//===-- MSP430ISelDAGToDAG.cpp - A dag to dag inst selector for MSP430 ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines an instruction selector for the MSP430 target. // //===----------------------------------------------------------------------===// #include "MSP430.h" #include "MSP430ISelLowering.h" #include "MSP430TargetMachine.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Intrinsics.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/Statistic.h" using namespace llvm; #ifndef NDEBUG static cl::opt ViewRMWDAGs("view-msp430-rmw-dags", cl::Hidden, cl::desc("Pop up a window to show isel dags after RMW preprocess")); #else static const bool ViewRMWDAGs = false; #endif STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor"); namespace { struct MSP430ISelAddressMode { enum { RegBase, FrameIndexBase } BaseType; struct { // This is really a union, discriminated by BaseType! SDValue Reg; int FrameIndex; } Base; int16_t Disp; GlobalValue *GV; Constant *CP; BlockAddress *BlockAddr; const char *ES; int JT; unsigned Align; // CP alignment. MSP430ISelAddressMode() : BaseType(RegBase), Disp(0), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0) { } bool hasSymbolicDisplacement() const { return GV != 0 || CP != 0 || ES != 0 || JT != -1; } bool hasBaseReg() const { return Base.Reg.getNode() != 0; } void setBaseReg(SDValue Reg) { BaseType = RegBase; Base.Reg = Reg; } void dump() { errs() << "MSP430ISelAddressMode " << this << '\n'; if (BaseType == RegBase && Base.Reg.getNode() != 0) { errs() << "Base.Reg "; Base.Reg.getNode()->dump(); } else if (BaseType == FrameIndexBase) { errs() << " Base.FrameIndex " << Base.FrameIndex << '\n'; } errs() << " Disp " << Disp << '\n'; if (GV) { errs() << "GV "; GV->dump(); } else if (CP) { errs() << " CP "; CP->dump(); errs() << " Align" << Align << '\n'; } else if (ES) { errs() << "ES "; errs() << ES << '\n'; } else if (JT != -1) errs() << " JT" << JT << " Align" << Align << '\n'; } }; } /// MSP430DAGToDAGISel - MSP430 specific code to select MSP430 machine /// instructions for SelectionDAG operations. /// namespace { class MSP430DAGToDAGISel : public SelectionDAGISel { MSP430TargetLowering &Lowering; const MSP430Subtarget &Subtarget; public: MSP430DAGToDAGISel(MSP430TargetMachine &TM, CodeGenOpt::Level OptLevel) : SelectionDAGISel(TM, OptLevel), Lowering(*TM.getTargetLowering()), Subtarget(*TM.getSubtargetImpl()) { } virtual void InstructionSelect(); virtual const char *getPassName() const { return "MSP430 DAG->DAG Pattern Instruction Selection"; } bool MatchAddress(SDValue N, MSP430ISelAddressMode &AM); bool MatchWrapper(SDValue N, MSP430ISelAddressMode &AM); bool MatchAddressBase(SDValue N, MSP430ISelAddressMode &AM); bool IsLegalToFold(SDValue N, SDNode *U, SDNode *Root) const; virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, std::vector &OutOps); // Include the pieces autogenerated from the target description. #include "MSP430GenDAGISel.inc" private: DenseMap RMWStores; void PreprocessForRMW(); SDNode *Select(SDNode *N); SDNode *SelectIndexedLoad(SDNode *Op); SDNode *SelectIndexedBinOp(SDNode *Op, SDValue N1, SDValue N2, unsigned Opc8, unsigned Opc16); bool SelectAddr(SDNode *Op, SDValue Addr, SDValue &Base, SDValue &Disp); #ifndef NDEBUG unsigned Indent; #endif }; } // end anonymous namespace /// createMSP430ISelDag - This pass converts a legalized DAG into a /// MSP430-specific DAG, ready for instruction scheduling. /// FunctionPass *llvm::createMSP430ISelDag(MSP430TargetMachine &TM, CodeGenOpt::Level OptLevel) { return new MSP430DAGToDAGISel(TM, OptLevel); } /// MatchWrapper - Try to match MSP430ISD::Wrapper node into an addressing mode. /// These wrap things that will resolve down into a symbol reference. If no /// match is possible, this returns true, otherwise it returns false. bool MSP430DAGToDAGISel::MatchWrapper(SDValue N, MSP430ISelAddressMode &AM) { // If the addressing mode already has a symbol as the displacement, we can // never match another symbol. if (AM.hasSymbolicDisplacement()) return true; SDValue N0 = N.getOperand(0); if (GlobalAddressSDNode *G = dyn_cast(N0)) { AM.GV = G->getGlobal(); AM.Disp += G->getOffset(); //AM.SymbolFlags = G->getTargetFlags(); } else if (ConstantPoolSDNode *CP = dyn_cast(N0)) { AM.CP = CP->getConstVal(); AM.Align = CP->getAlignment(); AM.Disp += CP->getOffset(); //AM.SymbolFlags = CP->getTargetFlags(); } else if (ExternalSymbolSDNode *S = dyn_cast(N0)) { AM.ES = S->getSymbol(); //AM.SymbolFlags = S->getTargetFlags(); } else if (JumpTableSDNode *J = dyn_cast(N0)) { AM.JT = J->getIndex(); //AM.SymbolFlags = J->getTargetFlags(); } else { AM.BlockAddr = cast(N0)->getBlockAddress(); //AM.SymbolFlags = cast(N0)->getTargetFlags(); } return false; } /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the /// specified addressing mode without any further recursion. bool MSP430DAGToDAGISel::MatchAddressBase(SDValue N, MSP430ISelAddressMode &AM) { // Is the base register already occupied? if (AM.BaseType != MSP430ISelAddressMode::RegBase || AM.Base.Reg.getNode()) { // If so, we cannot select it. return true; } // Default, generate it as a register. AM.BaseType = MSP430ISelAddressMode::RegBase; AM.Base.Reg = N; return false; } bool MSP430DAGToDAGISel::MatchAddress(SDValue N, MSP430ISelAddressMode &AM) { DEBUG({ errs() << "MatchAddress: "; AM.dump(); }); switch (N.getOpcode()) { default: break; case ISD::Constant: { uint64_t Val = cast(N)->getSExtValue(); AM.Disp += Val; return false; } case MSP430ISD::Wrapper: if (!MatchWrapper(N, AM)) return false; break; case ISD::FrameIndex: if (AM.BaseType == MSP430ISelAddressMode::RegBase && AM.Base.Reg.getNode() == 0) { AM.BaseType = MSP430ISelAddressMode::FrameIndexBase; AM.Base.FrameIndex = cast(N)->getIndex(); return false; } break; case ISD::ADD: { MSP430ISelAddressMode Backup = AM; if (!MatchAddress(N.getNode()->getOperand(0), AM) && !MatchAddress(N.getNode()->getOperand(1), AM)) return false; AM = Backup; if (!MatchAddress(N.getNode()->getOperand(1), AM) && !MatchAddress(N.getNode()->getOperand(0), AM)) return false; AM = Backup; break; } case ISD::OR: // Handle "X | C" as "X + C" iff X is known to have C bits clear. if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { MSP430ISelAddressMode Backup = AM; uint64_t Offset = CN->getSExtValue(); // Start with the LHS as an addr mode. if (!MatchAddress(N.getOperand(0), AM) && // Address could not have picked a GV address for the displacement. AM.GV == NULL && // Check to see if the LHS & C is zero. CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) { AM.Disp += Offset; return false; } AM = Backup; } break; } return MatchAddressBase(N, AM); } /// SelectAddr - returns true if it is able pattern match an addressing mode. /// It returns the operands which make up the maximal addressing mode it can /// match by reference. bool MSP430DAGToDAGISel::SelectAddr(SDNode *Op, SDValue N, SDValue &Base, SDValue &Disp) { MSP430ISelAddressMode AM; if (MatchAddress(N, AM)) return false; EVT VT = N.getValueType(); if (AM.BaseType == MSP430ISelAddressMode::RegBase) { if (!AM.Base.Reg.getNode()) AM.Base.Reg = CurDAG->getRegister(0, VT); } Base = (AM.BaseType == MSP430ISelAddressMode::FrameIndexBase) ? CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) : AM.Base.Reg; if (AM.GV) Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i16, AM.Disp, 0/*AM.SymbolFlags*/); else if (AM.CP) Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i16, AM.Align, AM.Disp, 0/*AM.SymbolFlags*/); else if (AM.ES) Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i16, 0/*AM.SymbolFlags*/); else if (AM.JT != -1) Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i16, 0/*AM.SymbolFlags*/); else if (AM.BlockAddr) Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32, true, 0/*AM.SymbolFlags*/); else Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i16); return true; } bool MSP430DAGToDAGISel:: SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, std::vector &OutOps) { SDValue Op0, Op1; switch (ConstraintCode) { default: return true; case 'm': // memory if (!SelectAddr(Op.getNode(), Op, Op0, Op1)) return true; break; } OutOps.push_back(Op0); OutOps.push_back(Op1); return false; } bool MSP430DAGToDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root) const { if (OptLevel == CodeGenOpt::None) return false; /// RMW preprocessing creates the following code: /// [Load1] /// ^ ^ /// / | /// / | /// [Load2] | /// ^ ^ | /// | | | /// | \-| /// | | /// | [Op] /// | ^ /// | | /// \ / /// \ / /// [Store] /// /// The path Store => Load2 => Load1 is via chain. Note that in general it is /// not allowed to fold Load1 into Op (and Store) since it will creates a /// cycle. However, this is perfectly legal for the loads moved below the /// TokenFactor by PreprocessForRMW. Query the map Store => Load1 (created /// during preprocessing) to determine whether it's legal to introduce such /// "cycle" for a moment. DenseMap::const_iterator I = RMWStores.find(Root); if (I != RMWStores.end() && I->second == N.getNode()) return true; // Proceed to 'generic' cycle finder code return SelectionDAGISel::IsLegalToFold(N, U, Root); } /// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand /// and move load below the TokenFactor. Replace store's chain operand with /// load's chain result. static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load, SDValue Store, SDValue TF) { SmallVector Ops; for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i) if (Load.getNode() == TF.getOperand(i).getNode()) Ops.push_back(Load.getOperand(0)); else Ops.push_back(TF.getOperand(i)); SDValue NewTF = CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size()); SDValue NewLoad = CurDAG->UpdateNodeOperands(Load, NewTF, Load.getOperand(1), Load.getOperand(2)); CurDAG->UpdateNodeOperands(Store, NewLoad.getValue(1), Store.getOperand(1), Store.getOperand(2), Store.getOperand(3)); } /// MoveBelowTokenFactor2 - Replace TokenFactor operand with load's chain operand /// and move load below the TokenFactor. Replace store's chain operand with /// load's chain result. This a version which sinks two loads below token factor. /// Look into PreprocessForRMW comments for explanation of transform. static void MoveBelowTokenFactor2(SelectionDAG *CurDAG, SDValue Load1, SDValue Load2, SDValue Store, SDValue TF) { SmallVector Ops; for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i) { SDNode* N = TF.getOperand(i).getNode(); if (Load2.getNode() == N) Ops.push_back(Load2.getOperand(0)); else if (Load1.getNode() != N) Ops.push_back(TF.getOperand(i)); } SDValue NewTF = SDValue(CurDAG->MorphNodeTo(TF.getNode(), TF.getOpcode(), TF.getNode()->getVTList(), &Ops[0], Ops.size()), TF.getResNo()); SDValue NewLoad2 = CurDAG->UpdateNodeOperands(Load2, NewTF, Load2.getOperand(1), Load2.getOperand(2)); SDValue NewLoad1 = CurDAG->UpdateNodeOperands(Load1, NewLoad2.getValue(1), Load1.getOperand(1), Load1.getOperand(2)); CurDAG->UpdateNodeOperands(Store, NewLoad1.getValue(1), Store.getOperand(1), Store.getOperand(2), Store.getOperand(3)); } /// isAllowedToSink - return true if N a load which can be moved below token /// factor. Basically, the load should be non-volatile and has single use. static bool isLoadAllowedToSink(SDValue N, SDValue Chain) { if (N.getOpcode() == ISD::BIT_CONVERT) N = N.getOperand(0); LoadSDNode *LD = dyn_cast(N); if (!LD || LD->isVolatile()) return false; if (LD->getAddressingMode() != ISD::UNINDEXED) return false; ISD::LoadExtType ExtType = LD->getExtensionType(); if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD) return false; return (N.hasOneUse() && LD->hasNUsesOfValue(1, 1) && LD->isOperandOf(Chain.getNode())); } /// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG. /// The chain produced by the load must only be used by the store's chain /// operand, otherwise this may produce a cycle in the DAG. static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address, SDValue &Load) { if (isLoadAllowedToSink(N, Chain) && N.getOperand(1) == Address) { Load = N; return true; } return false; } /// PreprocessForRMW - Preprocess the DAG to make instruction selection better. /// This is only run if not in -O0 mode. /// This allows the instruction selector to pick more read-modify-write /// instructions. This is a common case: /// /// [Load chain] /// ^ /// | /// [Load] /// ^ ^ /// | | /// / \- /// / | /// [TokenFactor] [Op] /// ^ ^ /// | | /// \ / /// \ / /// [Store] /// /// The fact the store's chain operand != load's chain will prevent the /// (store (op (load))) instruction from being selected. We can transform it to: /// /// [Load chain] /// ^ /// | /// [TokenFactor] /// ^ /// | /// [Load] /// ^ ^ /// | | /// | \- /// | | /// | [Op] /// | ^ /// | | /// \ / /// \ / /// [Store] /// /// We also recognize the case where second operand of Op is load as well and /// move it below token factor as well creating DAG as follows: /// /// [Load chain] /// ^ /// | /// [TokenFactor] /// ^ /// | /// [Load1] /// ^ ^ /// / | /// / | /// [Load2] | /// ^ ^ | /// | | | /// | \-| /// | | /// | [Op] /// | ^ /// | | /// \ / /// \ / /// [Store] /// /// This allows selection of mem-mem instructions. Yay! void MSP430DAGToDAGISel::PreprocessForRMW() { for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E; ++I) { if (!ISD::isNON_TRUNCStore(I)) continue; SDValue Chain = I->getOperand(0); if (Chain.getNode()->getOpcode() != ISD::TokenFactor) continue; SDValue N1 = I->getOperand(1); SDValue N2 = I->getOperand(2); if ((N1.getValueType().isFloatingPoint() && !N1.getValueType().isVector()) || !N1.hasOneUse()) continue; unsigned RModW = 0; SDValue Load1, Load2; unsigned Opcode = N1.getNode()->getOpcode(); switch (Opcode) { case ISD::ADD: case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::ADDC: case ISD::ADDE: { SDValue N10 = N1.getOperand(0); SDValue N11 = N1.getOperand(1); if (isRMWLoad(N10, Chain, N2, Load1)) { if (isLoadAllowedToSink(N11, Chain)) { Load2 = N11; RModW = 2; } else RModW = 1; } else if (isRMWLoad(N11, Chain, N2, Load1)) { if (isLoadAllowedToSink(N10, Chain)) { Load2 = N10; RModW = 2; } else RModW = 1; } break; } case ISD::SUB: case ISD::SUBC: case ISD::SUBE: { SDValue N10 = N1.getOperand(0); SDValue N11 = N1.getOperand(1); if (isRMWLoad(N10, Chain, N2, Load1)) { if (isLoadAllowedToSink(N11, Chain)) { Load2 = N11; RModW = 2; } else RModW = 1; } break; } } NumLoadMoved += RModW; if (RModW == 1) MoveBelowTokenFactor(CurDAG, Load1, SDValue(I, 0), Chain); else if (RModW == 2) { MoveBelowTokenFactor2(CurDAG, Load1, Load2, SDValue(I, 0), Chain); SDNode* Store = I; RMWStores[Store] = Load2.getNode(); } } } static bool isValidIndexedLoad(const LoadSDNode *LD) { ISD::MemIndexedMode AM = LD->getAddressingMode(); if (AM != ISD::POST_INC || LD->getExtensionType() != ISD::NON_EXTLOAD) return false; EVT VT = LD->getMemoryVT(); switch (VT.getSimpleVT().SimpleTy) { case MVT::i8: // Sanity check if (cast(LD->getOffset())->getZExtValue() != 1) return false; break; case MVT::i16: // Sanity check if (cast(LD->getOffset())->getZExtValue() != 2) return false; break; default: return false; } return true; } SDNode *MSP430DAGToDAGISel::SelectIndexedLoad(SDNode *N) { LoadSDNode *LD = cast(N); if (!isValidIndexedLoad(LD)) return NULL; MVT VT = LD->getMemoryVT().getSimpleVT(); unsigned Opcode = 0; switch (VT.SimpleTy) { case MVT::i8: Opcode = MSP430::MOV8rm_POST; break; case MVT::i16: Opcode = MSP430::MOV16rm_POST; break; default: return NULL; } return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), VT, MVT::i16, MVT::Other, LD->getBasePtr(), LD->getChain()); } SDNode *MSP430DAGToDAGISel::SelectIndexedBinOp(SDNode *Op, SDValue N1, SDValue N2, unsigned Opc8, unsigned Opc16) { if (N1.getOpcode() == ISD::LOAD && N1.hasOneUse() && IsLegalToFold(N1, Op, Op)) { LoadSDNode *LD = cast(N1); if (!isValidIndexedLoad(LD)) return NULL; MVT VT = LD->getMemoryVT().getSimpleVT(); unsigned Opc = (VT == MVT::i16 ? Opc16 : Opc8); MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1); MemRefs0[0] = cast(N1)->getMemOperand(); SDValue Ops0[] = { N2, LD->getBasePtr(), LD->getChain() }; SDNode *ResNode = CurDAG->SelectNodeTo(Op, Opc, VT, MVT::i16, MVT::Other, Ops0, 3); cast(ResNode)->setMemRefs(MemRefs0, MemRefs0 + 1); // Transfer chain. ReplaceUses(SDValue(N1.getNode(), 2), SDValue(ResNode, 2)); // Transfer writeback. ReplaceUses(SDValue(N1.getNode(), 1), SDValue(ResNode, 1)); return ResNode; } return NULL; } /// InstructionSelect - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. void MSP430DAGToDAGISel::InstructionSelect() { std::string BlockName; if (ViewRMWDAGs) BlockName = MF->getFunction()->getNameStr() + ":" + BB->getBasicBlock()->getNameStr(); PreprocessForRMW(); if (ViewRMWDAGs) CurDAG->viewGraph("RMW preprocessed:" + BlockName); DEBUG(errs() << "Selection DAG after RMW preprocessing:\n"); DEBUG(CurDAG->dump()); // Codegen the basic block. DEBUG(errs() << "===== Instruction selection begins:\n"); DEBUG(Indent = 0); SelectRoot(*CurDAG); DEBUG(errs() << "===== Instruction selection ends:\n"); CurDAG->RemoveDeadNodes(); RMWStores.clear(); } SDNode *MSP430DAGToDAGISel::Select(SDNode *Node) { DebugLoc dl = Node->getDebugLoc(); // Dump information about the Node being selected DEBUG(errs().indent(Indent) << "Selecting: "); DEBUG(Node->dump(CurDAG)); DEBUG(errs() << "\n"); DEBUG(Indent += 2); // If we have a custom node, we already have selected! if (Node->isMachineOpcode()) { DEBUG(errs().indent(Indent-2) << "== "; Node->dump(CurDAG); errs() << "\n"); DEBUG(Indent -= 2); return NULL; } // Few custom selection stuff. switch (Node->getOpcode()) { default: break; case ISD::FrameIndex: { assert(Node->getValueType(0) == MVT::i16); int FI = cast(Node)->getIndex(); SDValue TFI = CurDAG->getTargetFrameIndex(FI, MVT::i16); if (Node->hasOneUse()) return CurDAG->SelectNodeTo(Node, MSP430::ADD16ri, MVT::i16, TFI, CurDAG->getTargetConstant(0, MVT::i16)); return CurDAG->getMachineNode(MSP430::ADD16ri, dl, MVT::i16, TFI, CurDAG->getTargetConstant(0, MVT::i16)); } case ISD::LOAD: if (SDNode *ResNode = SelectIndexedLoad(Node)) return ResNode; // Other cases are autogenerated. break; case ISD::ADD: if (SDNode *ResNode = SelectIndexedBinOp(Node, Node->getOperand(0), Node->getOperand(1), MSP430::ADD8rm_POST, MSP430::ADD16rm_POST)) return ResNode; else if (SDNode *ResNode = SelectIndexedBinOp(Node, Node->getOperand(1), Node->getOperand(0), MSP430::ADD8rm_POST, MSP430::ADD16rm_POST)) return ResNode; // Other cases are autogenerated. break; case ISD::SUB: if (SDNode *ResNode = SelectIndexedBinOp(Node, Node->getOperand(0), Node->getOperand(1), MSP430::SUB8rm_POST, MSP430::SUB16rm_POST)) return ResNode; // Other cases are autogenerated. break; case ISD::AND: if (SDNode *ResNode = SelectIndexedBinOp(Node, Node->getOperand(0), Node->getOperand(1), MSP430::AND8rm_POST, MSP430::AND16rm_POST)) return ResNode; else if (SDNode *ResNode = SelectIndexedBinOp(Node, Node->getOperand(1), Node->getOperand(0), MSP430::AND8rm_POST, MSP430::AND16rm_POST)) return ResNode; // Other cases are autogenerated. break; case ISD::OR: if (SDNode *ResNode = SelectIndexedBinOp(Node, Node->getOperand(0), Node->getOperand(1), MSP430::OR8rm_POST, MSP430::OR16rm_POST)) return ResNode; else if (SDNode *ResNode = SelectIndexedBinOp(Node, Node->getOperand(1), Node->getOperand(0), MSP430::OR8rm_POST, MSP430::OR16rm_POST)) return ResNode; // Other cases are autogenerated. break; case ISD::XOR: if (SDNode *ResNode = SelectIndexedBinOp(Node, Node->getOperand(0), Node->getOperand(1), MSP430::XOR8rm_POST, MSP430::XOR16rm_POST)) return ResNode; else if (SDNode *ResNode = SelectIndexedBinOp(Node, Node->getOperand(1), Node->getOperand(0), MSP430::XOR8rm_POST, MSP430::XOR16rm_POST)) return ResNode; // Other cases are autogenerated. break; } // Select the default instruction SDNode *ResNode = SelectCode(Node); DEBUG(errs() << std::string(Indent-2, ' ') << "=> "); if (ResNode == NULL || ResNode == Node) DEBUG(Node->dump(CurDAG)); else DEBUG(ResNode->dump(CurDAG)); DEBUG(errs() << "\n"); DEBUG(Indent -= 2); return ResNode; }