//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements type-related semantic analysis. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "clang/AST/ASTContext.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/TypeLoc.h" #include "clang/AST/TypeLocVisitor.h" #include "clang/AST/Expr.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Parse/DeclSpec.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Support/ErrorHandling.h" using namespace clang; #include /// \brief Perform adjustment on the parameter type of a function. /// /// This routine adjusts the given parameter type @p T to the actual /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8], /// C++ [dcl.fct]p3). The adjusted parameter type is returned. QualType Sema::adjustParameterType(QualType T) { // C99 6.7.5.3p7: // A declaration of a parameter as "array of type" shall be // adjusted to "qualified pointer to type", where the type // qualifiers (if any) are those specified within the [ and ] of // the array type derivation. if (T->isArrayType()) return Context.getArrayDecayedType(T); // C99 6.7.5.3p8: // A declaration of a parameter as "function returning type" // shall be adjusted to "pointer to function returning type", as // in 6.3.2.1. if (T->isFunctionType()) return Context.getPointerType(T); return T; } /// isOmittedBlockReturnType - Return true if this declarator is missing a /// return type because this is a omitted return type on a block literal. static bool isOmittedBlockReturnType(const Declarator &D) { if (D.getContext() != Declarator::BlockLiteralContext || D.getDeclSpec().hasTypeSpecifier()) return false; if (D.getNumTypeObjects() == 0) return true; // ^{ ... } if (D.getNumTypeObjects() == 1 && D.getTypeObject(0).Kind == DeclaratorChunk::Function) return true; // ^(int X, float Y) { ... } return false; } typedef std::pair DelayedAttribute; typedef llvm::SmallVectorImpl DelayedAttributeSet; static void ProcessTypeAttributeList(Sema &S, QualType &Type, bool IsDeclSpec, const AttributeList *Attrs, DelayedAttributeSet &DelayedFnAttrs); static bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr); static void ProcessDelayedFnAttrs(Sema &S, QualType &Type, DelayedAttributeSet &Attrs) { for (DelayedAttributeSet::iterator I = Attrs.begin(), E = Attrs.end(); I != E; ++I) if (ProcessFnAttr(S, Type, *I->first)) { S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type) << I->first->getName() << I->second; // Avoid any further processing of this attribute. I->first->setInvalid(); } Attrs.clear(); } static void DiagnoseDelayedFnAttrs(Sema &S, DelayedAttributeSet &Attrs) { for (DelayedAttributeSet::iterator I = Attrs.begin(), E = Attrs.end(); I != E; ++I) { S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type) << I->first->getName() << I->second; // Avoid any further processing of this attribute. I->first->setInvalid(); } Attrs.clear(); } /// \brief Convert the specified declspec to the appropriate type /// object. /// \param D the declarator containing the declaration specifier. /// \returns The type described by the declaration specifiers. This function /// never returns null. static QualType ConvertDeclSpecToType(Sema &TheSema, Declarator &TheDeclarator, DelayedAttributeSet &Delayed) { // FIXME: Should move the logic from DeclSpec::Finish to here for validity // checking. const DeclSpec &DS = TheDeclarator.getDeclSpec(); SourceLocation DeclLoc = TheDeclarator.getIdentifierLoc(); if (DeclLoc.isInvalid()) DeclLoc = DS.getSourceRange().getBegin(); ASTContext &Context = TheSema.Context; QualType Result; switch (DS.getTypeSpecType()) { case DeclSpec::TST_void: Result = Context.VoidTy; break; case DeclSpec::TST_char: if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified) Result = Context.CharTy; else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) Result = Context.SignedCharTy; else { assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned && "Unknown TSS value"); Result = Context.UnsignedCharTy; } break; case DeclSpec::TST_wchar: if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified) Result = Context.WCharTy; else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) { TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec) << DS.getSpecifierName(DS.getTypeSpecType()); Result = Context.getSignedWCharType(); } else { assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned && "Unknown TSS value"); TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec) << DS.getSpecifierName(DS.getTypeSpecType()); Result = Context.getUnsignedWCharType(); } break; case DeclSpec::TST_char16: assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified && "Unknown TSS value"); Result = Context.Char16Ty; break; case DeclSpec::TST_char32: assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified && "Unknown TSS value"); Result = Context.Char32Ty; break; case DeclSpec::TST_unspecified: // "" is an objc qualified ID with a missing id. if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) { Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy, (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers()); Result = Context.getObjCObjectPointerType(Result); break; } // If this is a missing declspec in a block literal return context, then it // is inferred from the return statements inside the block. if (isOmittedBlockReturnType(TheDeclarator)) { Result = Context.DependentTy; break; } // Unspecified typespec defaults to int in C90. However, the C90 grammar // [C90 6.5] only allows a decl-spec if there was *some* type-specifier, // type-qualifier, or storage-class-specifier. If not, emit an extwarn. // Note that the one exception to this is function definitions, which are // allowed to be completely missing a declspec. This is handled in the // parser already though by it pretending to have seen an 'int' in this // case. if (TheSema.getLangOptions().ImplicitInt) { // In C89 mode, we only warn if there is a completely missing declspec // when one is not allowed. if (DS.isEmpty()) { TheSema.Diag(DeclLoc, diag::ext_missing_declspec) << DS.getSourceRange() << FixItHint::CreateInsertion(DS.getSourceRange().getBegin(), "int"); } } else if (!DS.hasTypeSpecifier()) { // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says: // "At least one type specifier shall be given in the declaration // specifiers in each declaration, and in the specifier-qualifier list in // each struct declaration and type name." // FIXME: Does Microsoft really have the implicit int extension in C++? if (TheSema.getLangOptions().CPlusPlus && !TheSema.getLangOptions().Microsoft) { TheSema.Diag(DeclLoc, diag::err_missing_type_specifier) << DS.getSourceRange(); // When this occurs in C++ code, often something is very broken with the // value being declared, poison it as invalid so we don't get chains of // errors. TheDeclarator.setInvalidType(true); } else { TheSema.Diag(DeclLoc, diag::ext_missing_type_specifier) << DS.getSourceRange(); } } // FALL THROUGH. case DeclSpec::TST_int: { if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) { switch (DS.getTypeSpecWidth()) { case DeclSpec::TSW_unspecified: Result = Context.IntTy; break; case DeclSpec::TSW_short: Result = Context.ShortTy; break; case DeclSpec::TSW_long: Result = Context.LongTy; break; case DeclSpec::TSW_longlong: Result = Context.LongLongTy; // long long is a C99 feature. if (!TheSema.getLangOptions().C99 && !TheSema.getLangOptions().CPlusPlus0x) TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong); break; } } else { switch (DS.getTypeSpecWidth()) { case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break; case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break; case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break; case DeclSpec::TSW_longlong: Result = Context.UnsignedLongLongTy; // long long is a C99 feature. if (!TheSema.getLangOptions().C99 && !TheSema.getLangOptions().CPlusPlus0x) TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong); break; } } break; } case DeclSpec::TST_float: Result = Context.FloatTy; break; case DeclSpec::TST_double: if (DS.getTypeSpecWidth() == DeclSpec::TSW_long) Result = Context.LongDoubleTy; else Result = Context.DoubleTy; break; case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool case DeclSpec::TST_decimal32: // _Decimal32 case DeclSpec::TST_decimal64: // _Decimal64 case DeclSpec::TST_decimal128: // _Decimal128 TheSema.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported); Result = Context.IntTy; TheDeclarator.setInvalidType(true); break; case DeclSpec::TST_class: case DeclSpec::TST_enum: case DeclSpec::TST_union: case DeclSpec::TST_struct: { TypeDecl *D = dyn_cast_or_null(static_cast(DS.getTypeRep())); if (!D) { // This can happen in C++ with ambiguous lookups. Result = Context.IntTy; TheDeclarator.setInvalidType(true); break; } // If the type is deprecated or unavailable, diagnose it. TheSema.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeLoc()); assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!"); // TypeQuals handled by caller. Result = Context.getTypeDeclType(D); // In C++, make an ElaboratedType. if (TheSema.getLangOptions().CPlusPlus) { ElaboratedTypeKeyword Keyword = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType()); Result = TheSema.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result); } if (D->isInvalidDecl()) TheDeclarator.setInvalidType(true); break; } case DeclSpec::TST_typename: { assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == 0 && "Can't handle qualifiers on typedef names yet!"); Result = TheSema.GetTypeFromParser(DS.getTypeRep()); if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) { if (const ObjCObjectType *ObjT = Result->getAs()) { // Silently drop any existing protocol qualifiers. // TODO: determine whether that's the right thing to do. if (ObjT->getNumProtocols()) Result = ObjT->getBaseType(); if (DS.getNumProtocolQualifiers()) Result = Context.getObjCObjectType(Result, (ObjCProtocolDecl**) PQ, DS.getNumProtocolQualifiers()); } else if (Result->isObjCIdType()) { // id Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy, (ObjCProtocolDecl**) PQ, DS.getNumProtocolQualifiers()); Result = Context.getObjCObjectPointerType(Result); } else if (Result->isObjCClassType()) { // Class Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy, (ObjCProtocolDecl**) PQ, DS.getNumProtocolQualifiers()); Result = Context.getObjCObjectPointerType(Result); } else { TheSema.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers) << DS.getSourceRange(); TheDeclarator.setInvalidType(true); } } // TypeQuals handled by caller. break; } case DeclSpec::TST_typeofType: // FIXME: Preserve type source info. Result = TheSema.GetTypeFromParser(DS.getTypeRep()); assert(!Result.isNull() && "Didn't get a type for typeof?"); // TypeQuals handled by caller. Result = Context.getTypeOfType(Result); break; case DeclSpec::TST_typeofExpr: { Expr *E = static_cast(DS.getTypeRep()); assert(E && "Didn't get an expression for typeof?"); // TypeQuals handled by caller. Result = TheSema.BuildTypeofExprType(E); if (Result.isNull()) { Result = Context.IntTy; TheDeclarator.setInvalidType(true); } break; } case DeclSpec::TST_decltype: { Expr *E = static_cast(DS.getTypeRep()); assert(E && "Didn't get an expression for decltype?"); // TypeQuals handled by caller. Result = TheSema.BuildDecltypeType(E); if (Result.isNull()) { Result = Context.IntTy; TheDeclarator.setInvalidType(true); } break; } case DeclSpec::TST_auto: { // TypeQuals handled by caller. Result = Context.UndeducedAutoTy; break; } case DeclSpec::TST_error: Result = Context.IntTy; TheDeclarator.setInvalidType(true); break; } // Handle complex types. if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) { if (TheSema.getLangOptions().Freestanding) TheSema.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex); Result = Context.getComplexType(Result); } else if (DS.isTypeAltiVecVector()) { unsigned typeSize = static_cast(Context.getTypeSize(Result)); assert(typeSize > 0 && "type size for vector must be greater than 0 bits"); Result = Context.getVectorType(Result, 128/typeSize, true, DS.isTypeAltiVecPixel()); } assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary && "FIXME: imaginary types not supported yet!"); // See if there are any attributes on the declspec that apply to the type (as // opposed to the decl). if (const AttributeList *AL = DS.getAttributes()) ProcessTypeAttributeList(TheSema, Result, true, AL, Delayed); // Apply const/volatile/restrict qualifiers to T. if (unsigned TypeQuals = DS.getTypeQualifiers()) { // Enforce C99 6.7.3p2: "Types other than pointer types derived from object // or incomplete types shall not be restrict-qualified." C++ also allows // restrict-qualified references. if (TypeQuals & DeclSpec::TQ_restrict) { if (Result->isAnyPointerType() || Result->isReferenceType()) { QualType EltTy; if (Result->isObjCObjectPointerType()) EltTy = Result; else EltTy = Result->isPointerType() ? Result->getAs()->getPointeeType() : Result->getAs()->getPointeeType(); // If we have a pointer or reference, the pointee must have an object // incomplete type. if (!EltTy->isIncompleteOrObjectType()) { TheSema.Diag(DS.getRestrictSpecLoc(), diag::err_typecheck_invalid_restrict_invalid_pointee) << EltTy << DS.getSourceRange(); TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier. } } else { TheSema.Diag(DS.getRestrictSpecLoc(), diag::err_typecheck_invalid_restrict_not_pointer) << Result << DS.getSourceRange(); TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier. } } // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification // of a function type includes any type qualifiers, the behavior is // undefined." if (Result->isFunctionType() && TypeQuals) { // Get some location to point at, either the C or V location. SourceLocation Loc; if (TypeQuals & DeclSpec::TQ_const) Loc = DS.getConstSpecLoc(); else if (TypeQuals & DeclSpec::TQ_volatile) Loc = DS.getVolatileSpecLoc(); else { assert((TypeQuals & DeclSpec::TQ_restrict) && "Has CVR quals but not C, V, or R?"); Loc = DS.getRestrictSpecLoc(); } TheSema.Diag(Loc, diag::warn_typecheck_function_qualifiers) << Result << DS.getSourceRange(); } // C++ [dcl.ref]p1: // Cv-qualified references are ill-formed except when the // cv-qualifiers are introduced through the use of a typedef // (7.1.3) or of a template type argument (14.3), in which // case the cv-qualifiers are ignored. // FIXME: Shouldn't we be checking SCS_typedef here? if (DS.getTypeSpecType() == DeclSpec::TST_typename && TypeQuals && Result->isReferenceType()) { TypeQuals &= ~DeclSpec::TQ_const; TypeQuals &= ~DeclSpec::TQ_volatile; } Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals); Result = Context.getQualifiedType(Result, Quals); } return Result; } static std::string getPrintableNameForEntity(DeclarationName Entity) { if (Entity) return Entity.getAsString(); return "type name"; } /// \brief Build a pointer type. /// /// \param T The type to which we'll be building a pointer. /// /// \param Quals The cvr-qualifiers to be applied to the pointer type. /// /// \param Loc The location of the entity whose type involves this /// pointer type or, if there is no such entity, the location of the /// type that will have pointer type. /// /// \param Entity The name of the entity that involves the pointer /// type, if known. /// /// \returns A suitable pointer type, if there are no /// errors. Otherwise, returns a NULL type. QualType Sema::BuildPointerType(QualType T, unsigned Quals, SourceLocation Loc, DeclarationName Entity) { if (T->isReferenceType()) { // C++ 8.3.2p4: There shall be no ... pointers to references ... Diag(Loc, diag::err_illegal_decl_pointer_to_reference) << getPrintableNameForEntity(Entity) << T; return QualType(); } Qualifiers Qs = Qualifiers::fromCVRMask(Quals); // Enforce C99 6.7.3p2: "Types other than pointer types derived from // object or incomplete types shall not be restrict-qualified." if (Qs.hasRestrict() && !T->isIncompleteOrObjectType()) { Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee) << T; Qs.removeRestrict(); } assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType"); // Build the pointer type. return Context.getQualifiedType(Context.getPointerType(T), Qs); } /// \brief Build a reference type. /// /// \param T The type to which we'll be building a reference. /// /// \param CVR The cvr-qualifiers to be applied to the reference type. /// /// \param Loc The location of the entity whose type involves this /// reference type or, if there is no such entity, the location of the /// type that will have reference type. /// /// \param Entity The name of the entity that involves the reference /// type, if known. /// /// \returns A suitable reference type, if there are no /// errors. Otherwise, returns a NULL type. QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue, unsigned CVR, SourceLocation Loc, DeclarationName Entity) { Qualifiers Quals = Qualifiers::fromCVRMask(CVR); bool LValueRef = SpelledAsLValue || T->getAs(); // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a // reference to a type T, and attempt to create the type "lvalue // reference to cv TD" creates the type "lvalue reference to T". // We use the qualifiers (restrict or none) of the original reference, // not the new ones. This is consistent with GCC. // C++ [dcl.ref]p4: There shall be no references to references. // // According to C++ DR 106, references to references are only // diagnosed when they are written directly (e.g., "int & &"), // but not when they happen via a typedef: // // typedef int& intref; // typedef intref& intref2; // // Parser::ParseDeclaratorInternal diagnoses the case where // references are written directly; here, we handle the // collapsing of references-to-references as described in C++ // DR 106 and amended by C++ DR 540. // C++ [dcl.ref]p1: // A declarator that specifies the type "reference to cv void" // is ill-formed. if (T->isVoidType()) { Diag(Loc, diag::err_reference_to_void); return QualType(); } // Enforce C99 6.7.3p2: "Types other than pointer types derived from // object or incomplete types shall not be restrict-qualified." if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) { Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee) << T; Quals.removeRestrict(); } // C++ [dcl.ref]p1: // [...] Cv-qualified references are ill-formed except when the // cv-qualifiers are introduced through the use of a typedef // (7.1.3) or of a template type argument (14.3), in which case // the cv-qualifiers are ignored. // // We diagnose extraneous cv-qualifiers for the non-typedef, // non-template type argument case within the parser. Here, we just // ignore any extraneous cv-qualifiers. Quals.removeConst(); Quals.removeVolatile(); // Handle restrict on references. if (LValueRef) return Context.getQualifiedType( Context.getLValueReferenceType(T, SpelledAsLValue), Quals); return Context.getQualifiedType(Context.getRValueReferenceType(T), Quals); } /// \brief Build an array type. /// /// \param T The type of each element in the array. /// /// \param ASM C99 array size modifier (e.g., '*', 'static'). /// /// \param ArraySize Expression describing the size of the array. /// /// \param Quals The cvr-qualifiers to be applied to the array's /// element type. /// /// \param Loc The location of the entity whose type involves this /// array type or, if there is no such entity, the location of the /// type that will have array type. /// /// \param Entity The name of the entity that involves the array /// type, if known. /// /// \returns A suitable array type, if there are no errors. Otherwise, /// returns a NULL type. QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM, Expr *ArraySize, unsigned Quals, SourceRange Brackets, DeclarationName Entity) { SourceLocation Loc = Brackets.getBegin(); if (getLangOptions().CPlusPlus) { // C++ [dcl.array]p1: // T is called the array element type; this type shall not be a reference // type, the (possibly cv-qualified) type void, a function type or an // abstract class type. // // Note: function types are handled in the common path with C. if (T->isReferenceType()) { Diag(Loc, diag::err_illegal_decl_array_of_references) << getPrintableNameForEntity(Entity) << T; return QualType(); } if (T->isVoidType()) { Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T; return QualType(); } if (RequireNonAbstractType(Brackets.getBegin(), T, diag::err_array_of_abstract_type)) return QualType(); } else { // C99 6.7.5.2p1: If the element type is an incomplete or function type, // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]()) if (RequireCompleteType(Loc, T, diag::err_illegal_decl_array_incomplete_type)) return QualType(); } if (T->isFunctionType()) { Diag(Loc, diag::err_illegal_decl_array_of_functions) << getPrintableNameForEntity(Entity) << T; return QualType(); } if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) { Diag(Loc, diag::err_illegal_decl_array_of_auto) << getPrintableNameForEntity(Entity); return QualType(); } if (const RecordType *EltTy = T->getAs()) { // If the element type is a struct or union that contains a variadic // array, accept it as a GNU extension: C99 6.7.2.1p2. if (EltTy->getDecl()->hasFlexibleArrayMember()) Diag(Loc, diag::ext_flexible_array_in_array) << T; } else if (T->isObjCObjectType()) { Diag(Loc, diag::err_objc_array_of_interfaces) << T; return QualType(); } // C99 6.7.5.2p1: The size expression shall have integer type. if (ArraySize && !ArraySize->isTypeDependent() && !ArraySize->getType()->isIntegerType()) { Diag(ArraySize->getLocStart(), diag::err_array_size_non_int) << ArraySize->getType() << ArraySize->getSourceRange(); ArraySize->Destroy(Context); return QualType(); } llvm::APSInt ConstVal(32); if (!ArraySize) { if (ASM == ArrayType::Star) T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets); else T = Context.getIncompleteArrayType(T, ASM, Quals); } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) { T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets); } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) || (!T->isDependentType() && !T->isIncompleteType() && !T->isConstantSizeType())) { // Per C99, a variable array is an array with either a non-constant // size or an element type that has a non-constant-size T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets); } else { // C99 6.7.5.2p1: If the expression is a constant expression, it shall // have a value greater than zero. if (ConstVal.isSigned() && ConstVal.isNegative()) { Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size) << ArraySize->getSourceRange(); return QualType(); } if (ConstVal == 0) { // GCC accepts zero sized static arrays. We allow them when // we're not in a SFINAE context. Diag(ArraySize->getLocStart(), isSFINAEContext()? diag::err_typecheck_zero_array_size : diag::ext_typecheck_zero_array_size) << ArraySize->getSourceRange(); } T = Context.getConstantArrayType(T, ConstVal, ASM, Quals); } // If this is not C99, extwarn about VLA's and C99 array size modifiers. if (!getLangOptions().C99) { if (T->isVariableArrayType()) { // Prohibit the use of non-POD types in VLAs. if (!T->isDependentType() && !Context.getBaseElementType(T)->isPODType()) { Diag(Loc, diag::err_vla_non_pod) << Context.getBaseElementType(T); return QualType(); } // Prohibit the use of VLAs during template argument deduction. else if (isSFINAEContext()) { Diag(Loc, diag::err_vla_in_sfinae); return QualType(); } // Just extwarn about VLAs. else Diag(Loc, diag::ext_vla); } else if (ASM != ArrayType::Normal || Quals != 0) Diag(Loc, getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx : diag::ext_c99_array_usage); } return T; } /// \brief Build an ext-vector type. /// /// Run the required checks for the extended vector type. QualType Sema::BuildExtVectorType(QualType T, ExprArg ArraySize, SourceLocation AttrLoc) { Expr *Arg = (Expr *)ArraySize.get(); // unlike gcc's vector_size attribute, we do not allow vectors to be defined // in conjunction with complex types (pointers, arrays, functions, etc.). if (!T->isDependentType() && !T->isIntegerType() && !T->isRealFloatingType()) { Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T; return QualType(); } if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { llvm::APSInt vecSize(32); if (!Arg->isIntegerConstantExpr(vecSize, Context)) { Diag(AttrLoc, diag::err_attribute_argument_not_int) << "ext_vector_type" << Arg->getSourceRange(); return QualType(); } // unlike gcc's vector_size attribute, the size is specified as the // number of elements, not the number of bytes. unsigned vectorSize = static_cast(vecSize.getZExtValue()); if (vectorSize == 0) { Diag(AttrLoc, diag::err_attribute_zero_size) << Arg->getSourceRange(); return QualType(); } if (!T->isDependentType()) return Context.getExtVectorType(T, vectorSize); } return Context.getDependentSizedExtVectorType(T, ArraySize.takeAs(), AttrLoc); } /// \brief Build a function type. /// /// This routine checks the function type according to C++ rules and /// under the assumption that the result type and parameter types have /// just been instantiated from a template. It therefore duplicates /// some of the behavior of GetTypeForDeclarator, but in a much /// simpler form that is only suitable for this narrow use case. /// /// \param T The return type of the function. /// /// \param ParamTypes The parameter types of the function. This array /// will be modified to account for adjustments to the types of the /// function parameters. /// /// \param NumParamTypes The number of parameter types in ParamTypes. /// /// \param Variadic Whether this is a variadic function type. /// /// \param Quals The cvr-qualifiers to be applied to the function type. /// /// \param Loc The location of the entity whose type involves this /// function type or, if there is no such entity, the location of the /// type that will have function type. /// /// \param Entity The name of the entity that involves the function /// type, if known. /// /// \returns A suitable function type, if there are no /// errors. Otherwise, returns a NULL type. QualType Sema::BuildFunctionType(QualType T, QualType *ParamTypes, unsigned NumParamTypes, bool Variadic, unsigned Quals, SourceLocation Loc, DeclarationName Entity) { if (T->isArrayType() || T->isFunctionType()) { Diag(Loc, diag::err_func_returning_array_function) << T->isFunctionType() << T; return QualType(); } bool Invalid = false; for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) { QualType ParamType = adjustParameterType(ParamTypes[Idx]); if (ParamType->isVoidType()) { Diag(Loc, diag::err_param_with_void_type); Invalid = true; } ParamTypes[Idx] = ParamType; } if (Invalid) return QualType(); return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic, Quals, false, false, 0, 0, FunctionType::ExtInfo()); } /// \brief Build a member pointer type \c T Class::*. /// /// \param T the type to which the member pointer refers. /// \param Class the class type into which the member pointer points. /// \param CVR Qualifiers applied to the member pointer type /// \param Loc the location where this type begins /// \param Entity the name of the entity that will have this member pointer type /// /// \returns a member pointer type, if successful, or a NULL type if there was /// an error. QualType Sema::BuildMemberPointerType(QualType T, QualType Class, unsigned CVR, SourceLocation Loc, DeclarationName Entity) { Qualifiers Quals = Qualifiers::fromCVRMask(CVR); // Verify that we're not building a pointer to pointer to function with // exception specification. if (CheckDistantExceptionSpec(T)) { Diag(Loc, diag::err_distant_exception_spec); // FIXME: If we're doing this as part of template instantiation, // we should return immediately. // Build the type anyway, but use the canonical type so that the // exception specifiers are stripped off. T = Context.getCanonicalType(T); } // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member // with reference type, or "cv void." if (T->isReferenceType()) { Diag(Loc, diag::err_illegal_decl_mempointer_to_reference) << (Entity? Entity.getAsString() : "type name") << T; return QualType(); } if (T->isVoidType()) { Diag(Loc, diag::err_illegal_decl_mempointer_to_void) << (Entity? Entity.getAsString() : "type name"); return QualType(); } // Enforce C99 6.7.3p2: "Types other than pointer types derived from // object or incomplete types shall not be restrict-qualified." if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) { Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee) << T; // FIXME: If we're doing this as part of template instantiation, // we should return immediately. Quals.removeRestrict(); } if (!Class->isDependentType() && !Class->isRecordType()) { Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class; return QualType(); } return Context.getQualifiedType( Context.getMemberPointerType(T, Class.getTypePtr()), Quals); } /// \brief Build a block pointer type. /// /// \param T The type to which we'll be building a block pointer. /// /// \param CVR The cvr-qualifiers to be applied to the block pointer type. /// /// \param Loc The location of the entity whose type involves this /// block pointer type or, if there is no such entity, the location of the /// type that will have block pointer type. /// /// \param Entity The name of the entity that involves the block pointer /// type, if known. /// /// \returns A suitable block pointer type, if there are no /// errors. Otherwise, returns a NULL type. QualType Sema::BuildBlockPointerType(QualType T, unsigned CVR, SourceLocation Loc, DeclarationName Entity) { if (!T->isFunctionType()) { Diag(Loc, diag::err_nonfunction_block_type); return QualType(); } Qualifiers Quals = Qualifiers::fromCVRMask(CVR); return Context.getQualifiedType(Context.getBlockPointerType(T), Quals); } QualType Sema::GetTypeFromParser(TypeTy *Ty, TypeSourceInfo **TInfo) { QualType QT = QualType::getFromOpaquePtr(Ty); if (QT.isNull()) { if (TInfo) *TInfo = 0; return QualType(); } TypeSourceInfo *DI = 0; if (LocInfoType *LIT = dyn_cast(QT)) { QT = LIT->getType(); DI = LIT->getTypeSourceInfo(); } if (TInfo) *TInfo = DI; return QT; } /// GetTypeForDeclarator - Convert the type for the specified /// declarator to Type instances. /// /// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq /// owns the declaration of a type (e.g., the definition of a struct /// type), then *OwnedDecl will receive the owned declaration. QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S, TypeSourceInfo **TInfo, TagDecl **OwnedDecl) { // Determine the type of the declarator. Not all forms of declarator // have a type. QualType T; TypeSourceInfo *ReturnTypeInfo = 0; llvm::SmallVector FnAttrsFromDeclSpec; switch (D.getName().getKind()) { case UnqualifiedId::IK_Identifier: case UnqualifiedId::IK_OperatorFunctionId: case UnqualifiedId::IK_LiteralOperatorId: case UnqualifiedId::IK_TemplateId: T = ConvertDeclSpecToType(*this, D, FnAttrsFromDeclSpec); if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) { TagDecl* Owned = cast((Decl *)D.getDeclSpec().getTypeRep()); // Owned is embedded if it was defined here, or if it is the // very first (i.e., canonical) declaration of this tag type. Owned->setEmbeddedInDeclarator(Owned->isDefinition() || Owned->isCanonicalDecl()); if (OwnedDecl) *OwnedDecl = Owned; } break; case UnqualifiedId::IK_ConstructorName: case UnqualifiedId::IK_ConstructorTemplateId: case UnqualifiedId::IK_DestructorName: // Constructors and destructors don't have return types. Use // "void" instead. T = Context.VoidTy; if (TInfo) ReturnTypeInfo = Context.getTrivialTypeSourceInfo(T, D.getName().StartLocation); break; case UnqualifiedId::IK_ConversionFunctionId: // The result type of a conversion function is the type that it // converts to. T = GetTypeFromParser(D.getName().ConversionFunctionId, TInfo? &ReturnTypeInfo : 0); break; } if (T.isNull()) return T; if (T == Context.UndeducedAutoTy) { int Error = -1; switch (D.getContext()) { case Declarator::KNRTypeListContext: assert(0 && "K&R type lists aren't allowed in C++"); break; case Declarator::PrototypeContext: Error = 0; // Function prototype break; case Declarator::MemberContext: switch (cast(CurContext)->getTagKind()) { case TTK_Enum: assert(0 && "unhandled tag kind"); break; case TTK_Struct: Error = 1; /* Struct member */ break; case TTK_Union: Error = 2; /* Union member */ break; case TTK_Class: Error = 3; /* Class member */ break; } break; case Declarator::CXXCatchContext: Error = 4; // Exception declaration break; case Declarator::TemplateParamContext: Error = 5; // Template parameter break; case Declarator::BlockLiteralContext: Error = 6; // Block literal break; case Declarator::FileContext: case Declarator::BlockContext: case Declarator::ForContext: case Declarator::ConditionContext: case Declarator::TypeNameContext: break; } if (Error != -1) { Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed) << Error; T = Context.IntTy; D.setInvalidType(true); } } // The name we're declaring, if any. DeclarationName Name; if (D.getIdentifier()) Name = D.getIdentifier(); llvm::SmallVector FnAttrsFromPreviousChunk; // Walk the DeclTypeInfo, building the recursive type as we go. // DeclTypeInfos are ordered from the identifier out, which is // opposite of what we want :). for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { DeclaratorChunk &DeclType = D.getTypeObject(e-i-1); switch (DeclType.Kind) { default: assert(0 && "Unknown decltype!"); case DeclaratorChunk::BlockPointer: // If blocks are disabled, emit an error. if (!LangOpts.Blocks) Diag(DeclType.Loc, diag::err_blocks_disable); T = BuildBlockPointerType(T, DeclType.Cls.TypeQuals, D.getIdentifierLoc(), Name); break; case DeclaratorChunk::Pointer: // Verify that we're not building a pointer to pointer to function with // exception specification. if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) { Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec); D.setInvalidType(true); // Build the type anyway. } if (getLangOptions().ObjC1 && T->getAs()) { T = Context.getObjCObjectPointerType(T); T = Context.getCVRQualifiedType(T, DeclType.Ptr.TypeQuals); break; } T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name); break; case DeclaratorChunk::Reference: { Qualifiers Quals; if (DeclType.Ref.HasRestrict) Quals.addRestrict(); // Verify that we're not building a reference to pointer to function with // exception specification. if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) { Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec); D.setInvalidType(true); // Build the type anyway. } T = BuildReferenceType(T, DeclType.Ref.LValueRef, Quals, DeclType.Loc, Name); break; } case DeclaratorChunk::Array: { // Verify that we're not building an array of pointers to function with // exception specification. if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) { Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec); D.setInvalidType(true); // Build the type anyway. } DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr; Expr *ArraySize = static_cast(ATI.NumElts); ArrayType::ArraySizeModifier ASM; if (ATI.isStar) ASM = ArrayType::Star; else if (ATI.hasStatic) ASM = ArrayType::Static; else ASM = ArrayType::Normal; if (ASM == ArrayType::Star && D.getContext() != Declarator::PrototypeContext) { // FIXME: This check isn't quite right: it allows star in prototypes // for function definitions, and disallows some edge cases detailed // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html Diag(DeclType.Loc, diag::err_array_star_outside_prototype); ASM = ArrayType::Normal; D.setInvalidType(true); } T = BuildArrayType(T, ASM, ArraySize, Qualifiers::fromCVRMask(ATI.TypeQuals), SourceRange(DeclType.Loc, DeclType.EndLoc), Name); break; } case DeclaratorChunk::Function: { // If the function declarator has a prototype (i.e. it is not () and // does not have a K&R-style identifier list), then the arguments are part // of the type, otherwise the argument list is (). const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun; // C99 6.7.5.3p1: The return type may not be a function or array type. // For conversion functions, we'll diagnose this particular error later. if ((T->isArrayType() || T->isFunctionType()) && (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) { Diag(DeclType.Loc, diag::err_func_returning_array_function) << T->isFunctionType() << T; T = Context.IntTy; D.setInvalidType(true); } if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) { // C++ [dcl.fct]p6: // Types shall not be defined in return or parameter types. TagDecl *Tag = cast((Decl *)D.getDeclSpec().getTypeRep()); if (Tag->isDefinition()) Diag(Tag->getLocation(), diag::err_type_defined_in_result_type) << Context.getTypeDeclType(Tag); } // Exception specs are not allowed in typedefs. Complain, but add it // anyway. if (FTI.hasExceptionSpec && D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef); if (FTI.NumArgs == 0) { if (getLangOptions().CPlusPlus) { // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the // function takes no arguments. llvm::SmallVector Exceptions; Exceptions.reserve(FTI.NumExceptions); for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) { // FIXME: Preserve type source info. QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty); // Check that the type is valid for an exception spec, and drop it // if not. if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range)) Exceptions.push_back(ET); } T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, FTI.TypeQuals, FTI.hasExceptionSpec, FTI.hasAnyExceptionSpec, Exceptions.size(), Exceptions.data(), FunctionType::ExtInfo()); } else if (FTI.isVariadic) { // We allow a zero-parameter variadic function in C if the // function is marked with the "overloadable" // attribute. Scan for this attribute now. bool Overloadable = false; for (const AttributeList *Attrs = D.getAttributes(); Attrs; Attrs = Attrs->getNext()) { if (Attrs->getKind() == AttributeList::AT_overloadable) { Overloadable = true; break; } } if (!Overloadable) Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg); T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0, false, false, 0, 0, FunctionType::ExtInfo()); } else { // Simple void foo(), where the incoming T is the result type. T = Context.getFunctionNoProtoType(T); } } else if (FTI.ArgInfo[0].Param == 0) { // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition. Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration); D.setInvalidType(true); } else { // Otherwise, we have a function with an argument list that is // potentially variadic. llvm::SmallVector ArgTys; for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) { ParmVarDecl *Param = cast(FTI.ArgInfo[i].Param.getAs()); QualType ArgTy = Param->getType(); assert(!ArgTy.isNull() && "Couldn't parse type?"); // Adjust the parameter type. assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?"); // Look for 'void'. void is allowed only as a single argument to a // function with no other parameters (C99 6.7.5.3p10). We record // int(void) as a FunctionProtoType with an empty argument list. if (ArgTy->isVoidType()) { // If this is something like 'float(int, void)', reject it. 'void' // is an incomplete type (C99 6.2.5p19) and function decls cannot // have arguments of incomplete type. if (FTI.NumArgs != 1 || FTI.isVariadic) { Diag(DeclType.Loc, diag::err_void_only_param); ArgTy = Context.IntTy; Param->setType(ArgTy); } else if (FTI.ArgInfo[i].Ident) { // Reject, but continue to parse 'int(void abc)'. Diag(FTI.ArgInfo[i].IdentLoc, diag::err_param_with_void_type); ArgTy = Context.IntTy; Param->setType(ArgTy); } else { // Reject, but continue to parse 'float(const void)'. if (ArgTy.hasQualifiers()) Diag(DeclType.Loc, diag::err_void_param_qualified); // Do not add 'void' to the ArgTys list. break; } } else if (!FTI.hasPrototype) { if (ArgTy->isPromotableIntegerType()) { ArgTy = Context.getPromotedIntegerType(ArgTy); } else if (const BuiltinType* BTy = ArgTy->getAs()) { if (BTy->getKind() == BuiltinType::Float) ArgTy = Context.DoubleTy; } } ArgTys.push_back(ArgTy); } llvm::SmallVector Exceptions; Exceptions.reserve(FTI.NumExceptions); for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) { // FIXME: Preserve type source info. QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty); // Check that the type is valid for an exception spec, and drop it if // not. if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range)) Exceptions.push_back(ET); } T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(), FTI.isVariadic, FTI.TypeQuals, FTI.hasExceptionSpec, FTI.hasAnyExceptionSpec, Exceptions.size(), Exceptions.data(), FunctionType::ExtInfo()); } // For GCC compatibility, we allow attributes that apply only to // function types to be placed on a function's return type // instead (as long as that type doesn't happen to be function // or function-pointer itself). ProcessDelayedFnAttrs(*this, T, FnAttrsFromPreviousChunk); break; } case DeclaratorChunk::MemberPointer: // Verify that we're not building a pointer to pointer to function with // exception specification. if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) { Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec); D.setInvalidType(true); // Build the type anyway. } // The scope spec must refer to a class, or be dependent. QualType ClsType; if (DeclType.Mem.Scope().isInvalid()) { // Avoid emitting extra errors if we already errored on the scope. D.setInvalidType(true); } else if (isDependentScopeSpecifier(DeclType.Mem.Scope()) || dyn_cast_or_null( computeDeclContext(DeclType.Mem.Scope()))) { NestedNameSpecifier *NNS = (NestedNameSpecifier *)DeclType.Mem.Scope().getScopeRep(); NestedNameSpecifier *NNSPrefix = NNS->getPrefix(); switch (NNS->getKind()) { case NestedNameSpecifier::Identifier: ClsType = Context.getDependentNameType(ETK_None, NNSPrefix, NNS->getAsIdentifier()); break; case NestedNameSpecifier::Namespace: case NestedNameSpecifier::Global: llvm_unreachable("Nested-name-specifier must name a type"); break; case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: ClsType = QualType(NNS->getAsType(), 0); if (NNSPrefix) ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType); break; } } else { Diag(DeclType.Mem.Scope().getBeginLoc(), diag::err_illegal_decl_mempointer_in_nonclass) << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name") << DeclType.Mem.Scope().getRange(); D.setInvalidType(true); } if (!ClsType.isNull()) T = BuildMemberPointerType(T, ClsType, DeclType.Mem.TypeQuals, DeclType.Loc, D.getIdentifier()); if (T.isNull()) { T = Context.IntTy; D.setInvalidType(true); } break; } if (T.isNull()) { D.setInvalidType(true); T = Context.IntTy; } DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk); // See if there are any attributes on this declarator chunk. if (const AttributeList *AL = DeclType.getAttrs()) ProcessTypeAttributeList(*this, T, false, AL, FnAttrsFromPreviousChunk); } if (getLangOptions().CPlusPlus && T->isFunctionType()) { const FunctionProtoType *FnTy = T->getAs(); assert(FnTy && "Why oh why is there not a FunctionProtoType here?"); // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type // for a nonstatic member function, the function type to which a pointer // to member refers, or the top-level function type of a function typedef // declaration. if (FnTy->getTypeQuals() != 0 && D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && ((D.getContext() != Declarator::MemberContext && (!D.getCXXScopeSpec().isSet() || !computeDeclContext(D.getCXXScopeSpec(), /*FIXME:*/true) ->isRecord())) || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) { if (D.isFunctionDeclarator()) Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type); else Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_typedef_function_type_use); // Strip the cv-quals from the type. T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(), FnTy->getNumArgs(), FnTy->isVariadic(), 0, false, false, 0, 0, FunctionType::ExtInfo()); } } // Process any function attributes we might have delayed from the // declaration-specifiers. ProcessDelayedFnAttrs(*this, T, FnAttrsFromDeclSpec); // If there were any type attributes applied to the decl itself, not // the type, apply them to the result type. But don't do this for // block-literal expressions, which are parsed wierdly. if (D.getContext() != Declarator::BlockLiteralContext) if (const AttributeList *Attrs = D.getAttributes()) ProcessTypeAttributeList(*this, T, false, Attrs, FnAttrsFromPreviousChunk); DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk); if (TInfo) { if (D.isInvalidType()) *TInfo = 0; else *TInfo = GetTypeSourceInfoForDeclarator(D, T, ReturnTypeInfo); } return T; } namespace { class TypeSpecLocFiller : public TypeLocVisitor { const DeclSpec &DS; public: TypeSpecLocFiller(const DeclSpec &DS) : DS(DS) {} void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { Visit(TL.getUnqualifiedLoc()); } void VisitTypedefTypeLoc(TypedefTypeLoc TL) { TL.setNameLoc(DS.getTypeSpecTypeLoc()); } void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) { TL.setNameLoc(DS.getTypeSpecTypeLoc()); } void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) { // Handle the base type, which might not have been written explicitly. if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) { TL.setHasBaseTypeAsWritten(false); TL.getBaseLoc().initialize(SourceLocation()); } else { TL.setHasBaseTypeAsWritten(true); Visit(TL.getBaseLoc()); } // Protocol qualifiers. if (DS.getProtocolQualifiers()) { assert(TL.getNumProtocols() > 0); assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers()); TL.setLAngleLoc(DS.getProtocolLAngleLoc()); TL.setRAngleLoc(DS.getSourceRange().getEnd()); for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i) TL.setProtocolLoc(i, DS.getProtocolLocs()[i]); } else { assert(TL.getNumProtocols() == 0); TL.setLAngleLoc(SourceLocation()); TL.setRAngleLoc(SourceLocation()); } } void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { TL.setStarLoc(SourceLocation()); Visit(TL.getPointeeLoc()); } void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) { TypeSourceInfo *TInfo = 0; Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo); // If we got no declarator info from previous Sema routines, // just fill with the typespec loc. if (!TInfo) { TL.initialize(DS.getTypeSpecTypeLoc()); return; } TypeLoc OldTL = TInfo->getTypeLoc(); if (TInfo->getType()->getAs()) { ElaboratedTypeLoc ElabTL = cast(OldTL); TemplateSpecializationTypeLoc NamedTL = cast(ElabTL.getNamedTypeLoc()); TL.copy(NamedTL); } else TL.copy(cast(OldTL)); } void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) { assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr); TL.setTypeofLoc(DS.getTypeSpecTypeLoc()); TL.setParensRange(DS.getTypeofParensRange()); } void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) { assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType); TL.setTypeofLoc(DS.getTypeSpecTypeLoc()); TL.setParensRange(DS.getTypeofParensRange()); assert(DS.getTypeRep()); TypeSourceInfo *TInfo = 0; Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo); TL.setUnderlyingTInfo(TInfo); } void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) { // By default, use the source location of the type specifier. TL.setBuiltinLoc(DS.getTypeSpecTypeLoc()); if (TL.needsExtraLocalData()) { // Set info for the written builtin specifiers. TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs(); // Try to have a meaningful source location. if (TL.getWrittenSignSpec() != TSS_unspecified) // Sign spec loc overrides the others (e.g., 'unsigned long'). TL.setBuiltinLoc(DS.getTypeSpecSignLoc()); else if (TL.getWrittenWidthSpec() != TSW_unspecified) // Width spec loc overrides type spec loc (e.g., 'short int'). TL.setBuiltinLoc(DS.getTypeSpecWidthLoc()); } } void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) { ElaboratedTypeKeyword Keyword = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType()); if (Keyword == ETK_Typename) { TypeSourceInfo *TInfo = 0; Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo); if (TInfo) { TL.copy(cast(TInfo->getTypeLoc())); return; } } TL.setKeywordLoc(Keyword != ETK_None ? DS.getTypeSpecTypeLoc() : SourceLocation()); const CXXScopeSpec& SS = DS.getTypeSpecScope(); TL.setQualifierRange(SS.isEmpty() ? SourceRange(): SS.getRange()); Visit(TL.getNextTypeLoc().getUnqualifiedLoc()); } void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) { ElaboratedTypeKeyword Keyword = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType()); if (Keyword == ETK_Typename) { TypeSourceInfo *TInfo = 0; Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo); if (TInfo) { TL.copy(cast(TInfo->getTypeLoc())); return; } } TL.setKeywordLoc(Keyword != ETK_None ? DS.getTypeSpecTypeLoc() : SourceLocation()); const CXXScopeSpec& SS = DS.getTypeSpecScope(); TL.setQualifierRange(SS.isEmpty() ? SourceRange() : SS.getRange()); // FIXME: load appropriate source location. TL.setNameLoc(DS.getTypeSpecTypeLoc()); } void VisitTypeLoc(TypeLoc TL) { // FIXME: add other typespec types and change this to an assert. TL.initialize(DS.getTypeSpecTypeLoc()); } }; class DeclaratorLocFiller : public TypeLocVisitor { const DeclaratorChunk &Chunk; public: DeclaratorLocFiller(const DeclaratorChunk &Chunk) : Chunk(Chunk) {} void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { llvm_unreachable("qualified type locs not expected here!"); } void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) { assert(Chunk.Kind == DeclaratorChunk::BlockPointer); TL.setCaretLoc(Chunk.Loc); } void VisitPointerTypeLoc(PointerTypeLoc TL) { assert(Chunk.Kind == DeclaratorChunk::Pointer); TL.setStarLoc(Chunk.Loc); } void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { assert(Chunk.Kind == DeclaratorChunk::Pointer); TL.setStarLoc(Chunk.Loc); } void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) { assert(Chunk.Kind == DeclaratorChunk::MemberPointer); TL.setStarLoc(Chunk.Loc); // FIXME: nested name specifier } void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) { assert(Chunk.Kind == DeclaratorChunk::Reference); // 'Amp' is misleading: this might have been originally /// spelled with AmpAmp. TL.setAmpLoc(Chunk.Loc); } void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) { assert(Chunk.Kind == DeclaratorChunk::Reference); assert(!Chunk.Ref.LValueRef); TL.setAmpAmpLoc(Chunk.Loc); } void VisitArrayTypeLoc(ArrayTypeLoc TL) { assert(Chunk.Kind == DeclaratorChunk::Array); TL.setLBracketLoc(Chunk.Loc); TL.setRBracketLoc(Chunk.EndLoc); TL.setSizeExpr(static_cast(Chunk.Arr.NumElts)); } void VisitFunctionTypeLoc(FunctionTypeLoc TL) { assert(Chunk.Kind == DeclaratorChunk::Function); TL.setLParenLoc(Chunk.Loc); TL.setRParenLoc(Chunk.EndLoc); const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun; for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) { ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs(); TL.setArg(tpi++, Param); } // FIXME: exception specs } void VisitTypeLoc(TypeLoc TL) { llvm_unreachable("unsupported TypeLoc kind in declarator!"); } }; } /// \brief Create and instantiate a TypeSourceInfo with type source information. /// /// \param T QualType referring to the type as written in source code. /// /// \param ReturnTypeInfo For declarators whose return type does not show /// up in the normal place in the declaration specifiers (such as a C++ /// conversion function), this pointer will refer to a type source information /// for that return type. TypeSourceInfo * Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T, TypeSourceInfo *ReturnTypeInfo) { TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T); UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc(); for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { DeclaratorLocFiller(D.getTypeObject(i)).Visit(CurrTL); CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc(); } TypeSpecLocFiller(D.getDeclSpec()).Visit(CurrTL); // We have source information for the return type that was not in the // declaration specifiers; copy that information into the current type // location so that it will be retained. This occurs, for example, with // a C++ conversion function, where the return type occurs within the // declarator-id rather than in the declaration specifiers. if (ReturnTypeInfo && D.getDeclSpec().getTypeSpecType() == TST_unspecified) { TypeLoc TL = ReturnTypeInfo->getTypeLoc(); assert(TL.getFullDataSize() == CurrTL.getFullDataSize()); memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize()); } return TInfo; } /// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo. QualType Sema::CreateLocInfoType(QualType T, TypeSourceInfo *TInfo) { // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser // and Sema during declaration parsing. Try deallocating/caching them when // it's appropriate, instead of allocating them and keeping them around. LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType), 8); new (LocT) LocInfoType(T, TInfo); assert(LocT->getTypeClass() != T->getTypeClass() && "LocInfoType's TypeClass conflicts with an existing Type class"); return QualType(LocT, 0); } void LocInfoType::getAsStringInternal(std::string &Str, const PrintingPolicy &Policy) const { assert(false && "LocInfoType leaked into the type system; an opaque TypeTy*" " was used directly instead of getting the QualType through" " GetTypeFromParser"); } /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types that /// may be similar (C++ 4.4), replaces T1 and T2 with the type that /// they point to and return true. If T1 and T2 aren't pointer types /// or pointer-to-member types, or if they are not similar at this /// level, returns false and leaves T1 and T2 unchanged. Top-level /// qualifiers on T1 and T2 are ignored. This function will typically /// be called in a loop that successively "unwraps" pointer and /// pointer-to-member types to compare them at each level. bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) { const PointerType *T1PtrType = T1->getAs(), *T2PtrType = T2->getAs(); if (T1PtrType && T2PtrType) { T1 = T1PtrType->getPointeeType(); T2 = T2PtrType->getPointeeType(); return true; } const MemberPointerType *T1MPType = T1->getAs(), *T2MPType = T2->getAs(); if (T1MPType && T2MPType && Context.getCanonicalType(T1MPType->getClass()) == Context.getCanonicalType(T2MPType->getClass())) { T1 = T1MPType->getPointeeType(); T2 = T2MPType->getPointeeType(); return true; } if (getLangOptions().ObjC1) { const ObjCObjectPointerType *T1OPType = T1->getAs(), *T2OPType = T2->getAs(); if (T1OPType && T2OPType) { T1 = T1OPType->getPointeeType(); T2 = T2OPType->getPointeeType(); return true; } } return false; } Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) { // C99 6.7.6: Type names have no identifier. This is already validated by // the parser. assert(D.getIdentifier() == 0 && "Type name should have no identifier!"); TypeSourceInfo *TInfo = 0; TagDecl *OwnedTag = 0; QualType T = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag); if (D.isInvalidType()) return true; if (getLangOptions().CPlusPlus) { // Check that there are no default arguments (C++ only). CheckExtraCXXDefaultArguments(D); // C++0x [dcl.type]p3: // A type-specifier-seq shall not define a class or enumeration // unless it appears in the type-id of an alias-declaration // (7.1.3). if (OwnedTag && OwnedTag->isDefinition()) Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier) << Context.getTypeDeclType(OwnedTag); } if (TInfo) T = CreateLocInfoType(T, TInfo); return T.getAsOpaquePtr(); } //===----------------------------------------------------------------------===// // Type Attribute Processing //===----------------------------------------------------------------------===// /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the /// specified type. The attribute contains 1 argument, the id of the address /// space for the type. static void HandleAddressSpaceTypeAttribute(QualType &Type, const AttributeList &Attr, Sema &S){ // If this type is already address space qualified, reject it. // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers // for two or more different address spaces." if (Type.getAddressSpace()) { S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers); Attr.setInvalid(); return; } // Check the attribute arguments. if (Attr.getNumArgs() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; Attr.setInvalid(); return; } Expr *ASArgExpr = static_cast(Attr.getArg(0)); llvm::APSInt addrSpace(32); if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() || !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int) << ASArgExpr->getSourceRange(); Attr.setInvalid(); return; } // Bounds checking. if (addrSpace.isSigned()) { if (addrSpace.isNegative()) { S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative) << ASArgExpr->getSourceRange(); Attr.setInvalid(); return; } addrSpace.setIsSigned(false); } llvm::APSInt max(addrSpace.getBitWidth()); max = Qualifiers::MaxAddressSpace; if (addrSpace > max) { S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high) << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange(); Attr.setInvalid(); return; } unsigned ASIdx = static_cast(addrSpace.getZExtValue()); Type = S.Context.getAddrSpaceQualType(Type, ASIdx); } /// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the /// specified type. The attribute contains 1 argument, weak or strong. static void HandleObjCGCTypeAttribute(QualType &Type, const AttributeList &Attr, Sema &S) { if (Type.getObjCGCAttr() != Qualifiers::GCNone) { S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc); Attr.setInvalid(); return; } // Check the attribute arguments. if (!Attr.getParameterName()) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) << "objc_gc" << 1; Attr.setInvalid(); return; } Qualifiers::GC GCAttr; if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; Attr.setInvalid(); return; } if (Attr.getParameterName()->isStr("weak")) GCAttr = Qualifiers::Weak; else if (Attr.getParameterName()->isStr("strong")) GCAttr = Qualifiers::Strong; else { S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported) << "objc_gc" << Attr.getParameterName(); Attr.setInvalid(); return; } Type = S.Context.getObjCGCQualType(Type, GCAttr); } /// Process an individual function attribute. Returns true if the /// attribute does not make sense to apply to this type. bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr) { if (Attr.getKind() == AttributeList::AT_noreturn) { // Complain immediately if the arg count is wrong. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; Attr.setInvalid(); return false; } // Delay if this is not a function or pointer to block. if (!Type->isFunctionPointerType() && !Type->isBlockPointerType() && !Type->isFunctionType()) return true; // Otherwise we can process right away. Type = S.Context.getNoReturnType(Type); return false; } if (Attr.getKind() == AttributeList::AT_regparm) { // The warning is emitted elsewhere if (Attr.getNumArgs() != 1) { return false; } // Delay if this is not a function or pointer to block. if (!Type->isFunctionPointerType() && !Type->isBlockPointerType() && !Type->isFunctionType()) return true; // Otherwise we can process right away. Expr *NumParamsExpr = static_cast(Attr.getArg(0)); llvm::APSInt NumParams(32); // The warning is emitted elsewhere if (NumParamsExpr->isTypeDependent() || NumParamsExpr->isValueDependent() || !NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) return false; Type = S.Context.getRegParmType(Type, NumParams.getZExtValue()); return false; } // Otherwise, a calling convention. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; Attr.setInvalid(); return false; } QualType T = Type; if (const PointerType *PT = Type->getAs()) T = PT->getPointeeType(); const FunctionType *Fn = T->getAs(); // Delay if the type didn't work out to a function. if (!Fn) return true; // TODO: diagnose uses of these conventions on the wrong target. CallingConv CC; switch (Attr.getKind()) { case AttributeList::AT_cdecl: CC = CC_C; break; case AttributeList::AT_fastcall: CC = CC_X86FastCall; break; case AttributeList::AT_stdcall: CC = CC_X86StdCall; break; case AttributeList::AT_thiscall: CC = CC_X86ThisCall; break; default: llvm_unreachable("unexpected attribute kind"); return false; } CallingConv CCOld = Fn->getCallConv(); if (S.Context.getCanonicalCallConv(CC) == S.Context.getCanonicalCallConv(CCOld)) { Attr.setInvalid(); return false; } if (CCOld != CC_Default) { // Should we diagnose reapplications of the same convention? S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible) << FunctionType::getNameForCallConv(CC) << FunctionType::getNameForCallConv(CCOld); Attr.setInvalid(); return false; } // Diagnose the use of X86 fastcall on varargs or unprototyped functions. if (CC == CC_X86FastCall) { if (isa(Fn)) { S.Diag(Attr.getLoc(), diag::err_cconv_knr) << FunctionType::getNameForCallConv(CC); Attr.setInvalid(); return false; } const FunctionProtoType *FnP = cast(Fn); if (FnP->isVariadic()) { S.Diag(Attr.getLoc(), diag::err_cconv_varargs) << FunctionType::getNameForCallConv(CC); Attr.setInvalid(); return false; } } Type = S.Context.getCallConvType(Type, CC); return false; } /// HandleVectorSizeAttribute - this attribute is only applicable to integral /// and float scalars, although arrays, pointers, and function return values are /// allowed in conjunction with this construct. Aggregates with this attribute /// are invalid, even if they are of the same size as a corresponding scalar. /// The raw attribute should contain precisely 1 argument, the vector size for /// the variable, measured in bytes. If curType and rawAttr are well formed, /// this routine will return a new vector type. static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr, Sema &S) { // Check the attribute arugments. if (Attr.getNumArgs() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; Attr.setInvalid(); return; } Expr *sizeExpr = static_cast(Attr.getArg(0)); llvm::APSInt vecSize(32); if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() || !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) << "vector_size" << sizeExpr->getSourceRange(); Attr.setInvalid(); return; } // the base type must be integer or float, and can't already be a vector. if (CurType->isVectorType() || (!CurType->isIntegerType() && !CurType->isRealFloatingType())) { S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType; Attr.setInvalid(); return; } unsigned typeSize = static_cast(S.Context.getTypeSize(CurType)); // vecSize is specified in bytes - convert to bits. unsigned vectorSize = static_cast(vecSize.getZExtValue() * 8); // the vector size needs to be an integral multiple of the type size. if (vectorSize % typeSize) { S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size) << sizeExpr->getSourceRange(); Attr.setInvalid(); return; } if (vectorSize == 0) { S.Diag(Attr.getLoc(), diag::err_attribute_zero_size) << sizeExpr->getSourceRange(); Attr.setInvalid(); return; } // Success! Instantiate the vector type, the number of elements is > 0, and // not required to be a power of 2, unlike GCC. CurType = S.Context.getVectorType(CurType, vectorSize/typeSize, false, false); } void ProcessTypeAttributeList(Sema &S, QualType &Result, bool IsDeclSpec, const AttributeList *AL, DelayedAttributeSet &FnAttrs) { // Scan through and apply attributes to this type where it makes sense. Some // attributes (such as __address_space__, __vector_size__, etc) apply to the // type, but others can be present in the type specifiers even though they // apply to the decl. Here we apply type attributes and ignore the rest. for (; AL; AL = AL->getNext()) { // Skip attributes that were marked to be invalid. if (AL->isInvalid()) continue; // If this is an attribute we can handle, do so now, // otherwise, add it to the FnAttrs list for rechaining. switch (AL->getKind()) { default: break; case AttributeList::AT_address_space: HandleAddressSpaceTypeAttribute(Result, *AL, S); break; case AttributeList::AT_objc_gc: HandleObjCGCTypeAttribute(Result, *AL, S); break; case AttributeList::AT_vector_size: HandleVectorSizeAttr(Result, *AL, S); break; case AttributeList::AT_noreturn: case AttributeList::AT_cdecl: case AttributeList::AT_fastcall: case AttributeList::AT_stdcall: case AttributeList::AT_thiscall: case AttributeList::AT_regparm: // Don't process these on the DeclSpec. if (IsDeclSpec || ProcessFnAttr(S, Result, *AL)) FnAttrs.push_back(DelayedAttribute(AL, Result)); break; } } } /// @brief Ensure that the type T is a complete type. /// /// This routine checks whether the type @p T is complete in any /// context where a complete type is required. If @p T is a complete /// type, returns false. If @p T is a class template specialization, /// this routine then attempts to perform class template /// instantiation. If instantiation fails, or if @p T is incomplete /// and cannot be completed, issues the diagnostic @p diag (giving it /// the type @p T) and returns true. /// /// @param Loc The location in the source that the incomplete type /// diagnostic should refer to. /// /// @param T The type that this routine is examining for completeness. /// /// @param PD The partial diagnostic that will be printed out if T is not a /// complete type. /// /// @returns @c true if @p T is incomplete and a diagnostic was emitted, /// @c false otherwise. bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, const PartialDiagnostic &PD, std::pair Note) { unsigned diag = PD.getDiagID(); // FIXME: Add this assertion to make sure we always get instantiation points. // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType"); // FIXME: Add this assertion to help us flush out problems with // checking for dependent types and type-dependent expressions. // // assert(!T->isDependentType() && // "Can't ask whether a dependent type is complete"); // If we have a complete type, we're done. if (!T->isIncompleteType()) return false; // If we have a class template specialization or a class member of a // class template specialization, or an array with known size of such, // try to instantiate it. QualType MaybeTemplate = T; if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T)) MaybeTemplate = Array->getElementType(); if (const RecordType *Record = MaybeTemplate->getAs()) { if (ClassTemplateSpecializationDecl *ClassTemplateSpec = dyn_cast(Record->getDecl())) { if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec, TSK_ImplicitInstantiation, /*Complain=*/diag != 0); } else if (CXXRecordDecl *Rec = dyn_cast(Record->getDecl())) { if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) { MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo(); assert(MSInfo && "Missing member specialization information?"); // This record was instantiated from a class within a template. if (MSInfo->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) return InstantiateClass(Loc, Rec, Pattern, getTemplateInstantiationArgs(Rec), TSK_ImplicitInstantiation, /*Complain=*/diag != 0); } } } if (diag == 0) return true; const TagType *Tag = 0; if (const RecordType *Record = T->getAs()) Tag = Record; else if (const EnumType *Enum = T->getAs()) Tag = Enum; // Avoid diagnosing invalid decls as incomplete. if (Tag && Tag->getDecl()->isInvalidDecl()) return true; // We have an incomplete type. Produce a diagnostic. Diag(Loc, PD) << T; // If we have a note, produce it. if (!Note.first.isInvalid()) Diag(Note.first, Note.second); // If the type was a forward declaration of a class/struct/union // type, produce a note. if (Tag && !Tag->getDecl()->isInvalidDecl()) Diag(Tag->getDecl()->getLocation(), Tag->isBeingDefined() ? diag::note_type_being_defined : diag::note_forward_declaration) << QualType(Tag, 0); return true; } bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, const PartialDiagnostic &PD) { return RequireCompleteType(Loc, T, PD, std::make_pair(SourceLocation(), PDiag(0))); } bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID) { return RequireCompleteType(Loc, T, PDiag(DiagID), std::make_pair(SourceLocation(), PDiag(0))); } /// \brief Retrieve a version of the type 'T' that is elaborated by Keyword /// and qualified by the nested-name-specifier contained in SS. QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword, const CXXScopeSpec &SS, QualType T) { if (T.isNull()) return T; NestedNameSpecifier *NNS; if (SS.isValid()) NNS = static_cast(SS.getScopeRep()); else { if (Keyword == ETK_None) return T; NNS = 0; } return Context.getElaboratedType(Keyword, NNS, T); } QualType Sema::BuildTypeofExprType(Expr *E) { if (E->getType() == Context.OverloadTy) { // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a // function template specialization wherever deduction cannot occur. if (FunctionDecl *Specialization = ResolveSingleFunctionTemplateSpecialization(E)) { // The access doesn't really matter in this case. DeclAccessPair Found = DeclAccessPair::make(Specialization, Specialization->getAccess()); E = FixOverloadedFunctionReference(E, Found, Specialization); if (!E) return QualType(); } else { Diag(E->getLocStart(), diag::err_cannot_determine_declared_type_of_overloaded_function) << false << E->getSourceRange(); return QualType(); } } return Context.getTypeOfExprType(E); } QualType Sema::BuildDecltypeType(Expr *E) { if (E->getType() == Context.OverloadTy) { // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a // function template specialization wherever deduction cannot occur. if (FunctionDecl *Specialization = ResolveSingleFunctionTemplateSpecialization(E)) { // The access doesn't really matter in this case. DeclAccessPair Found = DeclAccessPair::make(Specialization, Specialization->getAccess()); E = FixOverloadedFunctionReference(E, Found, Specialization); if (!E) return QualType(); } else { Diag(E->getLocStart(), diag::err_cannot_determine_declared_type_of_overloaded_function) << true << E->getSourceRange(); return QualType(); } } return Context.getDecltypeType(E); }