//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the X86 implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #ifndef X86INSTRUCTIONINFO_H #define X86INSTRUCTIONINFO_H #include "llvm/Target/TargetInstrInfo.h" #include "X86.h" #include "X86RegisterInfo.h" #include "llvm/ADT/DenseMap.h" #include "llvm/Target/TargetRegisterInfo.h" namespace llvm { class X86RegisterInfo; class X86TargetMachine; namespace X86 { // X86 specific condition code. These correspond to X86_*_COND in // X86InstrInfo.td. They must be kept in synch. enum CondCode { COND_A = 0, COND_AE = 1, COND_B = 2, COND_BE = 3, COND_E = 4, COND_G = 5, COND_GE = 6, COND_L = 7, COND_LE = 8, COND_NE = 9, COND_NO = 10, COND_NP = 11, COND_NS = 12, COND_O = 13, COND_P = 14, COND_S = 15, // Artificial condition codes. These are used by AnalyzeBranch // to indicate a block terminated with two conditional branches to // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE, // which can't be represented on x86 with a single condition. These // are never used in MachineInstrs. COND_NE_OR_P, COND_NP_OR_E, COND_INVALID }; // Turn condition code into conditional branch opcode. unsigned GetCondBranchFromCond(CondCode CC); /// GetOppositeBranchCondition - Return the inverse of the specified cond, /// e.g. turning COND_E to COND_NE. CondCode GetOppositeBranchCondition(X86::CondCode CC); } /// X86II - This namespace holds all of the target specific flags that /// instruction info tracks. /// namespace X86II { enum { //===------------------------------------------------------------------===// // Instruction types. These are the standard/most common forms for X86 // instructions. // // PseudoFrm - This represents an instruction that is a pseudo instruction // or one that has not been implemented yet. It is illegal to code generate // it, but tolerated for intermediate implementation stages. Pseudo = 0, /// Raw - This form is for instructions that don't have any operands, so /// they are just a fixed opcode value, like 'leave'. RawFrm = 1, /// AddRegFrm - This form is used for instructions like 'push r32' that have /// their one register operand added to their opcode. AddRegFrm = 2, /// MRMDestReg - This form is used for instructions that use the Mod/RM byte /// to specify a destination, which in this case is a register. /// MRMDestReg = 3, /// MRMDestMem - This form is used for instructions that use the Mod/RM byte /// to specify a destination, which in this case is memory. /// MRMDestMem = 4, /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte /// to specify a source, which in this case is a register. /// MRMSrcReg = 5, /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte /// to specify a source, which in this case is memory. /// MRMSrcMem = 6, /// MRM[0-7][rm] - These forms are used to represent instructions that use /// a Mod/RM byte, and use the middle field to hold extended opcode /// information. In the intel manual these are represented as /0, /1, ... /// // First, instructions that operate on a register r/m operand... MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7 // Next, instructions that operate on a memory r/m operand... MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7 // MRMInitReg - This form is used for instructions whose source and // destinations are the same register. MRMInitReg = 32, FormMask = 63, //===------------------------------------------------------------------===// // Actual flags... // OpSize - Set if this instruction requires an operand size prefix (0x66), // which most often indicates that the instruction operates on 16 bit data // instead of 32 bit data. OpSize = 1 << 6, // AsSize - Set if this instruction requires an operand size prefix (0x67), // which most often indicates that the instruction address 16 bit address // instead of 32 bit address (or 32 bit address in 64 bit mode). AdSize = 1 << 7, //===------------------------------------------------------------------===// // Op0Mask - There are several prefix bytes that are used to form two byte // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is // used to obtain the setting of this field. If no bits in this field is // set, there is no prefix byte for obtaining a multibyte opcode. // Op0Shift = 8, Op0Mask = 0xF << Op0Shift, // TB - TwoByte - Set if this instruction has a two byte opcode, which // starts with a 0x0F byte before the real opcode. TB = 1 << Op0Shift, // REP - The 0xF3 prefix byte indicating repetition of the following // instruction. REP = 2 << Op0Shift, // D8-DF - These escape opcodes are used by the floating point unit. These // values must remain sequential. D8 = 3 << Op0Shift, D9 = 4 << Op0Shift, DA = 5 << Op0Shift, DB = 6 << Op0Shift, DC = 7 << Op0Shift, DD = 8 << Op0Shift, DE = 9 << Op0Shift, DF = 10 << Op0Shift, // XS, XD - These prefix codes are for single and double precision scalar // floating point operations performed in the SSE registers. XD = 11 << Op0Shift, XS = 12 << Op0Shift, // T8, TA - Prefix after the 0x0F prefix. T8 = 13 << Op0Shift, TA = 14 << Op0Shift, //===------------------------------------------------------------------===// // REX_W - REX prefixes are instruction prefixes used in 64-bit mode. // They are used to specify GPRs and SSE registers, 64-bit operand size, // etc. We only cares about REX.W and REX.R bits and only the former is // statically determined. // REXShift = 12, REX_W = 1 << REXShift, //===------------------------------------------------------------------===// // This three-bit field describes the size of an immediate operand. Zero is // unused so that we can tell if we forgot to set a value. ImmShift = 13, ImmMask = 7 << ImmShift, Imm8 = 1 << ImmShift, Imm16 = 2 << ImmShift, Imm32 = 3 << ImmShift, Imm64 = 4 << ImmShift, //===------------------------------------------------------------------===// // FP Instruction Classification... Zero is non-fp instruction. // FPTypeMask - Mask for all of the FP types... FPTypeShift = 16, FPTypeMask = 7 << FPTypeShift, // NotFP - The default, set for instructions that do not use FP registers. NotFP = 0 << FPTypeShift, // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0 ZeroArgFP = 1 << FPTypeShift, // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst OneArgFP = 2 << FPTypeShift, // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a // result back to ST(0). For example, fcos, fsqrt, etc. // OneArgFPRW = 3 << FPTypeShift, // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an // explicit argument, storing the result to either ST(0) or the implicit // argument. For example: fadd, fsub, fmul, etc... TwoArgFP = 4 << FPTypeShift, // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an // explicit argument, but have no destination. Example: fucom, fucomi, ... CompareFP = 5 << FPTypeShift, // CondMovFP - "2 operand" floating point conditional move instructions. CondMovFP = 6 << FPTypeShift, // SpecialFP - Special instruction forms. Dispatch by opcode explicitly. SpecialFP = 7 << FPTypeShift, // Lock prefix LOCKShift = 19, LOCK = 1 << LOCKShift, // Segment override prefixes. Currently we just need ability to address // stuff in gs and fs segments. SegOvrShift = 20, SegOvrMask = 3 << SegOvrShift, FS = 1 << SegOvrShift, GS = 2 << SegOvrShift, // Bits 22 -> 23 are unused OpcodeShift = 24, OpcodeMask = 0xFF << OpcodeShift }; } const int X86AddrNumOperands = 5; inline static bool isScale(const MachineOperand &MO) { return MO.isImm() && (MO.getImm() == 1 || MO.getImm() == 2 || MO.getImm() == 4 || MO.getImm() == 8); } inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) { if (MI->getOperand(Op).isFI()) return true; return Op+4 <= MI->getNumOperands() && MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) && MI->getOperand(Op+2).isReg() && (MI->getOperand(Op+3).isImm() || MI->getOperand(Op+3).isGlobal() || MI->getOperand(Op+3).isCPI() || MI->getOperand(Op+3).isJTI()); } inline static bool isMem(const MachineInstr *MI, unsigned Op) { if (MI->getOperand(Op).isFI()) return true; return Op+5 <= MI->getNumOperands() && MI->getOperand(Op+4).isReg() && isLeaMem(MI, Op); } class X86InstrInfo : public TargetInstrInfoImpl { X86TargetMachine &TM; const X86RegisterInfo RI; /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1, /// RegOp2MemOpTable2 - Load / store folding opcode maps. /// DenseMap RegOp2MemOpTable2Addr; DenseMap RegOp2MemOpTable0; DenseMap RegOp2MemOpTable1; DenseMap RegOp2MemOpTable2; /// MemOp2RegOpTable - Load / store unfolding opcode map. /// DenseMap > MemOp2RegOpTable; public: explicit X86InstrInfo(X86TargetMachine &tm); /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As /// such, whenever a client has an instance of instruction info, it should /// always be able to get register info as well (through this method). /// virtual const X86RegisterInfo &getRegisterInfo() const { return RI; } /// Return true if the instruction is a register to register move and return /// the source and dest operands and their sub-register indices by reference. virtual bool isMoveInstr(const MachineInstr &MI, unsigned &SrcReg, unsigned &DstReg, unsigned &SrcSubIdx, unsigned &DstSubIdx) const; unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const; unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const; bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const; void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, const MachineInstr *Orig) const; bool isInvariantLoad(const MachineInstr *MI) const; /// convertToThreeAddress - This method must be implemented by targets that /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target /// may be able to convert a two-address instruction into a true /// three-address instruction on demand. This allows the X86 target (for /// example) to convert ADD and SHL instructions into LEA instructions if they /// would require register copies due to two-addressness. /// /// This method returns a null pointer if the transformation cannot be /// performed, otherwise it returns the new instruction. /// virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI, MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const; /// commuteInstruction - We have a few instructions that must be hacked on to /// commute them. /// virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const; // Branch analysis. virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const; virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const; virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const; virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl &Cond) const; virtual bool copyRegToReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, unsigned SrcReg, const TargetRegisterClass *DestRC, const TargetRegisterClass *SrcRC) const; virtual void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC) const; virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill, SmallVectorImpl &Addr, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs) const; virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIndex, const TargetRegisterClass *RC) const; virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg, SmallVectorImpl &Addr, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs) const; virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector &CSI) const; virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector &CSI) const; /// foldMemoryOperand - If this target supports it, fold a load or store of /// the specified stack slot into the specified machine instruction for the /// specified operand(s). If this is possible, the target should perform the /// folding and return true, otherwise it should return false. If it folds /// the instruction, it is likely that the MachineInstruction the iterator /// references has been changed. virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI, const SmallVectorImpl &Ops, int FrameIndex) const; /// foldMemoryOperand - Same as the previous version except it allows folding /// of any load and store from / to any address, not just from a specific /// stack slot. virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI, const SmallVectorImpl &Ops, MachineInstr* LoadMI) const; /// canFoldMemoryOperand - Returns true if the specified load / store is /// folding is possible. virtual bool canFoldMemoryOperand(const MachineInstr*, const SmallVectorImpl &) const; /// unfoldMemoryOperand - Separate a single instruction which folded a load or /// a store or a load and a store into two or more instruction. If this is /// possible, returns true as well as the new instructions by reference. virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, unsigned Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl &NewMIs) const; virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, SmallVectorImpl &NewNodes) const; /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new /// instruction after load / store are unfolded from an instruction of the /// specified opcode. It returns zero if the specified unfolding is not /// possible. virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore) const; virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const; virtual bool ReverseBranchCondition(SmallVectorImpl &Cond) const; /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine /// instruction that defines the specified register class. bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const; // getBaseOpcodeFor - This function returns the "base" X86 opcode for the // specified machine instruction. // unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const { return TID->TSFlags >> X86II::OpcodeShift; } unsigned char getBaseOpcodeFor(unsigned Opcode) const { return getBaseOpcodeFor(&get(Opcode)); } static bool isX86_64NonExtLowByteReg(unsigned reg) { return (reg == X86::SPL || reg == X86::BPL || reg == X86::SIL || reg == X86::DIL); } static unsigned sizeOfImm(const TargetInstrDesc *Desc); static bool isX86_64ExtendedReg(const MachineOperand &MO); static unsigned determineREX(const MachineInstr &MI); /// GetInstSize - Returns the size of the specified MachineInstr. /// virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const; /// getGlobalBaseReg - Return a virtual register initialized with the /// the global base register value. Output instructions required to /// initialize the register in the function entry block, if necessary. /// unsigned getGlobalBaseReg(MachineFunction *MF) const; private: MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI, unsigned OpNum, const SmallVectorImpl &MOs) const; }; } // End llvm namespace #endif