//===- MipsInstrInfo.cpp - Mips Instruction Information ---------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the Mips implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "MipsInstrInfo.h" #include "MipsTargetMachine.h" #include "MipsMachineFunction.h" #include "InstPrinter/MipsInstPrinter.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetRegistry.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/ADT/STLExtras.h" #define GET_INSTRINFO_CTOR #include "MipsGenInstrInfo.inc" using namespace llvm; MipsInstrInfo::MipsInstrInfo(MipsTargetMachine &tm) : MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP), TM(tm), RI(*TM.getSubtargetImpl(), *this) {} const MipsRegisterInfo &MipsInstrInfo::getRegisterInfo() const { return RI; } static bool isZeroImm(const MachineOperand &op) { return op.isImm() && op.getImm() == 0; } /// isLoadFromStackSlot - If the specified machine instruction is a direct /// load from a stack slot, return the virtual or physical register number of /// the destination along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than loading from the stack slot. unsigned MipsInstrInfo:: isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { if ((MI->getOpcode() == Mips::LW) || (MI->getOpcode() == Mips::LWC1) || (MI->getOpcode() == Mips::LDC1)) { if ((MI->getOperand(1).isFI()) && // is a stack slot (MI->getOperand(2).isImm()) && // the imm is zero (isZeroImm(MI->getOperand(2)))) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } } return 0; } /// isStoreToStackSlot - If the specified machine instruction is a direct /// store to a stack slot, return the virtual or physical register number of /// the source reg along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than storing to the stack slot. unsigned MipsInstrInfo:: isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const { if ((MI->getOpcode() == Mips::SW) || (MI->getOpcode() == Mips::SWC1) || (MI->getOpcode() == Mips::SDC1)) { if ((MI->getOperand(1).isFI()) && // is a stack slot (MI->getOperand(2).isImm()) && // the imm is zero (isZeroImm(MI->getOperand(2)))) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } } return 0; } /// insertNoop - If data hazard condition is found insert the target nop /// instruction. void MipsInstrInfo:: insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { DebugLoc DL; BuildMI(MBB, MI, DL, get(Mips::NOP)); } void MipsInstrInfo:: copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { bool DestCPU = Mips::CPURegsRegClass.contains(DestReg); bool SrcCPU = Mips::CPURegsRegClass.contains(SrcReg); // CPU-CPU is the most common. if (DestCPU && SrcCPU) { BuildMI(MBB, I, DL, get(Mips::ADDu), DestReg).addReg(Mips::ZERO) .addReg(SrcReg, getKillRegState(KillSrc)); return; } // Copy to CPU from other registers. if (DestCPU) { if (Mips::CCRRegClass.contains(SrcReg)) BuildMI(MBB, I, DL, get(Mips::CFC1), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); else if (Mips::FGR32RegClass.contains(SrcReg)) BuildMI(MBB, I, DL, get(Mips::MFC1), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); else if (SrcReg == Mips::HI) BuildMI(MBB, I, DL, get(Mips::MFHI), DestReg); else if (SrcReg == Mips::LO) BuildMI(MBB, I, DL, get(Mips::MFLO), DestReg); else llvm_unreachable("Copy to CPU from invalid register"); return; } // Copy to other registers from CPU. if (SrcCPU) { if (Mips::CCRRegClass.contains(DestReg)) BuildMI(MBB, I, DL, get(Mips::CTC1), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); else if (Mips::FGR32RegClass.contains(DestReg)) BuildMI(MBB, I, DL, get(Mips::MTC1), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); else if (DestReg == Mips::HI) BuildMI(MBB, I, DL, get(Mips::MTHI)) .addReg(SrcReg, getKillRegState(KillSrc)); else if (DestReg == Mips::LO) BuildMI(MBB, I, DL, get(Mips::MTLO)) .addReg(SrcReg, getKillRegState(KillSrc)); else llvm_unreachable("Copy from CPU to invalid register"); return; } if (Mips::FGR32RegClass.contains(DestReg, SrcReg)) { BuildMI(MBB, I, DL, get(Mips::FMOV_S32), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } if (Mips::AFGR64RegClass.contains(DestReg, SrcReg)) { BuildMI(MBB, I, DL, get(Mips::FMOV_D32), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } if (Mips::CCRRegClass.contains(DestReg, SrcReg)) { BuildMI(MBB, I, DL, get(Mips::MOVCCRToCCR), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } llvm_unreachable("Cannot copy registers"); } void MipsInstrInfo:: storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL; if (I != MBB.end()) DL = I->getDebugLoc(); if (RC == Mips::CPURegsRegisterClass) BuildMI(MBB, I, DL, get(Mips::SW)).addReg(SrcReg, getKillRegState(isKill)) .addFrameIndex(FI).addImm(0); else if (RC == Mips::FGR32RegisterClass) BuildMI(MBB, I, DL, get(Mips::SWC1)).addReg(SrcReg, getKillRegState(isKill)) .addFrameIndex(FI).addImm(0); else if (RC == Mips::AFGR64RegisterClass) { if (!TM.getSubtarget().isMips1()) { BuildMI(MBB, I, DL, get(Mips::SDC1)) .addReg(SrcReg, getKillRegState(isKill)) .addFrameIndex(FI).addImm(0); } else { const TargetRegisterInfo *TRI = MBB.getParent()->getTarget().getRegisterInfo(); const unsigned *SubSet = TRI->getSubRegisters(SrcReg); BuildMI(MBB, I, DL, get(Mips::SWC1)) .addReg(SubSet[0], getKillRegState(isKill)) .addFrameIndex(FI).addImm(0); BuildMI(MBB, I, DL, get(Mips::SWC1)) .addReg(SubSet[1], getKillRegState(isKill)) .addFrameIndex(FI).addImm(4); } } else llvm_unreachable("Register class not handled!"); } void MipsInstrInfo:: loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL; if (I != MBB.end()) DL = I->getDebugLoc(); if (RC == Mips::CPURegsRegisterClass) BuildMI(MBB, I, DL, get(Mips::LW), DestReg).addFrameIndex(FI).addImm(0); else if (RC == Mips::FGR32RegisterClass) BuildMI(MBB, I, DL, get(Mips::LWC1), DestReg).addFrameIndex(FI).addImm(0); else if (RC == Mips::AFGR64RegisterClass) { if (!TM.getSubtarget().isMips1()) { BuildMI(MBB, I, DL, get(Mips::LDC1), DestReg).addFrameIndex(FI).addImm(0); } else { const TargetRegisterInfo *TRI = MBB.getParent()->getTarget().getRegisterInfo(); const unsigned *SubSet = TRI->getSubRegisters(DestReg); BuildMI(MBB, I, DL, get(Mips::LWC1), SubSet[0]) .addFrameIndex(FI).addImm(0); BuildMI(MBB, I, DL, get(Mips::LWC1), SubSet[1]) .addFrameIndex(FI).addImm(4); } } else llvm_unreachable("Register class not handled!"); } MachineInstr* MipsInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, int FrameIx, uint64_t Offset, const MDNode *MDPtr, DebugLoc DL) const { MachineInstrBuilder MIB = BuildMI(MF, DL, get(Mips::DBG_VALUE)) .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr); return &*MIB; } //===----------------------------------------------------------------------===// // Branch Analysis //===----------------------------------------------------------------------===// static unsigned GetAnalyzableBrOpc(unsigned Opc) { return (Opc == Mips::BEQ || Opc == Mips::BNE || Opc == Mips::BGTZ || Opc == Mips::BGEZ || Opc == Mips::BLTZ || Opc == Mips::BLEZ || Opc == Mips::BC1T || Opc == Mips::BC1F || Opc == Mips::J) ? Opc : 0; } /// GetOppositeBranchOpc - Return the inverse of the specified /// opcode, e.g. turning BEQ to BNE. unsigned Mips::GetOppositeBranchOpc(unsigned Opc) { switch (Opc) { default: llvm_unreachable("Illegal opcode!"); case Mips::BEQ : return Mips::BNE; case Mips::BNE : return Mips::BEQ; case Mips::BGTZ : return Mips::BLEZ; case Mips::BGEZ : return Mips::BLTZ; case Mips::BLTZ : return Mips::BGEZ; case Mips::BLEZ : return Mips::BGTZ; case Mips::BC1T : return Mips::BC1F; case Mips::BC1F : return Mips::BC1T; } } static void AnalyzeCondBr(const MachineInstr* Inst, unsigned Opc, MachineBasicBlock *&BB, SmallVectorImpl& Cond) { assert(GetAnalyzableBrOpc(Opc) && "Not an analyzable branch"); int NumOp = Inst->getNumExplicitOperands(); // for both int and fp branches, the last explicit operand is the // MBB. BB = Inst->getOperand(NumOp-1).getMBB(); Cond.push_back(MachineOperand::CreateImm(Opc)); for (int i=0; igetOperand(i)); } bool MipsInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const { MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); // Skip all the debug instructions. while (I != REnd && I->isDebugValue()) ++I; if (I == REnd || !isUnpredicatedTerminator(&*I)) { // If this block ends with no branches (it just falls through to its succ) // just return false, leaving TBB/FBB null. TBB = FBB = NULL; return false; } MachineInstr *LastInst = &*I; unsigned LastOpc = LastInst->getOpcode(); // Not an analyzable branch (must be an indirect jump). if (!GetAnalyzableBrOpc(LastOpc)) return true; // Get the second to last instruction in the block. unsigned SecondLastOpc = 0; MachineInstr *SecondLastInst = NULL; if (++I != REnd) { SecondLastInst = &*I; SecondLastOpc = GetAnalyzableBrOpc(SecondLastInst->getOpcode()); // Not an analyzable branch (must be an indirect jump). if (isUnpredicatedTerminator(SecondLastInst) && !SecondLastOpc) return true; } // If there is only one terminator instruction, process it. if (!SecondLastOpc) { // Unconditional branch if (LastOpc == Mips::J) { TBB = LastInst->getOperand(0).getMBB(); return false; } // Conditional branch AnalyzeCondBr(LastInst, LastOpc, TBB, Cond); return false; } // If we reached here, there are two branches. // If there are three terminators, we don't know what sort of block this is. if (++I != REnd && isUnpredicatedTerminator(&*I)) return true; // If second to last instruction is an unconditional branch, // analyze it and remove the last instruction. if (SecondLastOpc == Mips::J) { // Return if the last instruction cannot be removed. if (!AllowModify) return true; TBB = SecondLastInst->getOperand(0).getMBB(); LastInst->eraseFromParent(); return false; } // Conditional branch followed by an unconditional branch. // The last one must be unconditional. if (LastOpc != Mips::J) return true; AnalyzeCondBr(SecondLastInst, SecondLastOpc, TBB, Cond); FBB = LastInst->getOperand(0).getMBB(); return false; } void MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB, MachineBasicBlock *TBB, DebugLoc DL, const SmallVectorImpl& Cond) const { unsigned Opc = Cond[0].getImm(); const MCInstrDesc &MCID = get(Opc); MachineInstrBuilder MIB = BuildMI(&MBB, DL, MCID); for (unsigned i = 1; i < Cond.size(); ++i) MIB.addReg(Cond[i].getReg()); MIB.addMBB(TBB); } unsigned MipsInstrInfo:: InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl &Cond, DebugLoc DL) const { // Shouldn't be a fall through. assert(TBB && "InsertBranch must not be told to insert a fallthrough"); // # of condition operands: // Unconditional branches: 0 // Floating point branches: 1 (opc) // Int BranchZero: 2 (opc, reg) // Int Branch: 3 (opc, reg0, reg1) assert((Cond.size() <= 3) && "# of Mips branch conditions must be <= 3!"); // Two-way Conditional branch. if (FBB) { BuildCondBr(MBB, TBB, DL, Cond); BuildMI(&MBB, DL, get(Mips::J)).addMBB(FBB); return 2; } // One way branch. // Unconditional branch. if (Cond.empty()) BuildMI(&MBB, DL, get(Mips::J)).addMBB(TBB); else // Conditional branch. BuildCondBr(MBB, TBB, DL, Cond); return 1; } unsigned MipsInstrInfo:: RemoveBranch(MachineBasicBlock &MBB) const { MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); MachineBasicBlock::reverse_iterator FirstBr; unsigned removed; // Skip all the debug instructions. while (I != REnd && I->isDebugValue()) ++I; FirstBr = I; // Up to 2 branches are removed. // Note that indirect branches are not removed. for(removed = 0; I != REnd && removed < 2; ++I, ++removed) if (!GetAnalyzableBrOpc(I->getOpcode())) break; MBB.erase(I.base(), FirstBr.base()); return removed; } /// ReverseBranchCondition - Return the inverse opcode of the /// specified Branch instruction. bool MipsInstrInfo:: ReverseBranchCondition(SmallVectorImpl &Cond) const { assert( (Cond.size() && Cond.size() <= 3) && "Invalid Mips branch condition!"); Cond[0].setImm(Mips::GetOppositeBranchOpc(Cond[0].getImm())); return false; } /// getGlobalBaseReg - Return a virtual register initialized with the /// the global base register value. Output instructions required to /// initialize the register in the function entry block, if necessary. /// unsigned MipsInstrInfo::getGlobalBaseReg(MachineFunction *MF) const { MipsFunctionInfo *MipsFI = MF->getInfo(); unsigned GlobalBaseReg = MipsFI->getGlobalBaseReg(); if (GlobalBaseReg != 0) return GlobalBaseReg; // Insert the set of GlobalBaseReg into the first MBB of the function MachineBasicBlock &FirstMBB = MF->front(); MachineBasicBlock::iterator MBBI = FirstMBB.begin(); MachineRegisterInfo &RegInfo = MF->getRegInfo(); const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); GlobalBaseReg = RegInfo.createVirtualRegister(Mips::CPURegsRegisterClass); BuildMI(FirstMBB, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), GlobalBaseReg).addReg(Mips::GP); RegInfo.addLiveIn(Mips::GP); MipsFI->setGlobalBaseReg(GlobalBaseReg); return GlobalBaseReg; }