//===-- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information--------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "AMDGPUBaseInfo.h" #include "AMDGPU.h" #include "SIDefines.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/SubtargetFeature.h" #define GET_SUBTARGETINFO_ENUM #include "AMDGPUGenSubtargetInfo.inc" #undef GET_SUBTARGETINFO_ENUM #define GET_REGINFO_ENUM #include "AMDGPUGenRegisterInfo.inc" #undef GET_REGINFO_ENUM #define GET_INSTRINFO_NAMED_OPS #define GET_INSTRINFO_ENUM #include "AMDGPUGenInstrInfo.inc" #undef GET_INSTRINFO_NAMED_OPS #undef GET_INSTRINFO_ENUM namespace { /// \returns Bit mask for given bit \p Shift and bit \p Width. unsigned getBitMask(unsigned Shift, unsigned Width) { return ((1 << Width) - 1) << Shift; } /// \brief Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. /// /// \returns Packed \p Dst. unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); Dst |= (Src << Shift) & getBitMask(Shift, Width); return Dst; } /// \brief Unpacks bits from \p Src for given bit \p Shift and bit \p Width. /// /// \returns Unpacked bits. unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { return (Src & getBitMask(Shift, Width)) >> Shift; } /// \returns Vmcnt bit shift. unsigned getVmcntBitShift() { return 0; } /// \returns Vmcnt bit width. unsigned getVmcntBitWidth() { return 4; } /// \returns Expcnt bit shift. unsigned getExpcntBitShift() { return 4; } /// \returns Expcnt bit width. unsigned getExpcntBitWidth() { return 3; } /// \returns Lgkmcnt bit shift. unsigned getLgkmcntBitShift() { return 8; } /// \returns Lgkmcnt bit width. unsigned getLgkmcntBitWidth() { return 4; } } // anonymous namespace namespace llvm { namespace AMDGPU { IsaVersion getIsaVersion(const FeatureBitset &Features) { if (Features.test(FeatureISAVersion7_0_0)) return {7, 0, 0}; if (Features.test(FeatureISAVersion7_0_1)) return {7, 0, 1}; if (Features.test(FeatureISAVersion7_0_2)) return {7, 0, 2}; if (Features.test(FeatureISAVersion8_0_0)) return {8, 0, 0}; if (Features.test(FeatureISAVersion8_0_1)) return {8, 0, 1}; if (Features.test(FeatureISAVersion8_0_2)) return {8, 0, 2}; if (Features.test(FeatureISAVersion8_0_3)) return {8, 0, 3}; if (Features.test(FeatureISAVersion8_0_4)) return {8, 0, 4}; if (Features.test(FeatureISAVersion8_1_0)) return {8, 1, 0}; return {0, 0, 0}; } void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, const FeatureBitset &Features) { IsaVersion ISA = getIsaVersion(Features); memset(&Header, 0, sizeof(Header)); Header.amd_kernel_code_version_major = 1; Header.amd_kernel_code_version_minor = 0; Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU Header.amd_machine_version_major = ISA.Major; Header.amd_machine_version_minor = ISA.Minor; Header.amd_machine_version_stepping = ISA.Stepping; Header.kernel_code_entry_byte_offset = sizeof(Header); // wavefront_size is specified as a power of 2: 2^6 = 64 threads. Header.wavefront_size = 6; // These alignment values are specified in powers of two, so alignment = // 2^n. The minimum alignment is 2^4 = 16. Header.kernarg_segment_alignment = 4; Header.group_segment_alignment = 4; Header.private_segment_alignment = 4; } MCSection *getHSATextSection(MCContext &Ctx) { return Ctx.getELFSection(".hsatext", ELF::SHT_PROGBITS, ELF::SHF_ALLOC | ELF::SHF_WRITE | ELF::SHF_EXECINSTR | ELF::SHF_AMDGPU_HSA_AGENT | ELF::SHF_AMDGPU_HSA_CODE); } MCSection *getHSADataGlobalAgentSection(MCContext &Ctx) { return Ctx.getELFSection(".hsadata_global_agent", ELF::SHT_PROGBITS, ELF::SHF_ALLOC | ELF::SHF_WRITE | ELF::SHF_AMDGPU_HSA_GLOBAL | ELF::SHF_AMDGPU_HSA_AGENT); } MCSection *getHSADataGlobalProgramSection(MCContext &Ctx) { return Ctx.getELFSection(".hsadata_global_program", ELF::SHT_PROGBITS, ELF::SHF_ALLOC | ELF::SHF_WRITE | ELF::SHF_AMDGPU_HSA_GLOBAL); } MCSection *getHSARodataReadonlyAgentSection(MCContext &Ctx) { return Ctx.getELFSection(".hsarodata_readonly_agent", ELF::SHT_PROGBITS, ELF::SHF_ALLOC | ELF::SHF_AMDGPU_HSA_READONLY | ELF::SHF_AMDGPU_HSA_AGENT); } bool isGroupSegment(const GlobalValue *GV) { return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; } bool isGlobalSegment(const GlobalValue *GV) { return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; } bool isReadOnlySegment(const GlobalValue *GV) { return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS; } bool shouldEmitConstantsToTextSection(const Triple &TT) { return TT.getOS() != Triple::AMDHSA; } int getIntegerAttribute(const Function &F, StringRef Name, int Default) { Attribute A = F.getFnAttribute(Name); int Result = Default; if (A.isStringAttribute()) { StringRef Str = A.getValueAsString(); if (Str.getAsInteger(0, Result)) { LLVMContext &Ctx = F.getContext(); Ctx.emitError("can't parse integer attribute " + Name); } } return Result; } std::pair getIntegerPairAttribute(const Function &F, StringRef Name, std::pair Default, bool OnlyFirstRequired) { Attribute A = F.getFnAttribute(Name); if (!A.isStringAttribute()) return Default; LLVMContext &Ctx = F.getContext(); std::pair Ints = Default; std::pair Strs = A.getValueAsString().split(','); if (Strs.first.trim().getAsInteger(0, Ints.first)) { Ctx.emitError("can't parse first integer attribute " + Name); return Default; } if (Strs.second.trim().getAsInteger(0, Ints.second)) { if (!OnlyFirstRequired || Strs.second.trim().size()) { Ctx.emitError("can't parse second integer attribute " + Name); return Default; } } return Ints; } unsigned getWaitcntBitMask(IsaVersion Version) { unsigned Vmcnt = getBitMask(getVmcntBitShift(), getVmcntBitWidth()); unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), getLgkmcntBitWidth()); return Vmcnt | Expcnt | Lgkmcnt; } unsigned getVmcntBitMask(IsaVersion Version) { return (1 << getVmcntBitWidth()) - 1; } unsigned getExpcntBitMask(IsaVersion Version) { return (1 << getExpcntBitWidth()) - 1; } unsigned getLgkmcntBitMask(IsaVersion Version) { return (1 << getLgkmcntBitWidth()) - 1; } unsigned decodeVmcnt(IsaVersion Version, unsigned Waitcnt) { return unpackBits(Waitcnt, getVmcntBitShift(), getVmcntBitWidth()); } unsigned decodeExpcnt(IsaVersion Version, unsigned Waitcnt) { return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); } unsigned decodeLgkmcnt(IsaVersion Version, unsigned Waitcnt) { return unpackBits(Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth()); } void decodeWaitcnt(IsaVersion Version, unsigned Waitcnt, unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { Vmcnt = decodeVmcnt(Version, Waitcnt); Expcnt = decodeExpcnt(Version, Waitcnt); Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); } unsigned encodeVmcnt(IsaVersion Version, unsigned Waitcnt, unsigned Vmcnt) { return packBits(Vmcnt, Waitcnt, getVmcntBitShift(), getVmcntBitWidth()); } unsigned encodeExpcnt(IsaVersion Version, unsigned Waitcnt, unsigned Expcnt) { return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); } unsigned encodeLgkmcnt(IsaVersion Version, unsigned Waitcnt, unsigned Lgkmcnt) { return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth()); } unsigned encodeWaitcnt(IsaVersion Version, unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { unsigned Waitcnt = getWaitcntBitMask(Version); Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); return Waitcnt; } unsigned getInitialPSInputAddr(const Function &F) { return getIntegerAttribute(F, "InitialPSInputAddr", 0); } bool isShader(CallingConv::ID cc) { switch(cc) { case CallingConv::AMDGPU_VS: case CallingConv::AMDGPU_GS: case CallingConv::AMDGPU_PS: case CallingConv::AMDGPU_CS: return true; default: return false; } } bool isCompute(CallingConv::ID cc) { return !isShader(cc) || cc == CallingConv::AMDGPU_CS; } bool isSI(const MCSubtargetInfo &STI) { return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; } bool isCI(const MCSubtargetInfo &STI) { return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; } bool isVI(const MCSubtargetInfo &STI) { return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; } unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { switch(Reg) { default: break; case AMDGPU::FLAT_SCR: assert(!isSI(STI)); return isCI(STI) ? AMDGPU::FLAT_SCR_ci : AMDGPU::FLAT_SCR_vi; case AMDGPU::FLAT_SCR_LO: assert(!isSI(STI)); return isCI(STI) ? AMDGPU::FLAT_SCR_LO_ci : AMDGPU::FLAT_SCR_LO_vi; case AMDGPU::FLAT_SCR_HI: assert(!isSI(STI)); return isCI(STI) ? AMDGPU::FLAT_SCR_HI_ci : AMDGPU::FLAT_SCR_HI_vi; } return Reg; } bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { unsigned OpType = Desc.OpInfo[OpNo].OperandType; return OpType >= AMDGPU::OPERAND_SRC_FIRST && OpType <= AMDGPU::OPERAND_SRC_LAST; } bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { unsigned OpType = Desc.OpInfo[OpNo].OperandType; switch (OpType) { case AMDGPU::OPERAND_REG_IMM_FP32: case AMDGPU::OPERAND_REG_IMM_FP64: case AMDGPU::OPERAND_REG_IMM_FP16: case AMDGPU::OPERAND_REG_INLINE_C_FP32: case AMDGPU::OPERAND_REG_INLINE_C_FP64: case AMDGPU::OPERAND_REG_INLINE_C_FP16: return true; default: return false; } } bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { unsigned OpType = Desc.OpInfo[OpNo].OperandType; return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; } // Avoid using MCRegisterClass::getSize, since that function will go away // (move from MC* level to Target* level). Return size in bits. unsigned getRegBitWidth(unsigned RCID) { switch (RCID) { case AMDGPU::SGPR_32RegClassID: case AMDGPU::VGPR_32RegClassID: case AMDGPU::VS_32RegClassID: case AMDGPU::SReg_32RegClassID: case AMDGPU::SReg_32_XM0RegClassID: return 32; case AMDGPU::SGPR_64RegClassID: case AMDGPU::VS_64RegClassID: case AMDGPU::SReg_64RegClassID: case AMDGPU::VReg_64RegClassID: return 64; case AMDGPU::VReg_96RegClassID: return 96; case AMDGPU::SGPR_128RegClassID: case AMDGPU::SReg_128RegClassID: case AMDGPU::VReg_128RegClassID: return 128; case AMDGPU::SReg_256RegClassID: case AMDGPU::VReg_256RegClassID: return 256; case AMDGPU::SReg_512RegClassID: case AMDGPU::VReg_512RegClassID: return 512; default: llvm_unreachable("Unexpected register class"); } } unsigned getRegBitWidth(const MCRegisterClass &RC) { return getRegBitWidth(RC.getID()); } unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, unsigned OpNo) { unsigned RCID = Desc.OpInfo[OpNo].RegClass; return getRegBitWidth(MRI->getRegClass(RCID)) / 8; } bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { if (Literal >= -16 && Literal <= 64) return true; uint64_t Val = static_cast(Literal); return (Val == DoubleToBits(0.0)) || (Val == DoubleToBits(1.0)) || (Val == DoubleToBits(-1.0)) || (Val == DoubleToBits(0.5)) || (Val == DoubleToBits(-0.5)) || (Val == DoubleToBits(2.0)) || (Val == DoubleToBits(-2.0)) || (Val == DoubleToBits(4.0)) || (Val == DoubleToBits(-4.0)) || (Val == 0x3fc45f306dc9c882 && HasInv2Pi); } bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { if (Literal >= -16 && Literal <= 64) return true; // The actual type of the operand does not seem to matter as long // as the bits match one of the inline immediate values. For example: // // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, // so it is a legal inline immediate. // // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in // floating-point, so it is a legal inline immediate. uint32_t Val = static_cast(Literal); return (Val == FloatToBits(0.0f)) || (Val == FloatToBits(1.0f)) || (Val == FloatToBits(-1.0f)) || (Val == FloatToBits(0.5f)) || (Val == FloatToBits(-0.5f)) || (Val == FloatToBits(2.0f)) || (Val == FloatToBits(-2.0f)) || (Val == FloatToBits(4.0f)) || (Val == FloatToBits(-4.0f)) || (Val == 0x3e22f983 && HasInv2Pi); } bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { assert(HasInv2Pi); if (Literal >= -16 && Literal <= 64) return true; uint16_t Val = static_cast(Literal); return Val == 0x3C00 || // 1.0 Val == 0xBC00 || // -1.0 Val == 0x3800 || // 0.5 Val == 0xB800 || // -0.5 Val == 0x4000 || // 2.0 Val == 0xC000 || // -2.0 Val == 0x4400 || // 4.0 Val == 0xC400 || // -4.0 Val == 0x3118; // 1/2pi } } // End namespace AMDGPU } // End namespace llvm