//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMSubtarget.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/Target/TargetRegistry.h" #include "llvm/Target/TargetAsmParser.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" using namespace llvm; namespace { struct ARMOperand; // The shift types for register controlled shifts in arm memory addressing enum ShiftType { Lsl, Lsr, Asr, Ror, Rrx }; class ARMAsmParser : public TargetAsmParser { MCAsmParser &Parser; TargetMachine &TM; private: MCAsmParser &getParser() const { return Parser; } MCAsmLexer &getLexer() const { return Parser.getLexer(); } void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); } bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); } bool MaybeParseRegister(OwningPtr &Op, bool ParseWriteBack); bool ParseRegisterList(OwningPtr &Op); bool ParseMemory(OwningPtr &Op); bool ParseMemoryOffsetReg(bool &Negative, bool &OffsetRegShifted, enum ShiftType &ShiftType, const MCExpr *&ShiftAmount, const MCExpr *&Offset, bool &OffsetIsReg, int &OffsetRegNum, SMLoc &E); bool ParseShift(enum ShiftType &St, const MCExpr *&ShiftAmount, SMLoc &E); bool ParseOperand(OwningPtr &Op); bool ParseDirectiveWord(unsigned Size, SMLoc L); bool ParseDirectiveThumb(SMLoc L); bool ParseDirectiveThumbFunc(SMLoc L); bool ParseDirectiveCode(SMLoc L); bool ParseDirectiveSyntax(SMLoc L); bool MatchInstruction(SMLoc IDLoc, const SmallVectorImpl &Operands, MCInst &Inst) { if (!MatchInstructionImpl(Operands, Inst)) return false; // FIXME: We should give nicer diagnostics about the exact failure. Error(IDLoc, "unrecognized instruction"); return true; } /// @name Auto-generated Match Functions /// { unsigned ComputeAvailableFeatures(const ARMSubtarget *Subtarget) const; bool MatchInstructionImpl(const SmallVectorImpl &Operands, MCInst &Inst); /// } public: ARMAsmParser(const Target &T, MCAsmParser &_Parser, TargetMachine &_TM) : TargetAsmParser(T), Parser(_Parser), TM(_TM) {} virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc, SmallVectorImpl &Operands); virtual bool ParseDirective(AsmToken DirectiveID); }; /// ARMOperand - Instances of this class represent a parsed ARM machine /// instruction. struct ARMOperand : public MCParsedAsmOperand { private: ARMOperand() {} public: enum KindTy { CondCode, Immediate, Memory, Register, Token } Kind; SMLoc StartLoc, EndLoc; union { struct { ARMCC::CondCodes Val; } CC; struct { const char *Data; unsigned Length; } Tok; struct { unsigned RegNum; bool Writeback; } Reg; struct { const MCExpr *Val; } Imm; // This is for all forms of ARM address expressions struct { unsigned BaseRegNum; unsigned OffsetRegNum; // used when OffsetIsReg is true const MCExpr *Offset; // used when OffsetIsReg is false const MCExpr *ShiftAmount; // used when OffsetRegShifted is true enum ShiftType ShiftType; // used when OffsetRegShifted is true unsigned OffsetRegShifted : 1, // only used when OffsetIsReg is true Preindexed : 1, Postindexed : 1, OffsetIsReg : 1, Negative : 1, // only used when OffsetIsReg is true Writeback : 1; } Mem; }; //ARMOperand(KindTy K, SMLoc S, SMLoc E) // : Kind(K), StartLoc(S), EndLoc(E) {} ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() { Kind = o.Kind; StartLoc = o.StartLoc; EndLoc = o.EndLoc; switch (Kind) { case CondCode: CC = o.CC; break; case Token: Tok = o.Tok; break; case Register: Reg = o.Reg; break; case Immediate: Imm = o.Imm; break; case Memory: Mem = o.Mem; break; } } /// getStartLoc - Get the location of the first token of this operand. SMLoc getStartLoc() const { return StartLoc; } /// getEndLoc - Get the location of the last token of this operand. SMLoc getEndLoc() const { return EndLoc; } ARMCC::CondCodes getCondCode() const { assert(Kind == CondCode && "Invalid access!"); return CC.Val; } StringRef getToken() const { assert(Kind == Token && "Invalid access!"); return StringRef(Tok.Data, Tok.Length); } unsigned getReg() const { assert(Kind == Register && "Invalid access!"); return Reg.RegNum; } const MCExpr *getImm() const { assert(Kind == Immediate && "Invalid access!"); return Imm.Val; } bool isCondCode() const { return Kind == CondCode; } bool isImm() const { return Kind == Immediate; } bool isReg() const { return Kind == Register; } bool isToken() const {return Kind == Token; } void addExpr(MCInst &Inst, const MCExpr *Expr) const { // Add as immediates when possible. if (const MCConstantExpr *CE = dyn_cast(Expr)) Inst.addOperand(MCOperand::CreateImm(CE->getValue())); else Inst.addOperand(MCOperand::CreateExpr(Expr)); } void addCondCodeOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode()))); // FIXME: What belongs here? Inst.addOperand(MCOperand::CreateReg(0)); } void addRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getReg())); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } virtual void dump(raw_ostream &OS) const; static void CreateCondCode(OwningPtr &Op, ARMCC::CondCodes CC, SMLoc S) { Op.reset(new ARMOperand); Op->Kind = CondCode; Op->CC.Val = CC; Op->StartLoc = S; Op->EndLoc = S; } static void CreateToken(OwningPtr &Op, StringRef Str, SMLoc S) { Op.reset(new ARMOperand); Op->Kind = Token; Op->Tok.Data = Str.data(); Op->Tok.Length = Str.size(); Op->StartLoc = S; Op->EndLoc = S; } static void CreateReg(OwningPtr &Op, unsigned RegNum, bool Writeback, SMLoc S, SMLoc E) { Op.reset(new ARMOperand); Op->Kind = Register; Op->Reg.RegNum = RegNum; Op->Reg.Writeback = Writeback; Op->StartLoc = S; Op->EndLoc = E; } static void CreateImm(OwningPtr &Op, const MCExpr *Val, SMLoc S, SMLoc E) { Op.reset(new ARMOperand); Op->Kind = Immediate; Op->Imm.Val = Val; Op->StartLoc = S; Op->EndLoc = E; } static void CreateMem(OwningPtr &Op, unsigned BaseRegNum, bool OffsetIsReg, const MCExpr *Offset, unsigned OffsetRegNum, bool OffsetRegShifted, enum ShiftType ShiftType, const MCExpr *ShiftAmount, bool Preindexed, bool Postindexed, bool Negative, bool Writeback, SMLoc S, SMLoc E) { Op.reset(new ARMOperand); Op->Kind = Memory; Op->Mem.BaseRegNum = BaseRegNum; Op->Mem.OffsetIsReg = OffsetIsReg; Op->Mem.Offset = Offset; Op->Mem.OffsetRegNum = OffsetRegNum; Op->Mem.OffsetRegShifted = OffsetRegShifted; Op->Mem.ShiftType = ShiftType; Op->Mem.ShiftAmount = ShiftAmount; Op->Mem.Preindexed = Preindexed; Op->Mem.Postindexed = Postindexed; Op->Mem.Negative = Negative; Op->Mem.Writeback = Writeback; Op->StartLoc = S; Op->EndLoc = E; } }; } // end anonymous namespace. void ARMOperand::dump(raw_ostream &OS) const { switch (Kind) { case CondCode: OS << ARMCondCodeToString(getCondCode()); break; case Immediate: getImm()->print(OS); break; case Memory: OS << ""; break; case Register: OS << ""; break; case Token: OS << "'" << getToken() << "'"; break; } } /// @name Auto-generated Match Functions /// { static unsigned MatchRegisterName(StringRef Name); /// } /// Try to parse a register name. The token must be an Identifier when called, /// and if it is a register name a Reg operand is created, the token is eaten /// and false is returned. Else true is returned and no token is eaten. /// TODO this is likely to change to allow different register types and or to /// parse for a specific register type. bool ARMAsmParser::MaybeParseRegister (OwningPtr &Op, bool ParseWriteBack) { SMLoc S, E; const AsmToken &Tok = Parser.getTok(); assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); // FIXME: Validate register for the current architecture; we have to do // validation later, so maybe there is no need for this here. int RegNum; RegNum = MatchRegisterName(Tok.getString()); if (RegNum == -1) return true; S = Tok.getLoc(); Parser.Lex(); // Eat identifier token. E = Parser.getTok().getLoc(); bool Writeback = false; if (ParseWriteBack) { const AsmToken &ExclaimTok = Parser.getTok(); if (ExclaimTok.is(AsmToken::Exclaim)) { E = ExclaimTok.getLoc(); Writeback = true; Parser.Lex(); // Eat exclaim token } } ARMOperand::CreateReg(Op, RegNum, Writeback, S, E); return false; } /// Parse a register list, return false if successful else return true or an /// error. The first token must be a '{' when called. bool ARMAsmParser::ParseRegisterList(OwningPtr &Op) { SMLoc S, E; assert(Parser.getTok().is(AsmToken::LCurly) && "Token is not an Left Curly Brace"); S = Parser.getTok().getLoc(); Parser.Lex(); // Eat left curly brace token. const AsmToken &RegTok = Parser.getTok(); SMLoc RegLoc = RegTok.getLoc(); if (RegTok.isNot(AsmToken::Identifier)) return Error(RegLoc, "register expected"); int RegNum = MatchRegisterName(RegTok.getString()); if (RegNum == -1) return Error(RegLoc, "register expected"); Parser.Lex(); // Eat identifier token. unsigned RegList = 1 << RegNum; int HighRegNum = RegNum; // TODO ranges like "{Rn-Rm}" while (Parser.getTok().is(AsmToken::Comma)) { Parser.Lex(); // Eat comma token. const AsmToken &RegTok = Parser.getTok(); SMLoc RegLoc = RegTok.getLoc(); if (RegTok.isNot(AsmToken::Identifier)) return Error(RegLoc, "register expected"); int RegNum = MatchRegisterName(RegTok.getString()); if (RegNum == -1) return Error(RegLoc, "register expected"); if (RegList & (1 << RegNum)) Warning(RegLoc, "register duplicated in register list"); else if (RegNum <= HighRegNum) Warning(RegLoc, "register not in ascending order in register list"); RegList |= 1 << RegNum; HighRegNum = RegNum; Parser.Lex(); // Eat identifier token. } const AsmToken &RCurlyTok = Parser.getTok(); if (RCurlyTok.isNot(AsmToken::RCurly)) return Error(RCurlyTok.getLoc(), "'}' expected"); E = RCurlyTok.getLoc(); Parser.Lex(); // Eat left curly brace token. return false; } /// Parse an arm memory expression, return false if successful else return true /// or an error. The first token must be a '[' when called. /// TODO Only preindexing and postindexing addressing are started, unindexed /// with option, etc are still to do. bool ARMAsmParser::ParseMemory(OwningPtr &Op) { SMLoc S, E; assert(Parser.getTok().is(AsmToken::LBrac) && "Token is not an Left Bracket"); S = Parser.getTok().getLoc(); Parser.Lex(); // Eat left bracket token. const AsmToken &BaseRegTok = Parser.getTok(); if (BaseRegTok.isNot(AsmToken::Identifier)) return Error(BaseRegTok.getLoc(), "register expected"); if (MaybeParseRegister(Op, false)) return Error(BaseRegTok.getLoc(), "register expected"); int BaseRegNum = Op->getReg(); bool Preindexed = false; bool Postindexed = false; bool OffsetIsReg = false; bool Negative = false; bool Writeback = false; // First look for preindexed address forms, that is after the "[Rn" we now // have to see if the next token is a comma. const AsmToken &Tok = Parser.getTok(); if (Tok.is(AsmToken::Comma)) { Preindexed = true; Parser.Lex(); // Eat comma token. int OffsetRegNum; bool OffsetRegShifted; enum ShiftType ShiftType; const MCExpr *ShiftAmount; const MCExpr *Offset; if(ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType, ShiftAmount, Offset, OffsetIsReg, OffsetRegNum, E)) return true; const AsmToken &RBracTok = Parser.getTok(); if (RBracTok.isNot(AsmToken::RBrac)) return Error(RBracTok.getLoc(), "']' expected"); E = RBracTok.getLoc(); Parser.Lex(); // Eat right bracket token. const AsmToken &ExclaimTok = Parser.getTok(); if (ExclaimTok.is(AsmToken::Exclaim)) { E = ExclaimTok.getLoc(); Writeback = true; Parser.Lex(); // Eat exclaim token } ARMOperand::CreateMem(Op, BaseRegNum, OffsetIsReg, Offset, OffsetRegNum, OffsetRegShifted, ShiftType, ShiftAmount, Preindexed, Postindexed, Negative, Writeback, S, E); return false; } // The "[Rn" we have so far was not followed by a comma. else if (Tok.is(AsmToken::RBrac)) { // This is a post indexing addressing forms, that is a ']' follows after // the "[Rn". Postindexed = true; Writeback = true; E = Tok.getLoc(); Parser.Lex(); // Eat right bracket token. int OffsetRegNum = 0; bool OffsetRegShifted = false; enum ShiftType ShiftType; const MCExpr *ShiftAmount; const MCExpr *Offset; const AsmToken &NextTok = Parser.getTok(); if (NextTok.isNot(AsmToken::EndOfStatement)) { if (NextTok.isNot(AsmToken::Comma)) return Error(NextTok.getLoc(), "',' expected"); Parser.Lex(); // Eat comma token. if(ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType, ShiftAmount, Offset, OffsetIsReg, OffsetRegNum, E)) return true; } ARMOperand::CreateMem(Op, BaseRegNum, OffsetIsReg, Offset, OffsetRegNum, OffsetRegShifted, ShiftType, ShiftAmount, Preindexed, Postindexed, Negative, Writeback, S, E); return false; } return true; } /// Parse the offset of a memory operand after we have seen "[Rn," or "[Rn]," /// we will parse the following (were +/- means that a plus or minus is /// optional): /// +/-Rm /// +/-Rm, shift /// #offset /// we return false on success or an error otherwise. bool ARMAsmParser::ParseMemoryOffsetReg(bool &Negative, bool &OffsetRegShifted, enum ShiftType &ShiftType, const MCExpr *&ShiftAmount, const MCExpr *&Offset, bool &OffsetIsReg, int &OffsetRegNum, SMLoc &E) { OwningPtr Op; Negative = false; OffsetRegShifted = false; OffsetIsReg = false; OffsetRegNum = -1; const AsmToken &NextTok = Parser.getTok(); E = NextTok.getLoc(); if (NextTok.is(AsmToken::Plus)) Parser.Lex(); // Eat plus token. else if (NextTok.is(AsmToken::Minus)) { Negative = true; Parser.Lex(); // Eat minus token } // See if there is a register following the "[Rn," or "[Rn]," we have so far. const AsmToken &OffsetRegTok = Parser.getTok(); if (OffsetRegTok.is(AsmToken::Identifier)) { OffsetIsReg = !MaybeParseRegister(Op, false); if (OffsetIsReg) { E = Op->getEndLoc(); OffsetRegNum = Op->getReg(); } } // If we parsed a register as the offset then their can be a shift after that if (OffsetRegNum != -1) { // Look for a comma then a shift const AsmToken &Tok = Parser.getTok(); if (Tok.is(AsmToken::Comma)) { Parser.Lex(); // Eat comma token. const AsmToken &Tok = Parser.getTok(); if (ParseShift(ShiftType, ShiftAmount, E)) return Error(Tok.getLoc(), "shift expected"); OffsetRegShifted = true; } } else { // the "[Rn," or "[Rn,]" we have so far was not followed by "Rm" // Look for #offset following the "[Rn," or "[Rn]," const AsmToken &HashTok = Parser.getTok(); if (HashTok.isNot(AsmToken::Hash)) return Error(HashTok.getLoc(), "'#' expected"); Parser.Lex(); // Eat hash token. if (getParser().ParseExpression(Offset)) return true; E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); } return false; } /// ParseShift as one of these two: /// ( lsl | lsr | asr | ror ) , # shift_amount /// rrx /// and returns true if it parses a shift otherwise it returns false. bool ARMAsmParser::ParseShift(ShiftType &St, const MCExpr *&ShiftAmount, SMLoc &E) { const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return true; StringRef ShiftName = Tok.getString(); if (ShiftName == "lsl" || ShiftName == "LSL") St = Lsl; else if (ShiftName == "lsr" || ShiftName == "LSR") St = Lsr; else if (ShiftName == "asr" || ShiftName == "ASR") St = Asr; else if (ShiftName == "ror" || ShiftName == "ROR") St = Ror; else if (ShiftName == "rrx" || ShiftName == "RRX") St = Rrx; else return true; Parser.Lex(); // Eat shift type token. // Rrx stands alone. if (St == Rrx) return false; // Otherwise, there must be a '#' and a shift amount. const AsmToken &HashTok = Parser.getTok(); if (HashTok.isNot(AsmToken::Hash)) return Error(HashTok.getLoc(), "'#' expected"); Parser.Lex(); // Eat hash token. if (getParser().ParseExpression(ShiftAmount)) return true; return false; } /// Parse a arm instruction operand. For now this parses the operand regardless /// of the mnemonic. bool ARMAsmParser::ParseOperand(OwningPtr &Op) { SMLoc S, E; switch (getLexer().getKind()) { case AsmToken::Identifier: if (!MaybeParseRegister(Op, true)) return false; // This was not a register so parse other operands that start with an // identifier (like labels) as expressions and create them as immediates. const MCExpr *IdVal; S = Parser.getTok().getLoc(); if (getParser().ParseExpression(IdVal)) return true; E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); ARMOperand::CreateImm(Op, IdVal, S, E); return false; case AsmToken::LBrac: return ParseMemory(Op); case AsmToken::LCurly: return ParseRegisterList(Op); case AsmToken::Hash: // #42 -> immediate. // TODO: ":lower16:" and ":upper16:" modifiers after # before immediate S = Parser.getTok().getLoc(); Parser.Lex(); const MCExpr *ImmVal; if (getParser().ParseExpression(ImmVal)) return true; E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); ARMOperand::CreateImm(Op, ImmVal, S, E); return false; default: return Error(Parser.getTok().getLoc(), "unexpected token in operand"); } } /// Parse an arm instruction mnemonic followed by its operands. bool ARMAsmParser::ParseInstruction(StringRef Name, SMLoc NameLoc, SmallVectorImpl &Operands) { OwningPtr Op; // Create the leading tokens for the mnemonic, split by '.' characters. size_t Start = 0, Next = Name.find('.'); StringRef Head = Name.slice(Start, Next); // Determine the predicate, if any. // // FIXME: We need a way to check whether a prefix supports predication, // otherwise we will end up with an ambiguity for instructions that happen to // end with a predicate name. unsigned CC = StringSwitch(Head.substr(Head.size()-2)) .Case("eq", ARMCC::EQ) .Case("ne", ARMCC::NE) .Case("hs", ARMCC::HS) .Case("lo", ARMCC::LO) .Case("mi", ARMCC::MI) .Case("pl", ARMCC::PL) .Case("vs", ARMCC::VS) .Case("vc", ARMCC::VC) .Case("hi", ARMCC::HI) .Case("ls", ARMCC::LS) .Case("ge", ARMCC::GE) .Case("lt", ARMCC::LT) .Case("gt", ARMCC::GT) .Case("le", ARMCC::LE) .Case("al", ARMCC::AL) .Default(~0U); if (CC != ~0U) { Head = Head.slice(0, Head.size() - 2); } else CC = ARMCC::AL; ARMOperand::CreateToken(Op, Head, NameLoc); Operands.push_back(Op.take()); ARMOperand::CreateCondCode(Op, ARMCC::CondCodes(CC), NameLoc); Operands.push_back(Op.take()); // Add the remaining tokens in the mnemonic. while (Next != StringRef::npos) { Start = Next; Next = Name.find('.', Start + 1); Head = Name.slice(Start, Next); ARMOperand::CreateToken(Op, Head, NameLoc); Operands.push_back(Op.take()); } // Read the remaining operands. if (getLexer().isNot(AsmToken::EndOfStatement)) { // Read the first operand. OwningPtr Op; if (ParseOperand(Op)) return true; Operands.push_back(Op.take()); while (getLexer().is(AsmToken::Comma)) { Parser.Lex(); // Eat the comma. // Parse and remember the operand. if (ParseOperand(Op)) return true; Operands.push_back(Op.take()); } } return false; } /// ParseDirective parses the arm specific directives bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { StringRef IDVal = DirectiveID.getIdentifier(); if (IDVal == ".word") return ParseDirectiveWord(4, DirectiveID.getLoc()); else if (IDVal == ".thumb") return ParseDirectiveThumb(DirectiveID.getLoc()); else if (IDVal == ".thumb_func") return ParseDirectiveThumbFunc(DirectiveID.getLoc()); else if (IDVal == ".code") return ParseDirectiveCode(DirectiveID.getLoc()); else if (IDVal == ".syntax") return ParseDirectiveSyntax(DirectiveID.getLoc()); return true; } /// ParseDirectiveWord /// ::= .word [ expression (, expression)* ] bool ARMAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) { if (getLexer().isNot(AsmToken::EndOfStatement)) { for (;;) { const MCExpr *Value; if (getParser().ParseExpression(Value)) return true; getParser().getStreamer().EmitValue(Value, Size, 0/*addrspace*/); if (getLexer().is(AsmToken::EndOfStatement)) break; // FIXME: Improve diagnostic. if (getLexer().isNot(AsmToken::Comma)) return Error(L, "unexpected token in directive"); Parser.Lex(); } } Parser.Lex(); return false; } /// ParseDirectiveThumb /// ::= .thumb bool ARMAsmParser::ParseDirectiveThumb(SMLoc L) { if (getLexer().isNot(AsmToken::EndOfStatement)) return Error(L, "unexpected token in directive"); Parser.Lex(); // TODO: set thumb mode // TODO: tell the MC streamer the mode // getParser().getStreamer().Emit???(); return false; } /// ParseDirectiveThumbFunc /// ::= .thumbfunc symbol_name bool ARMAsmParser::ParseDirectiveThumbFunc(SMLoc L) { const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) return Error(L, "unexpected token in .syntax directive"); StringRef ATTRIBUTE_UNUSED SymbolName = Parser.getTok().getIdentifier(); Parser.Lex(); // Consume the identifier token. if (getLexer().isNot(AsmToken::EndOfStatement)) return Error(L, "unexpected token in directive"); Parser.Lex(); // TODO: mark symbol as a thumb symbol // getParser().getStreamer().Emit???(); return false; } /// ParseDirectiveSyntax /// ::= .syntax unified | divided bool ARMAsmParser::ParseDirectiveSyntax(SMLoc L) { const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return Error(L, "unexpected token in .syntax directive"); StringRef Mode = Tok.getString(); if (Mode == "unified" || Mode == "UNIFIED") Parser.Lex(); else if (Mode == "divided" || Mode == "DIVIDED") Parser.Lex(); else return Error(L, "unrecognized syntax mode in .syntax directive"); if (getLexer().isNot(AsmToken::EndOfStatement)) return Error(Parser.getTok().getLoc(), "unexpected token in directive"); Parser.Lex(); // TODO tell the MC streamer the mode // getParser().getStreamer().Emit???(); return false; } /// ParseDirectiveCode /// ::= .code 16 | 32 bool ARMAsmParser::ParseDirectiveCode(SMLoc L) { const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Integer)) return Error(L, "unexpected token in .code directive"); int64_t Val = Parser.getTok().getIntVal(); if (Val == 16) Parser.Lex(); else if (Val == 32) Parser.Lex(); else return Error(L, "invalid operand to .code directive"); if (getLexer().isNot(AsmToken::EndOfStatement)) return Error(Parser.getTok().getLoc(), "unexpected token in directive"); Parser.Lex(); // TODO tell the MC streamer the mode // getParser().getStreamer().Emit???(); return false; } extern "C" void LLVMInitializeARMAsmLexer(); /// Force static initialization. extern "C" void LLVMInitializeARMAsmParser() { RegisterAsmParser X(TheARMTarget); RegisterAsmParser Y(TheThumbTarget); LLVMInitializeARMAsmLexer(); } #include "ARMGenAsmMatcher.inc"