ&, int); for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); Ptr != CandidateTypes.pointer_end(); ++Ptr) { // Skip pointer types that aren't pointers to object types. if (!(*Ptr)->getAsPointerType()->getPointeeType()->isObjectType()) continue; QualType ParamTypes[2] = { Context.getLValueReferenceType(*Ptr), Context.IntTy }; // Without volatile if (NumArgs == 1) AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); else AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) { // With volatile ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile()); if (NumArgs == 1) AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); else AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); } } break; UnaryStar: // C++ [over.built]p6: // For every cv-qualified or cv-unqualified object type T, there // exist candidate operator functions of the form // // T& operator*(T*); // // C++ [over.built]p7: // For every function type T, there exist candidate operator // functions of the form // T& operator*(T*); for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); Ptr != CandidateTypes.pointer_end(); ++Ptr) { QualType ParamTy = *Ptr; QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType(); AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), &ParamTy, Args, 1, CandidateSet); } break; UnaryPlus: // C++ [over.built]p8: // For every type T, there exist candidate operator functions of // the form // // T* operator+(T*); for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); Ptr != CandidateTypes.pointer_end(); ++Ptr) { QualType ParamTy = *Ptr; AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); } // Fall through UnaryMinus: // C++ [over.built]p9: // For every promoted arithmetic type T, there exist candidate // operator functions of the form // // T operator+(T); // T operator-(T); for (unsigned Arith = FirstPromotedArithmeticType; Arith < LastPromotedArithmeticType; ++Arith) { QualType ArithTy = ArithmeticTypes[Arith]; AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); } break; case OO_Tilde: // C++ [over.built]p10: // For every promoted integral type T, there exist candidate // operator functions of the form // // T operator~(T); for (unsigned Int = FirstPromotedIntegralType; Int < LastPromotedIntegralType; ++Int) { QualType IntTy = ArithmeticTypes[Int]; AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); } break; case OO_New: case OO_Delete: case OO_Array_New: case OO_Array_Delete: case OO_Call: assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); break; case OO_Comma: UnaryAmp: case OO_Arrow: // C++ [over.match.oper]p3: // -- For the operator ',', the unary operator '&', or the // operator '->', the built-in candidates set is empty. break; case OO_Less: case OO_Greater: case OO_LessEqual: case OO_GreaterEqual: case OO_EqualEqual: case OO_ExclaimEqual: // C++ [over.built]p15: // // For every pointer or enumeration type T, there exist // candidate operator functions of the form // // bool operator<(T, T); // bool operator>(T, T); // bool operator<=(T, T); // bool operator>=(T, T); // bool operator==(T, T); // bool operator!=(T, T); for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); Ptr != CandidateTypes.pointer_end(); ++Ptr) { QualType ParamTypes[2] = { *Ptr, *Ptr }; AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); } for (BuiltinCandidateTypeSet::iterator Enum = CandidateTypes.enumeration_begin(); Enum != CandidateTypes.enumeration_end(); ++Enum) { QualType ParamTypes[2] = { *Enum, *Enum }; AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); } // Fall through. isComparison = true; BinaryPlus: BinaryMinus: if (!isComparison) { // We didn't fall through, so we must have OO_Plus or OO_Minus. // C++ [over.built]p13: // // For every cv-qualified or cv-unqualified object type T // there exist candidate operator functions of the form // // T* operator+(T*, ptrdiff_t); // T& operator[](T*, ptrdiff_t); [BELOW] // T* operator-(T*, ptrdiff_t); // T* operator+(ptrdiff_t, T*); // T& operator[](ptrdiff_t, T*); [BELOW] // // C++ [over.built]p14: // // For every T, where T is a pointer to object type, there // exist candidate operator functions of the form // // ptrdiff_t operator-(T, T); for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); Ptr != CandidateTypes.pointer_end(); ++Ptr) { QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); if (Op == OO_Plus) { // T* operator+(ptrdiff_t, T*); ParamTypes[0] = ParamTypes[1]; ParamTypes[1] = *Ptr; AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); } else { // ptrdiff_t operator-(T, T); ParamTypes[1] = *Ptr; AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, Args, 2, CandidateSet); } } } // Fall through case OO_Slash: BinaryStar: Conditional: // C++ [over.built]p12: // // For every pair of promoted arithmetic types L and R, there // exist candidate operator functions of the form // // LR operator*(L, R); // LR operator/(L, R); // LR operator+(L, R); // LR operator-(L, R); // bool operator<(L, R); // bool operator>(L, R); // bool operator<=(L, R); // bool operator>=(L, R); // bool operator==(L, R); // bool operator!=(L, R); // // where LR is the result of the usual arithmetic conversions // between types L and R. // // C++ [over.built]p24: // // For every pair of promoted arithmetic types L and R, there exist // candidate operator functions of the form // // LR operator?(bool, L, R); // // where LR is the result of the usual arithmetic conversions // between types L and R. // Our candidates ignore the first parameter. for (unsigned Left = FirstPromotedArithmeticType; Left < LastPromotedArithmeticType; ++Left) { for (unsigned Right = FirstPromotedArithmeticType; Right < LastPromotedArithmeticType; ++Right) { QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; QualType Result = isComparison? Context.BoolTy : UsualArithmeticConversionsType(LandR[0], LandR[1]); AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); } } break; case OO_Percent: BinaryAmp: case OO_Caret: case OO_Pipe: case OO_LessLess: case OO_GreaterGreater: // C++ [over.built]p17: // // For every pair of promoted integral types L and R, there // exist candidate operator functions of the form // // LR operator%(L, R); // LR operator&(L, R); // LR operator^(L, R); // LR operator|(L, R); // L operator<<(L, R); // L operator>>(L, R); // // where LR is the result of the usual arithmetic conversions // between types L and R. for (unsigned Left = FirstPromotedIntegralType; Left < LastPromotedIntegralType; ++Left) { for (unsigned Right = FirstPromotedIntegralType; Right < LastPromotedIntegralType; ++Right) { QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) ? LandR[0] : UsualArithmeticConversionsType(LandR[0], LandR[1]); AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); } } break; case OO_Equal: // C++ [over.built]p20: // // For every pair (T, VQ), where T is an enumeration or // (FIXME:) pointer to member type and VQ is either volatile or // empty, there exist candidate operator functions of the form // // VQ T& operator=(VQ T&, T); for (BuiltinCandidateTypeSet::iterator Enum = CandidateTypes.enumeration_begin(); Enum != CandidateTypes.enumeration_end(); ++Enum) { QualType ParamTypes[2]; // T& operator=(T&, T) ParamTypes[0] = Context.getLValueReferenceType(*Enum); ParamTypes[1] = *Enum; AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, /*IsAssignmentOperator=*/false); if (!Context.getCanonicalType(*Enum).isVolatileQualified()) { // volatile T& operator=(volatile T&, T) ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile()); ParamTypes[1] = *Enum; AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, /*IsAssignmentOperator=*/false); } } // Fall through. case OO_PlusEqual: case OO_MinusEqual: // C++ [over.built]p19: // // For every pair (T, VQ), where T is any type and VQ is either // volatile or empty, there exist candidate operator functions // of the form // // T*VQ& operator=(T*VQ&, T*); // // C++ [over.built]p21: // // For every pair (T, VQ), where T is a cv-qualified or // cv-unqualified object type and VQ is either volatile or // empty, there exist candidate operator functions of the form // // T*VQ& operator+=(T*VQ&, ptrdiff_t); // T*VQ& operator-=(T*VQ&, ptrdiff_t); for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); Ptr != CandidateTypes.pointer_end(); ++Ptr) { QualType ParamTypes[2]; ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); // non-volatile version ParamTypes[0] = Context.getLValueReferenceType(*Ptr); AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, /*IsAssigmentOperator=*/Op == OO_Equal); if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) { // volatile version ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile()); AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, /*IsAssigmentOperator=*/Op == OO_Equal); } } // Fall through. case OO_StarEqual: case OO_SlashEqual: // C++ [over.built]p18: // // For every triple (L, VQ, R), where L is an arithmetic type, // VQ is either volatile or empty, and R is a promoted // arithmetic type, there exist candidate operator functions of // the form // // VQ L& operator=(VQ L&, R); // VQ L& operator*=(VQ L&, R); // VQ L& operator/=(VQ L&, R); // VQ L& operator+=(VQ L&, R); // VQ L& operator-=(VQ L&, R); for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { for (unsigned Right = FirstPromotedArithmeticType; Right < LastPromotedArithmeticType; ++Right) { QualType ParamTypes[2]; ParamTypes[1] = ArithmeticTypes[Right]; // Add this built-in operator as a candidate (VQ is empty). ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, /*IsAssigmentOperator=*/Op == OO_Equal); // Add this built-in operator as a candidate (VQ is 'volatile'). ParamTypes[0] = ArithmeticTypes[Left].withVolatile(); ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, /*IsAssigmentOperator=*/Op == OO_Equal); } } break; case OO_PercentEqual: case OO_LessLessEqual: case OO_GreaterGreaterEqual: case OO_AmpEqual: case OO_CaretEqual: case OO_PipeEqual: // C++ [over.built]p22: // // For every triple (L, VQ, R), where L is an integral type, VQ // is either volatile or empty, and R is a promoted integral // type, there exist candidate operator functions of the form // // VQ L& operator%=(VQ L&, R); // VQ L& operator<<=(VQ L&, R); // VQ L& operator>>=(VQ L&, R); // VQ L& operator&=(VQ L&, R); // VQ L& operator^=(VQ L&, R); // VQ L& operator|=(VQ L&, R); for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { for (unsigned Right = FirstPromotedIntegralType; Right < LastPromotedIntegralType; ++Right) { QualType ParamTypes[2]; ParamTypes[1] = ArithmeticTypes[Right]; // Add this built-in operator as a candidate (VQ is empty). ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); // Add this built-in operator as a candidate (VQ is 'volatile'). ParamTypes[0] = ArithmeticTypes[Left]; ParamTypes[0].addVolatile(); ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); } } break; case OO_Exclaim: { // C++ [over.operator]p23: // // There also exist candidate operator functions of the form // // bool operator!(bool); // bool operator&&(bool, bool); [BELOW] // bool operator||(bool, bool); [BELOW] QualType ParamTy = Context.BoolTy; AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, /*IsAssignmentOperator=*/false, /*NumContextualBoolArguments=*/1); break; } case OO_AmpAmp: case OO_PipePipe: { // C++ [over.operator]p23: // // There also exist candidate operator functions of the form // // bool operator!(bool); [ABOVE] // bool operator&&(bool, bool); // bool operator||(bool, bool); QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, /*IsAssignmentOperator=*/false, /*NumContextualBoolArguments=*/2); break; } case OO_Subscript: // C++ [over.built]p13: // // For every cv-qualified or cv-unqualified object type T there // exist candidate operator functions of the form // // T* operator+(T*, ptrdiff_t); [ABOVE] // T& operator[](T*, ptrdiff_t); // T* operator-(T*, ptrdiff_t); [ABOVE] // T* operator+(ptrdiff_t, T*); [ABOVE] // T& operator[](ptrdiff_t, T*); for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); Ptr != CandidateTypes.pointer_end(); ++Ptr) { QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType(); QualType ResultTy = Context.getLValueReferenceType(PointeeType); // T& operator[](T*, ptrdiff_t) AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); // T& operator[](ptrdiff_t, T*); ParamTypes[0] = ParamTypes[1]; ParamTypes[1] = *Ptr; AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); } break; case OO_ArrowStar: // FIXME: No support for pointer-to-members yet. break; case OO_Conditional: // Note that we don't consider the first argument, since it has been // contextually converted to bool long ago. The candidates below are // therefore added as binary. // // C++ [over.built]p24: // For every type T, where T is a pointer or pointer-to-member type, // there exist candidate operator functions of the form // // T operator?(bool, T, T); // for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { QualType ParamTypes[2] = { *Ptr, *Ptr }; AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); } for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.member_pointer_begin(), E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { QualType ParamTypes[2] = { *Ptr, *Ptr }; AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); } goto Conditional; } } /// \brief Add function candidates found via argument-dependent lookup /// to the set of overloading candidates. /// /// This routine performs argument-dependent name lookup based on the /// given function name (which may also be an operator name) and adds /// all of the overload candidates found by ADL to the overload /// candidate set (C++ [basic.lookup.argdep]). void Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet) { FunctionSet Functions; // Record all of the function candidates that we've already // added to the overload set, so that we don't add those same // candidates a second time. for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), CandEnd = CandidateSet.end(); Cand != CandEnd; ++Cand) if (Cand->Function) { Functions.insert(Cand->Function); if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) Functions.insert(FunTmpl); } ArgumentDependentLookup(Name, Args, NumArgs, Functions); // Erase all of the candidates we already knew about. // FIXME: This is suboptimal. Is there a better way? for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), CandEnd = CandidateSet.end(); Cand != CandEnd; ++Cand) if (Cand->Function) { Functions.erase(Cand->Function); if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) Functions.erase(FunTmpl); } // For each of the ADL candidates we found, add it to the overload // set. for (FunctionSet::iterator Func = Functions.begin(), FuncEnd = Functions.end(); Func != FuncEnd; ++Func) { if (FunctionDecl *FD = dyn_cast(*Func)) AddOverloadCandidate(FD, Args, NumArgs, CandidateSet); else AddTemplateOverloadCandidate(cast(*Func), /*FIXME: explicit args */false, 0, 0, Args, NumArgs, CandidateSet); } } /// isBetterOverloadCandidate - Determines whether the first overload /// candidate is a better candidate than the second (C++ 13.3.3p1). bool Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1, const OverloadCandidate& Cand2) { // Define viable functions to be better candidates than non-viable // functions. if (!Cand2.Viable) return Cand1.Viable; else if (!Cand1.Viable) return false; // C++ [over.match.best]p1: // // -- if F is a static member function, ICS1(F) is defined such // that ICS1(F) is neither better nor worse than ICS1(G) for // any function G, and, symmetrically, ICS1(G) is neither // better nor worse than ICS1(F). unsigned StartArg = 0; if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) StartArg = 1; // (C++ 13.3.3p1): a viable function F1 is defined to be a better // function than another viable function F2 if for all arguments i, // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and // then... unsigned NumArgs = Cand1.Conversions.size(); assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); bool HasBetterConversion = false; for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx], Cand2.Conversions[ArgIdx])) { case ImplicitConversionSequence::Better: // Cand1 has a better conversion sequence. HasBetterConversion = true; break; case ImplicitConversionSequence::Worse: // Cand1 can't be better than Cand2. return false; case ImplicitConversionSequence::Indistinguishable: // Do nothing. break; } } if (HasBetterConversion) return true; // FIXME: Several other bullets in (C++ 13.3.3p1) need to be // implemented, but they require template support. // C++ [over.match.best]p1b4: // // -- the context is an initialization by user-defined conversion // (see 8.5, 13.3.1.5) and the standard conversion sequence // from the return type of F1 to the destination type (i.e., // the type of the entity being initialized) is a better // conversion sequence than the standard conversion sequence // from the return type of F2 to the destination type. if (Cand1.Function && Cand2.Function && isa(Cand1.Function) && isa(Cand2.Function)) { switch (CompareStandardConversionSequences(Cand1.FinalConversion, Cand2.FinalConversion)) { case ImplicitConversionSequence::Better: // Cand1 has a better conversion sequence. return true; case ImplicitConversionSequence::Worse: // Cand1 can't be better than Cand2. return false; case ImplicitConversionSequence::Indistinguishable: // Do nothing break; } } return false; } /// \brief Computes the best viable function (C++ 13.3.3) /// within an overload candidate set. /// /// \param CandidateSet the set of candidate functions. /// /// \param Loc the location of the function name (or operator symbol) for /// which overload resolution occurs. /// /// \param Best f overload resolution was successful or found a deleted /// function, Best points to the candidate function found. /// /// \returns The result of overload resolution. Sema::OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet, SourceLocation Loc, OverloadCandidateSet::iterator& Best) { // Find the best viable function. Best = CandidateSet.end(); for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); Cand != CandidateSet.end(); ++Cand) { if (Cand->Viable) { if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best)) Best = Cand; } } // If we didn't find any viable functions, abort. if (Best == CandidateSet.end()) return OR_No_Viable_Function; // Make sure that this function is better than every other viable // function. If not, we have an ambiguity. for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); Cand != CandidateSet.end(); ++Cand) { if (Cand->Viable && Cand != Best && !isBetterOverloadCandidate(*Best, *Cand)) { Best = CandidateSet.end(); return OR_Ambiguous; } } // Best is the best viable function. if (Best->Function && (Best->Function->isDeleted() || Best->Function->getAttr())) return OR_Deleted; // C++ [basic.def.odr]p2: // An overloaded function is used if it is selected by overload resolution // when referred to from a potentially-evaluated expression. [Note: this // covers calls to named functions (5.2.2), operator overloading // (clause 13), user-defined conversions (12.3.2), allocation function for // placement new (5.3.4), as well as non-default initialization (8.5). if (Best->Function) MarkDeclarationReferenced(Loc, Best->Function); return OR_Success; } /// PrintOverloadCandidates - When overload resolution fails, prints /// diagnostic messages containing the candidates in the candidate /// set. If OnlyViable is true, only viable candidates will be printed. void Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, bool OnlyViable) { OverloadCandidateSet::iterator Cand = CandidateSet.begin(), LastCand = CandidateSet.end(); for (; Cand != LastCand; ++Cand) { if (Cand->Viable || !OnlyViable) { if (Cand->Function) { if (Cand->Function->isDeleted() || Cand->Function->getAttr()) { // Deleted or "unavailable" function. Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted) << Cand->Function->isDeleted(); } else { // Normal function // FIXME: Give a better reason! Diag(Cand->Function->getLocation(), diag::err_ovl_candidate); } } else if (Cand->IsSurrogate) { // Desugar the type of the surrogate down to a function type, // retaining as many typedefs as possible while still showing // the function type (and, therefore, its parameter types). QualType FnType = Cand->Surrogate->getConversionType(); bool isLValueReference = false; bool isRValueReference = false; bool isPointer = false; if (const LValueReferenceType *FnTypeRef = FnType->getAsLValueReferenceType()) { FnType = FnTypeRef->getPointeeType(); isLValueReference = true; } else if (const RValueReferenceType *FnTypeRef = FnType->getAsRValueReferenceType()) { FnType = FnTypeRef->getPointeeType(); isRValueReference = true; } if (const PointerType *FnTypePtr = FnType->getAsPointerType()) { FnType = FnTypePtr->getPointeeType(); isPointer = true; } // Desugar down to a function type. FnType = QualType(FnType->getAsFunctionType(), 0); // Reconstruct the pointer/reference as appropriate. if (isPointer) FnType = Context.getPointerType(FnType); if (isRValueReference) FnType = Context.getRValueReferenceType(FnType); if (isLValueReference) FnType = Context.getLValueReferenceType(FnType); Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand) << FnType; } else { // FIXME: We need to get the identifier in here // FIXME: Do we want the error message to point at the operator? // (built-ins won't have a location) QualType FnType = Context.getFunctionType(Cand->BuiltinTypes.ResultTy, Cand->BuiltinTypes.ParamTypes, Cand->Conversions.size(), false, 0); Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType; } } } } /// ResolveAddressOfOverloadedFunction - Try to resolve the address of /// an overloaded function (C++ [over.over]), where @p From is an /// expression with overloaded function type and @p ToType is the type /// we're trying to resolve to. For example: /// /// @code /// int f(double); /// int f(int); /// /// int (*pfd)(double) = f; // selects f(double) /// @endcode /// /// This routine returns the resulting FunctionDecl if it could be /// resolved, and NULL otherwise. When @p Complain is true, this /// routine will emit diagnostics if there is an error. FunctionDecl * Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, bool Complain) { QualType FunctionType = ToType; bool IsMember = false; if (const PointerType *ToTypePtr = ToType->getAsPointerType()) FunctionType = ToTypePtr->getPointeeType(); else if (const ReferenceType *ToTypeRef = ToType->getAsReferenceType()) FunctionType = ToTypeRef->getPointeeType(); else if (const MemberPointerType *MemTypePtr = ToType->getAsMemberPointerType()) { FunctionType = MemTypePtr->getPointeeType(); IsMember = true; } // We only look at pointers or references to functions. if (!FunctionType->isFunctionType()) return 0; // Find the actual overloaded function declaration. OverloadedFunctionDecl *Ovl = 0; // C++ [over.over]p1: // [...] [Note: any redundant set of parentheses surrounding the // overloaded function name is ignored (5.1). ] Expr *OvlExpr = From->IgnoreParens(); // C++ [over.over]p1: // [...] The overloaded function name can be preceded by the & // operator. if (UnaryOperator *UnOp = dyn_cast(OvlExpr)) { if (UnOp->getOpcode() == UnaryOperator::AddrOf) OvlExpr = UnOp->getSubExpr()->IgnoreParens(); } // Try to dig out the overloaded function. if (DeclRefExpr *DR = dyn_cast(OvlExpr)) Ovl = dyn_cast(DR->getDecl()); // If there's no overloaded function declaration, we're done. if (!Ovl) return 0; // Look through all of the overloaded functions, searching for one // whose type matches exactly. // FIXME: When templates or using declarations come along, we'll actually // have to deal with duplicates, partial ordering, etc. For now, we // can just do a simple search. FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType()); for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin(); Fun != Ovl->function_end(); ++Fun) { // C++ [over.over]p3: // Non-member functions and static member functions match // targets of type "pointer-to-function" or "reference-to-function." // Nonstatic member functions match targets of // type "pointer-to-member-function." // Note that according to DR 247, the containing class does not matter. if (CXXMethodDecl *Method = dyn_cast(*Fun)) { // Skip non-static functions when converting to pointer, and static // when converting to member pointer. if (Method->isStatic() == IsMember) continue; } else if (IsMember) continue; if (FunctionDecl *FunDecl = dyn_cast(*Fun)) { if (FunctionType == Context.getCanonicalType(FunDecl->getType())) return FunDecl; } else { unsigned DiagID = PP.getDiagnostics().getCustomDiagID(Diagnostic::Warning, "Clang does not yet support templated conversion functions"); Diag(From->getLocStart(), DiagID); } } return 0; } /// ResolveOverloadedCallFn - Given the call expression that calls Fn /// (which eventually refers to the declaration Func) and the call /// arguments Args/NumArgs, attempt to resolve the function call down /// to a specific function. If overload resolution succeeds, returns /// the function declaration produced by overload /// resolution. Otherwise, emits diagnostics, deletes all of the /// arguments and Fn, and returns NULL. FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee, DeclarationName UnqualifiedName, bool HasExplicitTemplateArgs, const TemplateArgument *ExplicitTemplateArgs, unsigned NumExplicitTemplateArgs, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc, bool &ArgumentDependentLookup) { OverloadCandidateSet CandidateSet; // Add the functions denoted by Callee to the set of candidate // functions. While we're doing so, track whether argument-dependent // lookup still applies, per: // // C++0x [basic.lookup.argdep]p3: // Let X be the lookup set produced by unqualified lookup (3.4.1) // and let Y be the lookup set produced by argument dependent // lookup (defined as follows). If X contains // // -- a declaration of a class member, or // // -- a block-scope function declaration that is not a // using-declaration, or // // -- a declaration that is neither a function or a function // template // // then Y is empty. if (OverloadedFunctionDecl *Ovl = dyn_cast_or_null(Callee)) { for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), FuncEnd = Ovl->function_end(); Func != FuncEnd; ++Func) { DeclContext *Ctx = 0; if (FunctionDecl *FunDecl = dyn_cast(*Func)) { if (HasExplicitTemplateArgs) continue; AddOverloadCandidate(FunDecl, Args, NumArgs, CandidateSet); Ctx = FunDecl->getDeclContext(); } else { FunctionTemplateDecl *FunTmpl = cast(*Func); AddTemplateOverloadCandidate(FunTmpl, HasExplicitTemplateArgs, ExplicitTemplateArgs, NumExplicitTemplateArgs, Args, NumArgs, CandidateSet); Ctx = FunTmpl->getDeclContext(); } if (Ctx->isRecord() || Ctx->isFunctionOrMethod()) ArgumentDependentLookup = false; } } else if (FunctionDecl *Func = dyn_cast_or_null(Callee)) { assert(!HasExplicitTemplateArgs && "Explicit template arguments?"); AddOverloadCandidate(Func, Args, NumArgs, CandidateSet); if (Func->getDeclContext()->isRecord() || Func->getDeclContext()->isFunctionOrMethod()) ArgumentDependentLookup = false; } else if (FunctionTemplateDecl *FuncTemplate = dyn_cast_or_null(Callee)) { AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs, ExplicitTemplateArgs, NumExplicitTemplateArgs, Args, NumArgs, CandidateSet); if (FuncTemplate->getDeclContext()->isRecord()) ArgumentDependentLookup = false; } if (Callee) UnqualifiedName = Callee->getDeclName(); // FIXME: Pass explicit template arguments through for ADL if (ArgumentDependentLookup) AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs, CandidateSet); OverloadCandidateSet::iterator Best; switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) { case OR_Success: return Best->Function; case OR_No_Viable_Function: Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_no_viable_function_in_call) << UnqualifiedName << Fn->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); break; case OR_Ambiguous: Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) << UnqualifiedName << Fn->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); break; case OR_Deleted: Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) << Best->Function->isDeleted() << UnqualifiedName << Fn->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); break; } // Overload resolution failed. Destroy all of the subexpressions and // return NULL. Fn->Destroy(Context); for (unsigned Arg = 0; Arg < NumArgs; ++Arg) Args[Arg]->Destroy(Context); return 0; } /// \brief Create a unary operation that may resolve to an overloaded /// operator. /// /// \param OpLoc The location of the operator itself (e.g., '*'). /// /// \param OpcIn The UnaryOperator::Opcode that describes this /// operator. /// /// \param Functions The set of non-member functions that will be /// considered by overload resolution. The caller needs to build this /// set based on the context using, e.g., /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This /// set should not contain any member functions; those will be added /// by CreateOverloadedUnaryOp(). /// /// \param input The input argument. Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, FunctionSet &Functions, ExprArg input) { UnaryOperator::Opcode Opc = static_cast(OpcIn); Expr *Input = (Expr *)input.get(); OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); Expr *Args[2] = { Input, 0 }; unsigned NumArgs = 1; // For post-increment and post-decrement, add the implicit '0' as // the second argument, so that we know this is a post-increment or // post-decrement. if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) { llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy, SourceLocation()); NumArgs = 2; } if (Input->isTypeDependent()) { OverloadedFunctionDecl *Overloads = OverloadedFunctionDecl::Create(Context, CurContext, OpName); for (FunctionSet::iterator Func = Functions.begin(), FuncEnd = Functions.end(); Func != FuncEnd; ++Func) Overloads->addOverload(*Func); DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy, OpLoc, false, false); input.release(); return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, &Args[0], NumArgs, Context.DependentTy, OpLoc)); } // Build an empty overload set. OverloadCandidateSet CandidateSet; // Add the candidates from the given function set. AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false); // Add operator candidates that are member functions. AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); // Add builtin operator candidates. AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet); // Perform overload resolution. OverloadCandidateSet::iterator Best; switch (BestViableFunction(CandidateSet, OpLoc, Best)) { case OR_Success: { // We found a built-in operator or an overloaded operator. FunctionDecl *FnDecl = Best->Function; if (FnDecl) { // We matched an overloaded operator. Build a call to that // operator. // Convert the arguments. if (CXXMethodDecl *Method = dyn_cast(FnDecl)) { if (PerformObjectArgumentInitialization(Input, Method)) return ExprError(); } else { // Convert the arguments. if (PerformCopyInitialization(Input, FnDecl->getParamDecl(0)->getType(), "passing")) return ExprError(); } // Determine the result type QualType ResultTy = FnDecl->getType()->getAsFunctionType()->getResultType(); ResultTy = ResultTy.getNonReferenceType(); // Build the actual expression node. Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), SourceLocation()); UsualUnaryConversions(FnExpr); input.release(); return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, &Input, 1, ResultTy, OpLoc)); } else { // We matched a built-in operator. Convert the arguments, then // break out so that we will build the appropriate built-in // operator node. if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], Best->Conversions[0], "passing")) return ExprError(); break; } } case OR_No_Viable_Function: // No viable function; fall through to handling this as a // built-in operator, which will produce an error message for us. break; case OR_Ambiguous: Diag(OpLoc, diag::err_ovl_ambiguous_oper) << UnaryOperator::getOpcodeStr(Opc) << Input->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); return ExprError(); case OR_Deleted: Diag(OpLoc, diag::err_ovl_deleted_oper) << Best->Function->isDeleted() << UnaryOperator::getOpcodeStr(Opc) << Input->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); return ExprError(); } // Either we found no viable overloaded operator or we matched a // built-in operator. In either case, fall through to trying to // build a built-in operation. input.release(); return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input)); } /// \brief Create a binary operation that may resolve to an overloaded /// operator. /// /// \param OpLoc The location of the operator itself (e.g., '+'). /// /// \param OpcIn The BinaryOperator::Opcode that describes this /// operator. /// /// \param Functions The set of non-member functions that will be /// considered by overload resolution. The caller needs to build this /// set based on the context using, e.g., /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This /// set should not contain any member functions; those will be added /// by CreateOverloadedBinOp(). /// /// \param LHS Left-hand argument. /// \param RHS Right-hand argument. Sema::OwningExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc, unsigned OpcIn, FunctionSet &Functions, Expr *LHS, Expr *RHS) { Expr *Args[2] = { LHS, RHS }; BinaryOperator::Opcode Opc = static_cast(OpcIn); OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); // If either side is type-dependent, create an appropriate dependent // expression. if (LHS->isTypeDependent() || RHS->isTypeDependent()) { // .* cannot be overloaded. if (Opc == BinaryOperator::PtrMemD) return Owned(new (Context) BinaryOperator(LHS, RHS, Opc, Context.DependentTy, OpLoc)); OverloadedFunctionDecl *Overloads = OverloadedFunctionDecl::Create(Context, CurContext, OpName); for (FunctionSet::iterator Func = Functions.begin(), FuncEnd = Functions.end(); Func != FuncEnd; ++Func) Overloads->addOverload(*Func); DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy, OpLoc, false, false); return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, Args, 2, Context.DependentTy, OpLoc)); } // If this is the .* operator, which is not overloadable, just // create a built-in binary operator. if (Opc == BinaryOperator::PtrMemD) return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS); // If this is one of the assignment operators, we only perform // overload resolution if the left-hand side is a class or // enumeration type (C++ [expr.ass]p3). if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign && !LHS->getType()->isOverloadableType()) return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS); // Build an empty overload set. OverloadCandidateSet CandidateSet; // Add the candidates from the given function set. AddFunctionCandidates(Functions, Args, 2, CandidateSet, false); // Add operator candidates that are member functions. AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); // Add builtin operator candidates. AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet); // Perform overload resolution. OverloadCandidateSet::iterator Best; switch (BestViableFunction(CandidateSet, OpLoc, Best)) { case OR_Success: { // We found a built-in operator or an overloaded operator. FunctionDecl *FnDecl = Best->Function; if (FnDecl) { // We matched an overloaded operator. Build a call to that // operator. // Convert the arguments. if (CXXMethodDecl *Method = dyn_cast(FnDecl)) { if (PerformObjectArgumentInitialization(LHS, Method) || PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(), "passing")) return ExprError(); } else { // Convert the arguments. if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(), "passing") || PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(), "passing")) return ExprError(); } // Determine the result type QualType ResultTy = FnDecl->getType()->getAsFunctionType()->getResultType(); ResultTy = ResultTy.getNonReferenceType(); // Build the actual expression node. Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), SourceLocation()); UsualUnaryConversions(FnExpr); return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, Args, 2, ResultTy, OpLoc)); } else { // We matched a built-in operator. Convert the arguments, then // break out so that we will build the appropriate built-in // operator node. if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0], Best->Conversions[0], "passing") || PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1], Best->Conversions[1], "passing")) return ExprError(); break; } } case OR_No_Viable_Function: // For class as left operand for assignment or compound assigment operator // do not fall through to handling in built-in, but report that no overloaded // assignment operator found if (LHS->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) { Diag(OpLoc, diag::err_ovl_no_viable_oper) << BinaryOperator::getOpcodeStr(Opc) << LHS->getSourceRange() << RHS->getSourceRange(); return ExprError(); } // No viable function; fall through to handling this as a // built-in operator, which will produce an error message for us. break; case OR_Ambiguous: Diag(OpLoc, diag::err_ovl_ambiguous_oper) << BinaryOperator::getOpcodeStr(Opc) << LHS->getSourceRange() << RHS->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); return ExprError(); case OR_Deleted: Diag(OpLoc, diag::err_ovl_deleted_oper) << Best->Function->isDeleted() << BinaryOperator::getOpcodeStr(Opc) << LHS->getSourceRange() << RHS->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); return ExprError(); } // Either we found no viable overloaded operator or we matched a // built-in operator. In either case, try to build a built-in // operation. return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS); } /// BuildCallToMemberFunction - Build a call to a member /// function. MemExpr is the expression that refers to the member /// function (and includes the object parameter), Args/NumArgs are the /// arguments to the function call (not including the object /// parameter). The caller needs to validate that the member /// expression refers to a member function or an overloaded member /// function. Sema::ExprResult Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc) { // Dig out the member expression. This holds both the object // argument and the member function we're referring to. MemberExpr *MemExpr = 0; if (ParenExpr *ParenE = dyn_cast(MemExprE)) MemExpr = dyn_cast(ParenE->getSubExpr()); else MemExpr = dyn_cast(MemExprE); assert(MemExpr && "Building member call without member expression"); // Extract the object argument. Expr *ObjectArg = MemExpr->getBase(); CXXMethodDecl *Method = 0; if (OverloadedFunctionDecl *Ovl = dyn_cast(MemExpr->getMemberDecl())) { // Add overload candidates OverloadCandidateSet CandidateSet; for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), FuncEnd = Ovl->function_end(); Func != FuncEnd; ++Func) { assert(isa(*Func) && "Function is not a method"); Method = cast(*Func); AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet, /*SuppressUserConversions=*/false); } OverloadCandidateSet::iterator Best; switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) { case OR_Success: Method = cast(Best->Function); break; case OR_No_Viable_Function: Diag(MemExpr->getSourceRange().getBegin(), diag::err_ovl_no_viable_member_function_in_call) << Ovl->getDeclName() << MemExprE->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); // FIXME: Leaking incoming expressions! return true; case OR_Ambiguous: Diag(MemExpr->getSourceRange().getBegin(), diag::err_ovl_ambiguous_member_call) << Ovl->getDeclName() << MemExprE->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); // FIXME: Leaking incoming expressions! return true; case OR_Deleted: Diag(MemExpr->getSourceRange().getBegin(), diag::err_ovl_deleted_member_call) << Best->Function->isDeleted() << Ovl->getDeclName() << MemExprE->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); // FIXME: Leaking incoming expressions! return true; } FixOverloadedFunctionReference(MemExpr, Method); } else { Method = dyn_cast(MemExpr->getMemberDecl()); } assert(Method && "Member call to something that isn't a method?"); ExprOwningPtr TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args, NumArgs, Method->getResultType().getNonReferenceType(), RParenLoc)); // Convert the object argument (for a non-static member function call). if (!Method->isStatic() && PerformObjectArgumentInitialization(ObjectArg, Method)) return true; MemExpr->setBase(ObjectArg); // Convert the rest of the arguments const FunctionProtoType *Proto = cast(Method->getType()); if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, RParenLoc)) return true; return CheckFunctionCall(Method, TheCall.take()).release(); } /// BuildCallToObjectOfClassType - Build a call to an object of class /// type (C++ [over.call.object]), which can end up invoking an /// overloaded function call operator (@c operator()) or performing a /// user-defined conversion on the object argument. Sema::ExprResult Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc) { assert(Object->getType()->isRecordType() && "Requires object type argument"); const RecordType *Record = Object->getType()->getAsRecordType(); // C++ [over.call.object]p1: // If the primary-expression E in the function call syntax // evaluates to a class object of type “cv T”, then the set of // candidate functions includes at least the function call // operators of T. The function call operators of T are obtained by // ordinary lookup of the name operator() in the context of // (E).operator(). OverloadCandidateSet CandidateSet; DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); DeclContext::lookup_const_iterator Oper, OperEnd; for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName); Oper != OperEnd; ++Oper) AddMethodCandidate(cast(*Oper), Object, Args, NumArgs, CandidateSet, /*SuppressUserConversions=*/false); // C++ [over.call.object]p2: // In addition, for each conversion function declared in T of the // form // // operator conversion-type-id () cv-qualifier; // // where cv-qualifier is the same cv-qualification as, or a // greater cv-qualification than, cv, and where conversion-type-id // denotes the type "pointer to function of (P1,...,Pn) returning // R", or the type "reference to pointer to function of // (P1,...,Pn) returning R", or the type "reference to function // of (P1,...,Pn) returning R", a surrogate call function [...] // is also considered as a candidate function. Similarly, // surrogate call functions are added to the set of candidate // functions for each conversion function declared in an // accessible base class provided the function is not hidden // within T by another intervening declaration. // // FIXME: Look in base classes for more conversion operators! OverloadedFunctionDecl *Conversions = cast(Record->getDecl())->getConversionFunctions(); for (OverloadedFunctionDecl::function_iterator Func = Conversions->function_begin(), FuncEnd = Conversions->function_end(); Func != FuncEnd; ++Func) { CXXConversionDecl *Conv = cast(*Func); // Strip the reference type (if any) and then the pointer type (if // any) to get down to what might be a function type. QualType ConvType = Conv->getConversionType().getNonReferenceType(); if (const PointerType *ConvPtrType = ConvType->getAsPointerType()) ConvType = ConvPtrType->getPointeeType(); if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType()) AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet); } // Perform overload resolution. OverloadCandidateSet::iterator Best; switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) { case OR_Success: // Overload resolution succeeded; we'll build the appropriate call // below. break; case OR_No_Viable_Function: Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_viable_object_call) << Object->getType() << Object->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); break; case OR_Ambiguous: Diag(Object->getSourceRange().getBegin(), diag::err_ovl_ambiguous_object_call) << Object->getType() << Object->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); break; case OR_Deleted: Diag(Object->getSourceRange().getBegin(), diag::err_ovl_deleted_object_call) << Best->Function->isDeleted() << Object->getType() << Object->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); break; } if (Best == CandidateSet.end()) { // We had an error; delete all of the subexpressions and return // the error. Object->Destroy(Context); for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) Args[ArgIdx]->Destroy(Context); return true; } if (Best->Function == 0) { // Since there is no function declaration, this is one of the // surrogate candidates. Dig out the conversion function. CXXConversionDecl *Conv = cast( Best->Conversions[0].UserDefined.ConversionFunction); // We selected one of the surrogate functions that converts the // object parameter to a function pointer. Perform the conversion // on the object argument, then let ActOnCallExpr finish the job. // FIXME: Represent the user-defined conversion in the AST! ImpCastExprToType(Object, Conv->getConversionType().getNonReferenceType(), Conv->getConversionType()->isLValueReferenceType()); return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc, MultiExprArg(*this, (ExprTy**)Args, NumArgs), CommaLocs, RParenLoc).release(); } // We found an overloaded operator(). Build a CXXOperatorCallExpr // that calls this method, using Object for the implicit object // parameter and passing along the remaining arguments. CXXMethodDecl *Method = cast(Best->Function); const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType(); unsigned NumArgsInProto = Proto->getNumArgs(); unsigned NumArgsToCheck = NumArgs; // Build the full argument list for the method call (the // implicit object parameter is placed at the beginning of the // list). Expr **MethodArgs; if (NumArgs < NumArgsInProto) { NumArgsToCheck = NumArgsInProto; MethodArgs = new Expr*[NumArgsInProto + 1]; } else { MethodArgs = new Expr*[NumArgs + 1]; } MethodArgs[0] = Object; for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) MethodArgs[ArgIdx + 1] = Args[ArgIdx]; Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), SourceLocation()); UsualUnaryConversions(NewFn); // Once we've built TheCall, all of the expressions are properly // owned. QualType ResultTy = Method->getResultType().getNonReferenceType(); ExprOwningPtr TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, MethodArgs, NumArgs + 1, ResultTy, RParenLoc)); delete [] MethodArgs; // We may have default arguments. If so, we need to allocate more // slots in the call for them. if (NumArgs < NumArgsInProto) TheCall->setNumArgs(Context, NumArgsInProto + 1); else if (NumArgs > NumArgsInProto) NumArgsToCheck = NumArgsInProto; bool IsError = false; // Initialize the implicit object parameter. IsError |= PerformObjectArgumentInitialization(Object, Method); TheCall->setArg(0, Object); // Check the argument types. for (unsigned i = 0; i != NumArgsToCheck; i++) { Expr *Arg; if (i < NumArgs) { Arg = Args[i]; // Pass the argument. QualType ProtoArgType = Proto->getArgType(i); IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing"); } else { Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i)); } TheCall->setArg(i + 1, Arg); } // If this is a variadic call, handle args passed through "...". if (Proto->isVariadic()) { // Promote the arguments (C99 6.5.2.2p7). for (unsigned i = NumArgsInProto; i != NumArgs; i++) { Expr *Arg = Args[i]; IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod); TheCall->setArg(i + 1, Arg); } } if (IsError) return true; return CheckFunctionCall(Method, TheCall.take()).release(); } /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> /// (if one exists), where @c Base is an expression of class type and /// @c Member is the name of the member we're trying to find. Action::ExprResult Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc, SourceLocation MemberLoc, IdentifierInfo &Member) { assert(Base->getType()->isRecordType() && "left-hand side must have class type"); // C++ [over.ref]p1: // // [...] An expression x->m is interpreted as (x.operator->())->m // for a class object x of type T if T::operator->() exists and if // the operator is selected as the best match function by the // overload resolution mechanism (13.3). // FIXME: look in base classes. DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); OverloadCandidateSet CandidateSet; const RecordType *BaseRecord = Base->getType()->getAsRecordType(); DeclContext::lookup_const_iterator Oper, OperEnd; for (llvm::tie(Oper, OperEnd) = BaseRecord->getDecl()->lookup(OpName); Oper != OperEnd; ++Oper) AddMethodCandidate(cast(*Oper), Base, 0, 0, CandidateSet, /*SuppressUserConversions=*/false); ExprOwningPtr BasePtr(this, Base); // Perform overload resolution. OverloadCandidateSet::iterator Best; switch (BestViableFunction(CandidateSet, OpLoc, Best)) { case OR_Success: // Overload resolution succeeded; we'll build the call below. break; case OR_No_Viable_Function: if (CandidateSet.empty()) Diag(OpLoc, diag::err_typecheck_member_reference_arrow) << BasePtr->getType() << BasePtr->getSourceRange(); else Diag(OpLoc, diag::err_ovl_no_viable_oper) << "operator->" << BasePtr->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); return true; case OR_Ambiguous: Diag(OpLoc, diag::err_ovl_ambiguous_oper) << "operator->" << BasePtr->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); return true; case OR_Deleted: Diag(OpLoc, diag::err_ovl_deleted_oper) << Best->Function->isDeleted() << "operator->" << BasePtr->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); return true; } // Convert the object parameter. CXXMethodDecl *Method = cast(Best->Function); if (PerformObjectArgumentInitialization(Base, Method)) return true; // No concerns about early exits now. BasePtr.take(); // Build the operator call. Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), SourceLocation()); UsualUnaryConversions(FnExpr); Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1, Method->getResultType().getNonReferenceType(), OpLoc); return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow, MemberLoc, Member, DeclPtrTy()).release(); } /// FixOverloadedFunctionReference - E is an expression that refers to /// a C++ overloaded function (possibly with some parentheses and /// perhaps a '&' around it). We have resolved the overloaded function /// to the function declaration Fn, so patch up the expression E to /// refer (possibly indirectly) to Fn. void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) { if (ParenExpr *PE = dyn_cast(E)) { FixOverloadedFunctionReference(PE->getSubExpr(), Fn); E->setType(PE->getSubExpr()->getType()); } else if (UnaryOperator *UnOp = dyn_cast(E)) { assert(UnOp->getOpcode() == UnaryOperator::AddrOf && "Can only take the address of an overloaded function"); if (CXXMethodDecl *Method = dyn_cast(Fn)) { if (Method->isStatic()) { // Do nothing: static member functions aren't any different // from non-member functions. } else if (QualifiedDeclRefExpr *DRE = dyn_cast(UnOp->getSubExpr())) { // We have taken the address of a pointer to member // function. Perform the computation here so that we get the // appropriate pointer to member type. DRE->setDecl(Fn); DRE->setType(Fn->getType()); QualType ClassType = Context.getTypeDeclType(cast(Method->getDeclContext())); E->setType(Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr())); return; } } FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn); E->setType(Context.getPointerType(UnOp->getSubExpr()->getType())); } else if (DeclRefExpr *DR = dyn_cast(E)) { assert(isa(DR->getDecl()) && "Expected overloaded function"); DR->setDecl(Fn); E->setType(Fn->getType()); } else if (MemberExpr *MemExpr = dyn_cast(E)) { MemExpr->setMemberDecl(Fn); E->setType(Fn->getType()); } else { assert(false && "Invalid reference to overloaded function"); } } } // end namespace clang