//===- ARMInstrThumb2.td - Thumb2 support for ARM -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the Thumb2 instruction set. // //===----------------------------------------------------------------------===// // Shifted operands. No register controlled shifts for Thumb2. // Note: We do not support rrx shifted operands yet. def t2_so_reg : Operand, // reg imm ComplexPattern { let PrintMethod = "printSOOperand"; let MIOperandInfo = (ops GPR, i32imm); } // t2_so_imm_XFORM - Return a t2_so_imm value packed into the format // described for t2_so_imm def below. def t2_so_imm_XFORM : SDNodeXFormgetTargetConstant( ARM_AM::getT2SOImmVal(N->getZExtValue()), MVT::i32); }]>; // t2_so_imm_not_XFORM - Return the complement of a t2_so_imm value def t2_so_imm_not_XFORM : SDNodeXFormgetTargetConstant( ARM_AM::getT2SOImmVal(~((uint32_t)N->getZExtValue())), MVT::i32); }]>; // t2_so_imm_neg_XFORM - Return the negation of a t2_so_imm value def t2_so_imm_neg_XFORM : SDNodeXFormgetTargetConstant( ARM_AM::getT2SOImmVal(-((int)N->getZExtValue())), MVT::i32); }]>; // t2_so_imm - Match a 32-bit immediate operand, which is an // 8-bit immediate rotated by an arbitrary number of bits, or an 8-bit // immediate splatted into multiple bytes of the word. t2_so_imm values are // represented in the imm field in the same 12-bit form that they are encoded // into t2_so_imm instructions: the 8-bit immediate is the least significant bits // [bits 0-7], the 4-bit shift/splat amount is the next 4 bits [bits 8-11]. def t2_so_imm : Operand, PatLeaf<(imm), [{ return ARM_AM::getT2SOImmVal((uint32_t)N->getZExtValue()) != -1; }], t2_so_imm_XFORM> { let PrintMethod = "printT2SOImmOperand"; } // t2_so_imm_not - Match an immediate that is a complement // of a t2_so_imm. def t2_so_imm_not : Operand, PatLeaf<(imm), [{ return ARM_AM::getT2SOImmVal(~((uint32_t)N->getZExtValue())) != -1; }], t2_so_imm_not_XFORM> { let PrintMethod = "printT2SOImmOperand"; } // t2_so_imm_neg - Match an immediate that is a negation of a t2_so_imm. def t2_so_imm_neg : Operand, PatLeaf<(imm), [{ return ARM_AM::getT2SOImmVal(-((int)N->getZExtValue())) != -1; }], t2_so_imm_neg_XFORM> { let PrintMethod = "printT2SOImmOperand"; } /// imm0_4095 predicate - True if the 32-bit immediate is in the range [0.4095]. def imm0_4095 : PatLeaf<(i32 imm), [{ return (uint32_t)N->getZExtValue() < 4096; }]>; def imm0_4095_neg : PatLeaf<(i32 imm), [{ return (uint32_t)(-N->getZExtValue()) < 4096; }], imm_neg_XFORM>; /// imm0_65535 predicate - True if the 32-bit immediate is in the range /// [0.65535]. def imm0_65535 : PatLeaf<(i32 imm), [{ return (uint32_t)N->getZExtValue() < 65536; }]>; /// bf_inv_mask_imm predicate - An AND mask to clear an arbitrary width bitfield /// e.g., 0xf000ffff def bf_inv_mask_imm : Operand, PatLeaf<(imm), [{ uint32_t v = (uint32_t)N->getZExtValue(); if (v == 0xffffffff) return 0; // naive checker. should do better, but simple is best for now since it's // more likely to be correct. while (v & 1) v >>= 1; // shift off the leading 1's if (v) { while (!(v & 1)) v >>=1; // shift off the mask while (v & 1) v >>= 1; // shift off the trailing 1's } // if this is a mask for clearing a bitfield, what's left should be zero. return (v == 0); }] > { let PrintMethod = "printBitfieldInvMaskImmOperand"; } /// Split a 32-bit immediate into two 16 bit parts. def t2_lo16 : SDNodeXFormgetTargetConstant((uint32_t)N->getZExtValue() & 0xffff, MVT::i32); }]>; def t2_hi16 : SDNodeXFormgetTargetConstant((uint32_t)N->getZExtValue() >> 16, MVT::i32); }]>; def t2_lo16AllZero : PatLeaf<(i32 imm), [{ // Returns true if all low 16-bits are 0. return (((uint32_t)N->getZExtValue()) & 0xFFFFUL) == 0; }], t2_hi16>; //===----------------------------------------------------------------------===// // Thumb2 to cover the functionality of the ARM instruction set. // /// T2I_bin_is - Defines a set of (op reg, {so_imm|so_reg}) patterns for a // binary operation that produces a value. multiclass T2I_bin_is { // shifted imm def ri : T2I<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), !strconcat(opc, " $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>; // shifted register def rs : T2I<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), !strconcat(opc, " $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>; } /// T2I_2bin_is - Same as T2I_bin_is except the order of operands are reversed. multiclass T2I_rbin_is { // shifted imm def ri : T2I<(outs GPR:$dst), (ins GPR:$rhs, t2_so_imm:$lhs), !strconcat(opc, " $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode t2_so_imm:$lhs, GPR:$rhs))]>; // shifted register def rs : T2I<(outs GPR:$dst), (ins GPR:$rhs, t2_so_reg:$lhs), !strconcat(opc, " $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode t2_so_reg:$lhs, GPR:$rhs))]>; } /// T2I_bin_s_is - Similar to T2I_bin_is except it sets the 's' bit so the /// instruction modifies the CPSR register. let Defs = [CPSR] in { multiclass T2I_bin_s_is { // shifted imm def ri : T2I<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), !strconcat(opc, "s $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>; // shifted register def rs : T2I<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), !strconcat(opc, "s $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>; } } /// T2I_rbin_s_is - Same as T2I_bin_s_is except the order of operands are /// reversed. let Defs = [CPSR] in { multiclass T2I_rbin_s_is { // shifted imm def ri : T2I<(outs GPR:$dst), (ins GPR:$rhs, t2_so_imm:$lhs), !strconcat(opc, "s $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode t2_so_imm:$lhs, GPR:$rhs))]>; // shifted register def rs : T2I<(outs GPR:$dst), (ins GPR:$rhs, t2_so_reg:$lhs), !strconcat(opc, "s $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode t2_so_reg:$lhs, GPR:$rhs))]>; } } /// T2I_bin_ii12s - Defines a set of (op reg, {so_imm|imm0_4095|so_reg}) patterns /// for a binary operation that produces a value. multiclass T2I_bin_ii12s { // shifted imm def ri : T2I<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), !strconcat(opc, " $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>; // 12-bit imm def ri12 : T2I<(outs GPR:$dst), (ins GPR:$lhs, i32imm:$rhs), !strconcat(opc, "w $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, imm0_4095:$rhs))]>; // shifted register def rs : T2I<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), !strconcat(opc, " $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>; } /// T2I_bin_c_is - Defines a set of (op reg, {so_imm|reg}) patterns for a // binary operation that produces a value and set the carry bit. It can also /// optionally set CPSR. let Uses = [CPSR] in { multiclass T2I_bin_c_is { // shifted imm def ri : T2I<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs, cc_out:$s), !strconcat(opc, "${s} $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>; // shifted register def rs : T2I<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs, cc_out:$s), !strconcat(opc, "${s} $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>; } } /// T2I_rbin_c_is - Same as T2I_bin_c_is except the order of operands are /// reversed. let Uses = [CPSR] in { multiclass T2I_rbin_c_is { // shifted imm def ri : T2I<(outs GPR:$dst), (ins GPR:$rhs, t2_so_imm:$lhs, cc_out:$s), !strconcat(opc, "${s} $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode t2_so_imm:$lhs, GPR:$rhs))]>; // shifted register def rs : T2I<(outs GPR:$dst), (ins GPR:$rhs, t2_so_reg:$lhs, cc_out:$s), !strconcat(opc, "${s} $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode t2_so_reg:$lhs, GPR:$rhs))]>; } } /// T21_cmp_irs - Defines a set of (op r, {so_imm|so_reg}) cmp / test /// patterns. Similar to T2I_bin_is except the instruction does not produce /// a explicit result, only implicitly set CPSR. let Uses = [CPSR] in { multiclass T2I_cmp_is { // shifted imm def ri : T2I<(outs), (ins GPR:$lhs, t2_so_imm:$rhs), !strconcat(opc, " $lhs, $rhs"), [(opnode GPR:$lhs, t2_so_imm:$rhs)]>; // shifted register def rs : T2I<(outs), (ins GPR:$lhs, t2_so_reg:$rhs), !strconcat(opc, " $lhs, $rhs"), [(opnode GPR:$lhs, t2_so_reg:$rhs)]>; } } //===----------------------------------------------------------------------===// // Arithmetic Instructions. // //===----------------------------------------------------------------------===// // Move Instructions. // let neverHasSideEffects = 1 in def t2MOVr : T2I<(outs GPR:$dst), (ins GPR:$src), "mov $dst, $src", []>; def t2MOVi16 : T2I<(outs GPR:$dst), (ins i32imm:$src), "movw $dst, $src", [(set GPR:$dst, imm0_65535:$src)]>; // FIXME: Move (shifted register) is a pseudo-instruction for ASR, LSL, LSR, // ROR, and RRX. Consider splitting into multiple instructions. def t2MOVs : T2I<(outs GPR:$dst), (ins t2_so_reg:$src), "mov $dst, $src", [(set GPR:$dst, t2_so_reg:$src)]>; def t2MOVrx : T2I<(outs GPR:$dst), (ins GPR:$src), "mov $dst, $src, rrx", [(set GPR:$dst, (ARMrrx GPR:$src))]>; // FIXME: Also available in ARM mode. let Constraints = "$src = $dst" in def t2MOVTi16 : T2I<(outs GPR:$dst), (ins GPR:$src, i32imm:$imm), "movt $dst, $imm", [(set GPR:$dst, (or (and GPR:$src, 0xffff), t2_lo16AllZero:$imm))]>; //===----------------------------------------------------------------------===// // Arithmetic Instructions. // defm t2ADD : T2I_bin_ii12s<"add", BinOpFrag<(add node:$LHS, node:$RHS)>>; defm t2SUB : T2I_bin_ii12s<"sub", BinOpFrag<(sub node:$LHS, node:$RHS)>>; // ADD and SUB with 's' bit set. No 12-bit immediate (T4) variants. defm t2ADDS : T2I_bin_s_is<"add", BinOpFrag<(addc node:$LHS, node:$RHS)>>; defm t2SUBS : T2I_bin_s_is<"sub", BinOpFrag<(subc node:$LHS, node:$RHS)>>; // FIXME: predication support defm t2ADC : T2I_bin_c_is<"adc", BinOpFrag<(adde node:$LHS, node:$RHS)>>; defm t2SBC : T2I_bin_c_is<"sbc", BinOpFrag<(sube node:$LHS, node:$RHS)>>; // RSB, RSC defm t2RSB : T2I_rbin_is <"rsb", BinOpFrag<(sub node:$LHS, node:$RHS)>>; defm t2RSBS : T2I_rbin_c_is<"rsb", BinOpFrag<(subc node:$LHS, node:$RHS)>>; defm t2RSC : T2I_rbin_s_is<"rsc", BinOpFrag<(sube node:$LHS, node:$RHS)>>; // (sub X, imm) gets canonicalized to (add X, -imm). Match this form. def : Thumb2Pat<(add GPR:$src, t2_so_imm_neg:$imm), (t2SUBri GPR:$src, t2_so_imm_neg:$imm)>; def : Thumb2Pat<(add GPR:$src, imm0_4095_neg:$imm), (t2SUBri12 GPR:$src, imm0_4095_neg:$imm)>; //===----------------------------------------------------------------------===// // Bitwise Instructions. // defm t2AND : T2I_bin_is <"and", BinOpFrag<(and node:$LHS, node:$RHS)>>; defm t2ORR : T2I_bin_is <"orr", BinOpFrag<(or node:$LHS, node:$RHS)>>; defm t2EOR : T2I_bin_is <"eor", BinOpFrag<(xor node:$LHS, node:$RHS)>>; defm t2BIC : T2I_bin_is <"bic", BinOpFrag<(and node:$LHS, (not node:$RHS))>>; def : Thumb2Pat<(and GPR:$src, t2_so_imm_not:$imm), (t2BICri GPR:$src, t2_so_imm_not:$imm)>; defm t2ORN : T2I_bin_is <"orn", BinOpFrag<(or node:$LHS, (not node:$RHS))>>; def : Thumb2Pat<(or GPR:$src, t2_so_imm_not:$imm), (t2ORNri GPR:$src, t2_so_imm_not:$imm)>; def t2MVNr : T2I<(outs GPR:$dst), (ins t2_so_reg:$rhs), "mvn $dst, $rhs", [(set GPR:$dst, (not t2_so_reg:$rhs))]>; let isReMaterializable = 1, isAsCheapAsAMove = 1 in def t2MVNi : T2I<(outs GPR:$dst), (ins t2_so_imm_not:$rhs), "mvn $dst, $rhs", [(set GPR:$dst, t2_so_imm_not:$rhs)]>; // A8.6.17 BFC - Bitfield clear // FIXME: Also available in ARM mode. let Constraints = "$src = $dst" in def t2BFC : T2I<(outs GPR:$dst), (ins GPR:$src, bf_inv_mask_imm:$imm), "bfc $dst, $imm", [(set GPR:$dst, (and GPR:$src, bf_inv_mask_imm:$imm))]>; // FIXME: A8.6.18 BFI - Bitfield insert (Encoding T1) //===----------------------------------------------------------------------===// // Multiply Instructions. // def t2MUL: T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), "mul $dst, $a, $b", [(set GPR:$dst, (mul GPR:$a, GPR:$b))]>; def t2MLA: T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), "mla $dst, $a, $b, $c", [(set GPR:$dst, (add (mul GPR:$a, GPR:$b), GPR:$c))]>; def t2MLS: T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), "mls $dst, $a, $b, $c", [(set GPR:$dst, (sub GPR:$c, (mul GPR:$a, GPR:$b)))]>; // FIXME: SMULL, etc. //===----------------------------------------------------------------------===// // Misc. Arithmetic Instructions. // ///// /// A8.6.31 CLZ ///// // FIXME not firing? but ARM version does... def t2CLZ : T2I<(outs GPR:$dst), (ins GPR:$src), "clz $dst, $src", [(set GPR:$dst, (ctlz GPR:$src))]>; def t2REV : T2I<(outs GPR:$dst), (ins GPR:$src), "rev $dst, $src", [(set GPR:$dst, (bswap GPR:$src))]>; def t2REV16 : T2I<(outs GPR:$dst), (ins GPR:$src), "rev16 $dst, $src", [(set GPR:$dst, (or (and (srl GPR:$src, (i32 8)), 0xFF), (or (and (shl GPR:$src, (i32 8)), 0xFF00), (or (and (srl GPR:$src, (i32 8)), 0xFF0000), (and (shl GPR:$src, (i32 8)), 0xFF000000)))))]>; ///// /// A8.6.137 REVSH ///// def t2REVSH : T2I<(outs GPR:$dst), (ins GPR:$src), "revsh $dst, $src", [(set GPR:$dst, (sext_inreg (or (srl (and GPR:$src, 0xFFFF), (i32 8)), (shl GPR:$src, (i32 8))), i16))]>; // FIXME: PKHxx etc. //===----------------------------------------------------------------------===// // Comparison Instructions... // defm t2CMP : T2I_cmp_is<"cmp", BinOpFrag<(ARMcmp node:$LHS, node:$RHS)>>; defm t2CMPnz : T2I_cmp_is<"cmp", BinOpFrag<(ARMcmpNZ node:$LHS, node:$RHS)>>; defm t2CMN : T2I_cmp_is<"cmn", BinOpFrag<(ARMcmp node:$LHS,(ineg node:$RHS))>>; defm t2CMNnz : T2I_cmp_is<"cmn", BinOpFrag<(ARMcmpNZ node:$LHS,(ineg node:$RHS))>>; def : Thumb2Pat<(ARMcmp GPR:$src, t2_so_imm_neg:$imm), (t2CMNri GPR:$src, t2_so_imm_neg:$imm)>; def : Thumb2Pat<(ARMcmpNZ GPR:$src, t2_so_imm_neg:$imm), (t2CMNri GPR:$src, t2_so_imm_neg:$imm)>; // FIXME: TST, TEQ, etc. // A8.6.27 CBNZ, CBZ - Compare and branch on (non)zero. // Short range conditional branch. Looks awesome for loops. Need to figure // out how to use this one. // FIXME: Conditional moves //===----------------------------------------------------------------------===// // Non-Instruction Patterns // // Large immediate handling. def : Thumb2Pat<(i32 imm:$src), (t2MOVTi16 (t2MOVi16 (t2_lo16 imm:$src)), (t2_hi16 imm:$src))>;