//=-- ExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-= // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a meta-engine for path-sensitive dataflow analysis that // is built on GREngine, but provides the boilerplate to execute transfer // functions and build the ExplodedGraph at the expression level. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngineBuilders.h" #include "clang/AST/CharUnits.h" #include "clang/AST/ParentMap.h" #include "clang/AST/StmtObjC.h" #include "clang/AST/DeclCXX.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/PrettyStackTrace.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/ImmutableList.h" #ifndef NDEBUG #include "llvm/Support/GraphWriter.h" #endif using namespace clang; using namespace ento; using llvm::dyn_cast; using llvm::dyn_cast_or_null; using llvm::cast; using llvm::APSInt; namespace { // Trait class for recording returned expression in the state. struct ReturnExpr { static int TagInt; typedef const Stmt *data_type; }; int ReturnExpr::TagInt; } //===----------------------------------------------------------------------===// // Utility functions. //===----------------------------------------------------------------------===// static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) { IdentifierInfo* II = &Ctx.Idents.get(name); return Ctx.Selectors.getSelector(0, &II); } //===----------------------------------------------------------------------===// // Engine construction and deletion. //===----------------------------------------------------------------------===// ExprEngine::ExprEngine(AnalysisManager &mgr, TransferFuncs *tf) : AMgr(mgr), Engine(*this), G(Engine.getGraph()), Builder(NULL), StateMgr(getContext(), mgr.getStoreManagerCreator(), mgr.getConstraintManagerCreator(), G.getAllocator(), *this), SymMgr(StateMgr.getSymbolManager()), svalBuilder(StateMgr.getSValBuilder()), EntryNode(NULL), currentStmt(NULL), NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL), RaiseSel(GetNullarySelector("raise", getContext())), BR(mgr, *this), TF(tf) { // FIXME: Eventually remove the TF object entirely. TF->RegisterChecks(*this); TF->RegisterPrinters(getStateManager().Printers); if (mgr.shouldEagerlyTrimExplodedGraph()) { // Enable eager node reclaimation when constructing the ExplodedGraph. G.enableNodeReclamation(); } } ExprEngine::~ExprEngine() { BR.FlushReports(); delete [] NSExceptionInstanceRaiseSelectors; } //===----------------------------------------------------------------------===// // Utility methods. //===----------------------------------------------------------------------===// const GRState* ExprEngine::getInitialState(const LocationContext *InitLoc) { const GRState *state = StateMgr.getInitialState(InitLoc); // Preconditions. // FIXME: It would be nice if we had a more general mechanism to add // such preconditions. Some day. do { const Decl *D = InitLoc->getDecl(); if (const FunctionDecl *FD = dyn_cast(D)) { // Precondition: the first argument of 'main' is an integer guaranteed // to be > 0. const IdentifierInfo *II = FD->getIdentifier(); if (!II || !(II->getName() == "main" && FD->getNumParams() > 0)) break; const ParmVarDecl *PD = FD->getParamDecl(0); QualType T = PD->getType(); if (!T->isIntegerType()) break; const MemRegion *R = state->getRegion(PD, InitLoc); if (!R) break; SVal V = state->getSVal(loc::MemRegionVal(R)); SVal Constraint_untested = evalBinOp(state, BO_GT, V, svalBuilder.makeZeroVal(T), getContext().IntTy); DefinedOrUnknownSVal *Constraint = dyn_cast(&Constraint_untested); if (!Constraint) break; if (const GRState *newState = state->assume(*Constraint, true)) state = newState; break; } if (const ObjCMethodDecl *MD = dyn_cast(D)) { // Precondition: 'self' is always non-null upon entry to an Objective-C // method. const ImplicitParamDecl *SelfD = MD->getSelfDecl(); const MemRegion *R = state->getRegion(SelfD, InitLoc); SVal V = state->getSVal(loc::MemRegionVal(R)); if (const Loc *LV = dyn_cast(&V)) { // Assume that the pointer value in 'self' is non-null. state = state->assume(*LV, true); assert(state && "'self' cannot be null"); } } } while (0); return state; } //===----------------------------------------------------------------------===// // Top-level transfer function logic (Dispatcher). //===----------------------------------------------------------------------===// /// evalAssume - Called by ConstraintManager. Used to call checker-specific /// logic for handling assumptions on symbolic values. const GRState *ExprEngine::processAssume(const GRState *state, SVal cond, bool assumption) { state = getCheckerManager().runCheckersForEvalAssume(state, cond, assumption); // If the state is infeasible at this point, bail out. if (!state) return NULL; return TF->evalAssume(state, cond, assumption); } bool ExprEngine::wantsRegionChangeUpdate(const GRState* state) { return getCheckerManager().wantsRegionChangeUpdate(state); } const GRState * ExprEngine::processRegionChanges(const GRState *state, const MemRegion * const *Begin, const MemRegion * const *End) { return getCheckerManager().runCheckersForRegionChanges(state, Begin, End); } void ExprEngine::processEndWorklist(bool hasWorkRemaining) { getCheckerManager().runCheckersForEndAnalysis(G, BR, *this); } void ExprEngine::processCFGElement(const CFGElement E, StmtNodeBuilder& builder) { switch (E.getKind()) { case CFGElement::Invalid: llvm_unreachable("Unexpected CFGElement kind."); case CFGElement::Statement: ProcessStmt(E.getAs()->getStmt(), builder); return; case CFGElement::Initializer: ProcessInitializer(E.getAs()->getInitializer(), builder); return; case CFGElement::AutomaticObjectDtor: case CFGElement::BaseDtor: case CFGElement::MemberDtor: case CFGElement::TemporaryDtor: ProcessImplicitDtor(*E.getAs(), builder); return; } } void ExprEngine::ProcessStmt(const CFGStmt S, StmtNodeBuilder& builder) { // Reclaim any unnecessary nodes in the ExplodedGraph. G.reclaimRecentlyAllocatedNodes(); // Recycle any unused states in the GRStateManager. StateMgr.recycleUnusedStates(); currentStmt = S.getStmt(); PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), currentStmt->getLocStart(), "Error evaluating statement"); Builder = &builder; EntryNode = builder.getPredecessor(); // Create the cleaned state. const LocationContext *LC = EntryNode->getLocationContext(); SymbolReaper SymReaper(LC, currentStmt, SymMgr); if (AMgr.shouldPurgeDead()) { const GRState *St = EntryNode->getState(); getCheckerManager().runCheckersForLiveSymbols(St, SymReaper); const StackFrameContext *SFC = LC->getCurrentStackFrame(); CleanedState = StateMgr.removeDeadBindings(St, SFC, SymReaper); } else { CleanedState = EntryNode->getState(); } // Process any special transfer function for dead symbols. ExplodedNodeSet Tmp; if (!SymReaper.hasDeadSymbols()) Tmp.Add(EntryNode); else { SaveAndRestore OldSink(Builder->BuildSinks); SaveOr OldHasGen(Builder->hasGeneratedNode); SaveAndRestore OldPurgeDeadSymbols(Builder->PurgingDeadSymbols); Builder->PurgingDeadSymbols = true; // FIXME: This should soon be removed. ExplodedNodeSet Tmp2; getTF().evalDeadSymbols(Tmp2, *this, *Builder, EntryNode, CleanedState, SymReaper); getCheckerManager().runCheckersForDeadSymbols(Tmp, Tmp2, SymReaper, currentStmt, *this); if (!Builder->BuildSinks && !Builder->hasGeneratedNode) Tmp.Add(EntryNode); } bool HasAutoGenerated = false; for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { ExplodedNodeSet Dst; // Set the cleaned state. Builder->SetCleanedState(*I == EntryNode ? CleanedState : GetState(*I)); // Visit the statement. Visit(currentStmt, *I, Dst); // Do we need to auto-generate a node? We only need to do this to generate // a node with a "cleaned" state; CoreEngine will actually handle // auto-transitions for other cases. if (Dst.size() == 1 && *Dst.begin() == EntryNode && !Builder->hasGeneratedNode && !HasAutoGenerated) { HasAutoGenerated = true; builder.generateNode(currentStmt, GetState(EntryNode), *I); } } // NULL out these variables to cleanup. CleanedState = NULL; EntryNode = NULL; currentStmt = 0; Builder = NULL; } void ExprEngine::ProcessInitializer(const CFGInitializer Init, StmtNodeBuilder &builder) { // We don't set EntryNode and currentStmt. And we don't clean up state. const CXXCtorInitializer *BMI = Init.getInitializer(); ExplodedNode *pred = builder.getPredecessor(); const StackFrameContext *stackFrame = cast(pred->getLocationContext()); const CXXConstructorDecl *decl = cast(stackFrame->getDecl()); const CXXThisRegion *thisReg = getCXXThisRegion(decl, stackFrame); SVal thisVal = pred->getState()->getSVal(thisReg); if (BMI->isAnyMemberInitializer()) { ExplodedNodeSet Dst; // Evaluate the initializer. Visit(BMI->getInit(), pred, Dst); for (ExplodedNodeSet::iterator I = Dst.begin(), E = Dst.end(); I != E; ++I){ ExplodedNode *Pred = *I; const GRState *state = Pred->getState(); const FieldDecl *FD = BMI->getAnyMember(); SVal FieldLoc = state->getLValue(FD, thisVal); SVal InitVal = state->getSVal(BMI->getInit()); state = state->bindLoc(FieldLoc, InitVal); // Use a custom node building process. PostInitializer PP(BMI, stackFrame); // Builder automatically add the generated node to the deferred set, // which are processed in the builder's dtor. builder.generateNode(PP, state, Pred); } return; } assert(BMI->isBaseInitializer()); // Get the base class declaration. const CXXConstructExpr *ctorExpr = cast(BMI->getInit()); // Create the base object region. SVal baseVal = getStoreManager().evalDerivedToBase(thisVal, ctorExpr->getType()); const MemRegion *baseReg = baseVal.getAsRegion(); assert(baseReg); Builder = &builder; ExplodedNodeSet dst; VisitCXXConstructExpr(ctorExpr, baseReg, pred, dst); } void ExprEngine::ProcessImplicitDtor(const CFGImplicitDtor D, StmtNodeBuilder &builder) { Builder = &builder; switch (D.getKind()) { case CFGElement::AutomaticObjectDtor: ProcessAutomaticObjDtor(cast(D), builder); break; case CFGElement::BaseDtor: ProcessBaseDtor(cast(D), builder); break; case CFGElement::MemberDtor: ProcessMemberDtor(cast(D), builder); break; case CFGElement::TemporaryDtor: ProcessTemporaryDtor(cast(D), builder); break; default: llvm_unreachable("Unexpected dtor kind."); } } void ExprEngine::ProcessAutomaticObjDtor(const CFGAutomaticObjDtor dtor, StmtNodeBuilder &builder) { ExplodedNode *pred = builder.getPredecessor(); const GRState *state = pred->getState(); const VarDecl *varDecl = dtor.getVarDecl(); QualType varType = varDecl->getType(); if (const ReferenceType *refType = varType->getAs()) varType = refType->getPointeeType(); const CXXRecordDecl *recordDecl = varType->getAsCXXRecordDecl(); assert(recordDecl && "get CXXRecordDecl fail"); const CXXDestructorDecl *dtorDecl = recordDecl->getDestructor(); Loc dest = state->getLValue(varDecl, pred->getLocationContext()); ExplodedNodeSet dstSet; VisitCXXDestructor(dtorDecl, cast(dest).getRegion(), dtor.getTriggerStmt(), pred, dstSet); } void ExprEngine::ProcessBaseDtor(const CFGBaseDtor D, StmtNodeBuilder &builder) { } void ExprEngine::ProcessMemberDtor(const CFGMemberDtor D, StmtNodeBuilder &builder) { } void ExprEngine::ProcessTemporaryDtor(const CFGTemporaryDtor D, StmtNodeBuilder &builder) { } void ExprEngine::Visit(const Stmt* S, ExplodedNode* Pred, ExplodedNodeSet& Dst) { PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), S->getLocStart(), "Error evaluating statement"); // Expressions to ignore. if (const Expr *Ex = dyn_cast(S)) S = Ex->IgnoreParens(); // FIXME: add metadata to the CFG so that we can disable // this check when we KNOW that there is no block-level subexpression. // The motivation is that this check requires a hashtable lookup. if (S != currentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(S)) { Dst.Add(Pred); return; } switch (S->getStmtClass()) { // C++ stuff we don't support yet. case Stmt::CXXBindTemporaryExprClass: case Stmt::CXXCatchStmtClass: case Stmt::CXXDependentScopeMemberExprClass: case Stmt::CXXForRangeStmtClass: case Stmt::CXXPseudoDestructorExprClass: case Stmt::CXXTemporaryObjectExprClass: case Stmt::CXXThrowExprClass: case Stmt::CXXTryStmtClass: case Stmt::CXXTypeidExprClass: case Stmt::CXXUuidofExprClass: case Stmt::CXXUnresolvedConstructExprClass: case Stmt::CXXScalarValueInitExprClass: case Stmt::DependentScopeDeclRefExprClass: case Stmt::UnaryTypeTraitExprClass: case Stmt::BinaryTypeTraitExprClass: case Stmt::ArrayTypeTraitExprClass: case Stmt::ExpressionTraitExprClass: case Stmt::UnresolvedLookupExprClass: case Stmt::UnresolvedMemberExprClass: case Stmt::CXXNoexceptExprClass: case Stmt::PackExpansionExprClass: case Stmt::SubstNonTypeTemplateParmPackExprClass: case Stmt::SEHTryStmtClass: case Stmt::SEHExceptStmtClass: case Stmt::SEHFinallyStmtClass: { SaveAndRestore OldSink(Builder->BuildSinks); Builder->BuildSinks = true; const ExplodedNode *node = MakeNode(Dst, S, Pred, GetState(Pred)); Engine.addAbortedBlock(node, Builder->getBlock()); break; } // We don't handle default arguments either yet, but we can fake it // for now by just skipping them. case Stmt::CXXDefaultArgExprClass: { Dst.Add(Pred); break; } case Stmt::ParenExprClass: llvm_unreachable("ParenExprs already handled."); case Stmt::GenericSelectionExprClass: llvm_unreachable("GenericSelectionExprs already handled."); // Cases that should never be evaluated simply because they shouldn't // appear in the CFG. case Stmt::BreakStmtClass: case Stmt::CaseStmtClass: case Stmt::CompoundStmtClass: case Stmt::ContinueStmtClass: case Stmt::DefaultStmtClass: case Stmt::DoStmtClass: case Stmt::ForStmtClass: case Stmt::GotoStmtClass: case Stmt::IfStmtClass: case Stmt::IndirectGotoStmtClass: case Stmt::LabelStmtClass: case Stmt::NoStmtClass: case Stmt::NullStmtClass: case Stmt::SwitchStmtClass: case Stmt::WhileStmtClass: llvm_unreachable("Stmt should not be in analyzer evaluation loop"); break; case Stmt::GNUNullExprClass: { MakeNode(Dst, S, Pred, GetState(Pred)->BindExpr(S, svalBuilder.makeNull())); break; } case Stmt::ObjCAtSynchronizedStmtClass: VisitObjCAtSynchronizedStmt(cast(S), Pred, Dst); break; case Stmt::ObjCPropertyRefExprClass: VisitObjCPropertyRefExpr(cast(S), Pred, Dst); break; // Cases not handled yet; but will handle some day. case Stmt::DesignatedInitExprClass: case Stmt::ExtVectorElementExprClass: case Stmt::ImaginaryLiteralClass: case Stmt::ImplicitValueInitExprClass: case Stmt::ObjCAtCatchStmtClass: case Stmt::ObjCAtFinallyStmtClass: case Stmt::ObjCAtTryStmtClass: case Stmt::ObjCEncodeExprClass: case Stmt::ObjCIsaExprClass: case Stmt::ObjCProtocolExprClass: case Stmt::ObjCSelectorExprClass: case Stmt::ObjCStringLiteralClass: case Stmt::ParenListExprClass: case Stmt::PredefinedExprClass: case Stmt::ShuffleVectorExprClass: case Stmt::VAArgExprClass: case Stmt::CUDAKernelCallExprClass: case Stmt::OpaqueValueExprClass: // Fall through. // Cases we intentionally don't evaluate, since they don't need // to be explicitly evaluated. case Stmt::AddrLabelExprClass: case Stmt::IntegerLiteralClass: case Stmt::CharacterLiteralClass: case Stmt::CXXBoolLiteralExprClass: case Stmt::ExprWithCleanupsClass: case Stmt::FloatingLiteralClass: case Stmt::SizeOfPackExprClass: case Stmt::CXXNullPtrLiteralExprClass: Dst.Add(Pred); // No-op. Simply propagate the current state unchanged. break; case Stmt::ArraySubscriptExprClass: VisitLvalArraySubscriptExpr(cast(S), Pred, Dst); break; case Stmt::AsmStmtClass: VisitAsmStmt(cast(S), Pred, Dst); break; case Stmt::BlockDeclRefExprClass: { const BlockDeclRefExpr *BE = cast(S); VisitCommonDeclRefExpr(BE, BE->getDecl(), Pred, Dst); break; } case Stmt::BlockExprClass: VisitBlockExpr(cast(S), Pred, Dst); break; case Stmt::BinaryOperatorClass: { const BinaryOperator* B = cast(S); if (B->isLogicalOp()) { VisitLogicalExpr(B, Pred, Dst); break; } else if (B->getOpcode() == BO_Comma) { const GRState* state = GetState(Pred); MakeNode(Dst, B, Pred, state->BindExpr(B, state->getSVal(B->getRHS()))); break; } if (AMgr.shouldEagerlyAssume() && (B->isRelationalOp() || B->isEqualityOp())) { ExplodedNodeSet Tmp; VisitBinaryOperator(cast(S), Pred, Tmp); evalEagerlyAssume(Dst, Tmp, cast(S)); } else VisitBinaryOperator(cast(S), Pred, Dst); break; } case Stmt::CallExprClass: case Stmt::CXXOperatorCallExprClass: case Stmt::CXXMemberCallExprClass: { VisitCallExpr(cast(S), Pred, Dst); break; } case Stmt::CXXConstructExprClass: { const CXXConstructExpr *C = cast(S); // For block-level CXXConstructExpr, we don't have a destination region. // Let VisitCXXConstructExpr() create one. VisitCXXConstructExpr(C, 0, Pred, Dst); break; } case Stmt::CXXNewExprClass: { const CXXNewExpr *NE = cast(S); VisitCXXNewExpr(NE, Pred, Dst); break; } case Stmt::CXXDeleteExprClass: { const CXXDeleteExpr *CDE = cast(S); VisitCXXDeleteExpr(CDE, Pred, Dst); break; } // FIXME: ChooseExpr is really a constant. We need to fix // the CFG do not model them as explicit control-flow. case Stmt::ChooseExprClass: { // __builtin_choose_expr const ChooseExpr* C = cast(S); VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); break; } case Stmt::CompoundAssignOperatorClass: VisitBinaryOperator(cast(S), Pred, Dst); break; case Stmt::CompoundLiteralExprClass: VisitCompoundLiteralExpr(cast(S), Pred, Dst); break; case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: { // '?' operator const AbstractConditionalOperator *C = cast(S); VisitGuardedExpr(C, C->getTrueExpr(), C->getFalseExpr(), Pred, Dst); break; } case Stmt::CXXThisExprClass: VisitCXXThisExpr(cast(S), Pred, Dst); break; case Stmt::DeclRefExprClass: { const DeclRefExpr *DE = cast(S); VisitCommonDeclRefExpr(DE, DE->getDecl(), Pred, Dst); break; } case Stmt::DeclStmtClass: VisitDeclStmt(cast(S), Pred, Dst); break; case Stmt::ImplicitCastExprClass: case Stmt::CStyleCastExprClass: case Stmt::CXXStaticCastExprClass: case Stmt::CXXDynamicCastExprClass: case Stmt::CXXReinterpretCastExprClass: case Stmt::CXXConstCastExprClass: case Stmt::CXXFunctionalCastExprClass: { const CastExpr* C = cast(S); VisitCast(C, C->getSubExpr(), Pred, Dst); break; } case Stmt::InitListExprClass: VisitInitListExpr(cast(S), Pred, Dst); break; case Stmt::MemberExprClass: VisitMemberExpr(cast(S), Pred, Dst); break; case Stmt::ObjCIvarRefExprClass: VisitLvalObjCIvarRefExpr(cast(S), Pred, Dst); break; case Stmt::ObjCForCollectionStmtClass: VisitObjCForCollectionStmt(cast(S), Pred, Dst); break; case Stmt::ObjCMessageExprClass: VisitObjCMessageExpr(cast(S), Pred, Dst); break; case Stmt::ObjCAtThrowStmtClass: { // FIXME: This is not complete. We basically treat @throw as // an abort. SaveAndRestore OldSink(Builder->BuildSinks); Builder->BuildSinks = true; MakeNode(Dst, S, Pred, GetState(Pred)); break; } case Stmt::ReturnStmtClass: VisitReturnStmt(cast(S), Pred, Dst); break; case Stmt::OffsetOfExprClass: VisitOffsetOfExpr(cast(S), Pred, Dst); break; case Stmt::UnaryExprOrTypeTraitExprClass: VisitUnaryExprOrTypeTraitExpr(cast(S), Pred, Dst); break; case Stmt::StmtExprClass: { const StmtExpr* SE = cast(S); if (SE->getSubStmt()->body_empty()) { // Empty statement expression. assert(SE->getType() == getContext().VoidTy && "Empty statement expression must have void type."); Dst.Add(Pred); break; } if (Expr* LastExpr = dyn_cast(*SE->getSubStmt()->body_rbegin())) { const GRState* state = GetState(Pred); MakeNode(Dst, SE, Pred, state->BindExpr(SE, state->getSVal(LastExpr))); } else Dst.Add(Pred); break; } case Stmt::StringLiteralClass: { const GRState* state = GetState(Pred); SVal V = state->getLValue(cast(S)); MakeNode(Dst, S, Pred, state->BindExpr(S, V)); return; } case Stmt::UnaryOperatorClass: { const UnaryOperator *U = cast(S); if (AMgr.shouldEagerlyAssume()&&(U->getOpcode() == UO_LNot)) { ExplodedNodeSet Tmp; VisitUnaryOperator(U, Pred, Tmp); evalEagerlyAssume(Dst, Tmp, U); } else VisitUnaryOperator(U, Pred, Dst); break; } } } //===----------------------------------------------------------------------===// // Block entrance. (Update counters). //===----------------------------------------------------------------------===// void ExprEngine::processCFGBlockEntrance(ExplodedNodeSet &dstNodes, GenericNodeBuilder &nodeBuilder){ // FIXME: Refactor this into a checker. const CFGBlock *block = nodeBuilder.getProgramPoint().getBlock(); ExplodedNode *pred = nodeBuilder.getPredecessor(); if (nodeBuilder.getBlockCounter().getNumVisited( pred->getLocationContext()->getCurrentStackFrame(), block->getBlockID()) >= AMgr.getMaxVisit()) { static int tag = 0; nodeBuilder.generateNode(pred->getState(), pred, &tag, true); } } //===----------------------------------------------------------------------===// // Generic node creation. //===----------------------------------------------------------------------===// ExplodedNode* ExprEngine::MakeNode(ExplodedNodeSet& Dst, const Stmt* S, ExplodedNode* Pred, const GRState* St, ProgramPoint::Kind K, const void *tag) { assert (Builder && "StmtNodeBuilder not present."); SaveAndRestore OldTag(Builder->Tag); Builder->Tag = tag; return Builder->MakeNode(Dst, S, Pred, St, K); } //===----------------------------------------------------------------------===// // Branch processing. //===----------------------------------------------------------------------===// const GRState* ExprEngine::MarkBranch(const GRState* state, const Stmt* Terminator, bool branchTaken) { switch (Terminator->getStmtClass()) { default: return state; case Stmt::BinaryOperatorClass: { // '&&' and '||' const BinaryOperator* B = cast(Terminator); BinaryOperator::Opcode Op = B->getOpcode(); assert (Op == BO_LAnd || Op == BO_LOr); // For &&, if we take the true branch, then the value of the whole // expression is that of the RHS expression. // // For ||, if we take the false branch, then the value of the whole // expression is that of the RHS expression. const Expr* Ex = (Op == BO_LAnd && branchTaken) || (Op == BO_LOr && !branchTaken) ? B->getRHS() : B->getLHS(); return state->BindExpr(B, UndefinedVal(Ex)); } case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: { // ?: const AbstractConditionalOperator* C = cast(Terminator); // For ?, if branchTaken == true then the value is either the LHS or // the condition itself. (GNU extension). const Expr* Ex; if (branchTaken) Ex = C->getTrueExpr(); else Ex = C->getFalseExpr(); return state->BindExpr(C, UndefinedVal(Ex)); } case Stmt::ChooseExprClass: { // ?: const ChooseExpr* C = cast(Terminator); const Expr* Ex = branchTaken ? C->getLHS() : C->getRHS(); return state->BindExpr(C, UndefinedVal(Ex)); } } } /// RecoverCastedSymbol - A helper function for ProcessBranch that is used /// to try to recover some path-sensitivity for casts of symbolic /// integers that promote their values (which are currently not tracked well). /// This function returns the SVal bound to Condition->IgnoreCasts if all the // cast(s) did was sign-extend the original value. static SVal RecoverCastedSymbol(GRStateManager& StateMgr, const GRState* state, const Stmt* Condition, ASTContext& Ctx) { const Expr *Ex = dyn_cast(Condition); if (!Ex) return UnknownVal(); uint64_t bits = 0; bool bitsInit = false; while (const CastExpr *CE = dyn_cast(Ex)) { QualType T = CE->getType(); if (!T->isIntegerType()) return UnknownVal(); uint64_t newBits = Ctx.getTypeSize(T); if (!bitsInit || newBits < bits) { bitsInit = true; bits = newBits; } Ex = CE->getSubExpr(); } // We reached a non-cast. Is it a symbolic value? QualType T = Ex->getType(); if (!bitsInit || !T->isIntegerType() || Ctx.getTypeSize(T) > bits) return UnknownVal(); return state->getSVal(Ex); } void ExprEngine::processBranch(const Stmt* Condition, const Stmt* Term, BranchNodeBuilder& builder) { // Check for NULL conditions; e.g. "for(;;)" if (!Condition) { builder.markInfeasible(false); return; } PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), Condition->getLocStart(), "Error evaluating branch"); getCheckerManager().runCheckersForBranchCondition(Condition, builder, *this); // If the branch condition is undefined, return; if (!builder.isFeasible(true) && !builder.isFeasible(false)) return; const GRState* PrevState = builder.getState(); SVal X = PrevState->getSVal(Condition); if (X.isUnknownOrUndef()) { // Give it a chance to recover from unknown. if (const Expr *Ex = dyn_cast(Condition)) { if (Ex->getType()->isIntegerType()) { // Try to recover some path-sensitivity. Right now casts of symbolic // integers that promote their values are currently not tracked well. // If 'Condition' is such an expression, try and recover the // underlying value and use that instead. SVal recovered = RecoverCastedSymbol(getStateManager(), builder.getState(), Condition, getContext()); if (!recovered.isUnknown()) { X = recovered; } } } // If the condition is still unknown, give up. if (X.isUnknownOrUndef()) { builder.generateNode(MarkBranch(PrevState, Term, true), true); builder.generateNode(MarkBranch(PrevState, Term, false), false); return; } } DefinedSVal V = cast(X); // Process the true branch. if (builder.isFeasible(true)) { if (const GRState *state = PrevState->assume(V, true)) builder.generateNode(MarkBranch(state, Term, true), true); else builder.markInfeasible(true); } // Process the false branch. if (builder.isFeasible(false)) { if (const GRState *state = PrevState->assume(V, false)) builder.generateNode(MarkBranch(state, Term, false), false); else builder.markInfeasible(false); } } /// processIndirectGoto - Called by CoreEngine. Used to generate successor /// nodes by processing the 'effects' of a computed goto jump. void ExprEngine::processIndirectGoto(IndirectGotoNodeBuilder &builder) { const GRState *state = builder.getState(); SVal V = state->getSVal(builder.getTarget()); // Three possibilities: // // (1) We know the computed label. // (2) The label is NULL (or some other constant), or Undefined. // (3) We have no clue about the label. Dispatch to all targets. // typedef IndirectGotoNodeBuilder::iterator iterator; if (isa(V)) { const LabelDecl *L = cast(V).getLabel(); for (iterator I = builder.begin(), E = builder.end(); I != E; ++I) { if (I.getLabel() == L) { builder.generateNode(I, state); return; } } assert(false && "No block with label."); return; } if (isa(V) || isa(V)) { // Dispatch to the first target and mark it as a sink. //ExplodedNode* N = builder.generateNode(builder.begin(), state, true); // FIXME: add checker visit. // UndefBranches.insert(N); return; } // This is really a catch-all. We don't support symbolics yet. // FIXME: Implement dispatch for symbolic pointers. for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) builder.generateNode(I, state); } void ExprEngine::VisitGuardedExpr(const Expr* Ex, const Expr* L, const Expr* R, ExplodedNode* Pred, ExplodedNodeSet& Dst) { assert(Ex == currentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(Ex)); const GRState* state = GetState(Pred); SVal X = state->getSVal(Ex); assert (X.isUndef()); const Expr *SE = (Expr*) cast(X).getData(); assert(SE); X = state->getSVal(SE); // Make sure that we invalidate the previous binding. MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, X, true)); } /// ProcessEndPath - Called by CoreEngine. Used to generate end-of-path /// nodes when the control reaches the end of a function. void ExprEngine::processEndOfFunction(EndOfFunctionNodeBuilder& builder) { getTF().evalEndPath(*this, builder); StateMgr.EndPath(builder.getState()); getCheckerManager().runCheckersForEndPath(builder, *this); } /// ProcessSwitch - Called by CoreEngine. Used to generate successor /// nodes by processing the 'effects' of a switch statement. void ExprEngine::processSwitch(SwitchNodeBuilder& builder) { typedef SwitchNodeBuilder::iterator iterator; const GRState* state = builder.getState(); const Expr* CondE = builder.getCondition(); SVal CondV_untested = state->getSVal(CondE); if (CondV_untested.isUndef()) { //ExplodedNode* N = builder.generateDefaultCaseNode(state, true); // FIXME: add checker //UndefBranches.insert(N); return; } DefinedOrUnknownSVal CondV = cast(CondV_untested); const GRState *DefaultSt = state; iterator I = builder.begin(), EI = builder.end(); bool defaultIsFeasible = I == EI; for ( ; I != EI; ++I) { // Successor may be pruned out during CFG construction. if (!I.getBlock()) continue; const CaseStmt* Case = I.getCase(); // Evaluate the LHS of the case value. Expr::EvalResult V1; bool b = Case->getLHS()->Evaluate(V1, getContext()); // Sanity checks. These go away in Release builds. assert(b && V1.Val.isInt() && !V1.HasSideEffects && "Case condition must evaluate to an integer constant."); (void)b; // silence unused variable warning assert(V1.Val.getInt().getBitWidth() == getContext().getTypeSize(CondE->getType())); // Get the RHS of the case, if it exists. Expr::EvalResult V2; if (const Expr* E = Case->getRHS()) { b = E->Evaluate(V2, getContext()); assert(b && V2.Val.isInt() && !V2.HasSideEffects && "Case condition must evaluate to an integer constant."); (void)b; // silence unused variable warning } else V2 = V1; // FIXME: Eventually we should replace the logic below with a range // comparison, rather than concretize the values within the range. // This should be easy once we have "ranges" for NonLVals. do { nonloc::ConcreteInt CaseVal(getBasicVals().getValue(V1.Val.getInt())); DefinedOrUnknownSVal Res = svalBuilder.evalEQ(DefaultSt ? DefaultSt : state, CondV, CaseVal); // Now "assume" that the case matches. if (const GRState* stateNew = state->assume(Res, true)) { builder.generateCaseStmtNode(I, stateNew); // If CondV evaluates to a constant, then we know that this // is the *only* case that we can take, so stop evaluating the // others. if (isa(CondV)) return; } // Now "assume" that the case doesn't match. Add this state // to the default state (if it is feasible). if (DefaultSt) { if (const GRState *stateNew = DefaultSt->assume(Res, false)) { defaultIsFeasible = true; DefaultSt = stateNew; } else { defaultIsFeasible = false; DefaultSt = NULL; } } // Concretize the next value in the range. if (V1.Val.getInt() == V2.Val.getInt()) break; ++V1.Val.getInt(); assert (V1.Val.getInt() <= V2.Val.getInt()); } while (true); } if (!defaultIsFeasible) return; // If we have switch(enum value), the default branch is not // feasible if all of the enum constants not covered by 'case:' statements // are not feasible values for the switch condition. // // Note that this isn't as accurate as it could be. Even if there isn't // a case for a particular enum value as long as that enum value isn't // feasible then it shouldn't be considered for making 'default:' reachable. const SwitchStmt *SS = builder.getSwitch(); const Expr *CondExpr = SS->getCond()->IgnoreParenImpCasts(); if (CondExpr->getType()->getAs()) { if (SS->isAllEnumCasesCovered()) return; } builder.generateDefaultCaseNode(DefaultSt); } void ExprEngine::processCallEnter(CallEnterNodeBuilder &B) { const GRState *state = B.getState()->enterStackFrame(B.getCalleeContext()); B.generateNode(state); } void ExprEngine::processCallExit(CallExitNodeBuilder &B) { const GRState *state = B.getState(); const ExplodedNode *Pred = B.getPredecessor(); const StackFrameContext *calleeCtx = cast(Pred->getLocationContext()); const Stmt *CE = calleeCtx->getCallSite(); // If the callee returns an expression, bind its value to CallExpr. const Stmt *ReturnedExpr = state->get(); if (ReturnedExpr) { SVal RetVal = state->getSVal(ReturnedExpr); state = state->BindExpr(CE, RetVal); // Clear the return expr GDM. state = state->remove(); } // Bind the constructed object value to CXXConstructExpr. if (const CXXConstructExpr *CCE = dyn_cast(CE)) { const CXXThisRegion *ThisR = getCXXThisRegion(CCE->getConstructor()->getParent(), calleeCtx); SVal ThisV = state->getSVal(ThisR); // Always bind the region to the CXXConstructExpr. state = state->BindExpr(CCE, ThisV); } B.generateNode(state); } //===----------------------------------------------------------------------===// // Transfer functions: logical operations ('&&', '||'). //===----------------------------------------------------------------------===// void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode* Pred, ExplodedNodeSet& Dst) { assert(B->getOpcode() == BO_LAnd || B->getOpcode() == BO_LOr); assert(B==currentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(B)); const GRState* state = GetState(Pred); SVal X = state->getSVal(B); assert(X.isUndef()); const Expr *Ex = (const Expr*) cast(X).getData(); assert(Ex); if (Ex == B->getRHS()) { X = state->getSVal(Ex); // Handle undefined values. if (X.isUndef()) { MakeNode(Dst, B, Pred, state->BindExpr(B, X)); return; } DefinedOrUnknownSVal XD = cast(X); // We took the RHS. Because the value of the '&&' or '||' expression must // evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0 // or 1. Alternatively, we could take a lazy approach, and calculate this // value later when necessary. We don't have the machinery in place for // this right now, and since most logical expressions are used for branches, // the payoff is not likely to be large. Instead, we do eager evaluation. if (const GRState *newState = state->assume(XD, true)) MakeNode(Dst, B, Pred, newState->BindExpr(B, svalBuilder.makeIntVal(1U, B->getType()))); if (const GRState *newState = state->assume(XD, false)) MakeNode(Dst, B, Pred, newState->BindExpr(B, svalBuilder.makeIntVal(0U, B->getType()))); } else { // We took the LHS expression. Depending on whether we are '&&' or // '||' we know what the value of the expression is via properties of // the short-circuiting. X = svalBuilder.makeIntVal(B->getOpcode() == BO_LAnd ? 0U : 1U, B->getType()); MakeNode(Dst, B, Pred, state->BindExpr(B, X)); } } //===----------------------------------------------------------------------===// // Transfer functions: Loads and stores. //===----------------------------------------------------------------------===// void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred, ExplodedNodeSet &Dst) { ExplodedNodeSet Tmp; CanQualType T = getContext().getCanonicalType(BE->getType()); SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T, Pred->getLocationContext()); MakeNode(Tmp, BE, Pred, GetState(Pred)->BindExpr(BE, V), ProgramPoint::PostLValueKind); // Post-visit the BlockExpr. getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this); } void ExprEngine::VisitCommonDeclRefExpr(const Expr *Ex, const NamedDecl *D, ExplodedNode *Pred, ExplodedNodeSet &Dst) { const GRState *state = GetState(Pred); if (const VarDecl* VD = dyn_cast(D)) { assert(Ex->isLValue()); SVal V = state->getLValue(VD, Pred->getLocationContext()); // For references, the 'lvalue' is the pointer address stored in the // reference region. if (VD->getType()->isReferenceType()) { if (const MemRegion *R = V.getAsRegion()) V = state->getSVal(R); else V = UnknownVal(); } MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V), ProgramPoint::PostLValueKind); return; } if (const EnumConstantDecl* ED = dyn_cast(D)) { assert(!Ex->isLValue()); SVal V = svalBuilder.makeIntVal(ED->getInitVal()); MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V)); return; } if (const FunctionDecl* FD = dyn_cast(D)) { SVal V = svalBuilder.getFunctionPointer(FD); MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V), ProgramPoint::PostLValueKind); return; } assert (false && "ValueDecl support for this ValueDecl not implemented."); } /// VisitArraySubscriptExpr - Transfer function for array accesses void ExprEngine::VisitLvalArraySubscriptExpr(const ArraySubscriptExpr* A, ExplodedNode* Pred, ExplodedNodeSet& Dst){ const Expr* Base = A->getBase()->IgnoreParens(); const Expr* Idx = A->getIdx()->IgnoreParens(); // Evaluate the base. ExplodedNodeSet Tmp; Visit(Base, Pred, Tmp); for (ExplodedNodeSet::iterator I1=Tmp.begin(), E1=Tmp.end(); I1!=E1; ++I1) { ExplodedNodeSet Tmp2; Visit(Idx, *I1, Tmp2); // Evaluate the index. ExplodedNodeSet Tmp3; getCheckerManager().runCheckersForPreStmt(Tmp3, Tmp2, A, *this); for (ExplodedNodeSet::iterator I2=Tmp3.begin(),E2=Tmp3.end();I2!=E2; ++I2) { const GRState* state = GetState(*I2); SVal V = state->getLValue(A->getType(), state->getSVal(Idx), state->getSVal(Base)); assert(A->isLValue()); MakeNode(Dst, A, *I2, state->BindExpr(A, V), ProgramPoint::PostLValueKind); } } } /// VisitMemberExpr - Transfer function for member expressions. void ExprEngine::VisitMemberExpr(const MemberExpr* M, ExplodedNode* Pred, ExplodedNodeSet& Dst) { Expr *baseExpr = M->getBase()->IgnoreParens(); ExplodedNodeSet dstBase; Visit(baseExpr, Pred, dstBase); FieldDecl *field = dyn_cast(M->getMemberDecl()); if (!field) // FIXME: skipping member expressions for non-fields return; for (ExplodedNodeSet::iterator I = dstBase.begin(), E = dstBase.end(); I != E; ++I) { const GRState* state = GetState(*I); SVal baseExprVal = state->getSVal(baseExpr); if (isa(baseExprVal) || isa(baseExprVal) || // FIXME: This can originate by conjuring a symbol for an unknown // temporary struct object, see test/Analysis/fields.c: // (p = getit()).x isa(baseExprVal)) { MakeNode(Dst, M, *I, state->BindExpr(M, UnknownVal())); continue; } // FIXME: Should we insert some assumption logic in here to determine // if "Base" is a valid piece of memory? Before we put this assumption // later when using FieldOffset lvals (which we no longer have). // For all other cases, compute an lvalue. SVal L = state->getLValue(field, baseExprVal); if (M->isLValue()) MakeNode(Dst, M, *I, state->BindExpr(M, L), ProgramPoint::PostLValueKind); else evalLoad(Dst, M, *I, state, L); } } /// evalBind - Handle the semantics of binding a value to a specific location. /// This method is used by evalStore and (soon) VisitDeclStmt, and others. void ExprEngine::evalBind(ExplodedNodeSet& Dst, const Stmt* StoreE, ExplodedNode* Pred, const GRState* state, SVal location, SVal Val, bool atDeclInit) { // Do a previsit of the bind. ExplodedNodeSet CheckedSet, Src; Src.Add(Pred); getCheckerManager().runCheckersForBind(CheckedSet, Src, location, Val, StoreE, *this); for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); I!=E; ++I) { if (Pred != *I) state = GetState(*I); const GRState* newState = 0; if (atDeclInit) { const VarRegion *VR = cast(cast(location).getRegion()); newState = state->bindDecl(VR, Val); } else { if (location.isUnknown()) { // We know that the new state will be the same as the old state since // the location of the binding is "unknown". Consequently, there // is no reason to just create a new node. newState = state; } else { // We are binding to a value other than 'unknown'. Perform the binding // using the StoreManager. newState = state->bindLoc(cast(location), Val); } } // The next thing to do is check if the TransferFuncs object wants to // update the state based on the new binding. If the GRTransferFunc object // doesn't do anything, just auto-propagate the current state. // NOTE: We use 'AssignE' for the location of the PostStore if 'AssignE' // is non-NULL. Checkers typically care about StmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, *I, newState, StoreE, true); getTF().evalBind(BuilderRef, location, Val); } } /// evalStore - Handle the semantics of a store via an assignment. /// @param Dst The node set to store generated state nodes /// @param AssignE The assignment expression if the store happens in an /// assignment. /// @param LocatioinE The location expression that is stored to. /// @param state The current simulation state /// @param location The location to store the value /// @param Val The value to be stored void ExprEngine::evalStore(ExplodedNodeSet& Dst, const Expr *AssignE, const Expr* LocationE, ExplodedNode* Pred, const GRState* state, SVal location, SVal Val, const void *tag) { assert(Builder && "StmtNodeBuilder must be defined."); // Proceed with the store. We use AssignE as the anchor for the PostStore // ProgramPoint if it is non-NULL, and LocationE otherwise. const Expr *StoreE = AssignE ? AssignE : LocationE; if (isa(location)) { loc::ObjCPropRef prop = cast(location); ExplodedNodeSet src = Pred; return VisitObjCMessage(ObjCPropertySetter(prop.getPropRefExpr(), StoreE, Val), src, Dst); } // Evaluate the location (checks for bad dereferences). ExplodedNodeSet Tmp; evalLocation(Tmp, LocationE, Pred, state, location, tag, false); if (Tmp.empty()) return; if (location.isUndef()) return; SaveAndRestore OldSPointKind(Builder->PointKind, ProgramPoint::PostStoreKind); for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) evalBind(Dst, StoreE, *NI, GetState(*NI), location, Val); } void ExprEngine::evalLoad(ExplodedNodeSet& Dst, const Expr *Ex, ExplodedNode* Pred, const GRState* state, SVal location, const void *tag, QualType LoadTy) { assert(!isa(location) && "location cannot be a NonLoc."); if (isa(location)) { loc::ObjCPropRef prop = cast(location); ExplodedNodeSet src = Pred; return VisitObjCMessage(ObjCPropertyGetter(prop.getPropRefExpr(), Ex), src, Dst); } // Are we loading from a region? This actually results in two loads; one // to fetch the address of the referenced value and one to fetch the // referenced value. if (const TypedRegion *TR = dyn_cast_or_null(location.getAsRegion())) { QualType ValTy = TR->getValueType(); if (const ReferenceType *RT = ValTy->getAs()) { static int loadReferenceTag = 0; ExplodedNodeSet Tmp; evalLoadCommon(Tmp, Ex, Pred, state, location, &loadReferenceTag, getContext().getPointerType(RT->getPointeeType())); // Perform the load from the referenced value. for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end() ; I!=E; ++I) { state = GetState(*I); location = state->getSVal(Ex); evalLoadCommon(Dst, Ex, *I, state, location, tag, LoadTy); } return; } } evalLoadCommon(Dst, Ex, Pred, state, location, tag, LoadTy); } void ExprEngine::evalLoadCommon(ExplodedNodeSet& Dst, const Expr *Ex, ExplodedNode* Pred, const GRState* state, SVal location, const void *tag, QualType LoadTy) { // Evaluate the location (checks for bad dereferences). ExplodedNodeSet Tmp; evalLocation(Tmp, Ex, Pred, state, location, tag, true); if (Tmp.empty()) return; if (location.isUndef()) return; SaveAndRestore OldSPointKind(Builder->PointKind); // Proceed with the load. for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) { state = GetState(*NI); if (location.isUnknown()) { // This is important. We must nuke the old binding. MakeNode(Dst, Ex, *NI, state->BindExpr(Ex, UnknownVal()), ProgramPoint::PostLoadKind, tag); } else { if (LoadTy.isNull()) LoadTy = Ex->getType(); SVal V = state->getSVal(cast(location), LoadTy); MakeNode(Dst, Ex, *NI, state->bindExprAndLocation(Ex, location, V), ProgramPoint::PostLoadKind, tag); } } } void ExprEngine::evalLocation(ExplodedNodeSet &Dst, const Stmt *S, ExplodedNode* Pred, const GRState* state, SVal location, const void *tag, bool isLoad) { // Early checks for performance reason. if (location.isUnknown()) { Dst.Add(Pred); return; } ExplodedNodeSet Src; if (Builder->GetState(Pred) == state) { Src.Add(Pred); } else { // Associate this new state with an ExplodedNode. // FIXME: If I pass null tag, the graph is incorrect, e.g for // int *p; // p = 0; // *p = 0xDEADBEEF; // "p = 0" is not noted as "Null pointer value stored to 'p'" but // instead "int *p" is noted as // "Variable 'p' initialized to a null pointer value" ExplodedNode *N = Builder->generateNode(S, state, Pred, this); Src.Add(N ? N : Pred); } getCheckerManager().runCheckersForLocation(Dst, Src, location, isLoad, S, *this); } bool ExprEngine::InlineCall(ExplodedNodeSet &Dst, const CallExpr *CE, ExplodedNode *Pred) { return false; // Inlining isn't correct right now because we: // (a) don't generate CallExit nodes. // (b) we need a way to postpone doing post-visits of CallExprs until // the CallExit. This means we need CallExits for the non-inline // cases as well. #if 0 const GRState *state = GetState(Pred); const Expr *Callee = CE->getCallee(); SVal L = state->getSVal(Callee); const FunctionDecl *FD = L.getAsFunctionDecl(); if (!FD) return false; // Specially handle CXXMethods. const CXXMethodDecl *methodDecl = 0; switch (CE->getStmtClass()) { default: break; case Stmt::CXXOperatorCallExprClass: { const CXXOperatorCallExpr *opCall = cast(CE); methodDecl = llvm::dyn_cast_or_null(opCall->getCalleeDecl()); break; } case Stmt::CXXMemberCallExprClass: { const CXXMemberCallExpr *memberCall = cast(CE); const MemberExpr *memberExpr = cast(memberCall->getCallee()->IgnoreParens()); methodDecl = cast(memberExpr->getMemberDecl()); break; } } // Check if the function definition is in the same translation unit. if (FD->hasBody(FD)) { const StackFrameContext *stackFrame = AMgr.getStackFrame(AMgr.getAnalysisContext(FD), Pred->getLocationContext(), CE, Builder->getBlock(), Builder->getIndex()); // Now we have the definition of the callee, create a CallEnter node. CallEnter Loc(CE, stackFrame, Pred->getLocationContext()); ExplodedNode *N = Builder->generateNode(Loc, state, Pred); Dst.Add(N); return true; } // Check if we can find the function definition in other translation units. if (AMgr.hasIndexer()) { AnalysisContext *C = AMgr.getAnalysisContextInAnotherTU(FD); if (C == 0) return false; const StackFrameContext *stackFrame = AMgr.getStackFrame(C, Pred->getLocationContext(), CE, Builder->getBlock(), Builder->getIndex()); CallEnter Loc(CE, stackFrame, Pred->getLocationContext()); ExplodedNode *N = Builder->generateNode(Loc, state, Pred); Dst.Add(N); return true; } // Generate the CallExit node. return false; #endif } void ExprEngine::VisitCallExpr(const CallExpr* CE, ExplodedNode* Pred, ExplodedNodeSet& dst) { // Determine the type of function we're calling (if available). const FunctionProtoType *Proto = NULL; QualType FnType = CE->getCallee()->IgnoreParens()->getType(); if (const PointerType *FnTypePtr = FnType->getAs()) Proto = FnTypePtr->getPointeeType()->getAs(); // Should the first argument be evaluated as an lvalue? bool firstArgumentAsLvalue = false; switch (CE->getStmtClass()) { case Stmt::CXXOperatorCallExprClass: firstArgumentAsLvalue = true; break; default: break; } // Evaluate the arguments. ExplodedNodeSet dstArgsEvaluated; evalArguments(CE->arg_begin(), CE->arg_end(), Proto, Pred, dstArgsEvaluated, firstArgumentAsLvalue); // Evaluate the callee. ExplodedNodeSet dstCalleeEvaluated; evalCallee(CE, dstArgsEvaluated, dstCalleeEvaluated); // Perform the previsit of the CallExpr. ExplodedNodeSet dstPreVisit; getCheckerManager().runCheckersForPreStmt(dstPreVisit, dstCalleeEvaluated, CE, *this); // Now evaluate the call itself. class DefaultEval : public GraphExpander { ExprEngine &Eng; const CallExpr *CE; public: DefaultEval(ExprEngine &eng, const CallExpr *ce) : Eng(eng), CE(ce) {} virtual void expandGraph(ExplodedNodeSet &Dst, ExplodedNode *Pred) { // Should we inline the call? if (Eng.getAnalysisManager().shouldInlineCall() && Eng.InlineCall(Dst, CE, Pred)) { return; } StmtNodeBuilder &Builder = Eng.getBuilder(); assert(&Builder && "StmtNodeBuilder must be defined."); // Dispatch to the plug-in transfer function. unsigned oldSize = Dst.size(); SaveOr OldHasGen(Builder.hasGeneratedNode); // Dispatch to transfer function logic to handle the call itself. const Expr* Callee = CE->getCallee()->IgnoreParens(); const GRState* state = Eng.GetState(Pred); SVal L = state->getSVal(Callee); Eng.getTF().evalCall(Dst, Eng, Builder, CE, L, Pred); // Handle the case where no nodes where generated. Auto-generate that // contains the updated state if we aren't generating sinks. if (!Builder.BuildSinks && Dst.size() == oldSize && !Builder.hasGeneratedNode) Eng.MakeNode(Dst, CE, Pred, state); } }; // Finally, evaluate the function call. We try each of the checkers // to see if the can evaluate the function call. ExplodedNodeSet dstCallEvaluated; DefaultEval defEval(*this, CE); getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, dstPreVisit, CE, *this, &defEval); // Finally, perform the post-condition check of the CallExpr and store // the created nodes in 'Dst'. getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE, *this); } //===----------------------------------------------------------------------===// // Transfer function: Objective-C dot-syntax to access a property. //===----------------------------------------------------------------------===// void ExprEngine::VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *Ex, ExplodedNode *Pred, ExplodedNodeSet &Dst) { ExplodedNodeSet dstBase; // Visit the receiver (if any). if (Ex->isObjectReceiver()) Visit(Ex->getBase(), Pred, dstBase); else dstBase = Pred; ExplodedNodeSet dstPropRef; // Using the base, compute the lvalue of the instance variable. for (ExplodedNodeSet::iterator I = dstBase.begin(), E = dstBase.end(); I!=E; ++I) { ExplodedNode *nodeBase = *I; const GRState *state = GetState(nodeBase); MakeNode(dstPropRef, Ex, *I, state->BindExpr(Ex, loc::ObjCPropRef(Ex))); } Dst.insert(dstPropRef); } //===----------------------------------------------------------------------===// // Transfer function: Objective-C ivar references. //===----------------------------------------------------------------------===// static std::pair EagerlyAssumeTag = std::pair(&EagerlyAssumeTag,static_cast(0)); void ExprEngine::evalEagerlyAssume(ExplodedNodeSet &Dst, ExplodedNodeSet &Src, const Expr *Ex) { for (ExplodedNodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) { ExplodedNode *Pred = *I; // Test if the previous node was as the same expression. This can happen // when the expression fails to evaluate to anything meaningful and // (as an optimization) we don't generate a node. ProgramPoint P = Pred->getLocation(); if (!isa(P) || cast(P).getStmt() != Ex) { Dst.Add(Pred); continue; } const GRState* state = GetState(Pred); SVal V = state->getSVal(Ex); if (nonloc::SymExprVal *SEV = dyn_cast(&V)) { // First assume that the condition is true. if (const GRState *stateTrue = state->assume(*SEV, true)) { stateTrue = stateTrue->BindExpr(Ex, svalBuilder.makeIntVal(1U, Ex->getType())); Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag, Pred->getLocationContext()), stateTrue, Pred)); } // Next, assume that the condition is false. if (const GRState *stateFalse = state->assume(*SEV, false)) { stateFalse = stateFalse->BindExpr(Ex, svalBuilder.makeIntVal(0U, Ex->getType())); Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag, Pred->getLocationContext()), stateFalse, Pred)); } } else Dst.Add(Pred); } } //===----------------------------------------------------------------------===// // Transfer function: Objective-C @synchronized. //===----------------------------------------------------------------------===// void ExprEngine::VisitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt *S, ExplodedNode *Pred, ExplodedNodeSet &Dst) { // The mutex expression is a CFGElement, so we don't need to explicitly // visit it since it will already be processed. // Pre-visit the ObjCAtSynchronizedStmt. ExplodedNodeSet Tmp; Tmp.Add(Pred); getCheckerManager().runCheckersForPreStmt(Dst, Tmp, S, *this); } //===----------------------------------------------------------------------===// // Transfer function: Objective-C ivar references. //===----------------------------------------------------------------------===// void ExprEngine::VisitLvalObjCIvarRefExpr(const ObjCIvarRefExpr* Ex, ExplodedNode* Pred, ExplodedNodeSet& Dst) { // Visit the base expression, which is needed for computing the lvalue // of the ivar. ExplodedNodeSet dstBase; const Expr *baseExpr = Ex->getBase(); Visit(baseExpr, Pred, dstBase); ExplodedNodeSet dstIvar; // Using the base, compute the lvalue of the instance variable. for (ExplodedNodeSet::iterator I = dstBase.begin(), E = dstBase.end(); I!=E; ++I) { ExplodedNode *nodeBase = *I; const GRState *state = GetState(nodeBase); SVal baseVal = state->getSVal(baseExpr); SVal location = state->getLValue(Ex->getDecl(), baseVal); MakeNode(dstIvar, Ex, *I, state->BindExpr(Ex, location)); } // Perform the post-condition check of the ObjCIvarRefExpr and store // the created nodes in 'Dst'. getCheckerManager().runCheckersForPostStmt(Dst, dstIvar, Ex, *this); } //===----------------------------------------------------------------------===// // Transfer function: Objective-C fast enumeration 'for' statements. //===----------------------------------------------------------------------===// void ExprEngine::VisitObjCForCollectionStmt(const ObjCForCollectionStmt* S, ExplodedNode* Pred, ExplodedNodeSet& Dst) { // ObjCForCollectionStmts are processed in two places. This method // handles the case where an ObjCForCollectionStmt* occurs as one of the // statements within a basic block. This transfer function does two things: // // (1) binds the next container value to 'element'. This creates a new // node in the ExplodedGraph. // // (2) binds the value 0/1 to the ObjCForCollectionStmt* itself, indicating // whether or not the container has any more elements. This value // will be tested in ProcessBranch. We need to explicitly bind // this value because a container can contain nil elements. // // FIXME: Eventually this logic should actually do dispatches to // 'countByEnumeratingWithState:objects:count:' (NSFastEnumeration). // This will require simulating a temporary NSFastEnumerationState, either // through an SVal or through the use of MemRegions. This value can // be affixed to the ObjCForCollectionStmt* instead of 0/1; when the loop // terminates we reclaim the temporary (it goes out of scope) and we // we can test if the SVal is 0 or if the MemRegion is null (depending // on what approach we take). // // For now: simulate (1) by assigning either a symbol or nil if the // container is empty. Thus this transfer function will by default // result in state splitting. const Stmt* elem = S->getElement(); SVal ElementV; if (const DeclStmt* DS = dyn_cast(elem)) { const VarDecl* ElemD = cast(DS->getSingleDecl()); assert (ElemD->getInit() == 0); ElementV = GetState(Pred)->getLValue(ElemD, Pred->getLocationContext()); VisitObjCForCollectionStmtAux(S, Pred, Dst, ElementV); return; } ExplodedNodeSet Tmp; Visit(cast(elem), Pred, Tmp); for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { const GRState* state = GetState(*I); VisitObjCForCollectionStmtAux(S, *I, Dst, state->getSVal(elem)); } } void ExprEngine::VisitObjCForCollectionStmtAux(const ObjCForCollectionStmt* S, ExplodedNode* Pred, ExplodedNodeSet& Dst, SVal ElementV) { // Check if the location we are writing back to is a null pointer. const Stmt* elem = S->getElement(); ExplodedNodeSet Tmp; evalLocation(Tmp, elem, Pred, GetState(Pred), ElementV, NULL, false); if (Tmp.empty()) return; for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) { Pred = *NI; const GRState *state = GetState(Pred); // Handle the case where the container still has elements. SVal TrueV = svalBuilder.makeTruthVal(1); const GRState *hasElems = state->BindExpr(S, TrueV); // Handle the case where the container has no elements. SVal FalseV = svalBuilder.makeTruthVal(0); const GRState *noElems = state->BindExpr(S, FalseV); if (loc::MemRegionVal* MV = dyn_cast(&ElementV)) if (const TypedRegion* R = dyn_cast(MV->getRegion())) { // FIXME: The proper thing to do is to really iterate over the // container. We will do this with dispatch logic to the store. // For now, just 'conjure' up a symbolic value. QualType T = R->getValueType(); assert(Loc::isLocType(T)); unsigned Count = Builder->getCurrentBlockCount(); SymbolRef Sym = SymMgr.getConjuredSymbol(elem, T, Count); SVal V = svalBuilder.makeLoc(Sym); hasElems = hasElems->bindLoc(ElementV, V); // Bind the location to 'nil' on the false branch. SVal nilV = svalBuilder.makeIntVal(0, T); noElems = noElems->bindLoc(ElementV, nilV); } // Create the new nodes. MakeNode(Dst, S, Pred, hasElems); MakeNode(Dst, S, Pred, noElems); } } //===----------------------------------------------------------------------===// // Transfer function: Objective-C message expressions. //===----------------------------------------------------------------------===// namespace { class ObjCMsgWLItem { public: ObjCMessageExpr::const_arg_iterator I; ExplodedNode *N; ObjCMsgWLItem(const ObjCMessageExpr::const_arg_iterator &i, ExplodedNode *n) : I(i), N(n) {} }; } // end anonymous namespace void ExprEngine::VisitObjCMessageExpr(const ObjCMessageExpr* ME, ExplodedNode* Pred, ExplodedNodeSet& Dst){ // Create a worklist to process both the arguments. llvm::SmallVector WL; // But first evaluate the receiver (if any). ObjCMessageExpr::const_arg_iterator AI = ME->arg_begin(), AE = ME->arg_end(); if (const Expr *Receiver = ME->getInstanceReceiver()) { ExplodedNodeSet Tmp; Visit(Receiver, Pred, Tmp); if (Tmp.empty()) return; for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) WL.push_back(ObjCMsgWLItem(AI, *I)); } else WL.push_back(ObjCMsgWLItem(AI, Pred)); // Evaluate the arguments. ExplodedNodeSet ArgsEvaluated; while (!WL.empty()) { ObjCMsgWLItem Item = WL.back(); WL.pop_back(); if (Item.I == AE) { ArgsEvaluated.insert(Item.N); continue; } // Evaluate the subexpression. ExplodedNodeSet Tmp; // FIXME: [Objective-C++] handle arguments that are references Visit(*Item.I, Item.N, Tmp); // Enqueue evaluating the next argument on the worklist. ++(Item.I); for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) WL.push_back(ObjCMsgWLItem(Item.I, *NI)); } // Now that the arguments are processed, handle the ObjC message. VisitObjCMessage(ME, ArgsEvaluated, Dst); } void ExprEngine::VisitObjCMessage(const ObjCMessage &msg, ExplodedNodeSet &Src, ExplodedNodeSet& Dst) { // Handle the previsits checks. ExplodedNodeSet DstPrevisit; getCheckerManager().runCheckersForPreObjCMessage(DstPrevisit, Src, msg,*this); // Proceed with evaluate the message expression. ExplodedNodeSet dstEval; for (ExplodedNodeSet::iterator DI = DstPrevisit.begin(), DE = DstPrevisit.end(); DI != DE; ++DI) { ExplodedNode *Pred = *DI; bool RaisesException = false; unsigned oldSize = dstEval.size(); SaveAndRestore OldSink(Builder->BuildSinks); SaveOr OldHasGen(Builder->hasGeneratedNode); if (const Expr *Receiver = msg.getInstanceReceiver()) { const GRState *state = GetState(Pred); SVal recVal = state->getSVal(Receiver); if (!recVal.isUndef()) { // Bifurcate the state into nil and non-nil ones. DefinedOrUnknownSVal receiverVal = cast(recVal); const GRState *notNilState, *nilState; llvm::tie(notNilState, nilState) = state->assume(receiverVal); // There are three cases: can be nil or non-nil, must be nil, must be // non-nil. We ignore must be nil, and merge the rest two into non-nil. if (nilState && !notNilState) { dstEval.insert(Pred); continue; } // Check if the "raise" message was sent. assert(notNilState); if (msg.getSelector() == RaiseSel) RaisesException = true; // Check if we raise an exception. For now treat these as sinks. // Eventually we will want to handle exceptions properly. if (RaisesException) Builder->BuildSinks = true; // Dispatch to plug-in transfer function. evalObjCMessage(dstEval, msg, Pred, notNilState); } } else if (const ObjCInterfaceDecl *Iface = msg.getReceiverInterface()) { IdentifierInfo* ClsName = Iface->getIdentifier(); Selector S = msg.getSelector(); // Check for special instance methods. if (!NSExceptionII) { ASTContext& Ctx = getContext(); NSExceptionII = &Ctx.Idents.get("NSException"); } if (ClsName == NSExceptionII) { enum { NUM_RAISE_SELECTORS = 2 }; // Lazily create a cache of the selectors. if (!NSExceptionInstanceRaiseSelectors) { ASTContext& Ctx = getContext(); NSExceptionInstanceRaiseSelectors = new Selector[NUM_RAISE_SELECTORS]; llvm::SmallVector II; unsigned idx = 0; // raise:format: II.push_back(&Ctx.Idents.get("raise")); II.push_back(&Ctx.Idents.get("format")); NSExceptionInstanceRaiseSelectors[idx++] = Ctx.Selectors.getSelector(II.size(), &II[0]); // raise:format::arguments: II.push_back(&Ctx.Idents.get("arguments")); NSExceptionInstanceRaiseSelectors[idx++] = Ctx.Selectors.getSelector(II.size(), &II[0]); } for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i) if (S == NSExceptionInstanceRaiseSelectors[i]) { RaisesException = true; break; } } // Check if we raise an exception. For now treat these as sinks. // Eventually we will want to handle exceptions properly. if (RaisesException) Builder->BuildSinks = true; // Dispatch to plug-in transfer function. evalObjCMessage(dstEval, msg, Pred, Builder->GetState(Pred)); } // Handle the case where no nodes where generated. Auto-generate that // contains the updated state if we aren't generating sinks. if (!Builder->BuildSinks && dstEval.size() == oldSize && !Builder->hasGeneratedNode) MakeNode(dstEval, msg.getOriginExpr(), Pred, GetState(Pred)); } // Finally, perform the post-condition check of the ObjCMessageExpr and store // the created nodes in 'Dst'. getCheckerManager().runCheckersForPostObjCMessage(Dst, dstEval, msg, *this); } //===----------------------------------------------------------------------===// // Transfer functions: Miscellaneous statements. //===----------------------------------------------------------------------===// void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex, ExplodedNode *Pred, ExplodedNodeSet &Dst) { ExplodedNodeSet S1; Visit(Ex, Pred, S1); ExplodedNodeSet S2; getCheckerManager().runCheckersForPreStmt(S2, S1, CastE, *this); if (CastE->getCastKind() == CK_LValueToRValue || CastE->getCastKind() == CK_GetObjCProperty) { for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I!=E; ++I) { ExplodedNode *subExprNode = *I; const GRState *state = GetState(subExprNode); evalLoad(Dst, CastE, subExprNode, state, state->getSVal(Ex)); } return; } // All other casts. QualType T = CastE->getType(); QualType ExTy = Ex->getType(); if (const ExplicitCastExpr *ExCast=dyn_cast_or_null(CastE)) T = ExCast->getTypeAsWritten(); for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) { Pred = *I; switch (CastE->getCastKind()) { case CK_ToVoid: Dst.Add(Pred); continue; case CK_LValueToRValue: case CK_NoOp: case CK_FunctionToPointerDecay: { // Copy the SVal of Ex to CastE. const GRState *state = GetState(Pred); SVal V = state->getSVal(Ex); state = state->BindExpr(CastE, V); MakeNode(Dst, CastE, Pred, state); continue; } case CK_GetObjCProperty: case CK_Dependent: case CK_ArrayToPointerDecay: case CK_BitCast: case CK_LValueBitCast: case CK_IntegralCast: case CK_NullToPointer: case CK_IntegralToPointer: case CK_PointerToIntegral: case CK_PointerToBoolean: case CK_IntegralToBoolean: case CK_IntegralToFloating: case CK_FloatingToIntegral: case CK_FloatingToBoolean: case CK_FloatingCast: case CK_FloatingRealToComplex: case CK_FloatingComplexToReal: case CK_FloatingComplexToBoolean: case CK_FloatingComplexCast: case CK_FloatingComplexToIntegralComplex: case CK_IntegralRealToComplex: case CK_IntegralComplexToReal: case CK_IntegralComplexToBoolean: case CK_IntegralComplexCast: case CK_IntegralComplexToFloatingComplex: case CK_AnyPointerToObjCPointerCast: case CK_AnyPointerToBlockPointerCast: case CK_ObjCObjectLValueCast: { // Delegate to SValBuilder to process. const GRState* state = GetState(Pred); SVal V = state->getSVal(Ex); V = svalBuilder.evalCast(V, T, ExTy); state = state->BindExpr(CastE, V); MakeNode(Dst, CastE, Pred, state); continue; } case CK_DerivedToBase: case CK_UncheckedDerivedToBase: { // For DerivedToBase cast, delegate to the store manager. const GRState *state = GetState(Pred); SVal val = state->getSVal(Ex); val = getStoreManager().evalDerivedToBase(val, T); state = state->BindExpr(CastE, val); MakeNode(Dst, CastE, Pred, state); continue; } // Various C++ casts that are not handled yet. case CK_Dynamic: case CK_ToUnion: case CK_BaseToDerived: case CK_NullToMemberPointer: case CK_BaseToDerivedMemberPointer: case CK_DerivedToBaseMemberPointer: case CK_UserDefinedConversion: case CK_ConstructorConversion: case CK_VectorSplat: case CK_MemberPointerToBoolean: { // Recover some path-sensitivty by conjuring a new value. QualType resultType = CastE->getType(); if (CastE->isLValue()) resultType = getContext().getPointerType(resultType); SVal result = svalBuilder.getConjuredSymbolVal(NULL, CastE, resultType, Builder->getCurrentBlockCount()); const GRState *state = GetState(Pred)->BindExpr(CastE, result); MakeNode(Dst, CastE, Pred, state); continue; } } } } void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr* CL, ExplodedNode* Pred, ExplodedNodeSet& Dst) { const InitListExpr* ILE = cast(CL->getInitializer()->IgnoreParens()); ExplodedNodeSet Tmp; Visit(ILE, Pred, Tmp); for (ExplodedNodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I!=EI; ++I) { const GRState* state = GetState(*I); SVal ILV = state->getSVal(ILE); const LocationContext *LC = (*I)->getLocationContext(); state = state->bindCompoundLiteral(CL, LC, ILV); if (CL->isLValue()) { MakeNode(Dst, CL, *I, state->BindExpr(CL, state->getLValue(CL, LC))); } else MakeNode(Dst, CL, *I, state->BindExpr(CL, ILV)); } } void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred, ExplodedNodeSet& Dst) { // The CFG has one DeclStmt per Decl. const Decl* D = *DS->decl_begin(); if (!D || !isa(D)) return; const VarDecl* VD = dyn_cast(D); const Expr* InitEx = VD->getInit(); // FIXME: static variables may have an initializer, but the second // time a function is called those values may not be current. ExplodedNodeSet Tmp; if (InitEx) { if (VD->getType()->isReferenceType() && !InitEx->isLValue()) { // If the initializer is C++ record type, it should already has a // temp object. if (!InitEx->getType()->isRecordType()) CreateCXXTemporaryObject(InitEx, Pred, Tmp); else Tmp.Add(Pred); } else Visit(InitEx, Pred, Tmp); } else Tmp.Add(Pred); ExplodedNodeSet Tmp2; getCheckerManager().runCheckersForPreStmt(Tmp2, Tmp, DS, *this); for (ExplodedNodeSet::iterator I=Tmp2.begin(), E=Tmp2.end(); I!=E; ++I) { ExplodedNode *N = *I; const GRState *state = GetState(N); // Decls without InitExpr are not initialized explicitly. const LocationContext *LC = N->getLocationContext(); if (InitEx) { SVal InitVal = state->getSVal(InitEx); // We bound the temp obj region to the CXXConstructExpr. Now recover // the lazy compound value when the variable is not a reference. if (AMgr.getLangOptions().CPlusPlus && VD->getType()->isRecordType() && !VD->getType()->isReferenceType() && isa(InitVal)){ InitVal = state->getSVal(cast(InitVal).getRegion()); assert(isa(InitVal)); } // Recover some path-sensitivity if a scalar value evaluated to // UnknownVal. if ((InitVal.isUnknown() || !getConstraintManager().canReasonAbout(InitVal)) && !VD->getType()->isReferenceType()) { InitVal = svalBuilder.getConjuredSymbolVal(NULL, InitEx, Builder->getCurrentBlockCount()); } evalBind(Dst, DS, *I, state, loc::MemRegionVal(state->getRegion(VD, LC)), InitVal, true); } else { state = state->bindDeclWithNoInit(state->getRegion(VD, LC)); MakeNode(Dst, DS, *I, state); } } } namespace { // This class is used by VisitInitListExpr as an item in a worklist // for processing the values contained in an InitListExpr. class InitListWLItem { public: llvm::ImmutableList Vals; ExplodedNode* N; InitListExpr::const_reverse_iterator Itr; InitListWLItem(ExplodedNode* n, llvm::ImmutableList vals, InitListExpr::const_reverse_iterator itr) : Vals(vals), N(n), Itr(itr) {} }; } void ExprEngine::VisitInitListExpr(const InitListExpr* E, ExplodedNode* Pred, ExplodedNodeSet& Dst) { const GRState* state = GetState(Pred); QualType T = getContext().getCanonicalType(E->getType()); unsigned NumInitElements = E->getNumInits(); if (T->isArrayType() || T->isRecordType() || T->isVectorType()) { llvm::ImmutableList StartVals = getBasicVals().getEmptySValList(); // Handle base case where the initializer has no elements. // e.g: static int* myArray[] = {}; if (NumInitElements == 0) { SVal V = svalBuilder.makeCompoundVal(T, StartVals); MakeNode(Dst, E, Pred, state->BindExpr(E, V)); return; } // Create a worklist to process the initializers. llvm::SmallVector WorkList; WorkList.reserve(NumInitElements); WorkList.push_back(InitListWLItem(Pred, StartVals, E->rbegin())); InitListExpr::const_reverse_iterator ItrEnd = E->rend(); assert(!(E->rbegin() == E->rend())); // Process the worklist until it is empty. while (!WorkList.empty()) { InitListWLItem X = WorkList.back(); WorkList.pop_back(); ExplodedNodeSet Tmp; Visit(*X.Itr, X.N, Tmp); InitListExpr::const_reverse_iterator NewItr = X.Itr + 1; for (ExplodedNodeSet::iterator NI=Tmp.begin(),NE=Tmp.end();NI!=NE;++NI) { // Get the last initializer value. state = GetState(*NI); SVal InitV = state->getSVal(cast(*X.Itr)); // Construct the new list of values by prepending the new value to // the already constructed list. llvm::ImmutableList NewVals = getBasicVals().consVals(InitV, X.Vals); if (NewItr == ItrEnd) { // Now we have a list holding all init values. Make CompoundValData. SVal V = svalBuilder.makeCompoundVal(T, NewVals); // Make final state and node. MakeNode(Dst, E, *NI, state->BindExpr(E, V)); } else { // Still some initializer values to go. Push them onto the worklist. WorkList.push_back(InitListWLItem(*NI, NewVals, NewItr)); } } } return; } if (Loc::isLocType(T) || T->isIntegerType()) { assert (E->getNumInits() == 1); ExplodedNodeSet Tmp; const Expr* Init = E->getInit(0); Visit(Init, Pred, Tmp); for (ExplodedNodeSet::iterator I=Tmp.begin(), EI=Tmp.end(); I != EI; ++I) { state = GetState(*I); MakeNode(Dst, E, *I, state->BindExpr(E, state->getSVal(Init))); } return; } assert(0 && "unprocessed InitListExpr type"); } /// VisitUnaryExprOrTypeTraitExpr - Transfer function for sizeof(type). void ExprEngine::VisitUnaryExprOrTypeTraitExpr( const UnaryExprOrTypeTraitExpr* Ex, ExplodedNode* Pred, ExplodedNodeSet& Dst) { QualType T = Ex->getTypeOfArgument(); if (Ex->getKind() == UETT_SizeOf) { if (!T->isIncompleteType() && !T->isConstantSizeType()) { assert(T->isVariableArrayType() && "Unknown non-constant-sized type."); // FIXME: Add support for VLA type arguments, not just VLA expressions. // When that happens, we should probably refactor VLASizeChecker's code. if (Ex->isArgumentType()) { Dst.Add(Pred); return; } // Get the size by getting the extent of the sub-expression. // First, visit the sub-expression to find its region. const Expr *Arg = Ex->getArgumentExpr(); ExplodedNodeSet Tmp; Visit(Arg, Pred, Tmp); for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { const GRState* state = GetState(*I); const MemRegion *MR = state->getSVal(Arg).getAsRegion(); // If the subexpression can't be resolved to a region, we don't know // anything about its size. Just leave the state as is and continue. if (!MR) { Dst.Add(*I); continue; } // The result is the extent of the VLA. SVal Extent = cast(MR)->getExtent(svalBuilder); MakeNode(Dst, Ex, *I, state->BindExpr(Ex, Extent)); } return; } else if (T->getAs()) { // Some code tries to take the sizeof an ObjCObjectType, relying that // the compiler has laid out its representation. Just report Unknown // for these. Dst.Add(Pred); return; } } Expr::EvalResult Result; Ex->Evaluate(Result, getContext()); CharUnits amt = CharUnits::fromQuantity(Result.Val.getInt().getZExtValue()); MakeNode(Dst, Ex, Pred, GetState(Pred)->BindExpr(Ex, svalBuilder.makeIntVal(amt.getQuantity(), Ex->getType()))); } void ExprEngine::VisitOffsetOfExpr(const OffsetOfExpr* OOE, ExplodedNode* Pred, ExplodedNodeSet& Dst) { Expr::EvalResult Res; if (OOE->Evaluate(Res, getContext()) && Res.Val.isInt()) { const APSInt &IV = Res.Val.getInt(); assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType())); assert(OOE->getType()->isIntegerType()); assert(IV.isSigned() == OOE->getType()->isSignedIntegerType()); SVal X = svalBuilder.makeIntVal(IV); MakeNode(Dst, OOE, Pred, GetState(Pred)->BindExpr(OOE, X)); return; } // FIXME: Handle the case where __builtin_offsetof is not a constant. Dst.Add(Pred); } void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, ExplodedNode* Pred, ExplodedNodeSet& Dst) { switch (U->getOpcode()) { default: break; case UO_Real: { const Expr* Ex = U->getSubExpr()->IgnoreParens(); ExplodedNodeSet Tmp; Visit(Ex, Pred, Tmp); for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { // FIXME: We don't have complex SValues yet. if (Ex->getType()->isAnyComplexType()) { // Just report "Unknown." Dst.Add(*I); continue; } // For all other types, UO_Real is an identity operation. assert (U->getType() == Ex->getType()); const GRState* state = GetState(*I); MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex))); } return; } case UO_Imag: { const Expr* Ex = U->getSubExpr()->IgnoreParens(); ExplodedNodeSet Tmp; Visit(Ex, Pred, Tmp); for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { // FIXME: We don't have complex SValues yet. if (Ex->getType()->isAnyComplexType()) { // Just report "Unknown." Dst.Add(*I); continue; } // For all other types, UO_Imag returns 0. const GRState* state = GetState(*I); SVal X = svalBuilder.makeZeroVal(Ex->getType()); MakeNode(Dst, U, *I, state->BindExpr(U, X)); } return; } case UO_Plus: assert(!U->isLValue()); // FALL-THROUGH. case UO_Deref: case UO_AddrOf: case UO_Extension: { // Unary "+" is a no-op, similar to a parentheses. We still have places // where it may be a block-level expression, so we need to // generate an extra node that just propagates the value of the // subexpression. const Expr* Ex = U->getSubExpr()->IgnoreParens(); ExplodedNodeSet Tmp; Visit(Ex, Pred, Tmp); for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { const GRState* state = GetState(*I); MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex))); } return; } case UO_LNot: case UO_Minus: case UO_Not: { assert (!U->isLValue()); const Expr* Ex = U->getSubExpr()->IgnoreParens(); ExplodedNodeSet Tmp; Visit(Ex, Pred, Tmp); for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { const GRState* state = GetState(*I); // Get the value of the subexpression. SVal V = state->getSVal(Ex); if (V.isUnknownOrUndef()) { MakeNode(Dst, U, *I, state->BindExpr(U, V)); continue; } // QualType DstT = getContext().getCanonicalType(U->getType()); // QualType SrcT = getContext().getCanonicalType(Ex->getType()); // // if (DstT != SrcT) // Perform promotions. // V = evalCast(V, DstT); // // if (V.isUnknownOrUndef()) { // MakeNode(Dst, U, *I, BindExpr(St, U, V)); // continue; // } switch (U->getOpcode()) { default: assert(false && "Invalid Opcode."); break; case UO_Not: // FIXME: Do we need to handle promotions? state = state->BindExpr(U, evalComplement(cast(V))); break; case UO_Minus: // FIXME: Do we need to handle promotions? state = state->BindExpr(U, evalMinus(cast(V))); break; case UO_LNot: // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." // // Note: technically we do "E == 0", but this is the same in the // transfer functions as "0 == E". SVal Result; if (isa(V)) { Loc X = svalBuilder.makeNull(); Result = evalBinOp(state, BO_EQ, cast(V), X, U->getType()); } else { nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); Result = evalBinOp(state, BO_EQ, cast(V), X, U->getType()); } state = state->BindExpr(U, Result); break; } MakeNode(Dst, U, *I, state); } return; } } // Handle ++ and -- (both pre- and post-increment). assert (U->isIncrementDecrementOp()); ExplodedNodeSet Tmp; const Expr* Ex = U->getSubExpr()->IgnoreParens(); Visit(Ex, Pred, Tmp); for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { const GRState* state = GetState(*I); SVal loc = state->getSVal(Ex); // Perform a load. ExplodedNodeSet Tmp2; evalLoad(Tmp2, Ex, *I, state, loc); for (ExplodedNodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end();I2!=E2;++I2) { state = GetState(*I2); SVal V2_untested = state->getSVal(Ex); // Propagate unknown and undefined values. if (V2_untested.isUnknownOrUndef()) { MakeNode(Dst, U, *I2, state->BindExpr(U, V2_untested)); continue; } DefinedSVal V2 = cast(V2_untested); // Handle all other values. BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub; // If the UnaryOperator has non-location type, use its type to create the // constant value. If the UnaryOperator has location type, create the // constant with int type and pointer width. SVal RHS; if (U->getType()->isAnyPointerType()) RHS = svalBuilder.makeArrayIndex(1); else RHS = svalBuilder.makeIntVal(1, U->getType()); SVal Result = evalBinOp(state, Op, V2, RHS, U->getType()); // Conjure a new symbol if necessary to recover precision. if (Result.isUnknown() || !getConstraintManager().canReasonAbout(Result)){ DefinedOrUnknownSVal SymVal = svalBuilder.getConjuredSymbolVal(NULL, Ex, Builder->getCurrentBlockCount()); Result = SymVal; // If the value is a location, ++/-- should always preserve // non-nullness. Check if the original value was non-null, and if so // propagate that constraint. if (Loc::isLocType(U->getType())) { DefinedOrUnknownSVal Constraint = svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType())); if (!state->assume(Constraint, true)) { // It isn't feasible for the original value to be null. // Propagate this constraint. Constraint = svalBuilder.evalEQ(state, SymVal, svalBuilder.makeZeroVal(U->getType())); state = state->assume(Constraint, false); assert(state); } } } // Since the lvalue-to-rvalue conversion is explicit in the AST, // we bind an l-value if the operator is prefix and an lvalue (in C++). if (U->isLValue()) state = state->BindExpr(U, loc); else state = state->BindExpr(U, V2); // Perform the store. evalStore(Dst, NULL, U, *I2, state, loc, Result); } } } void ExprEngine::VisitAsmStmt(const AsmStmt* A, ExplodedNode* Pred, ExplodedNodeSet& Dst) { VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst); } void ExprEngine::VisitAsmStmtHelperOutputs(const AsmStmt* A, AsmStmt::const_outputs_iterator I, AsmStmt::const_outputs_iterator E, ExplodedNode* Pred, ExplodedNodeSet& Dst) { if (I == E) { VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst); return; } ExplodedNodeSet Tmp; Visit(*I, Pred, Tmp); ++I; for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end();NI != NE;++NI) VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst); } void ExprEngine::VisitAsmStmtHelperInputs(const AsmStmt* A, AsmStmt::const_inputs_iterator I, AsmStmt::const_inputs_iterator E, ExplodedNode* Pred, ExplodedNodeSet& Dst) { if (I == E) { // We have processed both the inputs and the outputs. All of the outputs // should evaluate to Locs. Nuke all of their values. // FIXME: Some day in the future it would be nice to allow a "plug-in" // which interprets the inline asm and stores proper results in the // outputs. const GRState* state = GetState(Pred); for (AsmStmt::const_outputs_iterator OI = A->begin_outputs(), OE = A->end_outputs(); OI != OE; ++OI) { SVal X = state->getSVal(*OI); assert (!isa(X)); // Should be an Lval, or unknown, undef. if (isa(X)) state = state->bindLoc(cast(X), UnknownVal()); } MakeNode(Dst, A, Pred, state); return; } ExplodedNodeSet Tmp; Visit(*I, Pred, Tmp); ++I; for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI!=NE; ++NI) VisitAsmStmtHelperInputs(A, I, E, *NI, Dst); } void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred, ExplodedNodeSet &Dst) { ExplodedNodeSet Src; if (const Expr *RetE = RS->getRetValue()) { // Record the returned expression in the state. It will be used in // processCallExit to bind the return value to the call expr. { static int tag = 0; const GRState *state = GetState(Pred); state = state->set(RetE); Pred = Builder->generateNode(RetE, state, Pred, &tag); } // We may get a NULL Pred because we generated a cached node. if (Pred) Visit(RetE, Pred, Src); } else { Src.Add(Pred); } ExplodedNodeSet CheckedSet; getCheckerManager().runCheckersForPreStmt(CheckedSet, Src, RS, *this); for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); I != E; ++I) { assert(Builder && "StmtNodeBuilder must be defined."); Pred = *I; unsigned size = Dst.size(); SaveAndRestore OldSink(Builder->BuildSinks); SaveOr OldHasGen(Builder->hasGeneratedNode); getTF().evalReturn(Dst, *this, *Builder, RS, Pred); // Handle the case where no nodes where generated. if (!Builder->BuildSinks && Dst.size() == size && !Builder->hasGeneratedNode) MakeNode(Dst, RS, Pred, GetState(Pred)); } } //===----------------------------------------------------------------------===// // Transfer functions: Binary operators. //===----------------------------------------------------------------------===// void ExprEngine::VisitBinaryOperator(const BinaryOperator* B, ExplodedNode* Pred, ExplodedNodeSet& Dst) { ExplodedNodeSet Tmp1; Expr* LHS = B->getLHS()->IgnoreParens(); Expr* RHS = B->getRHS()->IgnoreParens(); Visit(LHS, Pred, Tmp1); ExplodedNodeSet Tmp3; for (ExplodedNodeSet::iterator I1=Tmp1.begin(), E1=Tmp1.end(); I1!=E1; ++I1) { SVal LeftV = GetState(*I1)->getSVal(LHS); ExplodedNodeSet Tmp2; Visit(RHS, *I1, Tmp2); ExplodedNodeSet CheckedSet; getCheckerManager().runCheckersForPreStmt(CheckedSet, Tmp2, B, *this); // With both the LHS and RHS evaluated, process the operation itself. for (ExplodedNodeSet::iterator I2=CheckedSet.begin(), E2=CheckedSet.end(); I2 != E2; ++I2) { const GRState *state = GetState(*I2); SVal RightV = state->getSVal(RHS); BinaryOperator::Opcode Op = B->getOpcode(); if (Op == BO_Assign) { // EXPERIMENTAL: "Conjured" symbols. // FIXME: Handle structs. if (RightV.isUnknown() ||!getConstraintManager().canReasonAbout(RightV)) { unsigned Count = Builder->getCurrentBlockCount(); RightV = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), Count); } SVal ExprVal = B->isLValue() ? LeftV : RightV; // Simulate the effects of a "store": bind the value of the RHS // to the L-Value represented by the LHS. evalStore(Tmp3, B, LHS, *I2, state->BindExpr(B, ExprVal), LeftV,RightV); continue; } if (!B->isAssignmentOp()) { // Process non-assignments except commas or short-circuited // logical expressions (LAnd and LOr). SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType()); if (Result.isUnknown()) { MakeNode(Tmp3, B, *I2, state); continue; } state = state->BindExpr(B, Result); MakeNode(Tmp3, B, *I2, state); continue; } assert (B->isCompoundAssignmentOp()); switch (Op) { default: assert(0 && "Invalid opcode for compound assignment."); case BO_MulAssign: Op = BO_Mul; break; case BO_DivAssign: Op = BO_Div; break; case BO_RemAssign: Op = BO_Rem; break; case BO_AddAssign: Op = BO_Add; break; case BO_SubAssign: Op = BO_Sub; break; case BO_ShlAssign: Op = BO_Shl; break; case BO_ShrAssign: Op = BO_Shr; break; case BO_AndAssign: Op = BO_And; break; case BO_XorAssign: Op = BO_Xor; break; case BO_OrAssign: Op = BO_Or; break; } // Perform a load (the LHS). This performs the checks for // null dereferences, and so on. ExplodedNodeSet Tmp4; SVal location = state->getSVal(LHS); evalLoad(Tmp4, LHS, *I2, state, location); for (ExplodedNodeSet::iterator I4=Tmp4.begin(), E4=Tmp4.end(); I4!=E4; ++I4) { state = GetState(*I4); SVal V = state->getSVal(LHS); // Get the computation type. QualType CTy = cast(B)->getComputationResultType(); CTy = getContext().getCanonicalType(CTy); QualType CLHSTy = cast(B)->getComputationLHSType(); CLHSTy = getContext().getCanonicalType(CLHSTy); QualType LTy = getContext().getCanonicalType(LHS->getType()); // Promote LHS. V = svalBuilder.evalCast(V, CLHSTy, LTy); // Compute the result of the operation. SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy), B->getType(), CTy); // EXPERIMENTAL: "Conjured" symbols. // FIXME: Handle structs. SVal LHSVal; if (Result.isUnknown() || !getConstraintManager().canReasonAbout(Result)) { unsigned Count = Builder->getCurrentBlockCount(); // The symbolic value is actually for the type of the left-hand side // expression, not the computation type, as this is the value the // LValue on the LHS will bind to. LHSVal = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), LTy, Count); // However, we need to convert the symbol to the computation type. Result = svalBuilder.evalCast(LHSVal, CTy, LTy); } else { // The left-hand side may bind to a different value then the // computation type. LHSVal = svalBuilder.evalCast(Result, LTy, CTy); } // In C++, assignment and compound assignment operators return an // lvalue. if (B->isLValue()) state = state->BindExpr(B, location); else state = state->BindExpr(B, Result); evalStore(Tmp3, B, LHS, *I4, state, location, LHSVal); } } } getCheckerManager().runCheckersForPostStmt(Dst, Tmp3, B, *this); } //===----------------------------------------------------------------------===// // Visualization. //===----------------------------------------------------------------------===// #ifndef NDEBUG static ExprEngine* GraphPrintCheckerState; static SourceManager* GraphPrintSourceManager; namespace llvm { template<> struct DOTGraphTraits : public DefaultDOTGraphTraits { DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} // FIXME: Since we do not cache error nodes in ExprEngine now, this does not // work. static std::string getNodeAttributes(const ExplodedNode* N, void*) { #if 0 // FIXME: Replace with a general scheme to tell if the node is // an error node. if (GraphPrintCheckerState->isImplicitNullDeref(N) || GraphPrintCheckerState->isExplicitNullDeref(N) || GraphPrintCheckerState->isUndefDeref(N) || GraphPrintCheckerState->isUndefStore(N) || GraphPrintCheckerState->isUndefControlFlow(N) || GraphPrintCheckerState->isUndefResult(N) || GraphPrintCheckerState->isBadCall(N) || GraphPrintCheckerState->isUndefArg(N)) return "color=\"red\",style=\"filled\""; if (GraphPrintCheckerState->isNoReturnCall(N)) return "color=\"blue\",style=\"filled\""; #endif return ""; } static std::string getNodeLabel(const ExplodedNode* N, void*){ std::string sbuf; llvm::raw_string_ostream Out(sbuf); // Program Location. ProgramPoint Loc = N->getLocation(); switch (Loc.getKind()) { case ProgramPoint::BlockEntranceKind: Out << "Block Entrance: B" << cast(Loc).getBlock()->getBlockID(); break; case ProgramPoint::BlockExitKind: assert (false); break; case ProgramPoint::CallEnterKind: Out << "CallEnter"; break; case ProgramPoint::CallExitKind: Out << "CallExit"; break; default: { if (StmtPoint *L = dyn_cast(&Loc)) { const Stmt* S = L->getStmt(); SourceLocation SLoc = S->getLocStart(); Out << S->getStmtClassName() << ' ' << (void*) S << ' '; LangOptions LO; // FIXME. S->printPretty(Out, 0, PrintingPolicy(LO)); if (SLoc.isFileID()) { Out << "\\lline=" << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) << " col=" << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc) << "\\l"; } if (isa(Loc)) Out << "\\lPreStmt\\l;"; else if (isa(Loc)) Out << "\\lPostLoad\\l;"; else if (isa(Loc)) Out << "\\lPostStore\\l"; else if (isa(Loc)) Out << "\\lPostLValue\\l"; #if 0 // FIXME: Replace with a general scheme to determine // the name of the check. if (GraphPrintCheckerState->isImplicitNullDeref(N)) Out << "\\|Implicit-Null Dereference.\\l"; else if (GraphPrintCheckerState->isExplicitNullDeref(N)) Out << "\\|Explicit-Null Dereference.\\l"; else if (GraphPrintCheckerState->isUndefDeref(N)) Out << "\\|Dereference of undefialied value.\\l"; else if (GraphPrintCheckerState->isUndefStore(N)) Out << "\\|Store to Undefined Loc."; else if (GraphPrintCheckerState->isUndefResult(N)) Out << "\\|Result of operation is undefined."; else if (GraphPrintCheckerState->isNoReturnCall(N)) Out << "\\|Call to function marked \"noreturn\"."; else if (GraphPrintCheckerState->isBadCall(N)) Out << "\\|Call to NULL/Undefined."; else if (GraphPrintCheckerState->isUndefArg(N)) Out << "\\|Argument in call is undefined"; #endif break; } const BlockEdge& E = cast(Loc); Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B" << E.getDst()->getBlockID() << ')'; if (const Stmt* T = E.getSrc()->getTerminator()) { SourceLocation SLoc = T->getLocStart(); Out << "\\|Terminator: "; LangOptions LO; // FIXME. E.getSrc()->printTerminator(Out, LO); if (SLoc.isFileID()) { Out << "\\lline=" << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) << " col=" << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc); } if (isa(T)) { const Stmt* Label = E.getDst()->getLabel(); if (Label) { if (const CaseStmt* C = dyn_cast(Label)) { Out << "\\lcase "; LangOptions LO; // FIXME. C->getLHS()->printPretty(Out, 0, PrintingPolicy(LO)); if (const Stmt* RHS = C->getRHS()) { Out << " .. "; RHS->printPretty(Out, 0, PrintingPolicy(LO)); } Out << ":"; } else { assert (isa(Label)); Out << "\\ldefault:"; } } else Out << "\\l(implicit) default:"; } else if (isa(T)) { // FIXME } else { Out << "\\lCondition: "; if (*E.getSrc()->succ_begin() == E.getDst()) Out << "true"; else Out << "false"; } Out << "\\l"; } #if 0 // FIXME: Replace with a general scheme to determine // the name of the check. if (GraphPrintCheckerState->isUndefControlFlow(N)) { Out << "\\|Control-flow based on\\lUndefined value.\\l"; } #endif } } const GRState *state = N->getState(); Out << "\\|StateID: " << (void*) state << " NodeID: " << (void*) N << "\\|"; state->printDOT(Out, *N->getLocationContext()->getCFG()); Out << "\\l"; return Out.str(); } }; } // end llvm namespace #endif #ifndef NDEBUG template ExplodedNode* GetGraphNode(ITERATOR I) { return *I; } template <> ExplodedNode* GetGraphNode::iterator> (llvm::DenseMap::iterator I) { return I->first; } #endif void ExprEngine::ViewGraph(bool trim) { #ifndef NDEBUG if (trim) { std::vector Src; // Flush any outstanding reports to make sure we cover all the nodes. // This does not cause them to get displayed. for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I) const_cast(*I)->FlushReports(BR); // Iterate through the reports and get their nodes. for (BugReporter::EQClasses_iterator EI = BR.EQClasses_begin(), EE = BR.EQClasses_end(); EI != EE; ++EI) { BugReportEquivClass& EQ = *EI; const BugReport &R = **EQ.begin(); ExplodedNode *N = const_cast(R.getErrorNode()); if (N) Src.push_back(N); } ViewGraph(&Src[0], &Src[0]+Src.size()); } else { GraphPrintCheckerState = this; GraphPrintSourceManager = &getContext().getSourceManager(); llvm::ViewGraph(*G.roots_begin(), "ExprEngine"); GraphPrintCheckerState = NULL; GraphPrintSourceManager = NULL; } #endif } void ExprEngine::ViewGraph(ExplodedNode** Beg, ExplodedNode** End) { #ifndef NDEBUG GraphPrintCheckerState = this; GraphPrintSourceManager = &getContext().getSourceManager(); std::auto_ptr TrimmedG(G.Trim(Beg, End).first); if (!TrimmedG.get()) llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n"; else llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedExprEngine"); GraphPrintCheckerState = NULL; GraphPrintSourceManager = NULL; #endif }