//===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Hexagon specific subclass of TargetSubtarget. // //===----------------------------------------------------------------------===// #include "Hexagon.h" #include "HexagonInstrInfo.h" #include "HexagonRegisterInfo.h" #include "HexagonSubtarget.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "MCTargetDesc/HexagonMCTargetDesc.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/CodeGen/ScheduleDAGInstrs.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "hexagon-subtarget" #define GET_SUBTARGETINFO_CTOR #define GET_SUBTARGETINFO_TARGET_DESC #include "HexagonGenSubtargetInfo.inc" static cl::opt EnableMemOps("enable-hexagon-memops", cl::Hidden, cl::ZeroOrMore, cl::ValueDisallowed, cl::init(true), cl::desc("Generate V4 MEMOP in code generation for Hexagon target")); static cl::opt DisableMemOps("disable-hexagon-memops", cl::Hidden, cl::ZeroOrMore, cl::ValueDisallowed, cl::init(false), cl::desc("Do not generate V4 MEMOP in code generation for Hexagon target")); static cl::opt EnableIEEERndNear("enable-hexagon-ieee-rnd-near", cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::desc("Generate non-chopped conversion from fp to int.")); static cl::opt EnableBSBSched("enable-bsb-sched", cl::Hidden, cl::ZeroOrMore, cl::init(true)); static cl::opt EnableHexagonHVXDouble("enable-hexagon-hvx-double", cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::desc("Enable Hexagon Double Vector eXtensions")); static cl::opt EnableHexagonHVX("enable-hexagon-hvx", cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::desc("Enable Hexagon Vector eXtensions")); static cl::opt EnableTCLatencySched("enable-tc-latency-sched", cl::Hidden, cl::ZeroOrMore, cl::init(false)); static cl::opt EnableDotCurSched("enable-cur-sched", cl::Hidden, cl::ZeroOrMore, cl::init(true), cl::desc("Enable the scheduler to generate .cur")); static cl::opt EnableVecFrwdSched("enable-evec-frwd-sched", cl::Hidden, cl::ZeroOrMore, cl::init(true)); static cl::opt DisableHexagonMISched("disable-hexagon-misched", cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::desc("Disable Hexagon MI Scheduling")); static cl::opt EnableSubregLiveness("hexagon-subreg-liveness", cl::Hidden, cl::ZeroOrMore, cl::init(true), cl::desc("Enable subregister liveness tracking for Hexagon")); static cl::opt OverrideLongCalls("hexagon-long-calls", cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::desc("If present, forces/disables the use of long calls")); static cl::opt EnablePredicatedCalls("hexagon-pred-calls", cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::desc("Consider calls to be predicable")); void HexagonSubtarget::initializeEnvironment() { UseMemOps = false; ModeIEEERndNear = false; UseBSBScheduling = false; } HexagonSubtarget & HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) { CPUString = Hexagon_MC::selectHexagonCPU(getTargetTriple(), CPU); static std::map CpuTable { { "hexagonv4", V4 }, { "hexagonv5", V5 }, { "hexagonv55", V55 }, { "hexagonv60", V60 }, { "hexagonv62", V62 }, }; auto foundIt = CpuTable.find(CPUString); if (foundIt != CpuTable.end()) HexagonArchVersion = foundIt->second; else llvm_unreachable("Unrecognized Hexagon processor version"); UseHVXOps = false; UseHVXDblOps = false; UseLongCalls = false; ParseSubtargetFeatures(CPUString, FS); if (EnableHexagonHVX.getPosition()) UseHVXOps = EnableHexagonHVX; if (EnableHexagonHVXDouble.getPosition()) UseHVXDblOps = EnableHexagonHVXDouble; if (OverrideLongCalls.getPosition()) UseLongCalls = OverrideLongCalls; return *this; } HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU, StringRef FS, const TargetMachine &TM) : HexagonGenSubtargetInfo(TT, CPU, FS), CPUString(CPU), InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM, *this) { initializeEnvironment(); // Initialize scheduling itinerary for the specified CPU. InstrItins = getInstrItineraryForCPU(CPUString); // UseMemOps on by default unless disabled explicitly if (DisableMemOps) UseMemOps = false; else if (EnableMemOps) UseMemOps = true; else UseMemOps = false; if (EnableIEEERndNear) ModeIEEERndNear = true; else ModeIEEERndNear = false; UseBSBScheduling = hasV60TOps() && EnableBSBSched; } /// \brief Perform target specific adjustments to the latency of a schedule /// dependency. void HexagonSubtarget::adjustSchedDependency(SUnit *Src, SUnit *Dst, SDep &Dep) const { MachineInstr *SrcInst = Src->getInstr(); MachineInstr *DstInst = Dst->getInstr(); if (!Src->isInstr() || !Dst->isInstr()) return; const HexagonInstrInfo *QII = getInstrInfo(); // Instructions with .new operands have zero latency. SmallSet ExclSrc; SmallSet ExclDst; if (QII->canExecuteInBundle(*SrcInst, *DstInst) && isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) { Dep.setLatency(0); return; } if (!hasV60TOps()) return; // If it's a REG_SEQUENCE, use its destination instruction to determine // the correct latency. if (DstInst->isRegSequence() && Dst->NumSuccs == 1) { unsigned RSeqReg = DstInst->getOperand(0).getReg(); MachineInstr *RSeqDst = Dst->Succs[0].getSUnit()->getInstr(); unsigned UseIdx = -1; for (unsigned OpNum = 0; OpNum < RSeqDst->getNumOperands(); OpNum++) { const MachineOperand &MO = RSeqDst->getOperand(OpNum); if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == RSeqReg) { UseIdx = OpNum; break; } } unsigned RSeqLatency = (InstrInfo.getOperandLatency(&InstrItins, *SrcInst, 0, *RSeqDst, UseIdx)); Dep.setLatency(RSeqLatency); } // Try to schedule uses near definitions to generate .cur. ExclSrc.clear(); ExclDst.clear(); if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) && isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) { Dep.setLatency(0); return; } updateLatency(*SrcInst, *DstInst, Dep); } void HexagonSubtarget::HexagonDAGMutation::apply(ScheduleDAGInstrs *DAG) { for (auto &SU : DAG->SUnits) { if (!SU.isInstr()) continue; SmallVector Erase; for (auto &D : SU.Preds) if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF) Erase.push_back(D); for (auto &E : Erase) SU.removePred(E); } for (auto &SU : DAG->SUnits) { // Update the latency of chain edges between v60 vector load or store // instructions to be 1. These instruction cannot be scheduled in the // same packet. MachineInstr &MI1 = *SU.getInstr(); auto *QII = static_cast(DAG->TII); bool IsStoreMI1 = MI1.mayStore(); bool IsLoadMI1 = MI1.mayLoad(); if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1)) continue; for (auto &SI : SU.Succs) { if (SI.getKind() != SDep::Order || SI.getLatency() != 0) continue; MachineInstr &MI2 = *SI.getSUnit()->getInstr(); if (!QII->isHVXVec(MI2)) continue; if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) { SI.setLatency(1); SU.setHeightDirty(); // Change the dependence in the opposite direction too. for (auto &PI : SI.getSUnit()->Preds) { if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order) continue; PI.setLatency(1); SI.getSUnit()->setDepthDirty(); } } } } } void HexagonSubtarget::getPostRAMutations( std::vector> &Mutations) const { Mutations.push_back( llvm::make_unique()); } void HexagonSubtarget::getSMSMutations( std::vector> &Mutations) const { Mutations.push_back( llvm::make_unique()); } // Pin the vtable to this file. void HexagonSubtarget::anchor() {} bool HexagonSubtarget::enableMachineScheduler() const { if (DisableHexagonMISched.getNumOccurrences()) return !DisableHexagonMISched; return true; } bool HexagonSubtarget::usePredicatedCalls() const { return EnablePredicatedCalls; } void HexagonSubtarget::updateLatency(MachineInstr &SrcInst, MachineInstr &DstInst, SDep &Dep) const { if (Dep.isArtificial()) { Dep.setLatency(1); return; } if (!hasV60TOps()) return; auto &QII = static_cast(*getInstrInfo()); // BSB scheduling. if (QII.isHVXVec(SrcInst) || useBSBScheduling()) Dep.setLatency((Dep.getLatency() + 1) >> 1); } void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const { MachineInstr *SrcI = Src->getInstr(); for (auto &I : Src->Succs) { if (!I.isAssignedRegDep() || I.getSUnit() != Dst) continue; unsigned DepR = I.getReg(); int DefIdx = -1; for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) { const MachineOperand &MO = SrcI->getOperand(OpNum); if (MO.isReg() && MO.isDef() && MO.getReg() == DepR) DefIdx = OpNum; } assert(DefIdx >= 0 && "Def Reg not found in Src MI"); MachineInstr *DstI = Dst->getInstr(); for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) { const MachineOperand &MO = DstI->getOperand(OpNum); if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) { int Latency = (InstrInfo.getOperandLatency(&InstrItins, *SrcI, DefIdx, *DstI, OpNum)); // For some instructions (ex: COPY), we might end up with < 0 latency // as they don't have any Itinerary class associated with them. if (Latency <= 0) Latency = 1; I.setLatency(Latency); updateLatency(*SrcI, *DstI, I); } } // Update the latency of opposite edge too. for (auto &J : Dst->Preds) { if (J.getSUnit() != Src) continue; J.setLatency(I.getLatency()); } } } /// Change the latency between the two SUnits. void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat) const { for (auto &I : Src->Succs) { if (I.getSUnit() != Dst) continue; SDep T = I; I.setLatency(Lat); // Update the latency of opposite edge too. T.setSUnit(Src); auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T); assert(F != Dst->Preds.end()); F->setLatency(I.getLatency()); } } /// If the SUnit has a zero latency edge, return the other SUnit. static SUnit *getZeroLatency(SUnit *N, SmallVector &Deps) { for (auto &I : Deps) if (I.isAssignedRegDep() && I.getLatency() == 0 && !I.getSUnit()->getInstr()->isPseudo()) return I.getSUnit(); return nullptr; } // Return true if these are the best two instructions to schedule // together with a zero latency. Only one dependence should have a zero // latency. If there are multiple choices, choose the best, and change // the others, if needed. bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst, const HexagonInstrInfo *TII, SmallSet &ExclSrc, SmallSet &ExclDst) const { MachineInstr &SrcInst = *Src->getInstr(); MachineInstr &DstInst = *Dst->getInstr(); // Ignore Boundary SU nodes as these have null instructions. if (Dst->isBoundaryNode()) return false; if (SrcInst.isPHI() || DstInst.isPHI()) return false; if (!TII->isToBeScheduledASAP(SrcInst, DstInst) && !TII->canExecuteInBundle(SrcInst, DstInst)) return false; // The architecture doesn't allow three dependent instructions in the same // packet. So, if the destination has a zero latency successor, then it's // not a candidate for a zero latency predecessor. if (getZeroLatency(Dst, Dst->Succs) != nullptr) return false; // Check if the Dst instruction is the best candidate first. SUnit *Best = nullptr; SUnit *DstBest = nullptr; SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds); if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) { // Check that Src doesn't have a better candidate. DstBest = getZeroLatency(Src, Src->Succs); if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum) Best = Dst; } if (Best != Dst) return false; // The caller frequently adds the same dependence twice. If so, then // return true for this case too. if ((Src == SrcBest && Dst == DstBest ) || (SrcBest == nullptr && Dst == DstBest) || (Src == SrcBest && Dst == nullptr)) return true; // Reassign the latency for the previous bests, which requires setting // the dependence edge in both directions. if (SrcBest != nullptr) { if (!hasV60TOps()) changeLatency(SrcBest, Dst, 1); else restoreLatency(SrcBest, Dst); } if (DstBest != nullptr) { if (!hasV60TOps()) changeLatency(Src, DstBest, 1); else restoreLatency(Src, DstBest); } // Attempt to find another opprotunity for zero latency in a different // dependence. if (SrcBest && DstBest) // If there is an edge from SrcBest to DstBst, then try to change that // to 0 now. changeLatency(SrcBest, DstBest, 0); else if (DstBest) { // Check if the previous best destination instruction has a new zero // latency dependence opportunity. ExclSrc.insert(Src); for (auto &I : DstBest->Preds) if (ExclSrc.count(I.getSUnit()) == 0 && isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst)) changeLatency(I.getSUnit(), DstBest, 0); } else if (SrcBest) { // Check if previous best source instruction has a new zero latency // dependence opportunity. ExclDst.insert(Dst); for (auto &I : SrcBest->Succs) if (ExclDst.count(I.getSUnit()) == 0 && isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst)) changeLatency(SrcBest, I.getSUnit(), 0); } return true; } unsigned HexagonSubtarget::getL1CacheLineSize() const { return 32; } unsigned HexagonSubtarget::getL1PrefetchDistance() const { return 32; } bool HexagonSubtarget::enableSubRegLiveness() const { return EnableSubregLiveness; }