//===--- ASTWriter.cpp - AST File Writer ----------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the ASTWriter class, which writes AST files. // //===----------------------------------------------------------------------===// #include "clang/Serialization/ASTWriter.h" #include "ASTCommon.h" #include "clang/Sema/Sema.h" #include "clang/Sema/IdentifierResolver.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclContextInternals.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/Type.h" #include "clang/AST/TypeLocVisitor.h" #include "clang/Serialization/ASTReader.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/PreprocessingRecord.h" #include "clang/Lex/Preprocessor.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/OnDiskHashTable.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/SourceManagerInternals.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/Version.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Bitcode/BitstreamWriter.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/System/Path.h" #include using namespace clang; using namespace clang::serialization; template T *data(std::vector &v) { return v.empty() ? 0 : &v.front(); } template const T *data(const std::vector &v) { return v.empty() ? 0 : &v.front(); } //===----------------------------------------------------------------------===// // Type serialization //===----------------------------------------------------------------------===// namespace { class ASTTypeWriter { ASTWriter &Writer; ASTWriter::RecordData &Record; public: /// \brief Type code that corresponds to the record generated. TypeCode Code; ASTTypeWriter(ASTWriter &Writer, ASTWriter::RecordData &Record) : Writer(Writer), Record(Record), Code(TYPE_EXT_QUAL) { } void VisitArrayType(const ArrayType *T); void VisitFunctionType(const FunctionType *T); void VisitTagType(const TagType *T); #define TYPE(Class, Base) void Visit##Class##Type(const Class##Type *T); #define ABSTRACT_TYPE(Class, Base) #include "clang/AST/TypeNodes.def" }; } void ASTTypeWriter::VisitBuiltinType(const BuiltinType *T) { assert(false && "Built-in types are never serialized"); } void ASTTypeWriter::VisitComplexType(const ComplexType *T) { Writer.AddTypeRef(T->getElementType(), Record); Code = TYPE_COMPLEX; } void ASTTypeWriter::VisitPointerType(const PointerType *T) { Writer.AddTypeRef(T->getPointeeType(), Record); Code = TYPE_POINTER; } void ASTTypeWriter::VisitBlockPointerType(const BlockPointerType *T) { Writer.AddTypeRef(T->getPointeeType(), Record); Code = TYPE_BLOCK_POINTER; } void ASTTypeWriter::VisitLValueReferenceType(const LValueReferenceType *T) { Writer.AddTypeRef(T->getPointeeType(), Record); Code = TYPE_LVALUE_REFERENCE; } void ASTTypeWriter::VisitRValueReferenceType(const RValueReferenceType *T) { Writer.AddTypeRef(T->getPointeeType(), Record); Code = TYPE_RVALUE_REFERENCE; } void ASTTypeWriter::VisitMemberPointerType(const MemberPointerType *T) { Writer.AddTypeRef(T->getPointeeType(), Record); Writer.AddTypeRef(QualType(T->getClass(), 0), Record); Code = TYPE_MEMBER_POINTER; } void ASTTypeWriter::VisitArrayType(const ArrayType *T) { Writer.AddTypeRef(T->getElementType(), Record); Record.push_back(T->getSizeModifier()); // FIXME: stable values Record.push_back(T->getIndexTypeCVRQualifiers()); // FIXME: stable values } void ASTTypeWriter::VisitConstantArrayType(const ConstantArrayType *T) { VisitArrayType(T); Writer.AddAPInt(T->getSize(), Record); Code = TYPE_CONSTANT_ARRAY; } void ASTTypeWriter::VisitIncompleteArrayType(const IncompleteArrayType *T) { VisitArrayType(T); Code = TYPE_INCOMPLETE_ARRAY; } void ASTTypeWriter::VisitVariableArrayType(const VariableArrayType *T) { VisitArrayType(T); Writer.AddSourceLocation(T->getLBracketLoc(), Record); Writer.AddSourceLocation(T->getRBracketLoc(), Record); Writer.AddStmt(T->getSizeExpr()); Code = TYPE_VARIABLE_ARRAY; } void ASTTypeWriter::VisitVectorType(const VectorType *T) { Writer.AddTypeRef(T->getElementType(), Record); Record.push_back(T->getNumElements()); Record.push_back(T->getAltiVecSpecific()); Code = TYPE_VECTOR; } void ASTTypeWriter::VisitExtVectorType(const ExtVectorType *T) { VisitVectorType(T); Code = TYPE_EXT_VECTOR; } void ASTTypeWriter::VisitFunctionType(const FunctionType *T) { Writer.AddTypeRef(T->getResultType(), Record); FunctionType::ExtInfo C = T->getExtInfo(); Record.push_back(C.getNoReturn()); Record.push_back(C.getRegParm()); // FIXME: need to stabilize encoding of calling convention... Record.push_back(C.getCC()); } void ASTTypeWriter::VisitFunctionNoProtoType(const FunctionNoProtoType *T) { VisitFunctionType(T); Code = TYPE_FUNCTION_NO_PROTO; } void ASTTypeWriter::VisitFunctionProtoType(const FunctionProtoType *T) { VisitFunctionType(T); Record.push_back(T->getNumArgs()); for (unsigned I = 0, N = T->getNumArgs(); I != N; ++I) Writer.AddTypeRef(T->getArgType(I), Record); Record.push_back(T->isVariadic()); Record.push_back(T->getTypeQuals()); Record.push_back(T->hasExceptionSpec()); Record.push_back(T->hasAnyExceptionSpec()); Record.push_back(T->getNumExceptions()); for (unsigned I = 0, N = T->getNumExceptions(); I != N; ++I) Writer.AddTypeRef(T->getExceptionType(I), Record); Code = TYPE_FUNCTION_PROTO; } void ASTTypeWriter::VisitUnresolvedUsingType(const UnresolvedUsingType *T) { Writer.AddDeclRef(T->getDecl(), Record); Code = TYPE_UNRESOLVED_USING; } void ASTTypeWriter::VisitTypedefType(const TypedefType *T) { Writer.AddDeclRef(T->getDecl(), Record); assert(!T->isCanonicalUnqualified() && "Invalid typedef ?"); Writer.AddTypeRef(T->getCanonicalTypeInternal(), Record); Code = TYPE_TYPEDEF; } void ASTTypeWriter::VisitTypeOfExprType(const TypeOfExprType *T) { Writer.AddStmt(T->getUnderlyingExpr()); Code = TYPE_TYPEOF_EXPR; } void ASTTypeWriter::VisitTypeOfType(const TypeOfType *T) { Writer.AddTypeRef(T->getUnderlyingType(), Record); Code = TYPE_TYPEOF; } void ASTTypeWriter::VisitDecltypeType(const DecltypeType *T) { Writer.AddStmt(T->getUnderlyingExpr()); Code = TYPE_DECLTYPE; } void ASTTypeWriter::VisitTagType(const TagType *T) { Record.push_back(T->isDependentType()); Writer.AddDeclRef(T->getDecl(), Record); assert(!T->isBeingDefined() && "Cannot serialize in the middle of a type definition"); } void ASTTypeWriter::VisitRecordType(const RecordType *T) { VisitTagType(T); Code = TYPE_RECORD; } void ASTTypeWriter::VisitEnumType(const EnumType *T) { VisitTagType(T); Code = TYPE_ENUM; } void ASTTypeWriter::VisitSubstTemplateTypeParmType( const SubstTemplateTypeParmType *T) { Writer.AddTypeRef(QualType(T->getReplacedParameter(), 0), Record); Writer.AddTypeRef(T->getReplacementType(), Record); Code = TYPE_SUBST_TEMPLATE_TYPE_PARM; } void ASTTypeWriter::VisitTemplateSpecializationType( const TemplateSpecializationType *T) { Record.push_back(T->isDependentType()); Writer.AddTemplateName(T->getTemplateName(), Record); Record.push_back(T->getNumArgs()); for (TemplateSpecializationType::iterator ArgI = T->begin(), ArgE = T->end(); ArgI != ArgE; ++ArgI) Writer.AddTemplateArgument(*ArgI, Record); Writer.AddTypeRef(T->isCanonicalUnqualified() ? QualType() : T->getCanonicalTypeInternal(), Record); Code = TYPE_TEMPLATE_SPECIALIZATION; } void ASTTypeWriter::VisitDependentSizedArrayType(const DependentSizedArrayType *T) { VisitArrayType(T); Writer.AddStmt(T->getSizeExpr()); Writer.AddSourceRange(T->getBracketsRange(), Record); Code = TYPE_DEPENDENT_SIZED_ARRAY; } void ASTTypeWriter::VisitDependentSizedExtVectorType( const DependentSizedExtVectorType *T) { // FIXME: Serialize this type (C++ only) assert(false && "Cannot serialize dependent sized extended vector types"); } void ASTTypeWriter::VisitTemplateTypeParmType(const TemplateTypeParmType *T) { Record.push_back(T->getDepth()); Record.push_back(T->getIndex()); Record.push_back(T->isParameterPack()); Writer.AddIdentifierRef(T->getName(), Record); Code = TYPE_TEMPLATE_TYPE_PARM; } void ASTTypeWriter::VisitDependentNameType(const DependentNameType *T) { Record.push_back(T->getKeyword()); Writer.AddNestedNameSpecifier(T->getQualifier(), Record); Writer.AddIdentifierRef(T->getIdentifier(), Record); Writer.AddTypeRef(T->isCanonicalUnqualified() ? QualType() : T->getCanonicalTypeInternal(), Record); Code = TYPE_DEPENDENT_NAME; } void ASTTypeWriter::VisitDependentTemplateSpecializationType( const DependentTemplateSpecializationType *T) { Record.push_back(T->getKeyword()); Writer.AddNestedNameSpecifier(T->getQualifier(), Record); Writer.AddIdentifierRef(T->getIdentifier(), Record); Record.push_back(T->getNumArgs()); for (DependentTemplateSpecializationType::iterator I = T->begin(), E = T->end(); I != E; ++I) Writer.AddTemplateArgument(*I, Record); Code = TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION; } void ASTTypeWriter::VisitElaboratedType(const ElaboratedType *T) { Record.push_back(T->getKeyword()); Writer.AddNestedNameSpecifier(T->getQualifier(), Record); Writer.AddTypeRef(T->getNamedType(), Record); Code = TYPE_ELABORATED; } void ASTTypeWriter::VisitInjectedClassNameType(const InjectedClassNameType *T) { Writer.AddDeclRef(T->getDecl(), Record); Writer.AddTypeRef(T->getInjectedSpecializationType(), Record); Code = TYPE_INJECTED_CLASS_NAME; } void ASTTypeWriter::VisitObjCInterfaceType(const ObjCInterfaceType *T) { Writer.AddDeclRef(T->getDecl(), Record); Code = TYPE_OBJC_INTERFACE; } void ASTTypeWriter::VisitObjCObjectType(const ObjCObjectType *T) { Writer.AddTypeRef(T->getBaseType(), Record); Record.push_back(T->getNumProtocols()); for (ObjCObjectType::qual_iterator I = T->qual_begin(), E = T->qual_end(); I != E; ++I) Writer.AddDeclRef(*I, Record); Code = TYPE_OBJC_OBJECT; } void ASTTypeWriter::VisitObjCObjectPointerType(const ObjCObjectPointerType *T) { Writer.AddTypeRef(T->getPointeeType(), Record); Code = TYPE_OBJC_OBJECT_POINTER; } namespace { class TypeLocWriter : public TypeLocVisitor { ASTWriter &Writer; ASTWriter::RecordData &Record; public: TypeLocWriter(ASTWriter &Writer, ASTWriter::RecordData &Record) : Writer(Writer), Record(Record) { } #define ABSTRACT_TYPELOC(CLASS, PARENT) #define TYPELOC(CLASS, PARENT) \ void Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc); #include "clang/AST/TypeLocNodes.def" void VisitArrayTypeLoc(ArrayTypeLoc TyLoc); void VisitFunctionTypeLoc(FunctionTypeLoc TyLoc); }; } void TypeLocWriter::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { // nothing to do } void TypeLocWriter::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) { Writer.AddSourceLocation(TL.getBuiltinLoc(), Record); if (TL.needsExtraLocalData()) { Record.push_back(TL.getWrittenTypeSpec()); Record.push_back(TL.getWrittenSignSpec()); Record.push_back(TL.getWrittenWidthSpec()); Record.push_back(TL.hasModeAttr()); } } void TypeLocWriter::VisitComplexTypeLoc(ComplexTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitPointerTypeLoc(PointerTypeLoc TL) { Writer.AddSourceLocation(TL.getStarLoc(), Record); } void TypeLocWriter::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) { Writer.AddSourceLocation(TL.getCaretLoc(), Record); } void TypeLocWriter::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) { Writer.AddSourceLocation(TL.getAmpLoc(), Record); } void TypeLocWriter::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) { Writer.AddSourceLocation(TL.getAmpAmpLoc(), Record); } void TypeLocWriter::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) { Writer.AddSourceLocation(TL.getStarLoc(), Record); } void TypeLocWriter::VisitArrayTypeLoc(ArrayTypeLoc TL) { Writer.AddSourceLocation(TL.getLBracketLoc(), Record); Writer.AddSourceLocation(TL.getRBracketLoc(), Record); Record.push_back(TL.getSizeExpr() ? 1 : 0); if (TL.getSizeExpr()) Writer.AddStmt(TL.getSizeExpr()); } void TypeLocWriter::VisitConstantArrayTypeLoc(ConstantArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocWriter::VisitIncompleteArrayTypeLoc(IncompleteArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocWriter::VisitVariableArrayTypeLoc(VariableArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocWriter::VisitDependentSizedArrayTypeLoc( DependentSizedArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocWriter::VisitDependentSizedExtVectorTypeLoc( DependentSizedExtVectorTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitVectorTypeLoc(VectorTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitFunctionTypeLoc(FunctionTypeLoc TL) { Writer.AddSourceLocation(TL.getLParenLoc(), Record); Writer.AddSourceLocation(TL.getRParenLoc(), Record); for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) Writer.AddDeclRef(TL.getArg(i), Record); } void TypeLocWriter::VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc TL) { VisitFunctionTypeLoc(TL); } void TypeLocWriter::VisitFunctionNoProtoTypeLoc(FunctionNoProtoTypeLoc TL) { VisitFunctionTypeLoc(TL); } void TypeLocWriter::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitTypedefTypeLoc(TypedefTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) { Writer.AddSourceLocation(TL.getTypeofLoc(), Record); Writer.AddSourceLocation(TL.getLParenLoc(), Record); Writer.AddSourceLocation(TL.getRParenLoc(), Record); } void TypeLocWriter::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) { Writer.AddSourceLocation(TL.getTypeofLoc(), Record); Writer.AddSourceLocation(TL.getLParenLoc(), Record); Writer.AddSourceLocation(TL.getRParenLoc(), Record); Writer.AddTypeSourceInfo(TL.getUnderlyingTInfo(), Record); } void TypeLocWriter::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitRecordTypeLoc(RecordTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitEnumTypeLoc(EnumTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitSubstTemplateTypeParmTypeLoc( SubstTemplateTypeParmTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitTemplateSpecializationTypeLoc( TemplateSpecializationTypeLoc TL) { Writer.AddSourceLocation(TL.getTemplateNameLoc(), Record); Writer.AddSourceLocation(TL.getLAngleLoc(), Record); Writer.AddSourceLocation(TL.getRAngleLoc(), Record); for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) Writer.AddTemplateArgumentLocInfo(TL.getArgLoc(i).getArgument().getKind(), TL.getArgLoc(i).getLocInfo(), Record); } void TypeLocWriter::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) { Writer.AddSourceLocation(TL.getKeywordLoc(), Record); Writer.AddSourceRange(TL.getQualifierRange(), Record); } void TypeLocWriter::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) { Writer.AddSourceLocation(TL.getKeywordLoc(), Record); Writer.AddSourceRange(TL.getQualifierRange(), Record); Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitDependentTemplateSpecializationTypeLoc( DependentTemplateSpecializationTypeLoc TL) { Writer.AddSourceLocation(TL.getKeywordLoc(), Record); Writer.AddSourceRange(TL.getQualifierRange(), Record); Writer.AddSourceLocation(TL.getNameLoc(), Record); Writer.AddSourceLocation(TL.getLAngleLoc(), Record); Writer.AddSourceLocation(TL.getRAngleLoc(), Record); for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) Writer.AddTemplateArgumentLocInfo(TL.getArgLoc(I).getArgument().getKind(), TL.getArgLoc(I).getLocInfo(), Record); } void TypeLocWriter::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) { Record.push_back(TL.hasBaseTypeAsWritten()); Writer.AddSourceLocation(TL.getLAngleLoc(), Record); Writer.AddSourceLocation(TL.getRAngleLoc(), Record); for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i) Writer.AddSourceLocation(TL.getProtocolLoc(i), Record); } void TypeLocWriter::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { Writer.AddSourceLocation(TL.getStarLoc(), Record); } //===----------------------------------------------------------------------===// // ASTWriter Implementation //===----------------------------------------------------------------------===// static void EmitBlockID(unsigned ID, const char *Name, llvm::BitstreamWriter &Stream, ASTWriter::RecordData &Record) { Record.clear(); Record.push_back(ID); Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETBID, Record); // Emit the block name if present. if (Name == 0 || Name[0] == 0) return; Record.clear(); while (*Name) Record.push_back(*Name++); Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_BLOCKNAME, Record); } static void EmitRecordID(unsigned ID, const char *Name, llvm::BitstreamWriter &Stream, ASTWriter::RecordData &Record) { Record.clear(); Record.push_back(ID); while (*Name) Record.push_back(*Name++); Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETRECORDNAME, Record); } static void AddStmtsExprs(llvm::BitstreamWriter &Stream, ASTWriter::RecordData &Record) { #define RECORD(X) EmitRecordID(X, #X, Stream, Record) RECORD(STMT_STOP); RECORD(STMT_NULL_PTR); RECORD(STMT_NULL); RECORD(STMT_COMPOUND); RECORD(STMT_CASE); RECORD(STMT_DEFAULT); RECORD(STMT_LABEL); RECORD(STMT_IF); RECORD(STMT_SWITCH); RECORD(STMT_WHILE); RECORD(STMT_DO); RECORD(STMT_FOR); RECORD(STMT_GOTO); RECORD(STMT_INDIRECT_GOTO); RECORD(STMT_CONTINUE); RECORD(STMT_BREAK); RECORD(STMT_RETURN); RECORD(STMT_DECL); RECORD(STMT_ASM); RECORD(EXPR_PREDEFINED); RECORD(EXPR_DECL_REF); RECORD(EXPR_INTEGER_LITERAL); RECORD(EXPR_FLOATING_LITERAL); RECORD(EXPR_IMAGINARY_LITERAL); RECORD(EXPR_STRING_LITERAL); RECORD(EXPR_CHARACTER_LITERAL); RECORD(EXPR_PAREN); RECORD(EXPR_UNARY_OPERATOR); RECORD(EXPR_SIZEOF_ALIGN_OF); RECORD(EXPR_ARRAY_SUBSCRIPT); RECORD(EXPR_CALL); RECORD(EXPR_MEMBER); RECORD(EXPR_BINARY_OPERATOR); RECORD(EXPR_COMPOUND_ASSIGN_OPERATOR); RECORD(EXPR_CONDITIONAL_OPERATOR); RECORD(EXPR_IMPLICIT_CAST); RECORD(EXPR_CSTYLE_CAST); RECORD(EXPR_COMPOUND_LITERAL); RECORD(EXPR_EXT_VECTOR_ELEMENT); RECORD(EXPR_INIT_LIST); RECORD(EXPR_DESIGNATED_INIT); RECORD(EXPR_IMPLICIT_VALUE_INIT); RECORD(EXPR_VA_ARG); RECORD(EXPR_ADDR_LABEL); RECORD(EXPR_STMT); RECORD(EXPR_TYPES_COMPATIBLE); RECORD(EXPR_CHOOSE); RECORD(EXPR_GNU_NULL); RECORD(EXPR_SHUFFLE_VECTOR); RECORD(EXPR_BLOCK); RECORD(EXPR_BLOCK_DECL_REF); RECORD(EXPR_OBJC_STRING_LITERAL); RECORD(EXPR_OBJC_ENCODE); RECORD(EXPR_OBJC_SELECTOR_EXPR); RECORD(EXPR_OBJC_PROTOCOL_EXPR); RECORD(EXPR_OBJC_IVAR_REF_EXPR); RECORD(EXPR_OBJC_PROPERTY_REF_EXPR); RECORD(EXPR_OBJC_KVC_REF_EXPR); RECORD(EXPR_OBJC_MESSAGE_EXPR); RECORD(EXPR_OBJC_SUPER_EXPR); RECORD(STMT_OBJC_FOR_COLLECTION); RECORD(STMT_OBJC_CATCH); RECORD(STMT_OBJC_FINALLY); RECORD(STMT_OBJC_AT_TRY); RECORD(STMT_OBJC_AT_SYNCHRONIZED); RECORD(STMT_OBJC_AT_THROW); RECORD(EXPR_CXX_OPERATOR_CALL); RECORD(EXPR_CXX_CONSTRUCT); RECORD(EXPR_CXX_STATIC_CAST); RECORD(EXPR_CXX_DYNAMIC_CAST); RECORD(EXPR_CXX_REINTERPRET_CAST); RECORD(EXPR_CXX_CONST_CAST); RECORD(EXPR_CXX_FUNCTIONAL_CAST); RECORD(EXPR_CXX_BOOL_LITERAL); RECORD(EXPR_CXX_NULL_PTR_LITERAL); #undef RECORD } void ASTWriter::WriteBlockInfoBlock() { RecordData Record; Stream.EnterSubblock(llvm::bitc::BLOCKINFO_BLOCK_ID, 3); #define BLOCK(X) EmitBlockID(X ## _ID, #X, Stream, Record) #define RECORD(X) EmitRecordID(X, #X, Stream, Record) // AST Top-Level Block. BLOCK(AST_BLOCK); RECORD(ORIGINAL_FILE_NAME); RECORD(TYPE_OFFSET); RECORD(DECL_OFFSET); RECORD(LANGUAGE_OPTIONS); RECORD(METADATA); RECORD(IDENTIFIER_OFFSET); RECORD(IDENTIFIER_TABLE); RECORD(EXTERNAL_DEFINITIONS); RECORD(SPECIAL_TYPES); RECORD(STATISTICS); RECORD(TENTATIVE_DEFINITIONS); RECORD(UNUSED_FILESCOPED_DECLS); RECORD(LOCALLY_SCOPED_EXTERNAL_DECLS); RECORD(SELECTOR_OFFSETS); RECORD(METHOD_POOL); RECORD(PP_COUNTER_VALUE); RECORD(SOURCE_LOCATION_OFFSETS); RECORD(SOURCE_LOCATION_PRELOADS); RECORD(STAT_CACHE); RECORD(EXT_VECTOR_DECLS); RECORD(VERSION_CONTROL_BRANCH_REVISION); RECORD(MACRO_DEFINITION_OFFSETS); RECORD(CHAINED_METADATA); RECORD(REFERENCED_SELECTOR_POOL); // SourceManager Block. BLOCK(SOURCE_MANAGER_BLOCK); RECORD(SM_SLOC_FILE_ENTRY); RECORD(SM_SLOC_BUFFER_ENTRY); RECORD(SM_SLOC_BUFFER_BLOB); RECORD(SM_SLOC_INSTANTIATION_ENTRY); RECORD(SM_LINE_TABLE); // Preprocessor Block. BLOCK(PREPROCESSOR_BLOCK); RECORD(PP_MACRO_OBJECT_LIKE); RECORD(PP_MACRO_FUNCTION_LIKE); RECORD(PP_TOKEN); RECORD(PP_MACRO_INSTANTIATION); RECORD(PP_MACRO_DEFINITION); // Decls and Types block. BLOCK(DECLTYPES_BLOCK); RECORD(TYPE_EXT_QUAL); RECORD(TYPE_COMPLEX); RECORD(TYPE_POINTER); RECORD(TYPE_BLOCK_POINTER); RECORD(TYPE_LVALUE_REFERENCE); RECORD(TYPE_RVALUE_REFERENCE); RECORD(TYPE_MEMBER_POINTER); RECORD(TYPE_CONSTANT_ARRAY); RECORD(TYPE_INCOMPLETE_ARRAY); RECORD(TYPE_VARIABLE_ARRAY); RECORD(TYPE_VECTOR); RECORD(TYPE_EXT_VECTOR); RECORD(TYPE_FUNCTION_PROTO); RECORD(TYPE_FUNCTION_NO_PROTO); RECORD(TYPE_TYPEDEF); RECORD(TYPE_TYPEOF_EXPR); RECORD(TYPE_TYPEOF); RECORD(TYPE_RECORD); RECORD(TYPE_ENUM); RECORD(TYPE_OBJC_INTERFACE); RECORD(TYPE_OBJC_OBJECT); RECORD(TYPE_OBJC_OBJECT_POINTER); RECORD(DECL_ATTR); RECORD(DECL_TRANSLATION_UNIT); RECORD(DECL_TYPEDEF); RECORD(DECL_ENUM); RECORD(DECL_RECORD); RECORD(DECL_ENUM_CONSTANT); RECORD(DECL_FUNCTION); RECORD(DECL_OBJC_METHOD); RECORD(DECL_OBJC_INTERFACE); RECORD(DECL_OBJC_PROTOCOL); RECORD(DECL_OBJC_IVAR); RECORD(DECL_OBJC_AT_DEFS_FIELD); RECORD(DECL_OBJC_CLASS); RECORD(DECL_OBJC_FORWARD_PROTOCOL); RECORD(DECL_OBJC_CATEGORY); RECORD(DECL_OBJC_CATEGORY_IMPL); RECORD(DECL_OBJC_IMPLEMENTATION); RECORD(DECL_OBJC_COMPATIBLE_ALIAS); RECORD(DECL_OBJC_PROPERTY); RECORD(DECL_OBJC_PROPERTY_IMPL); RECORD(DECL_FIELD); RECORD(DECL_VAR); RECORD(DECL_IMPLICIT_PARAM); RECORD(DECL_PARM_VAR); RECORD(DECL_FILE_SCOPE_ASM); RECORD(DECL_BLOCK); RECORD(DECL_CONTEXT_LEXICAL); RECORD(DECL_CONTEXT_VISIBLE); // Statements and Exprs can occur in the Decls and Types block. AddStmtsExprs(Stream, Record); #undef RECORD #undef BLOCK Stream.ExitBlock(); } /// \brief Adjusts the given filename to only write out the portion of the /// filename that is not part of the system root directory. /// /// \param Filename the file name to adjust. /// /// \param isysroot When non-NULL, the PCH file is a relocatable PCH file and /// the returned filename will be adjusted by this system root. /// /// \returns either the original filename (if it needs no adjustment) or the /// adjusted filename (which points into the @p Filename parameter). static const char * adjustFilenameForRelocatablePCH(const char *Filename, const char *isysroot) { assert(Filename && "No file name to adjust?"); if (!isysroot) return Filename; // Verify that the filename and the system root have the same prefix. unsigned Pos = 0; for (; Filename[Pos] && isysroot[Pos]; ++Pos) if (Filename[Pos] != isysroot[Pos]) return Filename; // Prefixes don't match. // We hit the end of the filename before we hit the end of the system root. if (!Filename[Pos]) return Filename; // If the file name has a '/' at the current position, skip over the '/'. // We distinguish sysroot-based includes from absolute includes by the // absence of '/' at the beginning of sysroot-based includes. if (Filename[Pos] == '/') ++Pos; return Filename + Pos; } /// \brief Write the AST metadata (e.g., i686-apple-darwin9). void ASTWriter::WriteMetadata(ASTContext &Context, const char *isysroot) { using namespace llvm; // Metadata const TargetInfo &Target = Context.Target; BitCodeAbbrev *MetaAbbrev = new BitCodeAbbrev(); MetaAbbrev->Add(BitCodeAbbrevOp( Chain ? CHAINED_METADATA : METADATA)); MetaAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // AST major MetaAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // AST minor MetaAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Clang major MetaAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Clang minor MetaAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Relocatable // Target triple or chained PCH name MetaAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned MetaAbbrevCode = Stream.EmitAbbrev(MetaAbbrev); RecordData Record; Record.push_back(Chain ? CHAINED_METADATA : METADATA); Record.push_back(VERSION_MAJOR); Record.push_back(VERSION_MINOR); Record.push_back(CLANG_VERSION_MAJOR); Record.push_back(CLANG_VERSION_MINOR); Record.push_back(isysroot != 0); // FIXME: This writes the absolute path for chained headers. const std::string &BlobStr = Chain ? Chain->getFileName() : Target.getTriple().getTriple(); Stream.EmitRecordWithBlob(MetaAbbrevCode, Record, BlobStr); // Original file name SourceManager &SM = Context.getSourceManager(); if (const FileEntry *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { BitCodeAbbrev *FileAbbrev = new BitCodeAbbrev(); FileAbbrev->Add(BitCodeAbbrevOp(ORIGINAL_FILE_NAME)); FileAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name unsigned FileAbbrevCode = Stream.EmitAbbrev(FileAbbrev); llvm::sys::Path MainFilePath(MainFile->getName()); MainFilePath.makeAbsolute(); const char *MainFileNameStr = MainFilePath.c_str(); MainFileNameStr = adjustFilenameForRelocatablePCH(MainFileNameStr, isysroot); RecordData Record; Record.push_back(ORIGINAL_FILE_NAME); Stream.EmitRecordWithBlob(FileAbbrevCode, Record, MainFileNameStr); } // Repository branch/version information. BitCodeAbbrev *RepoAbbrev = new BitCodeAbbrev(); RepoAbbrev->Add(BitCodeAbbrevOp(VERSION_CONTROL_BRANCH_REVISION)); RepoAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // SVN branch/tag unsigned RepoAbbrevCode = Stream.EmitAbbrev(RepoAbbrev); Record.clear(); Record.push_back(VERSION_CONTROL_BRANCH_REVISION); Stream.EmitRecordWithBlob(RepoAbbrevCode, Record, getClangFullRepositoryVersion()); } /// \brief Write the LangOptions structure. void ASTWriter::WriteLanguageOptions(const LangOptions &LangOpts) { RecordData Record; Record.push_back(LangOpts.Trigraphs); Record.push_back(LangOpts.BCPLComment); // BCPL-style '//' comments. Record.push_back(LangOpts.DollarIdents); // '$' allowed in identifiers. Record.push_back(LangOpts.AsmPreprocessor); // Preprocessor in asm mode. Record.push_back(LangOpts.GNUMode); // True in gnu99 mode false in c99 mode (etc) Record.push_back(LangOpts.GNUKeywords); // Allow GNU-extension keywords Record.push_back(LangOpts.ImplicitInt); // C89 implicit 'int'. Record.push_back(LangOpts.Digraphs); // C94, C99 and C++ Record.push_back(LangOpts.HexFloats); // C99 Hexadecimal float constants. Record.push_back(LangOpts.C99); // C99 Support Record.push_back(LangOpts.Microsoft); // Microsoft extensions. Record.push_back(LangOpts.CPlusPlus); // C++ Support Record.push_back(LangOpts.CPlusPlus0x); // C++0x Support Record.push_back(LangOpts.CXXOperatorNames); // Treat C++ operator names as keywords. Record.push_back(LangOpts.ObjC1); // Objective-C 1 support enabled. Record.push_back(LangOpts.ObjC2); // Objective-C 2 support enabled. Record.push_back(LangOpts.ObjCNonFragileABI); // Objective-C // modern abi enabled. Record.push_back(LangOpts.ObjCNonFragileABI2); // Objective-C enhanced // modern abi enabled. Record.push_back(LangOpts.NoConstantCFStrings); // non cfstring generation enabled.. Record.push_back(LangOpts.PascalStrings); // Allow Pascal strings Record.push_back(LangOpts.WritableStrings); // Allow writable strings Record.push_back(LangOpts.LaxVectorConversions); Record.push_back(LangOpts.AltiVec); Record.push_back(LangOpts.Exceptions); // Support exception handling. Record.push_back(LangOpts.SjLjExceptions); Record.push_back(LangOpts.NeXTRuntime); // Use NeXT runtime. Record.push_back(LangOpts.Freestanding); // Freestanding implementation Record.push_back(LangOpts.NoBuiltin); // Do not use builtin functions (-fno-builtin) // Whether static initializers are protected by locks. Record.push_back(LangOpts.ThreadsafeStatics); Record.push_back(LangOpts.POSIXThreads); Record.push_back(LangOpts.Blocks); // block extension to C Record.push_back(LangOpts.EmitAllDecls); // Emit all declarations, even if // they are unused. Record.push_back(LangOpts.MathErrno); // Math functions must respect errno // (modulo the platform support). Record.push_back(LangOpts.getSignedOverflowBehavior()); Record.push_back(LangOpts.HeinousExtensions); Record.push_back(LangOpts.Optimize); // Whether __OPTIMIZE__ should be defined. Record.push_back(LangOpts.OptimizeSize); // Whether __OPTIMIZE_SIZE__ should be // defined. Record.push_back(LangOpts.Static); // Should __STATIC__ be defined (as // opposed to __DYNAMIC__). Record.push_back(LangOpts.PICLevel); // The value for __PIC__, if non-zero. Record.push_back(LangOpts.GNUInline); // Should GNU inline semantics be // used (instead of C99 semantics). Record.push_back(LangOpts.NoInline); // Should __NO_INLINE__ be defined. Record.push_back(LangOpts.AccessControl); // Whether C++ access control should // be enabled. Record.push_back(LangOpts.CharIsSigned); // Whether char is a signed or // unsigned type Record.push_back(LangOpts.ShortWChar); // force wchar_t to be unsigned short Record.push_back(LangOpts.getGCMode()); Record.push_back(LangOpts.getVisibilityMode()); Record.push_back(LangOpts.getStackProtectorMode()); Record.push_back(LangOpts.InstantiationDepth); Record.push_back(LangOpts.OpenCL); Record.push_back(LangOpts.CatchUndefined); Record.push_back(LangOpts.ElideConstructors); Record.push_back(LangOpts.SpellChecking); Stream.EmitRecord(LANGUAGE_OPTIONS, Record); } //===----------------------------------------------------------------------===// // stat cache Serialization //===----------------------------------------------------------------------===// namespace { // Trait used for the on-disk hash table of stat cache results. class ASTStatCacheTrait { public: typedef const char * key_type; typedef key_type key_type_ref; typedef std::pair data_type; typedef const data_type& data_type_ref; static unsigned ComputeHash(const char *path) { return llvm::HashString(path); } std::pair EmitKeyDataLength(llvm::raw_ostream& Out, const char *path, data_type_ref Data) { unsigned StrLen = strlen(path); clang::io::Emit16(Out, StrLen); unsigned DataLen = 1; // result value if (Data.first == 0) DataLen += 4 + 4 + 2 + 8 + 8; clang::io::Emit8(Out, DataLen); return std::make_pair(StrLen + 1, DataLen); } void EmitKey(llvm::raw_ostream& Out, const char *path, unsigned KeyLen) { Out.write(path, KeyLen); } void EmitData(llvm::raw_ostream& Out, key_type_ref, data_type_ref Data, unsigned DataLen) { using namespace clang::io; uint64_t Start = Out.tell(); (void)Start; // Result of stat() Emit8(Out, Data.first? 1 : 0); if (Data.first == 0) { Emit32(Out, (uint32_t) Data.second.st_ino); Emit32(Out, (uint32_t) Data.second.st_dev); Emit16(Out, (uint16_t) Data.second.st_mode); Emit64(Out, (uint64_t) Data.second.st_mtime); Emit64(Out, (uint64_t) Data.second.st_size); } assert(Out.tell() - Start == DataLen && "Wrong data length"); } }; } // end anonymous namespace /// \brief Write the stat() system call cache to the AST file. void ASTWriter::WriteStatCache(MemorizeStatCalls &StatCalls) { // Build the on-disk hash table containing information about every // stat() call. OnDiskChainedHashTableGenerator Generator; unsigned NumStatEntries = 0; for (MemorizeStatCalls::iterator Stat = StatCalls.begin(), StatEnd = StatCalls.end(); Stat != StatEnd; ++Stat, ++NumStatEntries) { const char *Filename = Stat->first(); Generator.insert(Filename, Stat->second); } // Create the on-disk hash table in a buffer. llvm::SmallString<4096> StatCacheData; uint32_t BucketOffset; { llvm::raw_svector_ostream Out(StatCacheData); // Make sure that no bucket is at offset 0 clang::io::Emit32(Out, 0); BucketOffset = Generator.Emit(Out); } // Create a blob abbreviation using namespace llvm; BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(STAT_CACHE)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned StatCacheAbbrev = Stream.EmitAbbrev(Abbrev); // Write the stat cache RecordData Record; Record.push_back(STAT_CACHE); Record.push_back(BucketOffset); Record.push_back(NumStatEntries); Stream.EmitRecordWithBlob(StatCacheAbbrev, Record, StatCacheData.str()); } //===----------------------------------------------------------------------===// // Source Manager Serialization //===----------------------------------------------------------------------===// /// \brief Create an abbreviation for the SLocEntry that refers to a /// file. static unsigned CreateSLocFileAbbrev(llvm::BitstreamWriter &Stream) { using namespace llvm; BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_FILE_ENTRY)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Include location Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // Characteristic Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Line directives // FileEntry fields. Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 12)); // Size Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 32)); // Modification time // HeaderFileInfo fields. Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isImport Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // DirInfo Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // NumIncludes Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // ControllingMacro Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name return Stream.EmitAbbrev(Abbrev); } /// \brief Create an abbreviation for the SLocEntry that refers to a /// buffer. static unsigned CreateSLocBufferAbbrev(llvm::BitstreamWriter &Stream) { using namespace llvm; BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_BUFFER_ENTRY)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Include location Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // Characteristic Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Line directives Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Buffer name blob return Stream.EmitAbbrev(Abbrev); } /// \brief Create an abbreviation for the SLocEntry that refers to a /// buffer's blob. static unsigned CreateSLocBufferBlobAbbrev(llvm::BitstreamWriter &Stream) { using namespace llvm; BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_BUFFER_BLOB)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Blob return Stream.EmitAbbrev(Abbrev); } /// \brief Create an abbreviation for the SLocEntry that refers to an /// buffer. static unsigned CreateSLocInstantiationAbbrev(llvm::BitstreamWriter &Stream) { using namespace llvm; BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_INSTANTIATION_ENTRY)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Spelling location Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Start location Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // End location Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Token length return Stream.EmitAbbrev(Abbrev); } /// \brief Writes the block containing the serialized form of the /// source manager. /// /// TODO: We should probably use an on-disk hash table (stored in a /// blob), indexed based on the file name, so that we only create /// entries for files that we actually need. In the common case (no /// errors), we probably won't have to create file entries for any of /// the files in the AST. void ASTWriter::WriteSourceManagerBlock(SourceManager &SourceMgr, const Preprocessor &PP, const char *isysroot) { RecordData Record; // Enter the source manager block. Stream.EnterSubblock(SOURCE_MANAGER_BLOCK_ID, 3); // Abbreviations for the various kinds of source-location entries. unsigned SLocFileAbbrv = CreateSLocFileAbbrev(Stream); unsigned SLocBufferAbbrv = CreateSLocBufferAbbrev(Stream); unsigned SLocBufferBlobAbbrv = CreateSLocBufferBlobAbbrev(Stream); unsigned SLocInstantiationAbbrv = CreateSLocInstantiationAbbrev(Stream); // Write the line table. if (SourceMgr.hasLineTable()) { LineTableInfo &LineTable = SourceMgr.getLineTable(); // Emit the file names Record.push_back(LineTable.getNumFilenames()); for (unsigned I = 0, N = LineTable.getNumFilenames(); I != N; ++I) { // Emit the file name const char *Filename = LineTable.getFilename(I); Filename = adjustFilenameForRelocatablePCH(Filename, isysroot); unsigned FilenameLen = Filename? strlen(Filename) : 0; Record.push_back(FilenameLen); if (FilenameLen) Record.insert(Record.end(), Filename, Filename + FilenameLen); } // Emit the line entries for (LineTableInfo::iterator L = LineTable.begin(), LEnd = LineTable.end(); L != LEnd; ++L) { // Emit the file ID Record.push_back(L->first); // Emit the line entries Record.push_back(L->second.size()); for (std::vector::iterator LE = L->second.begin(), LEEnd = L->second.end(); LE != LEEnd; ++LE) { Record.push_back(LE->FileOffset); Record.push_back(LE->LineNo); Record.push_back(LE->FilenameID); Record.push_back((unsigned)LE->FileKind); Record.push_back(LE->IncludeOffset); } } Stream.EmitRecord(SM_LINE_TABLE, Record); } // Write out the source location entry table. We skip the first // entry, which is always the same dummy entry. std::vector SLocEntryOffsets; RecordData PreloadSLocs; unsigned BaseSLocID = Chain ? Chain->getTotalNumSLocs() : 0; SLocEntryOffsets.reserve(SourceMgr.sloc_entry_size() - 1 - BaseSLocID); for (unsigned I = BaseSLocID + 1, N = SourceMgr.sloc_entry_size(); I != N; ++I) { // Get this source location entry. const SrcMgr::SLocEntry *SLoc = &SourceMgr.getSLocEntry(I); // Record the offset of this source-location entry. SLocEntryOffsets.push_back(Stream.GetCurrentBitNo()); // Figure out which record code to use. unsigned Code; if (SLoc->isFile()) { if (SLoc->getFile().getContentCache()->Entry) Code = SM_SLOC_FILE_ENTRY; else Code = SM_SLOC_BUFFER_ENTRY; } else Code = SM_SLOC_INSTANTIATION_ENTRY; Record.clear(); Record.push_back(Code); Record.push_back(SLoc->getOffset()); if (SLoc->isFile()) { const SrcMgr::FileInfo &File = SLoc->getFile(); Record.push_back(File.getIncludeLoc().getRawEncoding()); Record.push_back(File.getFileCharacteristic()); // FIXME: stable encoding Record.push_back(File.hasLineDirectives()); const SrcMgr::ContentCache *Content = File.getContentCache(); if (Content->Entry) { // The source location entry is a file. The blob associated // with this entry is the file name. // Emit size/modification time for this file. Record.push_back(Content->Entry->getSize()); Record.push_back(Content->Entry->getModificationTime()); // Emit header-search information associated with this file. HeaderFileInfo HFI; HeaderSearch &HS = PP.getHeaderSearchInfo(); if (Content->Entry->getUID() < HS.header_file_size()) HFI = HS.header_file_begin()[Content->Entry->getUID()]; Record.push_back(HFI.isImport); Record.push_back(HFI.DirInfo); Record.push_back(HFI.NumIncludes); AddIdentifierRef(HFI.ControllingMacro, Record); // Turn the file name into an absolute path, if it isn't already. const char *Filename = Content->Entry->getName(); llvm::sys::Path FilePath(Filename, strlen(Filename)); FilePath.makeAbsolute(); Filename = FilePath.c_str(); Filename = adjustFilenameForRelocatablePCH(Filename, isysroot); Stream.EmitRecordWithBlob(SLocFileAbbrv, Record, Filename); // FIXME: For now, preload all file source locations, so that // we get the appropriate File entries in the reader. This is // a temporary measure. PreloadSLocs.push_back(BaseSLocID + SLocEntryOffsets.size()); } else { // The source location entry is a buffer. The blob associated // with this entry contains the contents of the buffer. // We add one to the size so that we capture the trailing NULL // that is required by llvm::MemoryBuffer::getMemBuffer (on // the reader side). const llvm::MemoryBuffer *Buffer = Content->getBuffer(PP.getDiagnostics(), PP.getSourceManager()); const char *Name = Buffer->getBufferIdentifier(); Stream.EmitRecordWithBlob(SLocBufferAbbrv, Record, llvm::StringRef(Name, strlen(Name) + 1)); Record.clear(); Record.push_back(SM_SLOC_BUFFER_BLOB); Stream.EmitRecordWithBlob(SLocBufferBlobAbbrv, Record, llvm::StringRef(Buffer->getBufferStart(), Buffer->getBufferSize() + 1)); if (strcmp(Name, "") == 0) PreloadSLocs.push_back(BaseSLocID + SLocEntryOffsets.size()); } } else { // The source location entry is an instantiation. const SrcMgr::InstantiationInfo &Inst = SLoc->getInstantiation(); Record.push_back(Inst.getSpellingLoc().getRawEncoding()); Record.push_back(Inst.getInstantiationLocStart().getRawEncoding()); Record.push_back(Inst.getInstantiationLocEnd().getRawEncoding()); // Compute the token length for this macro expansion. unsigned NextOffset = SourceMgr.getNextOffset(); if (I + 1 != N) NextOffset = SourceMgr.getSLocEntry(I + 1).getOffset(); Record.push_back(NextOffset - SLoc->getOffset() - 1); Stream.EmitRecordWithAbbrev(SLocInstantiationAbbrv, Record); } } Stream.ExitBlock(); if (SLocEntryOffsets.empty()) return; // Write the source-location offsets table into the AST block. This // table is used for lazily loading source-location information. using namespace llvm; BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SOURCE_LOCATION_OFFSETS)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 16)); // # of slocs Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 16)); // next offset Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // offsets unsigned SLocOffsetsAbbrev = Stream.EmitAbbrev(Abbrev); Record.clear(); Record.push_back(SOURCE_LOCATION_OFFSETS); Record.push_back(SLocEntryOffsets.size()); Record.push_back(SourceMgr.getNextOffset()); Stream.EmitRecordWithBlob(SLocOffsetsAbbrev, Record, (const char *)data(SLocEntryOffsets), SLocEntryOffsets.size()*sizeof(SLocEntryOffsets[0])); // Write the source location entry preloads array, telling the AST // reader which source locations entries it should load eagerly. Stream.EmitRecord(SOURCE_LOCATION_PRELOADS, PreloadSLocs); } //===----------------------------------------------------------------------===// // Preprocessor Serialization //===----------------------------------------------------------------------===// /// \brief Writes the block containing the serialized form of the /// preprocessor. /// void ASTWriter::WritePreprocessor(const Preprocessor &PP) { RecordData Record; // If the preprocessor __COUNTER__ value has been bumped, remember it. if (PP.getCounterValue() != 0) { Record.push_back(PP.getCounterValue()); Stream.EmitRecord(PP_COUNTER_VALUE, Record); Record.clear(); } // Enter the preprocessor block. Stream.EnterSubblock(PREPROCESSOR_BLOCK_ID, 2); // If the AST file contains __DATE__ or __TIME__ emit a warning about this. // FIXME: use diagnostics subsystem for localization etc. if (PP.SawDateOrTime()) fprintf(stderr, "warning: precompiled header used __DATE__ or __TIME__.\n"); // Loop over all the macro definitions that are live at the end of the file, // emitting each to the PP section. PreprocessingRecord *PPRec = PP.getPreprocessingRecord(); for (Preprocessor::macro_iterator I = PP.macro_begin(), E = PP.macro_end(); I != E; ++I) { // FIXME: This emits macros in hash table order, we should do it in a stable // order so that output is reproducible. MacroInfo *MI = I->second; // Don't emit builtin macros like __LINE__ to the AST file unless they have // been redefined by the header (in which case they are not isBuiltinMacro). // Also skip macros from a AST file if we're chaining. if (MI->isBuiltinMacro() || (Chain && MI->isFromAST())) continue; AddIdentifierRef(I->first, Record); MacroOffsets[I->first] = Stream.GetCurrentBitNo(); Record.push_back(MI->getDefinitionLoc().getRawEncoding()); Record.push_back(MI->isUsed()); unsigned Code; if (MI->isObjectLike()) { Code = PP_MACRO_OBJECT_LIKE; } else { Code = PP_MACRO_FUNCTION_LIKE; Record.push_back(MI->isC99Varargs()); Record.push_back(MI->isGNUVarargs()); Record.push_back(MI->getNumArgs()); for (MacroInfo::arg_iterator I = MI->arg_begin(), E = MI->arg_end(); I != E; ++I) AddIdentifierRef(*I, Record); } // If we have a detailed preprocessing record, record the macro definition // ID that corresponds to this macro. if (PPRec) Record.push_back(getMacroDefinitionID(PPRec->findMacroDefinition(MI))); Stream.EmitRecord(Code, Record); Record.clear(); // Emit the tokens array. for (unsigned TokNo = 0, e = MI->getNumTokens(); TokNo != e; ++TokNo) { // Note that we know that the preprocessor does not have any annotation // tokens in it because they are created by the parser, and thus can't be // in a macro definition. const Token &Tok = MI->getReplacementToken(TokNo); Record.push_back(Tok.getLocation().getRawEncoding()); Record.push_back(Tok.getLength()); // FIXME: When reading literal tokens, reconstruct the literal pointer if // it is needed. AddIdentifierRef(Tok.getIdentifierInfo(), Record); // FIXME: Should translate token kind to a stable encoding. Record.push_back(Tok.getKind()); // FIXME: Should translate token flags to a stable encoding. Record.push_back(Tok.getFlags()); Stream.EmitRecord(PP_TOKEN, Record); Record.clear(); } ++NumMacros; } // If the preprocessor has a preprocessing record, emit it. unsigned NumPreprocessingRecords = 0; if (PPRec) { for (PreprocessingRecord::iterator E = PPRec->begin(), EEnd = PPRec->end(); E != EEnd; ++E) { Record.clear(); if (MacroInstantiation *MI = dyn_cast(*E)) { Record.push_back(NumPreprocessingRecords++); AddSourceLocation(MI->getSourceRange().getBegin(), Record); AddSourceLocation(MI->getSourceRange().getEnd(), Record); AddIdentifierRef(MI->getName(), Record); Record.push_back(getMacroDefinitionID(MI->getDefinition())); Stream.EmitRecord(PP_MACRO_INSTANTIATION, Record); continue; } if (MacroDefinition *MD = dyn_cast(*E)) { // Record this macro definition's location. IdentID ID = getMacroDefinitionID(MD); if (ID != MacroDefinitionOffsets.size()) { if (ID > MacroDefinitionOffsets.size()) MacroDefinitionOffsets.resize(ID + 1); MacroDefinitionOffsets[ID] = Stream.GetCurrentBitNo(); } else MacroDefinitionOffsets.push_back(Stream.GetCurrentBitNo()); Record.push_back(NumPreprocessingRecords++); Record.push_back(ID); AddSourceLocation(MD->getSourceRange().getBegin(), Record); AddSourceLocation(MD->getSourceRange().getEnd(), Record); AddIdentifierRef(MD->getName(), Record); AddSourceLocation(MD->getLocation(), Record); Stream.EmitRecord(PP_MACRO_DEFINITION, Record); continue; } } } Stream.ExitBlock(); // Write the offsets table for the preprocessing record. if (NumPreprocessingRecords > 0) { // Write the offsets table for identifier IDs. using namespace llvm; BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(MACRO_DEFINITION_OFFSETS)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of records Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of macro defs Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned MacroDefOffsetAbbrev = Stream.EmitAbbrev(Abbrev); Record.clear(); Record.push_back(MACRO_DEFINITION_OFFSETS); Record.push_back(NumPreprocessingRecords); Record.push_back(MacroDefinitionOffsets.size()); Stream.EmitRecordWithBlob(MacroDefOffsetAbbrev, Record, (const char *)data(MacroDefinitionOffsets), MacroDefinitionOffsets.size() * sizeof(uint32_t)); } } //===----------------------------------------------------------------------===// // Type Serialization //===----------------------------------------------------------------------===// /// \brief Write the representation of a type to the AST stream. void ASTWriter::WriteType(QualType T) { TypeIdx &Idx = TypeIdxs[T]; if (Idx.getIndex() == 0) // we haven't seen this type before. Idx = TypeIdx(NextTypeID++); // Record the offset for this type. unsigned Index = Idx.getIndex() - FirstTypeID; if (TypeOffsets.size() == Index) TypeOffsets.push_back(Stream.GetCurrentBitNo()); else if (TypeOffsets.size() < Index) { TypeOffsets.resize(Index + 1); TypeOffsets[Index] = Stream.GetCurrentBitNo(); } RecordData Record; // Emit the type's representation. ASTTypeWriter W(*this, Record); if (T.hasLocalNonFastQualifiers()) { Qualifiers Qs = T.getLocalQualifiers(); AddTypeRef(T.getLocalUnqualifiedType(), Record); Record.push_back(Qs.getAsOpaqueValue()); W.Code = TYPE_EXT_QUAL; } else { switch (T->getTypeClass()) { // For all of the concrete, non-dependent types, call the // appropriate visitor function. #define TYPE(Class, Base) \ case Type::Class: W.Visit##Class##Type(cast(T)); break; #define ABSTRACT_TYPE(Class, Base) #include "clang/AST/TypeNodes.def" } } // Emit the serialized record. Stream.EmitRecord(W.Code, Record); // Flush any expressions that were written as part of this type. FlushStmts(); } //===----------------------------------------------------------------------===// // Declaration Serialization //===----------------------------------------------------------------------===// /// \brief Write the block containing all of the declaration IDs /// lexically declared within the given DeclContext. /// /// \returns the offset of the DECL_CONTEXT_LEXICAL block within the /// bistream, or 0 if no block was written. uint64_t ASTWriter::WriteDeclContextLexicalBlock(ASTContext &Context, DeclContext *DC) { if (DC->decls_empty()) return 0; uint64_t Offset = Stream.GetCurrentBitNo(); RecordData Record; Record.push_back(DECL_CONTEXT_LEXICAL); llvm::SmallVector Decls; for (DeclContext::decl_iterator D = DC->decls_begin(), DEnd = DC->decls_end(); D != DEnd; ++D) Decls.push_back(GetDeclRef(*D)); ++NumLexicalDeclContexts; Stream.EmitRecordWithBlob(DeclContextLexicalAbbrev, Record, reinterpret_cast(Decls.data()), Decls.size() * sizeof(DeclID)); return Offset; } void ASTWriter::WriteTypeDeclOffsets() { using namespace llvm; RecordData Record; // Write the type offsets array BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(TYPE_OFFSET)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of types Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // types block unsigned TypeOffsetAbbrev = Stream.EmitAbbrev(Abbrev); Record.clear(); Record.push_back(TYPE_OFFSET); Record.push_back(TypeOffsets.size()); Stream.EmitRecordWithBlob(TypeOffsetAbbrev, Record, (const char *)data(TypeOffsets), TypeOffsets.size() * sizeof(TypeOffsets[0])); // Write the declaration offsets array Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(DECL_OFFSET)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of declarations Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // declarations block unsigned DeclOffsetAbbrev = Stream.EmitAbbrev(Abbrev); Record.clear(); Record.push_back(DECL_OFFSET); Record.push_back(DeclOffsets.size()); Stream.EmitRecordWithBlob(DeclOffsetAbbrev, Record, (const char *)data(DeclOffsets), DeclOffsets.size() * sizeof(DeclOffsets[0])); } //===----------------------------------------------------------------------===// // Global Method Pool and Selector Serialization //===----------------------------------------------------------------------===// namespace { // Trait used for the on-disk hash table used in the method pool. class ASTMethodPoolTrait { ASTWriter &Writer; public: typedef Selector key_type; typedef key_type key_type_ref; struct data_type { SelectorID ID; ObjCMethodList Instance, Factory; }; typedef const data_type& data_type_ref; explicit ASTMethodPoolTrait(ASTWriter &Writer) : Writer(Writer) { } static unsigned ComputeHash(Selector Sel) { return serialization::ComputeHash(Sel); } std::pair EmitKeyDataLength(llvm::raw_ostream& Out, Selector Sel, data_type_ref Methods) { unsigned KeyLen = 2 + (Sel.getNumArgs()? Sel.getNumArgs() * 4 : 4); clang::io::Emit16(Out, KeyLen); unsigned DataLen = 4 + 2 + 2; // 2 bytes for each of the method counts for (const ObjCMethodList *Method = &Methods.Instance; Method; Method = Method->Next) if (Method->Method) DataLen += 4; for (const ObjCMethodList *Method = &Methods.Factory; Method; Method = Method->Next) if (Method->Method) DataLen += 4; clang::io::Emit16(Out, DataLen); return std::make_pair(KeyLen, DataLen); } void EmitKey(llvm::raw_ostream& Out, Selector Sel, unsigned) { uint64_t Start = Out.tell(); assert((Start >> 32) == 0 && "Selector key offset too large"); Writer.SetSelectorOffset(Sel, Start); unsigned N = Sel.getNumArgs(); clang::io::Emit16(Out, N); if (N == 0) N = 1; for (unsigned I = 0; I != N; ++I) clang::io::Emit32(Out, Writer.getIdentifierRef(Sel.getIdentifierInfoForSlot(I))); } void EmitData(llvm::raw_ostream& Out, key_type_ref, data_type_ref Methods, unsigned DataLen) { uint64_t Start = Out.tell(); (void)Start; clang::io::Emit32(Out, Methods.ID); unsigned NumInstanceMethods = 0; for (const ObjCMethodList *Method = &Methods.Instance; Method; Method = Method->Next) if (Method->Method) ++NumInstanceMethods; unsigned NumFactoryMethods = 0; for (const ObjCMethodList *Method = &Methods.Factory; Method; Method = Method->Next) if (Method->Method) ++NumFactoryMethods; clang::io::Emit16(Out, NumInstanceMethods); clang::io::Emit16(Out, NumFactoryMethods); for (const ObjCMethodList *Method = &Methods.Instance; Method; Method = Method->Next) if (Method->Method) clang::io::Emit32(Out, Writer.getDeclID(Method->Method)); for (const ObjCMethodList *Method = &Methods.Factory; Method; Method = Method->Next) if (Method->Method) clang::io::Emit32(Out, Writer.getDeclID(Method->Method)); assert(Out.tell() - Start == DataLen && "Data length is wrong"); } }; } // end anonymous namespace /// \brief Write ObjC data: selectors and the method pool. /// /// The method pool contains both instance and factory methods, stored /// in an on-disk hash table indexed by the selector. The hash table also /// contains an empty entry for every other selector known to Sema. void ASTWriter::WriteSelectors(Sema &SemaRef) { using namespace llvm; // Do we have to do anything at all? if (SemaRef.MethodPool.empty() && SelectorIDs.empty()) return; unsigned NumTableEntries = 0; // Create and write out the blob that contains selectors and the method pool. { OnDiskChainedHashTableGenerator Generator; ASTMethodPoolTrait Trait(*this); // Create the on-disk hash table representation. We walk through every // selector we've seen and look it up in the method pool. SelectorOffsets.resize(NextSelectorID - FirstSelectorID); for (llvm::DenseMap::iterator I = SelectorIDs.begin(), E = SelectorIDs.end(); I != E; ++I) { Selector S = I->first; Sema::GlobalMethodPool::iterator F = SemaRef.MethodPool.find(S); ASTMethodPoolTrait::data_type Data = { I->second, ObjCMethodList(), ObjCMethodList() }; if (F != SemaRef.MethodPool.end()) { Data.Instance = F->second.first; Data.Factory = F->second.second; } // Only write this selector if it's not in an existing AST or something // changed. if (Chain && I->second < FirstSelectorID) { // Selector already exists. Did it change? bool changed = false; for (ObjCMethodList *M = &Data.Instance; !changed && M && M->Method; M = M->Next) { if (M->Method->getPCHLevel() == 0) changed = true; } for (ObjCMethodList *M = &Data.Factory; !changed && M && M->Method; M = M->Next) { if (M->Method->getPCHLevel() == 0) changed = true; } if (!changed) continue; } else if (Data.Instance.Method || Data.Factory.Method) { // A new method pool entry. ++NumTableEntries; } Generator.insert(S, Data, Trait); } // Create the on-disk hash table in a buffer. llvm::SmallString<4096> MethodPool; uint32_t BucketOffset; { ASTMethodPoolTrait Trait(*this); llvm::raw_svector_ostream Out(MethodPool); // Make sure that no bucket is at offset 0 clang::io::Emit32(Out, 0); BucketOffset = Generator.Emit(Out, Trait); } // Create a blob abbreviation BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(METHOD_POOL)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned MethodPoolAbbrev = Stream.EmitAbbrev(Abbrev); // Write the method pool RecordData Record; Record.push_back(METHOD_POOL); Record.push_back(BucketOffset); Record.push_back(NumTableEntries); Stream.EmitRecordWithBlob(MethodPoolAbbrev, Record, MethodPool.str()); // Create a blob abbreviation for the selector table offsets. Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SELECTOR_OFFSETS)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // index Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned SelectorOffsetAbbrev = Stream.EmitAbbrev(Abbrev); // Write the selector offsets table. Record.clear(); Record.push_back(SELECTOR_OFFSETS); Record.push_back(SelectorOffsets.size()); Stream.EmitRecordWithBlob(SelectorOffsetAbbrev, Record, (const char *)data(SelectorOffsets), SelectorOffsets.size() * 4); } } /// \brief Write the selectors referenced in @selector expression into AST file. void ASTWriter::WriteReferencedSelectorsPool(Sema &SemaRef) { using namespace llvm; if (SemaRef.ReferencedSelectors.empty()) return; RecordData Record; // Note: this writes out all references even for a dependent AST. But it is // very tricky to fix, and given that @selector shouldn't really appear in // headers, probably not worth it. It's not a correctness issue. for (DenseMap::iterator S = SemaRef.ReferencedSelectors.begin(), E = SemaRef.ReferencedSelectors.end(); S != E; ++S) { Selector Sel = (*S).first; SourceLocation Loc = (*S).second; AddSelectorRef(Sel, Record); AddSourceLocation(Loc, Record); } Stream.EmitRecord(REFERENCED_SELECTOR_POOL, Record); } //===----------------------------------------------------------------------===// // Identifier Table Serialization //===----------------------------------------------------------------------===// namespace { class ASTIdentifierTableTrait { ASTWriter &Writer; Preprocessor &PP; /// \brief Determines whether this is an "interesting" identifier /// that needs a full IdentifierInfo structure written into the hash /// table. static bool isInterestingIdentifier(const IdentifierInfo *II) { return II->isPoisoned() || II->isExtensionToken() || II->hasMacroDefinition() || II->getObjCOrBuiltinID() || II->getFETokenInfo(); } public: typedef const IdentifierInfo* key_type; typedef key_type key_type_ref; typedef IdentID data_type; typedef data_type data_type_ref; ASTIdentifierTableTrait(ASTWriter &Writer, Preprocessor &PP) : Writer(Writer), PP(PP) { } static unsigned ComputeHash(const IdentifierInfo* II) { return llvm::HashString(II->getName()); } std::pair EmitKeyDataLength(llvm::raw_ostream& Out, const IdentifierInfo* II, IdentID ID) { unsigned KeyLen = II->getLength() + 1; unsigned DataLen = 4; // 4 bytes for the persistent ID << 1 if (isInterestingIdentifier(II)) { DataLen += 2; // 2 bytes for builtin ID, flags if (II->hasMacroDefinition() && !PP.getMacroInfo(const_cast(II))->isBuiltinMacro()) DataLen += 4; for (IdentifierResolver::iterator D = IdentifierResolver::begin(II), DEnd = IdentifierResolver::end(); D != DEnd; ++D) DataLen += sizeof(DeclID); } clang::io::Emit16(Out, DataLen); // We emit the key length after the data length so that every // string is preceded by a 16-bit length. This matches the PTH // format for storing identifiers. clang::io::Emit16(Out, KeyLen); return std::make_pair(KeyLen, DataLen); } void EmitKey(llvm::raw_ostream& Out, const IdentifierInfo* II, unsigned KeyLen) { // Record the location of the key data. This is used when generating // the mapping from persistent IDs to strings. Writer.SetIdentifierOffset(II, Out.tell()); Out.write(II->getNameStart(), KeyLen); } void EmitData(llvm::raw_ostream& Out, const IdentifierInfo* II, IdentID ID, unsigned) { if (!isInterestingIdentifier(II)) { clang::io::Emit32(Out, ID << 1); return; } clang::io::Emit32(Out, (ID << 1) | 0x01); uint32_t Bits = 0; bool hasMacroDefinition = II->hasMacroDefinition() && !PP.getMacroInfo(const_cast(II))->isBuiltinMacro(); Bits = (uint32_t)II->getObjCOrBuiltinID(); Bits = (Bits << 1) | unsigned(hasMacroDefinition); Bits = (Bits << 1) | unsigned(II->isExtensionToken()); Bits = (Bits << 1) | unsigned(II->isPoisoned()); Bits = (Bits << 1) | unsigned(II->hasRevertedTokenIDToIdentifier()); Bits = (Bits << 1) | unsigned(II->isCPlusPlusOperatorKeyword()); clang::io::Emit16(Out, Bits); if (hasMacroDefinition) clang::io::Emit32(Out, Writer.getMacroOffset(II)); // Emit the declaration IDs in reverse order, because the // IdentifierResolver provides the declarations as they would be // visible (e.g., the function "stat" would come before the struct // "stat"), but IdentifierResolver::AddDeclToIdentifierChain() // adds declarations to the end of the list (so we need to see the // struct "status" before the function "status"). // Only emit declarations that aren't from a chained PCH, though. llvm::SmallVector Decls(IdentifierResolver::begin(II), IdentifierResolver::end()); for (llvm::SmallVector::reverse_iterator D = Decls.rbegin(), DEnd = Decls.rend(); D != DEnd; ++D) clang::io::Emit32(Out, Writer.getDeclID(*D)); } }; } // end anonymous namespace /// \brief Write the identifier table into the AST file. /// /// The identifier table consists of a blob containing string data /// (the actual identifiers themselves) and a separate "offsets" index /// that maps identifier IDs to locations within the blob. void ASTWriter::WriteIdentifierTable(Preprocessor &PP) { using namespace llvm; // Create and write out the blob that contains the identifier // strings. { OnDiskChainedHashTableGenerator Generator; ASTIdentifierTableTrait Trait(*this, PP); // Look for any identifiers that were named while processing the // headers, but are otherwise not needed. We add these to the hash // table to enable checking of the predefines buffer in the case // where the user adds new macro definitions when building the AST // file. for (IdentifierTable::iterator ID = PP.getIdentifierTable().begin(), IDEnd = PP.getIdentifierTable().end(); ID != IDEnd; ++ID) getIdentifierRef(ID->second); // Create the on-disk hash table representation. We only store offsets // for identifiers that appear here for the first time. IdentifierOffsets.resize(NextIdentID - FirstIdentID); for (llvm::DenseMap::iterator ID = IdentifierIDs.begin(), IDEnd = IdentifierIDs.end(); ID != IDEnd; ++ID) { assert(ID->first && "NULL identifier in identifier table"); if (!Chain || !ID->first->isFromAST()) Generator.insert(ID->first, ID->second, Trait); } // Create the on-disk hash table in a buffer. llvm::SmallString<4096> IdentifierTable; uint32_t BucketOffset; { ASTIdentifierTableTrait Trait(*this, PP); llvm::raw_svector_ostream Out(IdentifierTable); // Make sure that no bucket is at offset 0 clang::io::Emit32(Out, 0); BucketOffset = Generator.Emit(Out, Trait); } // Create a blob abbreviation BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(IDENTIFIER_TABLE)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned IDTableAbbrev = Stream.EmitAbbrev(Abbrev); // Write the identifier table RecordData Record; Record.push_back(IDENTIFIER_TABLE); Record.push_back(BucketOffset); Stream.EmitRecordWithBlob(IDTableAbbrev, Record, IdentifierTable.str()); } // Write the offsets table for identifier IDs. BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(IDENTIFIER_OFFSET)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of identifiers Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned IdentifierOffsetAbbrev = Stream.EmitAbbrev(Abbrev); RecordData Record; Record.push_back(IDENTIFIER_OFFSET); Record.push_back(IdentifierOffsets.size()); Stream.EmitRecordWithBlob(IdentifierOffsetAbbrev, Record, (const char *)data(IdentifierOffsets), IdentifierOffsets.size() * sizeof(uint32_t)); } //===----------------------------------------------------------------------===// // DeclContext's Name Lookup Table Serialization //===----------------------------------------------------------------------===// namespace { // Trait used for the on-disk hash table used in the method pool. class ASTDeclContextNameLookupTrait { ASTWriter &Writer; public: typedef DeclarationName key_type; typedef key_type key_type_ref; typedef DeclContext::lookup_result data_type; typedef const data_type& data_type_ref; explicit ASTDeclContextNameLookupTrait(ASTWriter &Writer) : Writer(Writer) { } unsigned ComputeHash(DeclarationName Name) { llvm::FoldingSetNodeID ID; ID.AddInteger(Name.getNameKind()); switch (Name.getNameKind()) { case DeclarationName::Identifier: ID.AddString(Name.getAsIdentifierInfo()->getName()); break; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: ID.AddInteger(serialization::ComputeHash(Name.getObjCSelector())); break; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: ID.AddInteger(Writer.GetOrCreateTypeID(Name.getCXXNameType())); break; case DeclarationName::CXXOperatorName: ID.AddInteger(Name.getCXXOverloadedOperator()); break; case DeclarationName::CXXLiteralOperatorName: ID.AddString(Name.getCXXLiteralIdentifier()->getName()); case DeclarationName::CXXUsingDirective: break; } return ID.ComputeHash(); } std::pair EmitKeyDataLength(llvm::raw_ostream& Out, DeclarationName Name, data_type_ref Lookup) { unsigned KeyLen = 1; switch (Name.getNameKind()) { case DeclarationName::Identifier: case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: case DeclarationName::CXXLiteralOperatorName: KeyLen += 4; break; case DeclarationName::CXXOperatorName: KeyLen += 1; break; case DeclarationName::CXXUsingDirective: break; } clang::io::Emit16(Out, KeyLen); // 2 bytes for num of decls and 4 for each DeclID. unsigned DataLen = 2 + 4 * (Lookup.second - Lookup.first); clang::io::Emit16(Out, DataLen); return std::make_pair(KeyLen, DataLen); } void EmitKey(llvm::raw_ostream& Out, DeclarationName Name, unsigned) { using namespace clang::io; assert(Name.getNameKind() < 0x100 && "Invalid name kind ?"); Emit8(Out, Name.getNameKind()); switch (Name.getNameKind()) { case DeclarationName::Identifier: Emit32(Out, Writer.getIdentifierRef(Name.getAsIdentifierInfo())); break; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: Emit32(Out, Writer.getSelectorRef(Name.getObjCSelector())); break; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: Emit32(Out, Writer.getTypeID(Name.getCXXNameType())); break; case DeclarationName::CXXOperatorName: assert(Name.getCXXOverloadedOperator() < 0x100 && "Invalid operator ?"); Emit8(Out, Name.getCXXOverloadedOperator()); break; case DeclarationName::CXXLiteralOperatorName: Emit32(Out, Writer.getIdentifierRef(Name.getCXXLiteralIdentifier())); break; case DeclarationName::CXXUsingDirective: break; } } void EmitData(llvm::raw_ostream& Out, key_type_ref, data_type Lookup, unsigned DataLen) { uint64_t Start = Out.tell(); (void)Start; clang::io::Emit16(Out, Lookup.second - Lookup.first); for (; Lookup.first != Lookup.second; ++Lookup.first) clang::io::Emit32(Out, Writer.GetDeclRef(*Lookup.first)); assert(Out.tell() - Start == DataLen && "Data length is wrong"); } }; } // end anonymous namespace /// \brief Write the block containing all of the declaration IDs /// visible from the given DeclContext. /// /// \returns the offset of the DECL_CONTEXT_VISIBLE block within the /// bitstream, or 0 if no block was written. uint64_t ASTWriter::WriteDeclContextVisibleBlock(ASTContext &Context, DeclContext *DC) { if (DC->getPrimaryContext() != DC) return 0; // Since there is no name lookup into functions or methods, don't bother to // build a visible-declarations table for these entities. if (DC->isFunctionOrMethod()) return 0; // If not in C++, we perform name lookup for the translation unit via the // IdentifierInfo chains, don't bother to build a visible-declarations table. // FIXME: In C++ we need the visible declarations in order to "see" the // friend declarations, is there a way to do this without writing the table ? if (DC->isTranslationUnit() && !Context.getLangOptions().CPlusPlus) return 0; // Force the DeclContext to build a its name-lookup table. if (DC->hasExternalVisibleStorage()) DC->MaterializeVisibleDeclsFromExternalStorage(); else DC->lookup(DeclarationName()); // Serialize the contents of the mapping used for lookup. Note that, // although we have two very different code paths, the serialized // representation is the same for both cases: a declaration name, // followed by a size, followed by references to the visible // declarations that have that name. uint64_t Offset = Stream.GetCurrentBitNo(); StoredDeclsMap *Map = static_cast(DC->getLookupPtr()); if (!Map || Map->empty()) return 0; OnDiskChainedHashTableGenerator Generator; ASTDeclContextNameLookupTrait Trait(*this); // Create the on-disk hash table representation. for (StoredDeclsMap::iterator D = Map->begin(), DEnd = Map->end(); D != DEnd; ++D) { DeclarationName Name = D->first; DeclContext::lookup_result Result = D->second.getLookupResult(); Generator.insert(Name, Result, Trait); } // Create the on-disk hash table in a buffer. llvm::SmallString<4096> LookupTable; uint32_t BucketOffset; { llvm::raw_svector_ostream Out(LookupTable); // Make sure that no bucket is at offset 0 clang::io::Emit32(Out, 0); BucketOffset = Generator.Emit(Out, Trait); } // Write the lookup table RecordData Record; Record.push_back(DECL_CONTEXT_VISIBLE); Record.push_back(BucketOffset); Stream.EmitRecordWithBlob(DeclContextVisibleLookupAbbrev, Record, LookupTable.str()); Stream.EmitRecord(DECL_CONTEXT_VISIBLE, Record); ++NumVisibleDeclContexts; return Offset; } /// \brief Write an UPDATE_VISIBLE block for the given context. /// /// UPDATE_VISIBLE blocks contain the declarations that are added to an existing /// DeclContext in a dependent AST file. As such, they only exist for the TU /// (in C++) and for namespaces. void ASTWriter::WriteDeclContextVisibleUpdate(const DeclContext *DC) { assert((DC->isTranslationUnit() || DC->isNamespace()) && "Only TU and namespaces should have visible decl updates."); // Make the context build its lookup table, but don't make it load external // decls. DC->lookup(DeclarationName()); StoredDeclsMap *Map = static_cast(DC->getLookupPtr()); if (!Map || Map->empty()) return; OnDiskChainedHashTableGenerator Generator; ASTDeclContextNameLookupTrait Trait(*this); // Create the hash table. for (StoredDeclsMap::iterator D = Map->begin(), DEnd = Map->end(); D != DEnd; ++D) { DeclarationName Name = D->first; DeclContext::lookup_result Result = D->second.getLookupResult(); // For any name that appears in this table, the results are complete, i.e. // they overwrite results from previous PCHs. Merging is always a mess. Generator.insert(Name, Result, Trait); } // Create the on-disk hash table in a buffer. llvm::SmallString<4096> LookupTable; uint32_t BucketOffset; { llvm::raw_svector_ostream Out(LookupTable); // Make sure that no bucket is at offset 0 clang::io::Emit32(Out, 0); BucketOffset = Generator.Emit(Out, Trait); } // Write the lookup table RecordData Record; Record.push_back(UPDATE_VISIBLE); Record.push_back(getDeclID(cast(DC))); Record.push_back(BucketOffset); Stream.EmitRecordWithBlob(UpdateVisibleAbbrev, Record, LookupTable.str()); } /// \brief Write ADDITIONAL_TEMPLATE_SPECIALIZATIONS blocks for all templates /// that have new specializations in the current AST file. void ASTWriter::WriteAdditionalTemplateSpecializations() { RecordData Record; for (AdditionalTemplateSpecializationsMap::iterator I = AdditionalTemplateSpecializations.begin(), E = AdditionalTemplateSpecializations.end(); I != E; ++I) { Record.clear(); Record.push_back(I->first); Record.insert(Record.end(), I->second.begin(), I->second.end()); Stream.EmitRecord(ADDITIONAL_TEMPLATE_SPECIALIZATIONS, Record); } } //===----------------------------------------------------------------------===// // General Serialization Routines //===----------------------------------------------------------------------===// /// \brief Write a record containing the given attributes. void ASTWriter::WriteAttributeRecord(const AttrVec &Attrs) { RecordData Record; for (AttrVec::const_iterator i = Attrs.begin(), e = Attrs.end(); i != e; ++i){ const Attr * A = *i; Record.push_back(A->getKind()); // FIXME: stable encoding, target attrs AddSourceLocation(A->getLocation(), Record); Record.push_back(A->isInherited()); #include "clang/Serialization/AttrPCHWrite.inc" } Stream.EmitRecord(DECL_ATTR, Record); } void ASTWriter::AddString(llvm::StringRef Str, RecordData &Record) { Record.push_back(Str.size()); Record.insert(Record.end(), Str.begin(), Str.end()); } /// \brief Note that the identifier II occurs at the given offset /// within the identifier table. void ASTWriter::SetIdentifierOffset(const IdentifierInfo *II, uint32_t Offset) { IdentID ID = IdentifierIDs[II]; // Only store offsets new to this AST file. Other identifier names are looked // up earlier in the chain and thus don't need an offset. if (ID >= FirstIdentID) IdentifierOffsets[ID - FirstIdentID] = Offset; } /// \brief Note that the selector Sel occurs at the given offset /// within the method pool/selector table. void ASTWriter::SetSelectorOffset(Selector Sel, uint32_t Offset) { unsigned ID = SelectorIDs[Sel]; assert(ID && "Unknown selector"); // Don't record offsets for selectors that are also available in a different // file. if (ID < FirstSelectorID) return; SelectorOffsets[ID - FirstSelectorID] = Offset; } ASTWriter::ASTWriter(llvm::BitstreamWriter &Stream) : Stream(Stream), Chain(0), FirstDeclID(1), NextDeclID(FirstDeclID), FirstTypeID(NUM_PREDEF_TYPE_IDS), NextTypeID(FirstTypeID), FirstIdentID(1), NextIdentID(FirstIdentID), FirstSelectorID(1), NextSelectorID(FirstSelectorID), CollectedStmts(&StmtsToEmit), NumStatements(0), NumMacros(0), NumLexicalDeclContexts(0), NumVisibleDeclContexts(0) { } void ASTWriter::WriteAST(Sema &SemaRef, MemorizeStatCalls *StatCalls, const char *isysroot) { // Emit the file header. Stream.Emit((unsigned)'C', 8); Stream.Emit((unsigned)'P', 8); Stream.Emit((unsigned)'C', 8); Stream.Emit((unsigned)'H', 8); WriteBlockInfoBlock(); if (Chain) WriteASTChain(SemaRef, StatCalls, isysroot); else WriteASTCore(SemaRef, StatCalls, isysroot); } void ASTWriter::WriteASTCore(Sema &SemaRef, MemorizeStatCalls *StatCalls, const char *isysroot) { using namespace llvm; ASTContext &Context = SemaRef.Context; Preprocessor &PP = SemaRef.PP; // The translation unit is the first declaration we'll emit. DeclIDs[Context.getTranslationUnitDecl()] = 1; ++NextDeclID; DeclTypesToEmit.push(Context.getTranslationUnitDecl()); // Make sure that we emit IdentifierInfos (and any attached // declarations) for builtins. { IdentifierTable &Table = PP.getIdentifierTable(); llvm::SmallVector BuiltinNames; Context.BuiltinInfo.GetBuiltinNames(BuiltinNames, Context.getLangOptions().NoBuiltin); for (unsigned I = 0, N = BuiltinNames.size(); I != N; ++I) getIdentifierRef(&Table.get(BuiltinNames[I])); } // Build a record containing all of the tentative definitions in this file, in // TentativeDefinitions order. Generally, this record will be empty for // headers. RecordData TentativeDefinitions; for (unsigned i = 0, e = SemaRef.TentativeDefinitions.size(); i != e; ++i) { AddDeclRef(SemaRef.TentativeDefinitions[i], TentativeDefinitions); } // Build a record containing all of the file scoped decls in this file. RecordData UnusedFileScopedDecls; for (unsigned i=0, e = SemaRef.UnusedFileScopedDecls.size(); i !=e; ++i) AddDeclRef(SemaRef.UnusedFileScopedDecls[i], UnusedFileScopedDecls); RecordData WeakUndeclaredIdentifiers; if (!SemaRef.WeakUndeclaredIdentifiers.empty()) { WeakUndeclaredIdentifiers.push_back( SemaRef.WeakUndeclaredIdentifiers.size()); for (llvm::DenseMap::iterator I = SemaRef.WeakUndeclaredIdentifiers.begin(), E = SemaRef.WeakUndeclaredIdentifiers.end(); I != E; ++I) { AddIdentifierRef(I->first, WeakUndeclaredIdentifiers); AddIdentifierRef(I->second.getAlias(), WeakUndeclaredIdentifiers); AddSourceLocation(I->second.getLocation(), WeakUndeclaredIdentifiers); WeakUndeclaredIdentifiers.push_back(I->second.getUsed()); } } // Build a record containing all of the locally-scoped external // declarations in this header file. Generally, this record will be // empty. RecordData LocallyScopedExternalDecls; // FIXME: This is filling in the AST file in densemap order which is // nondeterminstic! for (llvm::DenseMap::iterator TD = SemaRef.LocallyScopedExternalDecls.begin(), TDEnd = SemaRef.LocallyScopedExternalDecls.end(); TD != TDEnd; ++TD) AddDeclRef(TD->second, LocallyScopedExternalDecls); // Build a record containing all of the ext_vector declarations. RecordData ExtVectorDecls; for (unsigned I = 0, N = SemaRef.ExtVectorDecls.size(); I != N; ++I) AddDeclRef(SemaRef.ExtVectorDecls[I], ExtVectorDecls); // Build a record containing all of the VTable uses information. RecordData VTableUses; if (!SemaRef.VTableUses.empty()) { VTableUses.push_back(SemaRef.VTableUses.size()); for (unsigned I = 0, N = SemaRef.VTableUses.size(); I != N; ++I) { AddDeclRef(SemaRef.VTableUses[I].first, VTableUses); AddSourceLocation(SemaRef.VTableUses[I].second, VTableUses); VTableUses.push_back(SemaRef.VTablesUsed[SemaRef.VTableUses[I].first]); } } // Build a record containing all of dynamic classes declarations. RecordData DynamicClasses; for (unsigned I = 0, N = SemaRef.DynamicClasses.size(); I != N; ++I) AddDeclRef(SemaRef.DynamicClasses[I], DynamicClasses); // Build a record containing all of pending implicit instantiations. RecordData PendingInstantiations; for (std::deque::iterator I = SemaRef.PendingInstantiations.begin(), N = SemaRef.PendingInstantiations.end(); I != N; ++I) { AddDeclRef(I->first, PendingInstantiations); AddSourceLocation(I->second, PendingInstantiations); } assert(SemaRef.PendingLocalImplicitInstantiations.empty() && "There are local ones at end of translation unit!"); // Build a record containing some declaration references. RecordData SemaDeclRefs; if (SemaRef.StdNamespace || SemaRef.StdBadAlloc) { AddDeclRef(SemaRef.getStdNamespace(), SemaDeclRefs); AddDeclRef(SemaRef.getStdBadAlloc(), SemaDeclRefs); } // Write the remaining AST contents. RecordData Record; Stream.EnterSubblock(AST_BLOCK_ID, 5); WriteMetadata(Context, isysroot); WriteLanguageOptions(Context.getLangOptions()); if (StatCalls && !isysroot) WriteStatCache(*StatCalls); WriteSourceManagerBlock(Context.getSourceManager(), PP, isysroot); // Write the record of special types. Record.clear(); AddTypeRef(Context.getBuiltinVaListType(), Record); AddTypeRef(Context.getObjCIdType(), Record); AddTypeRef(Context.getObjCSelType(), Record); AddTypeRef(Context.getObjCProtoType(), Record); AddTypeRef(Context.getObjCClassType(), Record); AddTypeRef(Context.getRawCFConstantStringType(), Record); AddTypeRef(Context.getRawObjCFastEnumerationStateType(), Record); AddTypeRef(Context.getFILEType(), Record); AddTypeRef(Context.getjmp_bufType(), Record); AddTypeRef(Context.getsigjmp_bufType(), Record); AddTypeRef(Context.ObjCIdRedefinitionType, Record); AddTypeRef(Context.ObjCClassRedefinitionType, Record); AddTypeRef(Context.getRawBlockdescriptorType(), Record); AddTypeRef(Context.getRawBlockdescriptorExtendedType(), Record); AddTypeRef(Context.ObjCSelRedefinitionType, Record); AddTypeRef(Context.getRawNSConstantStringType(), Record); Record.push_back(Context.isInt128Installed()); Stream.EmitRecord(SPECIAL_TYPES, Record); // Keep writing types and declarations until all types and // declarations have been written. Stream.EnterSubblock(DECLTYPES_BLOCK_ID, 3); WriteDeclsBlockAbbrevs(); while (!DeclTypesToEmit.empty()) { DeclOrType DOT = DeclTypesToEmit.front(); DeclTypesToEmit.pop(); if (DOT.isType()) WriteType(DOT.getType()); else WriteDecl(Context, DOT.getDecl()); } Stream.ExitBlock(); WritePreprocessor(PP); WriteSelectors(SemaRef); WriteReferencedSelectorsPool(SemaRef); WriteIdentifierTable(PP); WriteTypeDeclOffsets(); // Write the record containing external, unnamed definitions. if (!ExternalDefinitions.empty()) Stream.EmitRecord(EXTERNAL_DEFINITIONS, ExternalDefinitions); // Write the record containing tentative definitions. if (!TentativeDefinitions.empty()) Stream.EmitRecord(TENTATIVE_DEFINITIONS, TentativeDefinitions); // Write the record containing unused file scoped decls. if (!UnusedFileScopedDecls.empty()) Stream.EmitRecord(UNUSED_FILESCOPED_DECLS, UnusedFileScopedDecls); // Write the record containing weak undeclared identifiers. if (!WeakUndeclaredIdentifiers.empty()) Stream.EmitRecord(WEAK_UNDECLARED_IDENTIFIERS, WeakUndeclaredIdentifiers); // Write the record containing locally-scoped external definitions. if (!LocallyScopedExternalDecls.empty()) Stream.EmitRecord(LOCALLY_SCOPED_EXTERNAL_DECLS, LocallyScopedExternalDecls); // Write the record containing ext_vector type names. if (!ExtVectorDecls.empty()) Stream.EmitRecord(EXT_VECTOR_DECLS, ExtVectorDecls); // Write the record containing VTable uses information. if (!VTableUses.empty()) Stream.EmitRecord(VTABLE_USES, VTableUses); // Write the record containing dynamic classes declarations. if (!DynamicClasses.empty()) Stream.EmitRecord(DYNAMIC_CLASSES, DynamicClasses); // Write the record containing pending implicit instantiations. if (!PendingInstantiations.empty()) Stream.EmitRecord(PENDING_IMPLICIT_INSTANTIATIONS, PendingInstantiations); // Write the record containing declaration references of Sema. if (!SemaDeclRefs.empty()) Stream.EmitRecord(SEMA_DECL_REFS, SemaDeclRefs); // Some simple statistics Record.clear(); Record.push_back(NumStatements); Record.push_back(NumMacros); Record.push_back(NumLexicalDeclContexts); Record.push_back(NumVisibleDeclContexts); Stream.EmitRecord(STATISTICS, Record); Stream.ExitBlock(); } void ASTWriter::WriteASTChain(Sema &SemaRef, MemorizeStatCalls *StatCalls, const char *isysroot) { using namespace llvm; FirstDeclID += Chain->getTotalNumDecls(); FirstTypeID += Chain->getTotalNumTypes(); FirstIdentID += Chain->getTotalNumIdentifiers(); FirstSelectorID += Chain->getTotalNumSelectors(); NextDeclID = FirstDeclID; NextTypeID = FirstTypeID; NextIdentID = FirstIdentID; NextSelectorID = FirstSelectorID; ASTContext &Context = SemaRef.Context; Preprocessor &PP = SemaRef.PP; RecordData Record; Stream.EnterSubblock(AST_BLOCK_ID, 5); WriteMetadata(Context, isysroot); if (StatCalls && !isysroot) WriteStatCache(*StatCalls); // FIXME: Source manager block should only write new stuff, which could be // done by tracking the largest ID in the chain WriteSourceManagerBlock(Context.getSourceManager(), PP, isysroot); // The special types are in the chained PCH. // We don't start with the translation unit, but with its decls that // don't come from the chained PCH. const TranslationUnitDecl *TU = Context.getTranslationUnitDecl(); llvm::SmallVector NewGlobalDecls; for (DeclContext::decl_iterator I = TU->noload_decls_begin(), E = TU->noload_decls_end(); I != E; ++I) { if ((*I)->getPCHLevel() == 0) NewGlobalDecls.push_back(GetDeclRef(*I)); else if ((*I)->isChangedSinceDeserialization()) (void)GetDeclRef(*I); // Make sure it's written, but don't record it. } // We also need to write a lexical updates block for the TU. llvm::BitCodeAbbrev *Abv = new llvm::BitCodeAbbrev(); Abv->Add(llvm::BitCodeAbbrevOp(TU_UPDATE_LEXICAL)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Blob)); unsigned TuUpdateLexicalAbbrev = Stream.EmitAbbrev(Abv); Record.clear(); Record.push_back(TU_UPDATE_LEXICAL); Stream.EmitRecordWithBlob(TuUpdateLexicalAbbrev, Record, reinterpret_cast(NewGlobalDecls.data()), NewGlobalDecls.size() * sizeof(DeclID)); // And in C++, a visible updates block for the TU. if (Context.getLangOptions().CPlusPlus) { Abv = new llvm::BitCodeAbbrev(); Abv->Add(llvm::BitCodeAbbrevOp(UPDATE_VISIBLE)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Fixed, 32)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Blob)); UpdateVisibleAbbrev = Stream.EmitAbbrev(Abv); WriteDeclContextVisibleUpdate(TU); } // Build a record containing all of the new tentative definitions in this // file, in TentativeDefinitions order. RecordData TentativeDefinitions; for (unsigned i = 0, e = SemaRef.TentativeDefinitions.size(); i != e; ++i) { if (SemaRef.TentativeDefinitions[i]->getPCHLevel() == 0) AddDeclRef(SemaRef.TentativeDefinitions[i], TentativeDefinitions); } // Build a record containing all of the file scoped decls in this file. RecordData UnusedFileScopedDecls; for (unsigned i=0, e = SemaRef.UnusedFileScopedDecls.size(); i !=e; ++i) { if (SemaRef.UnusedFileScopedDecls[i]->getPCHLevel() == 0) AddDeclRef(SemaRef.UnusedFileScopedDecls[i], UnusedFileScopedDecls); } // We write the entire table, overwriting the tables from the chain. RecordData WeakUndeclaredIdentifiers; if (!SemaRef.WeakUndeclaredIdentifiers.empty()) { WeakUndeclaredIdentifiers.push_back( SemaRef.WeakUndeclaredIdentifiers.size()); for (llvm::DenseMap::iterator I = SemaRef.WeakUndeclaredIdentifiers.begin(), E = SemaRef.WeakUndeclaredIdentifiers.end(); I != E; ++I) { AddIdentifierRef(I->first, WeakUndeclaredIdentifiers); AddIdentifierRef(I->second.getAlias(), WeakUndeclaredIdentifiers); AddSourceLocation(I->second.getLocation(), WeakUndeclaredIdentifiers); WeakUndeclaredIdentifiers.push_back(I->second.getUsed()); } } // Build a record containing all of the locally-scoped external // declarations in this header file. Generally, this record will be // empty. RecordData LocallyScopedExternalDecls; // FIXME: This is filling in the AST file in densemap order which is // nondeterminstic! for (llvm::DenseMap::iterator TD = SemaRef.LocallyScopedExternalDecls.begin(), TDEnd = SemaRef.LocallyScopedExternalDecls.end(); TD != TDEnd; ++TD) { if (TD->second->getPCHLevel() == 0) AddDeclRef(TD->second, LocallyScopedExternalDecls); } // Build a record containing all of the ext_vector declarations. RecordData ExtVectorDecls; for (unsigned I = 0, N = SemaRef.ExtVectorDecls.size(); I != N; ++I) { if (SemaRef.ExtVectorDecls[I]->getPCHLevel() == 0) AddDeclRef(SemaRef.ExtVectorDecls[I], ExtVectorDecls); } // Build a record containing all of the VTable uses information. // We write everything here, because it's too hard to determine whether // a use is new to this part. RecordData VTableUses; if (!SemaRef.VTableUses.empty()) { VTableUses.push_back(SemaRef.VTableUses.size()); for (unsigned I = 0, N = SemaRef.VTableUses.size(); I != N; ++I) { AddDeclRef(SemaRef.VTableUses[I].first, VTableUses); AddSourceLocation(SemaRef.VTableUses[I].second, VTableUses); VTableUses.push_back(SemaRef.VTablesUsed[SemaRef.VTableUses[I].first]); } } // Build a record containing all of dynamic classes declarations. RecordData DynamicClasses; for (unsigned I = 0, N = SemaRef.DynamicClasses.size(); I != N; ++I) if (SemaRef.DynamicClasses[I]->getPCHLevel() == 0) AddDeclRef(SemaRef.DynamicClasses[I], DynamicClasses); // Build a record containing all of pending implicit instantiations. RecordData PendingInstantiations; for (std::deque::iterator I = SemaRef.PendingInstantiations.begin(), N = SemaRef.PendingInstantiations.end(); I != N; ++I) { if (I->first->getPCHLevel() == 0) { AddDeclRef(I->first, PendingInstantiations); AddSourceLocation(I->second, PendingInstantiations); } } assert(SemaRef.PendingLocalImplicitInstantiations.empty() && "There are local ones at end of translation unit!"); // Build a record containing some declaration references. // It's not worth the effort to avoid duplication here. RecordData SemaDeclRefs; if (SemaRef.StdNamespace || SemaRef.StdBadAlloc) { AddDeclRef(SemaRef.getStdNamespace(), SemaDeclRefs); AddDeclRef(SemaRef.getStdBadAlloc(), SemaDeclRefs); } Stream.EnterSubblock(DECLTYPES_BLOCK_ID, 3); WriteDeclsBlockAbbrevs(); while (!DeclTypesToEmit.empty()) { DeclOrType DOT = DeclTypesToEmit.front(); DeclTypesToEmit.pop(); if (DOT.isType()) WriteType(DOT.getType()); else WriteDecl(Context, DOT.getDecl()); } Stream.ExitBlock(); WritePreprocessor(PP); WriteSelectors(SemaRef); WriteReferencedSelectorsPool(SemaRef); WriteIdentifierTable(PP); WriteTypeDeclOffsets(); /// Build a record containing first declarations from a chained PCH and the /// most recent declarations in this AST that they point to. RecordData FirstLatestDeclIDs; for (FirstLatestDeclMap::iterator I = FirstLatestDecls.begin(), E = FirstLatestDecls.end(); I != E; ++I) { assert(I->first->getPCHLevel() > I->second->getPCHLevel() && "Expected first & second to be in different PCHs"); AddDeclRef(I->first, FirstLatestDeclIDs); AddDeclRef(I->second, FirstLatestDeclIDs); } if (!FirstLatestDeclIDs.empty()) Stream.EmitRecord(REDECLS_UPDATE_LATEST, FirstLatestDeclIDs); // Write the record containing external, unnamed definitions. if (!ExternalDefinitions.empty()) Stream.EmitRecord(EXTERNAL_DEFINITIONS, ExternalDefinitions); // Write the record containing tentative definitions. if (!TentativeDefinitions.empty()) Stream.EmitRecord(TENTATIVE_DEFINITIONS, TentativeDefinitions); // Write the record containing unused file scoped decls. if (!UnusedFileScopedDecls.empty()) Stream.EmitRecord(UNUSED_FILESCOPED_DECLS, UnusedFileScopedDecls); // Write the record containing weak undeclared identifiers. if (!WeakUndeclaredIdentifiers.empty()) Stream.EmitRecord(WEAK_UNDECLARED_IDENTIFIERS, WeakUndeclaredIdentifiers); // Write the record containing locally-scoped external definitions. if (!LocallyScopedExternalDecls.empty()) Stream.EmitRecord(LOCALLY_SCOPED_EXTERNAL_DECLS, LocallyScopedExternalDecls); // Write the record containing ext_vector type names. if (!ExtVectorDecls.empty()) Stream.EmitRecord(EXT_VECTOR_DECLS, ExtVectorDecls); // Write the record containing VTable uses information. if (!VTableUses.empty()) Stream.EmitRecord(VTABLE_USES, VTableUses); // Write the record containing dynamic classes declarations. if (!DynamicClasses.empty()) Stream.EmitRecord(DYNAMIC_CLASSES, DynamicClasses); // Write the record containing pending implicit instantiations. if (!PendingInstantiations.empty()) Stream.EmitRecord(PENDING_IMPLICIT_INSTANTIATIONS, PendingInstantiations); // Write the record containing declaration references of Sema. if (!SemaDeclRefs.empty()) Stream.EmitRecord(SEMA_DECL_REFS, SemaDeclRefs); // Write the updates to C++ namespaces. for (llvm::SmallPtrSet::iterator I = UpdatedNamespaces.begin(), E = UpdatedNamespaces.end(); I != E; ++I) WriteDeclContextVisibleUpdate(*I); // Write the updates to C++ template specialization lists. if (!AdditionalTemplateSpecializations.empty()) WriteAdditionalTemplateSpecializations(); Record.clear(); Record.push_back(NumStatements); Record.push_back(NumMacros); Record.push_back(NumLexicalDeclContexts); Record.push_back(NumVisibleDeclContexts); WriteDeclUpdateBlock(); Stream.EmitRecord(STATISTICS, Record); Stream.ExitBlock(); } void ASTWriter::WriteDeclUpdateBlock() { if (ReplacedDecls.empty()) return; RecordData Record; for (llvm::SmallVector, 16>::iterator I = ReplacedDecls.begin(), E = ReplacedDecls.end(); I != E; ++I) { Record.push_back(I->first); Record.push_back(I->second); } Stream.EmitRecord(DECL_REPLACEMENTS, Record); } void ASTWriter::AddSourceLocation(SourceLocation Loc, RecordData &Record) { Record.push_back(Loc.getRawEncoding()); } void ASTWriter::AddSourceRange(SourceRange Range, RecordData &Record) { AddSourceLocation(Range.getBegin(), Record); AddSourceLocation(Range.getEnd(), Record); } void ASTWriter::AddAPInt(const llvm::APInt &Value, RecordData &Record) { Record.push_back(Value.getBitWidth()); unsigned N = Value.getNumWords(); const uint64_t* Words = Value.getRawData(); for (unsigned I = 0; I != N; ++I) Record.push_back(Words[I]); } void ASTWriter::AddAPSInt(const llvm::APSInt &Value, RecordData &Record) { Record.push_back(Value.isUnsigned()); AddAPInt(Value, Record); } void ASTWriter::AddAPFloat(const llvm::APFloat &Value, RecordData &Record) { AddAPInt(Value.bitcastToAPInt(), Record); } void ASTWriter::AddIdentifierRef(const IdentifierInfo *II, RecordData &Record) { Record.push_back(getIdentifierRef(II)); } IdentID ASTWriter::getIdentifierRef(const IdentifierInfo *II) { if (II == 0) return 0; IdentID &ID = IdentifierIDs[II]; if (ID == 0) ID = NextIdentID++; return ID; } IdentID ASTWriter::getMacroDefinitionID(MacroDefinition *MD) { if (MD == 0) return 0; IdentID &ID = MacroDefinitions[MD]; if (ID == 0) ID = MacroDefinitions.size(); return ID; } void ASTWriter::AddSelectorRef(const Selector SelRef, RecordData &Record) { Record.push_back(getSelectorRef(SelRef)); } SelectorID ASTWriter::getSelectorRef(Selector Sel) { if (Sel.getAsOpaquePtr() == 0) { return 0; } SelectorID &SID = SelectorIDs[Sel]; if (SID == 0 && Chain) { // This might trigger a ReadSelector callback, which will set the ID for // this selector. Chain->LoadSelector(Sel); } if (SID == 0) { SID = NextSelectorID++; } return SID; } void ASTWriter::AddCXXTemporary(const CXXTemporary *Temp, RecordData &Record) { AddDeclRef(Temp->getDestructor(), Record); } void ASTWriter::AddTemplateArgumentLocInfo(TemplateArgument::ArgKind Kind, const TemplateArgumentLocInfo &Arg, RecordData &Record) { switch (Kind) { case TemplateArgument::Expression: AddStmt(Arg.getAsExpr()); break; case TemplateArgument::Type: AddTypeSourceInfo(Arg.getAsTypeSourceInfo(), Record); break; case TemplateArgument::Template: AddSourceRange(Arg.getTemplateQualifierRange(), Record); AddSourceLocation(Arg.getTemplateNameLoc(), Record); break; case TemplateArgument::Null: case TemplateArgument::Integral: case TemplateArgument::Declaration: case TemplateArgument::Pack: break; } } void ASTWriter::AddTemplateArgumentLoc(const TemplateArgumentLoc &Arg, RecordData &Record) { AddTemplateArgument(Arg.getArgument(), Record); if (Arg.getArgument().getKind() == TemplateArgument::Expression) { bool InfoHasSameExpr = Arg.getArgument().getAsExpr() == Arg.getLocInfo().getAsExpr(); Record.push_back(InfoHasSameExpr); if (InfoHasSameExpr) return; // Avoid storing the same expr twice. } AddTemplateArgumentLocInfo(Arg.getArgument().getKind(), Arg.getLocInfo(), Record); } void ASTWriter::AddTypeSourceInfo(TypeSourceInfo *TInfo, RecordData &Record) { if (TInfo == 0) { AddTypeRef(QualType(), Record); return; } AddTypeRef(TInfo->getType(), Record); TypeLocWriter TLW(*this, Record); for (TypeLoc TL = TInfo->getTypeLoc(); !TL.isNull(); TL = TL.getNextTypeLoc()) TLW.Visit(TL); } void ASTWriter::AddTypeRef(QualType T, RecordData &Record) { Record.push_back(GetOrCreateTypeID(T)); } TypeID ASTWriter::GetOrCreateTypeID(QualType T) { return MakeTypeID(T, std::bind1st(std::mem_fun(&ASTWriter::GetOrCreateTypeIdx), this)); } TypeID ASTWriter::getTypeID(QualType T) const { return MakeTypeID(T, std::bind1st(std::mem_fun(&ASTWriter::getTypeIdx), this)); } TypeIdx ASTWriter::GetOrCreateTypeIdx(QualType T) { if (T.isNull()) return TypeIdx(); assert(!T.getLocalFastQualifiers()); TypeIdx &Idx = TypeIdxs[T]; if (Idx.getIndex() == 0) { // We haven't seen this type before. Assign it a new ID and put it // into the queue of types to emit. Idx = TypeIdx(NextTypeID++); DeclTypesToEmit.push(T); } return Idx; } TypeIdx ASTWriter::getTypeIdx(QualType T) const { if (T.isNull()) return TypeIdx(); assert(!T.getLocalFastQualifiers()); TypeIdxMap::const_iterator I = TypeIdxs.find(T); assert(I != TypeIdxs.end() && "Type not emitted!"); return I->second; } void ASTWriter::AddDeclRef(const Decl *D, RecordData &Record) { Record.push_back(GetDeclRef(D)); } DeclID ASTWriter::GetDeclRef(const Decl *D) { if (D == 0) { return 0; } DeclID &ID = DeclIDs[D]; if (ID == 0) { // We haven't seen this declaration before. Give it a new ID and // enqueue it in the list of declarations to emit. ID = NextDeclID++; DeclTypesToEmit.push(const_cast(D)); } else if (ID < FirstDeclID && D->isChangedSinceDeserialization()) { // We don't add it to the replacement collection here, because we don't // have the offset yet. DeclTypesToEmit.push(const_cast(D)); // Reset the flag, so that we don't add this decl multiple times. const_cast(D)->setChangedSinceDeserialization(false); } return ID; } DeclID ASTWriter::getDeclID(const Decl *D) { if (D == 0) return 0; assert(DeclIDs.find(D) != DeclIDs.end() && "Declaration not emitted!"); return DeclIDs[D]; } void ASTWriter::AddDeclarationName(DeclarationName Name, RecordData &Record) { // FIXME: Emit a stable enum for NameKind. 0 = Identifier etc. Record.push_back(Name.getNameKind()); switch (Name.getNameKind()) { case DeclarationName::Identifier: AddIdentifierRef(Name.getAsIdentifierInfo(), Record); break; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: AddSelectorRef(Name.getObjCSelector(), Record); break; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: AddTypeRef(Name.getCXXNameType(), Record); break; case DeclarationName::CXXOperatorName: Record.push_back(Name.getCXXOverloadedOperator()); break; case DeclarationName::CXXLiteralOperatorName: AddIdentifierRef(Name.getCXXLiteralIdentifier(), Record); break; case DeclarationName::CXXUsingDirective: // No extra data to emit break; } } void ASTWriter::AddNestedNameSpecifier(NestedNameSpecifier *NNS, RecordData &Record) { // Nested name specifiers usually aren't too long. I think that 8 would // typically accomodate the vast majority. llvm::SmallVector NestedNames; // Push each of the NNS's onto a stack for serialization in reverse order. while (NNS) { NestedNames.push_back(NNS); NNS = NNS->getPrefix(); } Record.push_back(NestedNames.size()); while(!NestedNames.empty()) { NNS = NestedNames.pop_back_val(); NestedNameSpecifier::SpecifierKind Kind = NNS->getKind(); Record.push_back(Kind); switch (Kind) { case NestedNameSpecifier::Identifier: AddIdentifierRef(NNS->getAsIdentifier(), Record); break; case NestedNameSpecifier::Namespace: AddDeclRef(NNS->getAsNamespace(), Record); break; case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: AddTypeRef(QualType(NNS->getAsType(), 0), Record); Record.push_back(Kind == NestedNameSpecifier::TypeSpecWithTemplate); break; case NestedNameSpecifier::Global: // Don't need to write an associated value. break; } } } void ASTWriter::AddTemplateName(TemplateName Name, RecordData &Record) { TemplateName::NameKind Kind = Name.getKind(); Record.push_back(Kind); switch (Kind) { case TemplateName::Template: AddDeclRef(Name.getAsTemplateDecl(), Record); break; case TemplateName::OverloadedTemplate: { OverloadedTemplateStorage *OvT = Name.getAsOverloadedTemplate(); Record.push_back(OvT->size()); for (OverloadedTemplateStorage::iterator I = OvT->begin(), E = OvT->end(); I != E; ++I) AddDeclRef(*I, Record); break; } case TemplateName::QualifiedTemplate: { QualifiedTemplateName *QualT = Name.getAsQualifiedTemplateName(); AddNestedNameSpecifier(QualT->getQualifier(), Record); Record.push_back(QualT->hasTemplateKeyword()); AddDeclRef(QualT->getTemplateDecl(), Record); break; } case TemplateName::DependentTemplate: { DependentTemplateName *DepT = Name.getAsDependentTemplateName(); AddNestedNameSpecifier(DepT->getQualifier(), Record); Record.push_back(DepT->isIdentifier()); if (DepT->isIdentifier()) AddIdentifierRef(DepT->getIdentifier(), Record); else Record.push_back(DepT->getOperator()); break; } } } void ASTWriter::AddTemplateArgument(const TemplateArgument &Arg, RecordData &Record) { Record.push_back(Arg.getKind()); switch (Arg.getKind()) { case TemplateArgument::Null: break; case TemplateArgument::Type: AddTypeRef(Arg.getAsType(), Record); break; case TemplateArgument::Declaration: AddDeclRef(Arg.getAsDecl(), Record); break; case TemplateArgument::Integral: AddAPSInt(*Arg.getAsIntegral(), Record); AddTypeRef(Arg.getIntegralType(), Record); break; case TemplateArgument::Template: AddTemplateName(Arg.getAsTemplate(), Record); break; case TemplateArgument::Expression: AddStmt(Arg.getAsExpr()); break; case TemplateArgument::Pack: Record.push_back(Arg.pack_size()); for (TemplateArgument::pack_iterator I=Arg.pack_begin(), E=Arg.pack_end(); I != E; ++I) AddTemplateArgument(*I, Record); break; } } void ASTWriter::AddTemplateParameterList(const TemplateParameterList *TemplateParams, RecordData &Record) { assert(TemplateParams && "No TemplateParams!"); AddSourceLocation(TemplateParams->getTemplateLoc(), Record); AddSourceLocation(TemplateParams->getLAngleLoc(), Record); AddSourceLocation(TemplateParams->getRAngleLoc(), Record); Record.push_back(TemplateParams->size()); for (TemplateParameterList::const_iterator P = TemplateParams->begin(), PEnd = TemplateParams->end(); P != PEnd; ++P) AddDeclRef(*P, Record); } /// \brief Emit a template argument list. void ASTWriter::AddTemplateArgumentList(const TemplateArgumentList *TemplateArgs, RecordData &Record) { assert(TemplateArgs && "No TemplateArgs!"); Record.push_back(TemplateArgs->flat_size()); for (int i=0, e = TemplateArgs->flat_size(); i != e; ++i) AddTemplateArgument(TemplateArgs->get(i), Record); } void ASTWriter::AddUnresolvedSet(const UnresolvedSetImpl &Set, RecordData &Record) { Record.push_back(Set.size()); for (UnresolvedSetImpl::const_iterator I = Set.begin(), E = Set.end(); I != E; ++I) { AddDeclRef(I.getDecl(), Record); Record.push_back(I.getAccess()); } } void ASTWriter::AddCXXBaseSpecifier(const CXXBaseSpecifier &Base, RecordData &Record) { Record.push_back(Base.isVirtual()); Record.push_back(Base.isBaseOfClass()); Record.push_back(Base.getAccessSpecifierAsWritten()); AddTypeSourceInfo(Base.getTypeSourceInfo(), Record); AddSourceRange(Base.getSourceRange(), Record); } void ASTWriter::AddCXXBaseOrMemberInitializers( const CXXBaseOrMemberInitializer * const *BaseOrMembers, unsigned NumBaseOrMembers, RecordData &Record) { Record.push_back(NumBaseOrMembers); for (unsigned i=0; i != NumBaseOrMembers; ++i) { const CXXBaseOrMemberInitializer *Init = BaseOrMembers[i]; Record.push_back(Init->isBaseInitializer()); if (Init->isBaseInitializer()) { AddTypeSourceInfo(Init->getBaseClassInfo(), Record); Record.push_back(Init->isBaseVirtual()); } else { AddDeclRef(Init->getMember(), Record); } AddSourceLocation(Init->getMemberLocation(), Record); AddStmt(Init->getInit()); AddDeclRef(Init->getAnonUnionMember(), Record); AddSourceLocation(Init->getLParenLoc(), Record); AddSourceLocation(Init->getRParenLoc(), Record); Record.push_back(Init->isWritten()); if (Init->isWritten()) { Record.push_back(Init->getSourceOrder()); } else { Record.push_back(Init->getNumArrayIndices()); for (unsigned i=0, e=Init->getNumArrayIndices(); i != e; ++i) AddDeclRef(Init->getArrayIndex(i), Record); } } } void ASTWriter::SetReader(ASTReader *Reader) { assert(Reader && "Cannot remove chain"); assert(FirstDeclID == NextDeclID && FirstTypeID == NextTypeID && FirstIdentID == NextIdentID && FirstSelectorID == NextSelectorID && "Setting chain after writing has started."); Chain = Reader; } void ASTWriter::IdentifierRead(IdentID ID, IdentifierInfo *II) { IdentifierIDs[II] = ID; } void ASTWriter::TypeRead(TypeIdx Idx, QualType T) { TypeIdxs[T] = Idx; } void ASTWriter::DeclRead(DeclID ID, const Decl *D) { DeclIDs[D] = ID; } void ASTWriter::SelectorRead(SelectorID ID, Selector S) { SelectorIDs[S] = ID; }