/*- * Copyright (C) 2006-2008 Jason Evans . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice(s), this list of conditions and the following disclaimer as * the first lines of this file unmodified other than the possible * addition of one or more copyright notices. * 2. Redistributions in binary form must reproduce the above copyright * notice(s), this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************* * * This allocator implementation is designed to provide scalable performance * for multi-threaded programs on multi-processor systems. The following * features are included for this purpose: * * + Multiple arenas are used if there are multiple CPUs, which reduces lock * contention and cache sloshing. * * + Thread-specific caching is used if there are multiple threads, which * reduces the amount of locking. * * + Cache line sharing between arenas is avoided for internal data * structures. * * + Memory is managed in chunks and runs (chunks can be split into runs), * rather than as individual pages. This provides a constant-time * mechanism for associating allocations with particular arenas. * * Allocation requests are rounded up to the nearest size class, and no record * of the original request size is maintained. Allocations are broken into * categories according to size class. Assuming runtime defaults, 4 kB pages * and a 16 byte quantum on a 32-bit system, the size classes in each category * are as follows: * * |=======================================| * | Category | Subcategory | Size | * |=======================================| * | Small | Tiny | 2 | * | | | 4 | * | | | 8 | * | |------------------+---------| * | | Quantum-spaced | 16 | * | | | 32 | * | | | 48 | * | | | ... | * | | | 96 | * | | | 112 | * | | | 128 | * | |------------------+---------| * | | Cacheline-spaced | 192 | * | | | 256 | * | | | 320 | * | | | 384 | * | | | 448 | * | | | 512 | * | |------------------+---------| * | | Sub-page | 760 | * | | | 1024 | * | | | 1280 | * | | | ... | * | | | 3328 | * | | | 3584 | * | | | 3840 | * |=======================================| * | Large | 4 kB | * | | 8 kB | * | | 12 kB | * | | ... | * | | 1012 kB | * | | 1016 kB | * | | 1020 kB | * |=======================================| * | Huge | 1 MB | * | | 2 MB | * | | 3 MB | * | | ... | * |=======================================| * * A different mechanism is used for each category: * * Small : Each size class is segregated into its own set of runs. Each run * maintains a bitmap of which regions are free/allocated. * * Large : Each allocation is backed by a dedicated run. Metadata are stored * in the associated arena chunk header maps. * * Huge : Each allocation is backed by a dedicated contiguous set of chunks. * Metadata are stored in a separate red-black tree. * ******************************************************************************* */ /* * MALLOC_PRODUCTION disables assertions and statistics gathering. It also * defaults the A and J runtime options to off. These settings are appropriate * for production systems. */ #define MALLOC_PRODUCTION #ifndef MALLOC_PRODUCTION /* * MALLOC_DEBUG enables assertions and other sanity checks, and disables * inline functions. */ # define MALLOC_DEBUG /* MALLOC_STATS enables statistics calculation. */ # define MALLOC_STATS #endif /* * MALLOC_TINY enables support for tiny objects, which are smaller than one * quantum. */ #define MALLOC_TINY /* * MALLOC_MAG enables a magazine-based thread-specific caching layer for small * objects. This makes it possible to allocate/deallocate objects without any * locking when the cache is in the steady state. */ #define MALLOC_MAG /* * MALLOC_BALANCE enables monitoring of arena lock contention and dynamically * re-balances arena load if exponentially averaged contention exceeds a * certain threshold. */ #define MALLOC_BALANCE /* * MALLOC_DSS enables use of sbrk(2) to allocate chunks from the data storage * segment (DSS). In an ideal world, this functionality would be completely * unnecessary, but we are burdened by history and the lack of resource limits * for anonymous mapped memory. */ #define MALLOC_DSS #include __FBSDID("$FreeBSD$"); #include "libc_private.h" #ifdef MALLOC_DEBUG # define _LOCK_DEBUG #endif #include "spinlock.h" #include "namespace.h" #include #include #include #include #include #include #include #include /* Must come after several other sys/ includes. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "un-namespace.h" #ifdef MALLOC_DEBUG # ifdef NDEBUG # undef NDEBUG # endif #else # ifndef NDEBUG # define NDEBUG # endif #endif #include #include "rb.h" #ifdef MALLOC_DEBUG /* Disable inlining to make debugging easier. */ # define inline #endif /* Size of stack-allocated buffer passed to strerror_r(). */ #define STRERROR_BUF 64 /* * Minimum alignment of allocations is 2^QUANTUM_2POW bytes. */ #ifdef __i386__ # define QUANTUM_2POW 4 # define SIZEOF_PTR_2POW 2 # define CPU_SPINWAIT __asm__ volatile("pause") #endif #ifdef __ia64__ # define QUANTUM_2POW 4 # define SIZEOF_PTR_2POW 3 #endif #ifdef __alpha__ # define QUANTUM_2POW 4 # define SIZEOF_PTR_2POW 3 # define NO_TLS #endif #ifdef __sparc64__ # define QUANTUM_2POW 4 # define SIZEOF_PTR_2POW 3 # define NO_TLS #endif #ifdef __amd64__ # define QUANTUM_2POW 4 # define SIZEOF_PTR_2POW 3 # define CPU_SPINWAIT __asm__ volatile("pause") #endif #ifdef __arm__ # define QUANTUM_2POW 3 # define SIZEOF_PTR_2POW 2 # define NO_TLS #endif #ifdef __mips__ # define QUANTUM_2POW 3 # define SIZEOF_PTR_2POW 2 # define NO_TLS #endif #ifdef __powerpc__ # define QUANTUM_2POW 4 # define SIZEOF_PTR_2POW 2 #endif #define QUANTUM ((size_t)(1U << QUANTUM_2POW)) #define QUANTUM_MASK (QUANTUM - 1) #define SIZEOF_PTR (1U << SIZEOF_PTR_2POW) /* sizeof(int) == (1U << SIZEOF_INT_2POW). */ #ifndef SIZEOF_INT_2POW # define SIZEOF_INT_2POW 2 #endif /* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */ #if (!defined(PIC) && !defined(NO_TLS)) # define NO_TLS #endif #ifdef NO_TLS /* MALLOC_MAG requires TLS. */ # ifdef MALLOC_MAG # undef MALLOC_MAG # endif /* MALLOC_BALANCE requires TLS. */ # ifdef MALLOC_BALANCE # undef MALLOC_BALANCE # endif #endif /* * Size and alignment of memory chunks that are allocated by the OS's virtual * memory system. */ #define CHUNK_2POW_DEFAULT 20 /* Maximum number of dirty pages per arena. */ #define DIRTY_MAX_DEFAULT (1U << 9) /* * Maximum size of L1 cache line. This is used to avoid cache line aliasing. * In addition, this controls the spacing of cacheline-spaced size classes. */ #define CACHELINE_2POW 6 #define CACHELINE ((size_t)(1U << CACHELINE_2POW)) #define CACHELINE_MASK (CACHELINE - 1) /* * Subpages are an artificially designated partitioning of pages. Their only * purpose is to support subpage-spaced size classes. * * There must be at least 4 subpages per page, due to the way size classes are * handled. */ #define SUBPAGE_2POW 8 #define SUBPAGE ((size_t)(1U << SUBPAGE_2POW)) #define SUBPAGE_MASK (SUBPAGE - 1) #ifdef MALLOC_TINY /* Smallest size class to support. */ # define TINY_MIN_2POW 1 #endif /* * Maximum size class that is a multiple of the quantum, but not (necessarily) * a power of 2. Above this size, allocations are rounded up to the nearest * power of 2. */ #define QSPACE_MAX_2POW_DEFAULT 7 /* * Maximum size class that is a multiple of the cacheline, but not (necessarily) * a power of 2. Above this size, allocations are rounded up to the nearest * power of 2. */ #define CSPACE_MAX_2POW_DEFAULT 9 /* * RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized * as small as possible such that this setting is still honored, without * violating other constraints. The goal is to make runs as small as possible * without exceeding a per run external fragmentation threshold. * * We use binary fixed point math for overhead computations, where the binary * point is implicitly RUN_BFP bits to the left. * * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be * honored for some/all object sizes, since there is one bit of header overhead * per object (plus a constant). This constraint is relaxed (ignored) for runs * that are so small that the per-region overhead is greater than: * * (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP)) */ #define RUN_BFP 12 /* \/ Implicit binary fixed point. */ #define RUN_MAX_OVRHD 0x0000003dU #define RUN_MAX_OVRHD_RELAX 0x00001800U /* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */ #define RUN_MAX_SMALL (12 * PAGE_SIZE) /* * Hyper-threaded CPUs may need a special instruction inside spin loops in * order to yield to another virtual CPU. If no such instruction is defined * above, make CPU_SPINWAIT a no-op. */ #ifndef CPU_SPINWAIT # define CPU_SPINWAIT #endif /* * Adaptive spinning must eventually switch to blocking, in order to avoid the * potential for priority inversion deadlock. Backing off past a certain point * can actually waste time. */ #define SPIN_LIMIT_2POW 11 /* * Conversion from spinning to blocking is expensive; we use (1U << * BLOCK_COST_2POW) to estimate how many more times costly blocking is than * worst-case spinning. */ #define BLOCK_COST_2POW 4 #ifdef MALLOC_MAG /* * Default magazine size, in bytes. max_rounds is calculated to make * optimal use of the space, leaving just enough room for the magazine * header. */ # define MAG_SIZE_2POW_DEFAULT 9 #endif #ifdef MALLOC_BALANCE /* * We use an exponential moving average to track recent lock contention, * where the size of the history window is N, and alpha=2/(N+1). * * Due to integer math rounding, very small values here can cause * substantial degradation in accuracy, thus making the moving average decay * faster than it would with precise calculation. */ # define BALANCE_ALPHA_INV_2POW 9 /* * Threshold value for the exponential moving contention average at which to * re-assign a thread. */ # define BALANCE_THRESHOLD_DEFAULT (1U << (SPIN_LIMIT_2POW-4)) #endif /******************************************************************************/ /* * Mutexes based on spinlocks. We can't use normal pthread spinlocks in all * places, because they require malloc()ed memory, which causes bootstrapping * issues in some cases. */ typedef struct { spinlock_t lock; } malloc_mutex_t; /* Set to true once the allocator has been initialized. */ static bool malloc_initialized = false; /* Used to avoid initialization races. */ static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER}; /******************************************************************************/ /* * Statistics data structures. */ #ifdef MALLOC_STATS typedef struct malloc_bin_stats_s malloc_bin_stats_t; struct malloc_bin_stats_s { /* * Number of allocation requests that corresponded to the size of this * bin. */ uint64_t nrequests; #ifdef MALLOC_MAG /* Number of magazine reloads from this bin. */ uint64_t nmags; #endif /* Total number of runs created for this bin's size class. */ uint64_t nruns; /* * Total number of runs reused by extracting them from the runs tree for * this bin's size class. */ uint64_t reruns; /* High-water mark for this bin. */ unsigned long highruns; /* Current number of runs in this bin. */ unsigned long curruns; }; typedef struct arena_stats_s arena_stats_t; struct arena_stats_s { /* Number of bytes currently mapped. */ size_t mapped; /* * Total number of purge sweeps, total number of madvise calls made, * and total pages purged in order to keep dirty unused memory under * control. */ uint64_t npurge; uint64_t nmadvise; uint64_t purged; /* Per-size-category statistics. */ size_t allocated_small; uint64_t nmalloc_small; uint64_t ndalloc_small; size_t allocated_large; uint64_t nmalloc_large; uint64_t ndalloc_large; #ifdef MALLOC_BALANCE /* Number of times this arena reassigned a thread due to contention. */ uint64_t nbalance; #endif }; typedef struct chunk_stats_s chunk_stats_t; struct chunk_stats_s { /* Number of chunks that were allocated. */ uint64_t nchunks; /* High-water mark for number of chunks allocated. */ unsigned long highchunks; /* * Current number of chunks allocated. This value isn't maintained for * any other purpose, so keep track of it in order to be able to set * highchunks. */ unsigned long curchunks; }; #endif /* #ifdef MALLOC_STATS */ /******************************************************************************/ /* * Extent data structures. */ /* Tree of extents. */ typedef struct extent_node_s extent_node_t; struct extent_node_s { #ifdef MALLOC_DSS /* Linkage for the size/address-ordered tree. */ rb_node(extent_node_t) link_szad; #endif /* Linkage for the address-ordered tree. */ rb_node(extent_node_t) link_ad; /* Pointer to the extent that this tree node is responsible for. */ void *addr; /* Total region size. */ size_t size; }; typedef rb_tree(extent_node_t) extent_tree_t; /******************************************************************************/ /* * Arena data structures. */ typedef struct arena_s arena_t; typedef struct arena_bin_s arena_bin_t; /* Each element of the chunk map corresponds to one page within the chunk. */ typedef struct arena_chunk_map_s arena_chunk_map_t; struct arena_chunk_map_s { /* * Linkage for run trees. There are two disjoint uses: * * 1) arena_t's runs_avail tree. * 2) arena_run_t conceptually uses this linkage for in-use non-full * runs, rather than directly embedding linkage. */ rb_node(arena_chunk_map_t) link; /* * Run address (or size) and various flags are stored together. The bit * layout looks like (assuming 32-bit system): * * ???????? ???????? ????---- ---kdzla * * ? : Unallocated: Run address for first/last pages, unset for internal * pages. * Small: Run address. * Large: Run size for first page, unset for trailing pages. * - : Unused. * k : key? * d : dirty? * z : zeroed? * l : large? * a : allocated? * * Following are example bit patterns for the three types of runs. * * r : run address * s : run size * x : don't care * - : 0 * [dzla] : bit set * * Unallocated: * ssssssss ssssssss ssss---- -------- * xxxxxxxx xxxxxxxx xxxx---- ----d--- * ssssssss ssssssss ssss---- -----z-- * * Small: * rrrrrrrr rrrrrrrr rrrr---- -------a * rrrrrrrr rrrrrrrr rrrr---- -------a * rrrrrrrr rrrrrrrr rrrr---- -------a * * Large: * ssssssss ssssssss ssss---- ------la * -------- -------- -------- ------la * -------- -------- -------- ------la */ size_t bits; #define CHUNK_MAP_KEY ((size_t)0x10U) #define CHUNK_MAP_DIRTY ((size_t)0x08U) #define CHUNK_MAP_ZEROED ((size_t)0x04U) #define CHUNK_MAP_LARGE ((size_t)0x02U) #define CHUNK_MAP_ALLOCATED ((size_t)0x01U) }; typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t; typedef rb_tree(arena_chunk_map_t) arena_run_tree_t; /* Arena chunk header. */ typedef struct arena_chunk_s arena_chunk_t; struct arena_chunk_s { /* Arena that owns the chunk. */ arena_t *arena; /* Linkage for the arena's chunks_dirty tree. */ rb_node(arena_chunk_t) link_dirty; /* Number of dirty pages. */ size_t ndirty; /* Map of pages within chunk that keeps track of free/large/small. */ arena_chunk_map_t map[1]; /* Dynamically sized. */ }; typedef rb_tree(arena_chunk_t) arena_chunk_tree_t; typedef struct arena_run_s arena_run_t; struct arena_run_s { #ifdef MALLOC_DEBUG uint32_t magic; # define ARENA_RUN_MAGIC 0x384adf93 #endif /* Bin this run is associated with. */ arena_bin_t *bin; /* Index of first element that might have a free region. */ unsigned regs_minelm; /* Number of free regions in run. */ unsigned nfree; /* Bitmask of in-use regions (0: in use, 1: free). */ unsigned regs_mask[1]; /* Dynamically sized. */ }; struct arena_bin_s { /* * Current run being used to service allocations of this bin's size * class. */ arena_run_t *runcur; /* * Tree of non-full runs. This tree is used when looking for an * existing run when runcur is no longer usable. We choose the * non-full run that is lowest in memory; this policy tends to keep * objects packed well, and it can also help reduce the number of * almost-empty chunks. */ arena_run_tree_t runs; /* Size of regions in a run for this bin's size class. */ size_t reg_size; /* Total size of a run for this bin's size class. */ size_t run_size; /* Total number of regions in a run for this bin's size class. */ uint32_t nregs; /* Number of elements in a run's regs_mask for this bin's size class. */ uint32_t regs_mask_nelms; /* Offset of first region in a run for this bin's size class. */ uint32_t reg0_offset; #ifdef MALLOC_STATS /* Bin statistics. */ malloc_bin_stats_t stats; #endif }; struct arena_s { #ifdef MALLOC_DEBUG uint32_t magic; # define ARENA_MAGIC 0x947d3d24 #endif /* All operations on this arena require that lock be locked. */ pthread_mutex_t lock; #ifdef MALLOC_STATS arena_stats_t stats; #endif /* Tree of dirty-page-containing chunks this arena manages. */ arena_chunk_tree_t chunks_dirty; /* * In order to avoid rapid chunk allocation/deallocation when an arena * oscillates right on the cusp of needing a new chunk, cache the most * recently freed chunk. The spare is left in the arena's chunk trees * until it is deleted. * * There is one spare chunk per arena, rather than one spare total, in * order to avoid interactions between multiple threads that could make * a single spare inadequate. */ arena_chunk_t *spare; /* * Current count of pages within unused runs that are potentially * dirty, and for which madvise(... MADV_FREE) has not been called. By * tracking this, we can institute a limit on how much dirty unused * memory is mapped for each arena. */ size_t ndirty; /* * Size/address-ordered tree of this arena's available runs. This tree * is used for first-best-fit run allocation. */ arena_avail_tree_t runs_avail; #ifdef MALLOC_BALANCE /* * The arena load balancing machinery needs to keep track of how much * lock contention there is. This value is exponentially averaged. */ uint32_t contention; #endif /* * bins is used to store rings of free regions of the following sizes, * assuming a 16-byte quantum, 4kB page size, and default * MALLOC_OPTIONS. * * bins[i] | size | * --------+------+ * 0 | 2 | * 1 | 4 | * 2 | 8 | * --------+------+ * 3 | 16 | * 4 | 32 | * 5 | 48 | * 6 | 64 | * : : * : : * 33 | 496 | * 34 | 512 | * --------+------+ * 35 | 1024 | * 36 | 2048 | * --------+------+ */ arena_bin_t bins[1]; /* Dynamically sized. */ }; /******************************************************************************/ /* * Magazine data structures. */ #ifdef MALLOC_MAG typedef struct mag_s mag_t; struct mag_s { size_t binind; /* Index of associated bin. */ size_t nrounds; void *rounds[1]; /* Dynamically sized. */ }; /* * Magazines are lazily allocated, but once created, they remain until the * associated mag_rack is destroyed. */ typedef struct bin_mags_s bin_mags_t; struct bin_mags_s { mag_t *curmag; mag_t *sparemag; }; typedef struct mag_rack_s mag_rack_t; struct mag_rack_s { bin_mags_t bin_mags[1]; /* Dynamically sized. */ }; #endif /******************************************************************************/ /* * Data. */ /* Number of CPUs. */ static unsigned ncpus; /* Various bin-related settings. */ #ifdef MALLOC_TINY /* Number of (2^n)-spaced tiny bins. */ # define ntbins ((unsigned)(QUANTUM_2POW - TINY_MIN_2POW)) #else # define ntbins 0 #endif static unsigned nqbins; /* Number of quantum-spaced bins. */ static unsigned ncbins; /* Number of cacheline-spaced bins. */ static unsigned nsbins; /* Number of subpage-spaced bins. */ static unsigned nbins; #ifdef MALLOC_TINY # define tspace_max ((size_t)(QUANTUM >> 1)) #endif #define qspace_min QUANTUM static size_t qspace_max; static size_t cspace_min; static size_t cspace_max; static size_t sspace_min; static size_t sspace_max; #define bin_maxclass sspace_max static uint8_t const *size2bin; /* * const_size2bin is a static constant lookup table that in the common case can * be used as-is for size2bin. For dynamically linked programs, this avoids * a page of memory overhead per process. */ #define S2B_1(i) i, #define S2B_2(i) S2B_1(i) S2B_1(i) #define S2B_4(i) S2B_2(i) S2B_2(i) #define S2B_8(i) S2B_4(i) S2B_4(i) #define S2B_16(i) S2B_8(i) S2B_8(i) #define S2B_32(i) S2B_16(i) S2B_16(i) #define S2B_64(i) S2B_32(i) S2B_32(i) #define S2B_128(i) S2B_64(i) S2B_64(i) #define S2B_256(i) S2B_128(i) S2B_128(i) static const uint8_t const_size2bin[PAGE_SIZE - 255] = { S2B_1(0xffU) /* 0 */ #if (QUANTUM_2POW == 4) /* 64-bit system ************************/ # ifdef MALLOC_TINY S2B_2(0) /* 2 */ S2B_2(1) /* 4 */ S2B_4(2) /* 8 */ S2B_8(3) /* 16 */ # define S2B_QMIN 3 # else S2B_16(0) /* 16 */ # define S2B_QMIN 0 # endif S2B_16(S2B_QMIN + 1) /* 32 */ S2B_16(S2B_QMIN + 2) /* 48 */ S2B_16(S2B_QMIN + 3) /* 64 */ S2B_16(S2B_QMIN + 4) /* 80 */ S2B_16(S2B_QMIN + 5) /* 96 */ S2B_16(S2B_QMIN + 6) /* 112 */ S2B_16(S2B_QMIN + 7) /* 128 */ # define S2B_CMIN (S2B_QMIN + 8) #else /* 32-bit system ************************/ # ifdef MALLOC_TINY S2B_2(0) /* 2 */ S2B_2(1) /* 4 */ S2B_4(2) /* 8 */ # define S2B_QMIN 2 # else S2B_8(0) /* 8 */ # define S2B_QMIN 0 # endif S2B_8(S2B_QMIN + 1) /* 16 */ S2B_8(S2B_QMIN + 2) /* 24 */ S2B_8(S2B_QMIN + 3) /* 32 */ S2B_8(S2B_QMIN + 4) /* 40 */ S2B_8(S2B_QMIN + 5) /* 48 */ S2B_8(S2B_QMIN + 6) /* 56 */ S2B_8(S2B_QMIN + 7) /* 64 */ S2B_8(S2B_QMIN + 8) /* 72 */ S2B_8(S2B_QMIN + 9) /* 80 */ S2B_8(S2B_QMIN + 10) /* 88 */ S2B_8(S2B_QMIN + 11) /* 96 */ S2B_8(S2B_QMIN + 12) /* 104 */ S2B_8(S2B_QMIN + 13) /* 112 */ S2B_8(S2B_QMIN + 14) /* 120 */ S2B_8(S2B_QMIN + 15) /* 128 */ # define S2B_CMIN (S2B_QMIN + 16) #endif /****************************************/ S2B_64(S2B_CMIN + 0) /* 192 */ S2B_64(S2B_CMIN + 1) /* 256 */ S2B_64(S2B_CMIN + 2) /* 320 */ S2B_64(S2B_CMIN + 3) /* 384 */ S2B_64(S2B_CMIN + 4) /* 448 */ S2B_64(S2B_CMIN + 5) /* 512 */ # define S2B_SMIN (S2B_CMIN + 6) S2B_256(S2B_SMIN + 0) /* 768 */ S2B_256(S2B_SMIN + 1) /* 1024 */ S2B_256(S2B_SMIN + 2) /* 1280 */ S2B_256(S2B_SMIN + 3) /* 1536 */ S2B_256(S2B_SMIN + 4) /* 1792 */ S2B_256(S2B_SMIN + 5) /* 2048 */ S2B_256(S2B_SMIN + 6) /* 2304 */ S2B_256(S2B_SMIN + 7) /* 2560 */ S2B_256(S2B_SMIN + 8) /* 2816 */ S2B_256(S2B_SMIN + 9) /* 3072 */ S2B_256(S2B_SMIN + 10) /* 3328 */ S2B_256(S2B_SMIN + 11) /* 3584 */ S2B_256(S2B_SMIN + 12) /* 3840 */ #if (PAGE_SHIFT == 13) S2B_256(S2B_SMIN + 13) /* 4096 */ S2B_256(S2B_SMIN + 14) /* 4352 */ S2B_256(S2B_SMIN + 15) /* 4608 */ S2B_256(S2B_SMIN + 16) /* 4864 */ S2B_256(S2B_SMIN + 17) /* 5120 */ S2B_256(S2B_SMIN + 18) /* 5376 */ S2B_256(S2B_SMIN + 19) /* 5632 */ S2B_256(S2B_SMIN + 20) /* 5888 */ S2B_256(S2B_SMIN + 21) /* 6144 */ S2B_256(S2B_SMIN + 22) /* 6400 */ S2B_256(S2B_SMIN + 23) /* 6656 */ S2B_256(S2B_SMIN + 24) /* 6912 */ S2B_256(S2B_SMIN + 25) /* 7168 */ S2B_256(S2B_SMIN + 26) /* 7424 */ S2B_256(S2B_SMIN + 27) /* 7680 */ S2B_256(S2B_SMIN + 28) /* 7936 */ #endif }; #undef S2B_1 #undef S2B_2 #undef S2B_4 #undef S2B_8 #undef S2B_16 #undef S2B_32 #undef S2B_64 #undef S2B_128 #undef S2B_256 #undef S2B_QMIN #undef S2B_CMIN #undef S2B_SMIN #ifdef MALLOC_MAG static size_t max_rounds; #endif /* Various chunk-related settings. */ static size_t chunksize; static size_t chunksize_mask; /* (chunksize - 1). */ static size_t chunk_npages; static size_t arena_chunk_header_npages; static size_t arena_maxclass; /* Max size class for arenas. */ /********/ /* * Chunks. */ /* Protects chunk-related data structures. */ static malloc_mutex_t huge_mtx; /* Tree of chunks that are stand-alone huge allocations. */ static extent_tree_t huge; #ifdef MALLOC_DSS /* * Protects sbrk() calls. This avoids malloc races among threads, though it * does not protect against races with threads that call sbrk() directly. */ static malloc_mutex_t dss_mtx; /* Base address of the DSS. */ static void *dss_base; /* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */ static void *dss_prev; /* Current upper limit on DSS addresses. */ static void *dss_max; /* * Trees of chunks that were previously allocated (trees differ only in node * ordering). These are used when allocating chunks, in an attempt to re-use * address space. Depending on function, different tree orderings are needed, * which is why there are two trees with the same contents. */ static extent_tree_t dss_chunks_szad; static extent_tree_t dss_chunks_ad; #endif #ifdef MALLOC_STATS /* Huge allocation statistics. */ static uint64_t huge_nmalloc; static uint64_t huge_ndalloc; static size_t huge_allocated; #endif /****************************/ /* * base (internal allocation). */ /* * Current pages that are being used for internal memory allocations. These * pages are carved up in cacheline-size quanta, so that there is no chance of * false cache line sharing. */ static void *base_pages; static void *base_next_addr; static void *base_past_addr; /* Addr immediately past base_pages. */ static extent_node_t *base_nodes; static malloc_mutex_t base_mtx; #ifdef MALLOC_STATS static size_t base_mapped; #endif /********/ /* * Arenas. */ /* * Arenas that are used to service external requests. Not all elements of the * arenas array are necessarily used; arenas are created lazily as needed. */ static arena_t **arenas; static unsigned narenas; #ifndef NO_TLS # ifdef MALLOC_BALANCE static unsigned narenas_2pow; # else static unsigned next_arena; # endif #endif static pthread_mutex_t arenas_lock; /* Protects arenas initialization. */ #ifndef NO_TLS /* * Map of pthread_self() --> arenas[???], used for selecting an arena to use * for allocations. */ static __thread arena_t *arenas_map; #endif #ifdef MALLOC_MAG /* * Map of thread-specific magazine racks, used for thread-specific object * caching. */ static __thread mag_rack_t *mag_rack; #endif #ifdef MALLOC_STATS /* Chunk statistics. */ static chunk_stats_t stats_chunks; #endif /*******************************/ /* * Runtime configuration options. */ const char *_malloc_options; #ifndef MALLOC_PRODUCTION static bool opt_abort = true; static bool opt_junk = true; #else static bool opt_abort = false; static bool opt_junk = false; #endif #ifdef MALLOC_DSS static bool opt_dss = true; static bool opt_mmap = true; #endif #ifdef MALLOC_MAG static bool opt_mag = true; static size_t opt_mag_size_2pow = MAG_SIZE_2POW_DEFAULT; #endif static size_t opt_dirty_max = DIRTY_MAX_DEFAULT; #ifdef MALLOC_BALANCE static uint64_t opt_balance_threshold = BALANCE_THRESHOLD_DEFAULT; #endif static bool opt_print_stats = false; static size_t opt_qspace_max_2pow = QSPACE_MAX_2POW_DEFAULT; static size_t opt_cspace_max_2pow = CSPACE_MAX_2POW_DEFAULT; static size_t opt_chunk_2pow = CHUNK_2POW_DEFAULT; static bool opt_utrace = false; static bool opt_sysv = false; static bool opt_xmalloc = false; static bool opt_zero = false; static int opt_narenas_lshift = 0; typedef struct { void *p; size_t s; void *r; } malloc_utrace_t; #define UTRACE(a, b, c) \ if (opt_utrace) { \ malloc_utrace_t ut; \ ut.p = (a); \ ut.s = (b); \ ut.r = (c); \ utrace(&ut, sizeof(ut)); \ } /******************************************************************************/ /* * Begin function prototypes for non-inline static functions. */ static void malloc_mutex_init(malloc_mutex_t *mutex); static bool malloc_spin_init(pthread_mutex_t *lock); static void wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4); #ifdef MALLOC_STATS static void malloc_printf(const char *format, ...); #endif static char *umax2s(uintmax_t x, char *s); #ifdef MALLOC_DSS static bool base_pages_alloc_dss(size_t minsize); #endif static bool base_pages_alloc_mmap(size_t minsize); static bool base_pages_alloc(size_t minsize); static void *base_alloc(size_t size); static void *base_calloc(size_t number, size_t size); static extent_node_t *base_node_alloc(void); static void base_node_dealloc(extent_node_t *node); #ifdef MALLOC_STATS static void stats_print(arena_t *arena); #endif static void *pages_map(void *addr, size_t size); static void pages_unmap(void *addr, size_t size); #ifdef MALLOC_DSS static void *chunk_alloc_dss(size_t size); static void *chunk_recycle_dss(size_t size, bool zero); #endif static void *chunk_alloc_mmap(size_t size); static void *chunk_alloc(size_t size, bool zero); #ifdef MALLOC_DSS static extent_node_t *chunk_dealloc_dss_record(void *chunk, size_t size); static bool chunk_dealloc_dss(void *chunk, size_t size); #endif static void chunk_dealloc_mmap(void *chunk, size_t size); static void chunk_dealloc(void *chunk, size_t size); #ifndef NO_TLS static arena_t *choose_arena_hard(void); #endif static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large, bool zero); static arena_chunk_t *arena_chunk_alloc(arena_t *arena); static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk); static arena_run_t *arena_run_alloc(arena_t *arena, size_t size, bool large, bool zero); static void arena_purge(arena_t *arena); static void arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty); static void arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run, size_t oldsize, size_t newsize); static void arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run, size_t oldsize, size_t newsize, bool dirty); static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin); static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin); static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size); #ifdef MALLOC_BALANCE static void arena_lock_balance_hard(arena_t *arena); #endif #ifdef MALLOC_MAG static void mag_load(mag_t *mag); #endif static void *arena_malloc_large(arena_t *arena, size_t size, bool zero); static void *arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size); static size_t arena_salloc(const void *ptr); #ifdef MALLOC_MAG static void mag_unload(mag_t *mag); #endif static void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr); static void arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr, size_t size, size_t oldsize); static bool arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr, size_t size, size_t oldsize); static bool arena_ralloc_large(void *ptr, size_t size, size_t oldsize); static void *arena_ralloc(void *ptr, size_t size, size_t oldsize); static bool arena_new(arena_t *arena); static arena_t *arenas_extend(unsigned ind); #ifdef MALLOC_MAG static mag_t *mag_create(arena_t *arena, size_t binind); static void mag_destroy(mag_t *mag); static mag_rack_t *mag_rack_create(arena_t *arena); static void mag_rack_destroy(mag_rack_t *rack); #endif static void *huge_malloc(size_t size, bool zero); static void *huge_palloc(size_t alignment, size_t size); static void *huge_ralloc(void *ptr, size_t size, size_t oldsize); static void huge_dalloc(void *ptr); static void malloc_print_stats(void); #ifdef MALLOC_DEBUG static void size2bin_validate(void); #endif static bool size2bin_init(void); static bool size2bin_init_hard(void); static bool malloc_init_hard(void); /* * End function prototypes. */ /******************************************************************************/ /* * Begin mutex. We can't use normal pthread mutexes in all places, because * they require malloc()ed memory, which causes bootstrapping issues in some * cases. */ static void malloc_mutex_init(malloc_mutex_t *mutex) { static const spinlock_t lock = _SPINLOCK_INITIALIZER; mutex->lock = lock; } static inline void malloc_mutex_lock(malloc_mutex_t *mutex) { if (__isthreaded) _SPINLOCK(&mutex->lock); } static inline void malloc_mutex_unlock(malloc_mutex_t *mutex) { if (__isthreaded) _SPINUNLOCK(&mutex->lock); } /* * End mutex. */ /******************************************************************************/ /* * Begin spin lock. Spin locks here are actually adaptive mutexes that block * after a period of spinning, because unbounded spinning would allow for * priority inversion. */ /* * We use an unpublished interface to initialize pthread mutexes with an * allocation callback, in order to avoid infinite recursion. */ int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex, void *(calloc_cb)(size_t, size_t)); __weak_reference(_pthread_mutex_init_calloc_cb_stub, _pthread_mutex_init_calloc_cb); int _pthread_mutex_init_calloc_cb_stub(pthread_mutex_t *mutex, void *(calloc_cb)(size_t, size_t)) { return (0); } static bool malloc_spin_init(pthread_mutex_t *lock) { if (_pthread_mutex_init_calloc_cb(lock, base_calloc) != 0) return (true); return (false); } static inline unsigned malloc_spin_lock(pthread_mutex_t *lock) { unsigned ret = 0; if (__isthreaded) { if (_pthread_mutex_trylock(lock) != 0) { /* Exponentially back off if there are multiple CPUs. */ if (ncpus > 1) { unsigned i; volatile unsigned j; for (i = 1; i <= SPIN_LIMIT_2POW; i++) { for (j = 0; j < (1U << i); j++) { ret++; CPU_SPINWAIT; } if (_pthread_mutex_trylock(lock) == 0) return (ret); } } /* * Spinning failed. Block until the lock becomes * available, in order to avoid indefinite priority * inversion. */ _pthread_mutex_lock(lock); assert((ret << BLOCK_COST_2POW) != 0 || ncpus == 1); return (ret << BLOCK_COST_2POW); } } return (ret); } static inline void malloc_spin_unlock(pthread_mutex_t *lock) { if (__isthreaded) _pthread_mutex_unlock(lock); } /* * End spin lock. */ /******************************************************************************/ /* * Begin Utility functions/macros. */ /* Return the chunk address for allocation address a. */ #define CHUNK_ADDR2BASE(a) \ ((void *)((uintptr_t)(a) & ~chunksize_mask)) /* Return the chunk offset of address a. */ #define CHUNK_ADDR2OFFSET(a) \ ((size_t)((uintptr_t)(a) & chunksize_mask)) /* Return the smallest chunk multiple that is >= s. */ #define CHUNK_CEILING(s) \ (((s) + chunksize_mask) & ~chunksize_mask) /* Return the smallest quantum multiple that is >= a. */ #define QUANTUM_CEILING(a) \ (((a) + QUANTUM_MASK) & ~QUANTUM_MASK) /* Return the smallest cacheline multiple that is >= s. */ #define CACHELINE_CEILING(s) \ (((s) + CACHELINE_MASK) & ~CACHELINE_MASK) /* Return the smallest subpage multiple that is >= s. */ #define SUBPAGE_CEILING(s) \ (((s) + SUBPAGE_MASK) & ~SUBPAGE_MASK) /* Return the smallest PAGE_SIZE multiple that is >= s. */ #define PAGE_CEILING(s) \ (((s) + PAGE_MASK) & ~PAGE_MASK) #ifdef MALLOC_TINY /* Compute the smallest power of 2 that is >= x. */ static inline size_t pow2_ceil(size_t x) { x--; x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; #if (SIZEOF_PTR == 8) x |= x >> 32; #endif x++; return (x); } #endif #ifdef MALLOC_BALANCE /* * Use a simple linear congruential pseudo-random number generator: * * prn(y) = (a*x + c) % m * * where the following constants ensure maximal period: * * a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4. * c == Odd number (relatively prime to 2^n). * m == 2^32 * * See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints. * * This choice of m has the disadvantage that the quality of the bits is * proportional to bit position. For example. the lowest bit has a cycle of 2, * the next has a cycle of 4, etc. For this reason, we prefer to use the upper * bits. */ # define PRN_DEFINE(suffix, var, a, c) \ static inline void \ sprn_##suffix(uint32_t seed) \ { \ var = seed; \ } \ \ static inline uint32_t \ prn_##suffix(uint32_t lg_range) \ { \ uint32_t ret, x; \ \ assert(lg_range > 0); \ assert(lg_range <= 32); \ \ x = (var * (a)) + (c); \ var = x; \ ret = x >> (32 - lg_range); \ \ return (ret); \ } # define SPRN(suffix, seed) sprn_##suffix(seed) # define PRN(suffix, lg_range) prn_##suffix(lg_range) #endif #ifdef MALLOC_BALANCE /* Define the PRNG used for arena assignment. */ static __thread uint32_t balance_x; PRN_DEFINE(balance, balance_x, 1297, 1301) #endif static void wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4) { _write(STDERR_FILENO, p1, strlen(p1)); _write(STDERR_FILENO, p2, strlen(p2)); _write(STDERR_FILENO, p3, strlen(p3)); _write(STDERR_FILENO, p4, strlen(p4)); } void (*_malloc_message)(const char *p1, const char *p2, const char *p3, const char *p4) = wrtmessage; #ifdef MALLOC_STATS /* * Print to stderr in such a way as to (hopefully) avoid memory allocation. */ static void malloc_printf(const char *format, ...) { char buf[4096]; va_list ap; va_start(ap, format); vsnprintf(buf, sizeof(buf), format, ap); va_end(ap); _malloc_message(buf, "", "", ""); } #endif /* * We don't want to depend on vsnprintf() for production builds, since that can * cause unnecessary bloat for static binaries. umax2s() provides minimal * integer printing functionality, so that malloc_printf() use can be limited to * MALLOC_STATS code. */ #define UMAX2S_BUFSIZE 21 static char * umax2s(uintmax_t x, char *s) { unsigned i; /* Make sure UMAX2S_BUFSIZE is large enough. */ assert(sizeof(uintmax_t) <= 8); i = UMAX2S_BUFSIZE - 1; s[i] = '\0'; do { i--; s[i] = "0123456789"[x % 10]; x /= 10; } while (x > 0); return (&s[i]); } /******************************************************************************/ #ifdef MALLOC_DSS static bool base_pages_alloc_dss(size_t minsize) { /* * Do special DSS allocation here, since base allocations don't need to * be chunk-aligned. */ malloc_mutex_lock(&dss_mtx); if (dss_prev != (void *)-1) { intptr_t incr; size_t csize = CHUNK_CEILING(minsize); do { /* Get the current end of the DSS. */ dss_max = sbrk(0); /* * Calculate how much padding is necessary to * chunk-align the end of the DSS. Don't worry about * dss_max not being chunk-aligned though. */ incr = (intptr_t)chunksize - (intptr_t)CHUNK_ADDR2OFFSET(dss_max); assert(incr >= 0); if ((size_t)incr < minsize) incr += csize; dss_prev = sbrk(incr); if (dss_prev == dss_max) { /* Success. */ dss_max = (void *)((intptr_t)dss_prev + incr); base_pages = dss_prev; base_next_addr = base_pages; base_past_addr = dss_max; #ifdef MALLOC_STATS base_mapped += incr; #endif malloc_mutex_unlock(&dss_mtx); return (false); } } while (dss_prev != (void *)-1); } malloc_mutex_unlock(&dss_mtx); return (true); } #endif static bool base_pages_alloc_mmap(size_t minsize) { size_t csize; assert(minsize != 0); csize = PAGE_CEILING(minsize); base_pages = pages_map(NULL, csize); if (base_pages == NULL) return (true); base_next_addr = base_pages; base_past_addr = (void *)((uintptr_t)base_pages + csize); #ifdef MALLOC_STATS base_mapped += csize; #endif return (false); } static bool base_pages_alloc(size_t minsize) { #ifdef MALLOC_DSS if (opt_mmap && minsize != 0) #endif { if (base_pages_alloc_mmap(minsize) == false) return (false); } #ifdef MALLOC_DSS if (opt_dss) { if (base_pages_alloc_dss(minsize) == false) return (false); } #endif return (true); } static void * base_alloc(size_t size) { void *ret; size_t csize; /* Round size up to nearest multiple of the cacheline size. */ csize = CACHELINE_CEILING(size); malloc_mutex_lock(&base_mtx); /* Make sure there's enough space for the allocation. */ if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) { if (base_pages_alloc(csize)) { malloc_mutex_unlock(&base_mtx); return (NULL); } } /* Allocate. */ ret = base_next_addr; base_next_addr = (void *)((uintptr_t)base_next_addr + csize); malloc_mutex_unlock(&base_mtx); return (ret); } static void * base_calloc(size_t number, size_t size) { void *ret; ret = base_alloc(number * size); memset(ret, 0, number * size); return (ret); } static extent_node_t * base_node_alloc(void) { extent_node_t *ret; malloc_mutex_lock(&base_mtx); if (base_nodes != NULL) { ret = base_nodes; base_nodes = *(extent_node_t **)ret; malloc_mutex_unlock(&base_mtx); } else { malloc_mutex_unlock(&base_mtx); ret = (extent_node_t *)base_alloc(sizeof(extent_node_t)); } return (ret); } static void base_node_dealloc(extent_node_t *node) { malloc_mutex_lock(&base_mtx); *(extent_node_t **)node = base_nodes; base_nodes = node; malloc_mutex_unlock(&base_mtx); } /******************************************************************************/ #ifdef MALLOC_STATS static void stats_print(arena_t *arena) { unsigned i, gap_start; malloc_printf("dirty: %zu page%s dirty, %llu sweep%s," " %llu madvise%s, %llu page%s purged\n", arena->ndirty, arena->ndirty == 1 ? "" : "s", arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s", arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s", arena->stats.purged, arena->stats.purged == 1 ? "" : "s"); malloc_printf(" allocated nmalloc ndalloc\n"); malloc_printf("small: %12zu %12llu %12llu\n", arena->stats.allocated_small, arena->stats.nmalloc_small, arena->stats.ndalloc_small); malloc_printf("large: %12zu %12llu %12llu\n", arena->stats.allocated_large, arena->stats.nmalloc_large, arena->stats.ndalloc_large); malloc_printf("total: %12zu %12llu %12llu\n", arena->stats.allocated_small + arena->stats.allocated_large, arena->stats.nmalloc_small + arena->stats.nmalloc_large, arena->stats.ndalloc_small + arena->stats.ndalloc_large); malloc_printf("mapped: %12zu\n", arena->stats.mapped); #ifdef MALLOC_MAG if (__isthreaded && opt_mag) { malloc_printf("bins: bin size regs pgs mags " "newruns reruns maxruns curruns\n"); } else { #endif malloc_printf("bins: bin size regs pgs requests " "newruns reruns maxruns curruns\n"); #ifdef MALLOC_MAG } #endif for (i = 0, gap_start = UINT_MAX; i < nbins; i++) { if (arena->bins[i].stats.nruns == 0) { if (gap_start == UINT_MAX) gap_start = i; } else { if (gap_start != UINT_MAX) { if (i > gap_start + 1) { /* Gap of more than one size class. */ malloc_printf("[%u..%u]\n", gap_start, i - 1); } else { /* Gap of one size class. */ malloc_printf("[%u]\n", gap_start); } gap_start = UINT_MAX; } malloc_printf( "%13u %1s %4u %4u %3u %9llu %9llu" " %9llu %7lu %7lu\n", i, i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : i < ntbins + nqbins + ncbins ? "C" : "S", arena->bins[i].reg_size, arena->bins[i].nregs, arena->bins[i].run_size >> PAGE_SHIFT, #ifdef MALLOC_MAG (__isthreaded && opt_mag) ? arena->bins[i].stats.nmags : #endif arena->bins[i].stats.nrequests, arena->bins[i].stats.nruns, arena->bins[i].stats.reruns, arena->bins[i].stats.highruns, arena->bins[i].stats.curruns); } } if (gap_start != UINT_MAX) { if (i > gap_start + 1) { /* Gap of more than one size class. */ malloc_printf("[%u..%u]\n", gap_start, i - 1); } else { /* Gap of one size class. */ malloc_printf("[%u]\n", gap_start); } } } #endif /* * End Utility functions/macros. */ /******************************************************************************/ /* * Begin extent tree code. */ #ifdef MALLOC_DSS static inline int extent_szad_comp(extent_node_t *a, extent_node_t *b) { int ret; size_t a_size = a->size; size_t b_size = b->size; ret = (a_size > b_size) - (a_size < b_size); if (ret == 0) { uintptr_t a_addr = (uintptr_t)a->addr; uintptr_t b_addr = (uintptr_t)b->addr; ret = (a_addr > b_addr) - (a_addr < b_addr); } return (ret); } /* Wrap red-black tree macros in functions. */ rb_wrap(__unused static, extent_tree_szad_, extent_tree_t, extent_node_t, link_szad, extent_szad_comp) #endif static inline int extent_ad_comp(extent_node_t *a, extent_node_t *b) { uintptr_t a_addr = (uintptr_t)a->addr; uintptr_t b_addr = (uintptr_t)b->addr; return ((a_addr > b_addr) - (a_addr < b_addr)); } /* Wrap red-black tree macros in functions. */ rb_wrap(__unused static, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad, extent_ad_comp) /* * End extent tree code. */ /******************************************************************************/ /* * Begin chunk management functions. */ static void * pages_map(void *addr, size_t size) { void *ret; /* * We don't use MAP_FIXED here, because it can cause the *replacement* * of existing mappings, and we only want to create new mappings. */ ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); assert(ret != NULL); if (ret == MAP_FAILED) ret = NULL; else if (addr != NULL && ret != addr) { /* * We succeeded in mapping memory, but not in the right place. */ if (munmap(ret, size) == -1) { char buf[STRERROR_BUF]; strerror_r(errno, buf, sizeof(buf)); _malloc_message(_getprogname(), ": (malloc) Error in munmap(): ", buf, "\n"); if (opt_abort) abort(); } ret = NULL; } assert(ret == NULL || (addr == NULL && ret != addr) || (addr != NULL && ret == addr)); return (ret); } static void pages_unmap(void *addr, size_t size) { if (munmap(addr, size) == -1) { char buf[STRERROR_BUF]; strerror_r(errno, buf, sizeof(buf)); _malloc_message(_getprogname(), ": (malloc) Error in munmap(): ", buf, "\n"); if (opt_abort) abort(); } } #ifdef MALLOC_DSS static void * chunk_alloc_dss(size_t size) { /* * sbrk() uses a signed increment argument, so take care not to * interpret a huge allocation request as a negative increment. */ if ((intptr_t)size < 0) return (NULL); malloc_mutex_lock(&dss_mtx); if (dss_prev != (void *)-1) { intptr_t incr; /* * The loop is necessary to recover from races with other * threads that are using the DSS for something other than * malloc. */ do { void *ret; /* Get the current end of the DSS. */ dss_max = sbrk(0); /* * Calculate how much padding is necessary to * chunk-align the end of the DSS. */ incr = (intptr_t)size - (intptr_t)CHUNK_ADDR2OFFSET(dss_max); if (incr == (intptr_t)size) ret = dss_max; else { ret = (void *)((intptr_t)dss_max + incr); incr += size; } dss_prev = sbrk(incr); if (dss_prev == dss_max) { /* Success. */ dss_max = (void *)((intptr_t)dss_prev + incr); malloc_mutex_unlock(&dss_mtx); return (ret); } } while (dss_prev != (void *)-1); } malloc_mutex_unlock(&dss_mtx); return (NULL); } static void * chunk_recycle_dss(size_t size, bool zero) { extent_node_t *node, key; key.addr = NULL; key.size = size; malloc_mutex_lock(&dss_mtx); node = extent_tree_szad_nsearch(&dss_chunks_szad, &key); if (node != NULL) { void *ret = node->addr; /* Remove node from the tree. */ extent_tree_szad_remove(&dss_chunks_szad, node); if (node->size == size) { extent_tree_ad_remove(&dss_chunks_ad, node); base_node_dealloc(node); } else { /* * Insert the remainder of node's address range as a * smaller chunk. Its position within dss_chunks_ad * does not change. */ assert(node->size > size); node->addr = (void *)((uintptr_t)node->addr + size); node->size -= size; extent_tree_szad_insert(&dss_chunks_szad, node); } malloc_mutex_unlock(&dss_mtx); if (zero) memset(ret, 0, size); return (ret); } malloc_mutex_unlock(&dss_mtx); return (NULL); } #endif static void * chunk_alloc_mmap(size_t size) { void *ret; size_t offset; /* * Ideally, there would be a way to specify alignment to mmap() (like * NetBSD has), but in the absence of such a feature, we have to work * hard to efficiently create aligned mappings. The reliable, but * expensive method is to create a mapping that is over-sized, then * trim the excess. However, that always results in at least one call * to pages_unmap(). * * A more optimistic approach is to try mapping precisely the right * amount, then try to append another mapping if alignment is off. In * practice, this works out well as long as the application is not * interleaving mappings via direct mmap() calls. If we do run into a * situation where there is an interleaved mapping and we are unable to * extend an unaligned mapping, our best option is to momentarily * revert to the reliable-but-expensive method. This will tend to * leave a gap in the memory map that is too small to cause later * problems for the optimistic method. */ ret = pages_map(NULL, size); if (ret == NULL) return (NULL); offset = CHUNK_ADDR2OFFSET(ret); if (offset != 0) { /* Try to extend chunk boundary. */ if (pages_map((void *)((uintptr_t)ret + size), chunksize - offset) == NULL) { /* * Extension failed. Clean up, then revert to the * reliable-but-expensive method. */ pages_unmap(ret, size); /* Beware size_t wrap-around. */ if (size + chunksize <= size) return NULL; ret = pages_map(NULL, size + chunksize); if (ret == NULL) return (NULL); /* Clean up unneeded leading/trailing space. */ offset = CHUNK_ADDR2OFFSET(ret); if (offset != 0) { /* Leading space. */ pages_unmap(ret, chunksize - offset); ret = (void *)((uintptr_t)ret + (chunksize - offset)); /* Trailing space. */ pages_unmap((void *)((uintptr_t)ret + size), offset); } else { /* Trailing space only. */ pages_unmap((void *)((uintptr_t)ret + size), chunksize); } } else { /* Clean up unneeded leading space. */ pages_unmap(ret, chunksize - offset); ret = (void *)((uintptr_t)ret + (chunksize - offset)); } } return (ret); } static void * chunk_alloc(size_t size, bool zero) { void *ret; assert(size != 0); assert((size & chunksize_mask) == 0); #ifdef MALLOC_DSS if (opt_mmap) #endif { ret = chunk_alloc_mmap(size); if (ret != NULL) goto RETURN; } #ifdef MALLOC_DSS if (opt_dss) { ret = chunk_recycle_dss(size, zero); if (ret != NULL) { goto RETURN; } ret = chunk_alloc_dss(size); if (ret != NULL) goto RETURN; } #endif /* All strategies for allocation failed. */ ret = NULL; RETURN: #ifdef MALLOC_STATS if (ret != NULL) { stats_chunks.nchunks += (size / chunksize); stats_chunks.curchunks += (size / chunksize); } if (stats_chunks.curchunks > stats_chunks.highchunks) stats_chunks.highchunks = stats_chunks.curchunks; #endif assert(CHUNK_ADDR2BASE(ret) == ret); return (ret); } #ifdef MALLOC_DSS static extent_node_t * chunk_dealloc_dss_record(void *chunk, size_t size) { extent_node_t *node, *prev, key; key.addr = (void *)((uintptr_t)chunk + size); node = extent_tree_ad_nsearch(&dss_chunks_ad, &key); /* Try to coalesce forward. */ if (node != NULL && node->addr == key.addr) { /* * Coalesce chunk with the following address range. This does * not change the position within dss_chunks_ad, so only * remove/insert from/into dss_chunks_szad. */ extent_tree_szad_remove(&dss_chunks_szad, node); node->addr = chunk; node->size += size; extent_tree_szad_insert(&dss_chunks_szad, node); } else { /* * Coalescing forward failed, so insert a new node. Drop * dss_mtx during node allocation, since it is possible that a * new base chunk will be allocated. */ malloc_mutex_unlock(&dss_mtx); node = base_node_alloc(); malloc_mutex_lock(&dss_mtx); if (node == NULL) return (NULL); node->addr = chunk; node->size = size; extent_tree_ad_insert(&dss_chunks_ad, node); extent_tree_szad_insert(&dss_chunks_szad, node); } /* Try to coalesce backward. */ prev = extent_tree_ad_prev(&dss_chunks_ad, node); if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) == chunk) { /* * Coalesce chunk with the previous address range. This does * not change the position within dss_chunks_ad, so only * remove/insert node from/into dss_chunks_szad. */ extent_tree_szad_remove(&dss_chunks_szad, prev); extent_tree_ad_remove(&dss_chunks_ad, prev); extent_tree_szad_remove(&dss_chunks_szad, node); node->addr = prev->addr; node->size += prev->size; extent_tree_szad_insert(&dss_chunks_szad, node); base_node_dealloc(prev); } return (node); } static bool chunk_dealloc_dss(void *chunk, size_t size) { malloc_mutex_lock(&dss_mtx); if ((uintptr_t)chunk >= (uintptr_t)dss_base && (uintptr_t)chunk < (uintptr_t)dss_max) { extent_node_t *node; /* Try to coalesce with other unused chunks. */ node = chunk_dealloc_dss_record(chunk, size); if (node != NULL) { chunk = node->addr; size = node->size; } /* Get the current end of the DSS. */ dss_max = sbrk(0); /* * Try to shrink the DSS if this chunk is at the end of the * DSS. The sbrk() call here is subject to a race condition * with threads that use brk(2) or sbrk(2) directly, but the * alternative would be to leak memory for the sake of poorly * designed multi-threaded programs. */ if ((void *)((uintptr_t)chunk + size) == dss_max && (dss_prev = sbrk(-(intptr_t)size)) == dss_max) { /* Success. */ dss_max = (void *)((intptr_t)dss_prev - (intptr_t)size); if (node != NULL) { extent_tree_szad_remove(&dss_chunks_szad, node); extent_tree_ad_remove(&dss_chunks_ad, node); base_node_dealloc(node); } malloc_mutex_unlock(&dss_mtx); } else { malloc_mutex_unlock(&dss_mtx); madvise(chunk, size, MADV_FREE); } return (false); } malloc_mutex_unlock(&dss_mtx); return (true); } #endif static void chunk_dealloc_mmap(void *chunk, size_t size) { pages_unmap(chunk, size); } static void chunk_dealloc(void *chunk, size_t size) { assert(chunk != NULL); assert(CHUNK_ADDR2BASE(chunk) == chunk); assert(size != 0); assert((size & chunksize_mask) == 0); #ifdef MALLOC_STATS stats_chunks.curchunks -= (size / chunksize); #endif #ifdef MALLOC_DSS if (opt_dss) { if (chunk_dealloc_dss(chunk, size) == false) return; } if (opt_mmap) #endif chunk_dealloc_mmap(chunk, size); } /* * End chunk management functions. */ /******************************************************************************/ /* * Begin arena. */ /* * Choose an arena based on a per-thread value (fast-path code, calls slow-path * code if necessary). */ static inline arena_t * choose_arena(void) { arena_t *ret; /* * We can only use TLS if this is a PIC library, since for the static * library version, libc's malloc is used by TLS allocation, which * introduces a bootstrapping issue. */ #ifndef NO_TLS if (__isthreaded == false) { /* Avoid the overhead of TLS for single-threaded operation. */ return (arenas[0]); } ret = arenas_map; if (ret == NULL) { ret = choose_arena_hard(); assert(ret != NULL); } #else if (__isthreaded && narenas > 1) { unsigned long ind; /* * Hash _pthread_self() to one of the arenas. There is a prime * number of arenas, so this has a reasonable chance of * working. Even so, the hashing can be easily thwarted by * inconvenient _pthread_self() values. Without specific * knowledge of how _pthread_self() calculates values, we can't * easily do much better than this. */ ind = (unsigned long) _pthread_self() % narenas; /* * Optimistially assume that arenas[ind] has been initialized. * At worst, we find out that some other thread has already * done so, after acquiring the lock in preparation. Note that * this lazy locking also has the effect of lazily forcing * cache coherency; without the lock acquisition, there's no * guarantee that modification of arenas[ind] by another thread * would be seen on this CPU for an arbitrary amount of time. * * In general, this approach to modifying a synchronized value * isn't a good idea, but in this case we only ever modify the * value once, so things work out well. */ ret = arenas[ind]; if (ret == NULL) { /* * Avoid races with another thread that may have already * initialized arenas[ind]. */ malloc_spin_lock(&arenas_lock); if (arenas[ind] == NULL) ret = arenas_extend((unsigned)ind); else ret = arenas[ind]; malloc_spin_unlock(&arenas_lock); } } else ret = arenas[0]; #endif assert(ret != NULL); return (ret); } #ifndef NO_TLS /* * Choose an arena based on a per-thread value (slow-path code only, called * only by choose_arena()). */ static arena_t * choose_arena_hard(void) { arena_t *ret; assert(__isthreaded); #ifdef MALLOC_BALANCE /* Seed the PRNG used for arena load balancing. */ SPRN(balance, (uint32_t)(uintptr_t)(_pthread_self())); #endif if (narenas > 1) { #ifdef MALLOC_BALANCE unsigned ind; ind = PRN(balance, narenas_2pow); if ((ret = arenas[ind]) == NULL) { malloc_spin_lock(&arenas_lock); if ((ret = arenas[ind]) == NULL) ret = arenas_extend(ind); malloc_spin_unlock(&arenas_lock); } #else malloc_spin_lock(&arenas_lock); if ((ret = arenas[next_arena]) == NULL) ret = arenas_extend(next_arena); next_arena = (next_arena + 1) % narenas; malloc_spin_unlock(&arenas_lock); #endif } else ret = arenas[0]; arenas_map = ret; return (ret); } #endif static inline int arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b) { uintptr_t a_chunk = (uintptr_t)a; uintptr_t b_chunk = (uintptr_t)b; assert(a != NULL); assert(b != NULL); return ((a_chunk > b_chunk) - (a_chunk < b_chunk)); } /* Wrap red-black tree macros in functions. */ rb_wrap(__unused static, arena_chunk_tree_dirty_, arena_chunk_tree_t, arena_chunk_t, link_dirty, arena_chunk_comp) static inline int arena_run_comp(arena_chunk_map_t *a, arena_chunk_map_t *b) { uintptr_t a_mapelm = (uintptr_t)a; uintptr_t b_mapelm = (uintptr_t)b; assert(a != NULL); assert(b != NULL); return ((a_mapelm > b_mapelm) - (a_mapelm < b_mapelm)); } /* Wrap red-black tree macros in functions. */ rb_wrap(__unused static, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t, link, arena_run_comp) static inline int arena_avail_comp(arena_chunk_map_t *a, arena_chunk_map_t *b) { int ret; size_t a_size = a->bits & ~PAGE_MASK; size_t b_size = b->bits & ~PAGE_MASK; ret = (a_size > b_size) - (a_size < b_size); if (ret == 0) { uintptr_t a_mapelm, b_mapelm; if ((a->bits & CHUNK_MAP_KEY) == 0) a_mapelm = (uintptr_t)a; else { /* * Treat keys as though they are lower than anything * else. */ a_mapelm = 0; } b_mapelm = (uintptr_t)b; ret = (a_mapelm > b_mapelm) - (a_mapelm < b_mapelm); } return (ret); } /* Wrap red-black tree macros in functions. */ rb_wrap(__unused static, arena_avail_tree_, arena_avail_tree_t, arena_chunk_map_t, link, arena_avail_comp) static inline void * arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin) { void *ret; unsigned i, mask, bit, regind; assert(run->magic == ARENA_RUN_MAGIC); assert(run->regs_minelm < bin->regs_mask_nelms); /* * Move the first check outside the loop, so that run->regs_minelm can * be updated unconditionally, without the possibility of updating it * multiple times. */ i = run->regs_minelm; mask = run->regs_mask[i]; if (mask != 0) { /* Usable allocation found. */ bit = ffs((int)mask) - 1; regind = ((i << (SIZEOF_INT_2POW + 3)) + bit); assert(regind < bin->nregs); ret = (void *)(((uintptr_t)run) + bin->reg0_offset + (bin->reg_size * regind)); /* Clear bit. */ mask ^= (1U << bit); run->regs_mask[i] = mask; return (ret); } for (i++; i < bin->regs_mask_nelms; i++) { mask = run->regs_mask[i]; if (mask != 0) { /* Usable allocation found. */ bit = ffs((int)mask) - 1; regind = ((i << (SIZEOF_INT_2POW + 3)) + bit); assert(regind < bin->nregs); ret = (void *)(((uintptr_t)run) + bin->reg0_offset + (bin->reg_size * regind)); /* Clear bit. */ mask ^= (1U << bit); run->regs_mask[i] = mask; /* * Make a note that nothing before this element * contains a free region. */ run->regs_minelm = i; /* Low payoff: + (mask == 0); */ return (ret); } } /* Not reached. */ assert(0); return (NULL); } static inline void arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size) { unsigned diff, regind, elm, bit; assert(run->magic == ARENA_RUN_MAGIC); /* * Avoid doing division with a variable divisor if possible. Using * actual division here can reduce allocator throughput by over 20%! */ diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset); if ((size & (size - 1)) == 0) { /* * log2_table allows fast division of a power of two in the * [1..128] range. * * (x / divisor) becomes (x >> log2_table[divisor - 1]). */ static const unsigned char log2_table[] = { 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7 }; if (size <= 128) regind = (diff >> log2_table[size - 1]); else if (size <= 32768) regind = diff >> (8 + log2_table[(size >> 8) - 1]); else regind = diff / size; } else if (size < qspace_max) { /* * To divide by a number D that is not a power of two we * multiply by (2^21 / D) and then right shift by 21 positions. * * X / D * * becomes * * (X * qsize_invs[(D >> QUANTUM_2POW) - 3]) * >> SIZE_INV_SHIFT * * We can omit the first three elements, because we never * divide by 0, and QUANTUM and 2*QUANTUM are both powers of * two, which are handled above. */ #define SIZE_INV_SHIFT 21 #define QSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << QUANTUM_2POW)) + 1) static const unsigned qsize_invs[] = { QSIZE_INV(3), QSIZE_INV(4), QSIZE_INV(5), QSIZE_INV(6), QSIZE_INV(7) #if (QUANTUM_2POW < 4) , QSIZE_INV(8), QSIZE_INV(9), QSIZE_INV(10), QSIZE_INV(11), QSIZE_INV(12),QSIZE_INV(13), QSIZE_INV(14), QSIZE_INV(15) #endif }; assert(QUANTUM * (((sizeof(qsize_invs)) / sizeof(unsigned)) + 3) >= (1U << QSPACE_MAX_2POW_DEFAULT)); if (size <= (((sizeof(qsize_invs) / sizeof(unsigned)) + 2) << QUANTUM_2POW)) { regind = qsize_invs[(size >> QUANTUM_2POW) - 3] * diff; regind >>= SIZE_INV_SHIFT; } else regind = diff / size; #undef QSIZE_INV } else if (size < cspace_max) { #define CSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << CACHELINE_2POW)) + 1) static const unsigned csize_invs[] = { CSIZE_INV(3), CSIZE_INV(4), CSIZE_INV(5), CSIZE_INV(6), CSIZE_INV(7) }; assert(CACHELINE * (((sizeof(csize_invs)) / sizeof(unsigned)) + 3) >= (1U << CSPACE_MAX_2POW_DEFAULT)); if (size <= (((sizeof(csize_invs) / sizeof(unsigned)) + 2) << CACHELINE_2POW)) { regind = csize_invs[(size >> CACHELINE_2POW) - 3] * diff; regind >>= SIZE_INV_SHIFT; } else regind = diff / size; #undef CSIZE_INV } else { #define SSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << SUBPAGE_2POW)) + 1) static const unsigned ssize_invs[] = { SSIZE_INV(3), SSIZE_INV(4), SSIZE_INV(5), SSIZE_INV(6), SSIZE_INV(7), SSIZE_INV(8), SSIZE_INV(9), SSIZE_INV(10), SSIZE_INV(11), SSIZE_INV(12), SSIZE_INV(13), SSIZE_INV(14), SSIZE_INV(15) #if (PAGE_SHIFT == 13) , SSIZE_INV(16), SSIZE_INV(17), SSIZE_INV(18), SSIZE_INV(19), SSIZE_INV(20), SSIZE_INV(21), SSIZE_INV(22), SSIZE_INV(23), SSIZE_INV(24), SSIZE_INV(25), SSIZE_INV(26), SSIZE_INV(27), SSIZE_INV(28), SSIZE_INV(29), SSIZE_INV(29), SSIZE_INV(30) #endif }; assert(SUBPAGE * (((sizeof(ssize_invs)) / sizeof(unsigned)) + 3) >= PAGE_SIZE); if (size < (((sizeof(ssize_invs) / sizeof(unsigned)) + 2) << SUBPAGE_2POW)) { regind = ssize_invs[(size >> SUBPAGE_2POW) - 3] * diff; regind >>= SIZE_INV_SHIFT; } else regind = diff / size; #undef SSIZE_INV } #undef SIZE_INV_SHIFT assert(diff == regind * size); assert(regind < bin->nregs); elm = regind >> (SIZEOF_INT_2POW + 3); if (elm < run->regs_minelm) run->regs_minelm = elm; bit = regind - (elm << (SIZEOF_INT_2POW + 3)); assert((run->regs_mask[elm] & (1U << bit)) == 0); run->regs_mask[elm] |= (1U << bit); } static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large, bool zero) { arena_chunk_t *chunk; size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i; chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run); old_ndirty = chunk->ndirty; run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk) >> PAGE_SHIFT); total_pages = (chunk->map[run_ind].bits & ~PAGE_MASK) >> PAGE_SHIFT; need_pages = (size >> PAGE_SHIFT); assert(need_pages > 0); assert(need_pages <= total_pages); rem_pages = total_pages - need_pages; arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]); /* Keep track of trailing unused pages for later use. */ if (rem_pages > 0) { chunk->map[run_ind+need_pages].bits = (rem_pages << PAGE_SHIFT) | (chunk->map[run_ind+need_pages].bits & PAGE_MASK); chunk->map[run_ind+total_pages-1].bits = (rem_pages << PAGE_SHIFT) | (chunk->map[run_ind+total_pages-1].bits & PAGE_MASK); arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind+need_pages]); } for (i = 0; i < need_pages; i++) { /* Zero if necessary. */ if (zero) { if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED) == 0) { memset((void *)((uintptr_t)chunk + ((run_ind + i) << PAGE_SHIFT)), 0, PAGE_SIZE); /* CHUNK_MAP_ZEROED is cleared below. */ } } /* Update dirty page accounting. */ if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) { chunk->ndirty--; arena->ndirty--; /* CHUNK_MAP_DIRTY is cleared below. */ } /* Initialize the chunk map. */ if (large) { chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED; } else { chunk->map[run_ind + i].bits = (size_t)run | CHUNK_MAP_ALLOCATED; } } /* * Set the run size only in the first element for large runs. This is * primarily a debugging aid, since the lack of size info for trailing * pages only matters if the application tries to operate on an * interior pointer. */ if (large) chunk->map[run_ind].bits |= size; if (chunk->ndirty == 0 && old_ndirty > 0) arena_chunk_tree_dirty_remove(&arena->chunks_dirty, chunk); } static arena_chunk_t * arena_chunk_alloc(arena_t *arena) { arena_chunk_t *chunk; size_t i; if (arena->spare != NULL) { chunk = arena->spare; arena->spare = NULL; } else { chunk = (arena_chunk_t *)chunk_alloc(chunksize, true); if (chunk == NULL) return (NULL); #ifdef MALLOC_STATS arena->stats.mapped += chunksize; #endif chunk->arena = arena; /* * Claim that no pages are in use, since the header is merely * overhead. */ chunk->ndirty = 0; /* * Initialize the map to contain one maximal free untouched run. */ for (i = 0; i < arena_chunk_header_npages; i++) chunk->map[i].bits = 0; chunk->map[i].bits = arena_maxclass | CHUNK_MAP_ZEROED; for (i++; i < chunk_npages-1; i++) { chunk->map[i].bits = CHUNK_MAP_ZEROED; } chunk->map[chunk_npages-1].bits = arena_maxclass | CHUNK_MAP_ZEROED; } /* Insert the run into the runs_avail tree. */ arena_avail_tree_insert(&arena->runs_avail, &chunk->map[arena_chunk_header_npages]); return (chunk); } static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk) { if (arena->spare != NULL) { if (arena->spare->ndirty > 0) { arena_chunk_tree_dirty_remove( &chunk->arena->chunks_dirty, arena->spare); arena->ndirty -= arena->spare->ndirty; } chunk_dealloc((void *)arena->spare, chunksize); #ifdef MALLOC_STATS arena->stats.mapped -= chunksize; #endif } /* * Remove run from runs_avail, regardless of whether this chunk * will be cached, so that the arena does not use it. Dirty page * flushing only uses the chunks_dirty tree, so leaving this chunk in * the chunks_* trees is sufficient for that purpose. */ arena_avail_tree_remove(&arena->runs_avail, &chunk->map[arena_chunk_header_npages]); arena->spare = chunk; } static arena_run_t * arena_run_alloc(arena_t *arena, size_t size, bool large, bool zero) { arena_chunk_t *chunk; arena_run_t *run; arena_chunk_map_t *mapelm, key; assert(size <= arena_maxclass); assert((size & PAGE_MASK) == 0); /* Search the arena's chunks for the lowest best fit. */ key.bits = size | CHUNK_MAP_KEY; mapelm = arena_avail_tree_nsearch(&arena->runs_avail, &key); if (mapelm != NULL) { arena_chunk_t *run_chunk = CHUNK_ADDR2BASE(mapelm); size_t pageind = ((uintptr_t)mapelm - (uintptr_t)run_chunk->map) / sizeof(arena_chunk_map_t); run = (arena_run_t *)((uintptr_t)run_chunk + (pageind << PAGE_SHIFT)); arena_run_split(arena, run, size, large, zero); return (run); } /* * No usable runs. Create a new chunk from which to allocate the run. */ chunk = arena_chunk_alloc(arena); if (chunk == NULL) return (NULL); run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages << PAGE_SHIFT)); /* Update page map. */ arena_run_split(arena, run, size, large, zero); return (run); } static void arena_purge(arena_t *arena) { arena_chunk_t *chunk; size_t i, npages; #ifdef MALLOC_DEBUG size_t ndirty = 0; rb_foreach_begin(arena_chunk_t, link_dirty, &arena->chunks_dirty, chunk) { ndirty += chunk->ndirty; } rb_foreach_end(arena_chunk_t, link_dirty, &arena->chunks_dirty, chunk) assert(ndirty == arena->ndirty); #endif assert(arena->ndirty > opt_dirty_max); #ifdef MALLOC_STATS arena->stats.npurge++; #endif /* * Iterate downward through chunks until enough dirty memory has been * purged. Terminate as soon as possible in order to minimize the * number of system calls, even if a chunk has only been partially * purged. */ while (arena->ndirty > (opt_dirty_max >> 1)) { chunk = arena_chunk_tree_dirty_last(&arena->chunks_dirty); assert(chunk != NULL); for (i = chunk_npages - 1; chunk->ndirty > 0; i--) { assert(i >= arena_chunk_header_npages); if (chunk->map[i].bits & CHUNK_MAP_DIRTY) { chunk->map[i].bits ^= CHUNK_MAP_DIRTY; /* Find adjacent dirty run(s). */ for (npages = 1; i > arena_chunk_header_npages && (chunk->map[i - 1].bits & CHUNK_MAP_DIRTY); npages++) { i--; chunk->map[i].bits ^= CHUNK_MAP_DIRTY; } chunk->ndirty -= npages; arena->ndirty -= npages; madvise((void *)((uintptr_t)chunk + (i << PAGE_SHIFT)), (npages << PAGE_SHIFT), MADV_FREE); #ifdef MALLOC_STATS arena->stats.nmadvise++; arena->stats.purged += npages; #endif if (arena->ndirty <= (opt_dirty_max >> 1)) break; } } if (chunk->ndirty == 0) { arena_chunk_tree_dirty_remove(&arena->chunks_dirty, chunk); } } } static void arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty) { arena_chunk_t *chunk; size_t size, run_ind, run_pages; chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run); run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk) >> PAGE_SHIFT); assert(run_ind >= arena_chunk_header_npages); assert(run_ind < chunk_npages); if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0) size = chunk->map[run_ind].bits & ~PAGE_MASK; else size = run->bin->run_size; run_pages = (size >> PAGE_SHIFT); /* Mark pages as unallocated in the chunk map. */ if (dirty) { size_t i; for (i = 0; i < run_pages; i++) { assert((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) == 0); chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY; } if (chunk->ndirty == 0) { arena_chunk_tree_dirty_insert(&arena->chunks_dirty, chunk); } chunk->ndirty += run_pages; arena->ndirty += run_pages; } else { size_t i; for (i = 0; i < run_pages; i++) { chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED); } } chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits & PAGE_MASK); chunk->map[run_ind+run_pages-1].bits = size | (chunk->map[run_ind+run_pages-1].bits & PAGE_MASK); /* Try to coalesce forward. */ if (run_ind + run_pages < chunk_npages && (chunk->map[run_ind+run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) { size_t nrun_size = chunk->map[run_ind+run_pages].bits & ~PAGE_MASK; /* * Remove successor from runs_avail; the coalesced run is * inserted later. */ arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind+run_pages]); size += nrun_size; run_pages = size >> PAGE_SHIFT; assert((chunk->map[run_ind+run_pages-1].bits & ~PAGE_MASK) == nrun_size); chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits & PAGE_MASK); chunk->map[run_ind+run_pages-1].bits = size | (chunk->map[run_ind+run_pages-1].bits & PAGE_MASK); } /* Try to coalesce backward. */ if (run_ind > arena_chunk_header_npages && (chunk->map[run_ind-1].bits & CHUNK_MAP_ALLOCATED) == 0) { size_t prun_size = chunk->map[run_ind-1].bits & ~PAGE_MASK; run_ind -= prun_size >> PAGE_SHIFT; /* * Remove predecessor from runs_avail; the coalesced run is * inserted later. */ arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]); size += prun_size; run_pages = size >> PAGE_SHIFT; assert((chunk->map[run_ind].bits & ~PAGE_MASK) == prun_size); chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits & PAGE_MASK); chunk->map[run_ind+run_pages-1].bits = size | (chunk->map[run_ind+run_pages-1].bits & PAGE_MASK); } /* Insert into runs_avail, now that coalescing is complete. */ arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]); /* Deallocate chunk if it is now completely unused. */ if ((chunk->map[arena_chunk_header_npages].bits & (~PAGE_MASK | CHUNK_MAP_ALLOCATED)) == arena_maxclass) arena_chunk_dealloc(arena, chunk); /* Enforce opt_dirty_max. */ if (arena->ndirty > opt_dirty_max) arena_purge(arena); } static void arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run, size_t oldsize, size_t newsize) { size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> PAGE_SHIFT; size_t head_npages = (oldsize - newsize) >> PAGE_SHIFT; assert(oldsize > newsize); /* * Update the chunk map so that arena_run_dalloc() can treat the * leading run as separately allocated. */ chunk->map[pageind].bits = (oldsize - newsize) | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED; chunk->map[pageind+head_npages].bits = newsize | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED; arena_run_dalloc(arena, run, false); } static void arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run, size_t oldsize, size_t newsize, bool dirty) { size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> PAGE_SHIFT; size_t npages = newsize >> PAGE_SHIFT; assert(oldsize > newsize); /* * Update the chunk map so that arena_run_dalloc() can treat the * trailing run as separately allocated. */ chunk->map[pageind].bits = newsize | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED; chunk->map[pageind+npages].bits = (oldsize - newsize) | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED; arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize), dirty); } static arena_run_t * arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin) { arena_chunk_map_t *mapelm; arena_run_t *run; unsigned i, remainder; /* Look for a usable run. */ mapelm = arena_run_tree_first(&bin->runs); if (mapelm != NULL) { /* run is guaranteed to have available space. */ arena_run_tree_remove(&bin->runs, mapelm); run = (arena_run_t *)(mapelm->bits & ~PAGE_MASK); #ifdef MALLOC_STATS bin->stats.reruns++; #endif return (run); } /* No existing runs have any space available. */ /* Allocate a new run. */ run = arena_run_alloc(arena, bin->run_size, false, false); if (run == NULL) return (NULL); /* Initialize run internals. */ run->bin = bin; for (i = 0; i < bin->regs_mask_nelms - 1; i++) run->regs_mask[i] = UINT_MAX; remainder = bin->nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1); if (remainder == 0) run->regs_mask[i] = UINT_MAX; else { /* The last element has spare bits that need to be unset. */ run->regs_mask[i] = (UINT_MAX >> ((1U << (SIZEOF_INT_2POW + 3)) - remainder)); } run->regs_minelm = 0; run->nfree = bin->nregs; #ifdef MALLOC_DEBUG run->magic = ARENA_RUN_MAGIC; #endif #ifdef MALLOC_STATS bin->stats.nruns++; bin->stats.curruns++; if (bin->stats.curruns > bin->stats.highruns) bin->stats.highruns = bin->stats.curruns; #endif return (run); } /* bin->runcur must have space available before this function is called. */ static inline void * arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run) { void *ret; assert(run->magic == ARENA_RUN_MAGIC); assert(run->nfree > 0); ret = arena_run_reg_alloc(run, bin); assert(ret != NULL); run->nfree--; return (ret); } /* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */ static void * arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin) { bin->runcur = arena_bin_nonfull_run_get(arena, bin); if (bin->runcur == NULL) return (NULL); assert(bin->runcur->magic == ARENA_RUN_MAGIC); assert(bin->runcur->nfree > 0); return (arena_bin_malloc_easy(arena, bin, bin->runcur)); } /* * Calculate bin->run_size such that it meets the following constraints: * * *) bin->run_size >= min_run_size * *) bin->run_size <= arena_maxclass * *) bin->run_size <= RUN_MAX_SMALL * *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed). * * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are * also calculated here, since these settings are all interdependent. */ static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size) { size_t try_run_size, good_run_size; unsigned good_nregs, good_mask_nelms, good_reg0_offset; unsigned try_nregs, try_mask_nelms, try_reg0_offset; assert(min_run_size >= PAGE_SIZE); assert(min_run_size <= arena_maxclass); assert(min_run_size <= RUN_MAX_SMALL); /* * Calculate known-valid settings before entering the run_size * expansion loop, so that the first part of the loop always copies * valid settings. * * The do..while loop iteratively reduces the number of regions until * the run header and the regions no longer overlap. A closed formula * would be quite messy, since there is an interdependency between the * header's mask length and the number of regions. */ try_run_size = min_run_size; try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */ do { try_nregs--; try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) + ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0); try_reg0_offset = try_run_size - (try_nregs * bin->reg_size); } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1)) > try_reg0_offset); /* run_size expansion loop. */ do { /* * Copy valid settings before trying more aggressive settings. */ good_run_size = try_run_size; good_nregs = try_nregs; good_mask_nelms = try_mask_nelms; good_reg0_offset = try_reg0_offset; /* Try more aggressive settings. */ try_run_size += PAGE_SIZE; try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */ do { try_nregs--; try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) + ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0); try_reg0_offset = try_run_size - (try_nregs * bin->reg_size); } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1)) > try_reg0_offset); } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size); assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1)) <= good_reg0_offset); assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs); /* Copy final settings. */ bin->run_size = good_run_size; bin->nregs = good_nregs; bin->regs_mask_nelms = good_mask_nelms; bin->reg0_offset = good_reg0_offset; return (good_run_size); } #ifdef MALLOC_BALANCE static inline void arena_lock_balance(arena_t *arena) { unsigned contention; contention = malloc_spin_lock(&arena->lock); if (narenas > 1) { /* * Calculate the exponentially averaged contention for this * arena. Due to integer math always rounding down, this value * decays somewhat faster than normal. */ arena->contention = (((uint64_t)arena->contention * (uint64_t)((1U << BALANCE_ALPHA_INV_2POW)-1)) + (uint64_t)contention) >> BALANCE_ALPHA_INV_2POW; if (arena->contention >= opt_balance_threshold) arena_lock_balance_hard(arena); } } static void arena_lock_balance_hard(arena_t *arena) { uint32_t ind; arena->contention = 0; #ifdef MALLOC_STATS arena->stats.nbalance++; #endif ind = PRN(balance, narenas_2pow); if (arenas[ind] != NULL) arenas_map = arenas[ind]; else { malloc_spin_lock(&arenas_lock); if (arenas[ind] != NULL) arenas_map = arenas[ind]; else arenas_map = arenas_extend(ind); malloc_spin_unlock(&arenas_lock); } } #endif #ifdef MALLOC_MAG static inline void * mag_alloc(mag_t *mag) { if (mag->nrounds == 0) return (NULL); mag->nrounds--; return (mag->rounds[mag->nrounds]); } static void mag_load(mag_t *mag) { arena_t *arena; arena_bin_t *bin; arena_run_t *run; void *round; size_t i; arena = choose_arena(); bin = &arena->bins[mag->binind]; #ifdef MALLOC_BALANCE arena_lock_balance(arena); #else malloc_spin_lock(&arena->lock); #endif for (i = mag->nrounds; i < max_rounds; i++) { if ((run = bin->runcur) != NULL && run->nfree > 0) round = arena_bin_malloc_easy(arena, bin, run); else round = arena_bin_malloc_hard(arena, bin); if (round == NULL) break; mag->rounds[i] = round; } #ifdef MALLOC_STATS bin->stats.nmags++; arena->stats.nmalloc_small += (i - mag->nrounds); arena->stats.allocated_small += (i - mag->nrounds) * bin->reg_size; #endif malloc_spin_unlock(&arena->lock); mag->nrounds = i; } static inline void * mag_rack_alloc(mag_rack_t *rack, size_t size, bool zero) { void *ret; bin_mags_t *bin_mags; mag_t *mag; size_t binind; binind = size2bin[size]; assert(binind < nbins); bin_mags = &rack->bin_mags[binind]; mag = bin_mags->curmag; if (mag == NULL) { /* Create an initial magazine for this size class. */ assert(bin_mags->sparemag == NULL); mag = mag_create(choose_arena(), binind); if (mag == NULL) return (NULL); bin_mags->curmag = mag; mag_load(mag); } ret = mag_alloc(mag); if (ret == NULL) { if (bin_mags->sparemag != NULL) { if (bin_mags->sparemag->nrounds > 0) { /* Swap magazines. */ bin_mags->curmag = bin_mags->sparemag; bin_mags->sparemag = mag; mag = bin_mags->curmag; } else { /* Reload the current magazine. */ mag_load(mag); } } else { /* Create a second magazine. */ mag = mag_create(choose_arena(), binind); if (mag == NULL) return (NULL); mag_load(mag); bin_mags->sparemag = bin_mags->curmag; bin_mags->curmag = mag; } ret = mag_alloc(mag); if (ret == NULL) return (NULL); } if (zero == false) { if (opt_junk) memset(ret, 0xa5, size); else if (opt_zero) memset(ret, 0, size); } else memset(ret, 0, size); return (ret); } #endif static inline void * arena_malloc_small(arena_t *arena, size_t size, bool zero) { void *ret; arena_bin_t *bin; arena_run_t *run; size_t binind; binind = size2bin[size]; assert(binind < nbins); bin = &arena->bins[binind]; size = bin->reg_size; #ifdef MALLOC_BALANCE arena_lock_balance(arena); #else malloc_spin_lock(&arena->lock); #endif if ((run = bin->runcur) != NULL && run->nfree > 0) ret = arena_bin_malloc_easy(arena, bin, run); else ret = arena_bin_malloc_hard(arena, bin); if (ret == NULL) { malloc_spin_unlock(&arena->lock); return (NULL); } #ifdef MALLOC_STATS bin->stats.nrequests++; arena->stats.nmalloc_small++; arena->stats.allocated_small += size; #endif malloc_spin_unlock(&arena->lock); if (zero == false) { if (opt_junk) memset(ret, 0xa5, size); else if (opt_zero) memset(ret, 0, size); } else memset(ret, 0, size); return (ret); } static void * arena_malloc_large(arena_t *arena, size_t size, bool zero) { void *ret; /* Large allocation. */ size = PAGE_CEILING(size); #ifdef MALLOC_BALANCE arena_lock_balance(arena); #else malloc_spin_lock(&arena->lock); #endif ret = (void *)arena_run_alloc(arena, size, true, zero); if (ret == NULL) { malloc_spin_unlock(&arena->lock); return (NULL); } #ifdef MALLOC_STATS arena->stats.nmalloc_large++; arena->stats.allocated_large += size; #endif malloc_spin_unlock(&arena->lock); if (zero == false) { if (opt_junk) memset(ret, 0xa5, size); else if (opt_zero) memset(ret, 0, size); } return (ret); } static inline void * arena_malloc(arena_t *arena, size_t size, bool zero) { assert(arena != NULL); assert(arena->magic == ARENA_MAGIC); assert(size != 0); assert(QUANTUM_CEILING(size) <= arena_maxclass); if (size <= bin_maxclass) { #ifdef MALLOC_MAG if (__isthreaded && opt_mag) { mag_rack_t *rack = mag_rack; if (rack == NULL) { rack = mag_rack_create(arena); if (rack == NULL) return (NULL); mag_rack = rack; } return (mag_rack_alloc(rack, size, zero)); } else #endif return (arena_malloc_small(arena, size, zero)); } else return (arena_malloc_large(arena, size, zero)); } static inline void * imalloc(size_t size) { assert(size != 0); if (size <= arena_maxclass) return (arena_malloc(choose_arena(), size, false)); else return (huge_malloc(size, false)); } static inline void * icalloc(size_t size) { if (size <= arena_maxclass) return (arena_malloc(choose_arena(), size, true)); else return (huge_malloc(size, true)); } /* Only handles large allocations that require more than page alignment. */ static void * arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size) { void *ret; size_t offset; arena_chunk_t *chunk; assert((size & PAGE_MASK) == 0); assert((alignment & PAGE_MASK) == 0); #ifdef MALLOC_BALANCE arena_lock_balance(arena); #else malloc_spin_lock(&arena->lock); #endif ret = (void *)arena_run_alloc(arena, alloc_size, true, false); if (ret == NULL) { malloc_spin_unlock(&arena->lock); return (NULL); } chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret); offset = (uintptr_t)ret & (alignment - 1); assert((offset & PAGE_MASK) == 0); assert(offset < alloc_size); if (offset == 0) arena_run_trim_tail(arena, chunk, ret, alloc_size, size, false); else { size_t leadsize, trailsize; leadsize = alignment - offset; if (leadsize > 0) { arena_run_trim_head(arena, chunk, ret, alloc_size, alloc_size - leadsize); ret = (void *)((uintptr_t)ret + leadsize); } trailsize = alloc_size - leadsize - size; if (trailsize != 0) { /* Trim trailing space. */ assert(trailsize < alloc_size); arena_run_trim_tail(arena, chunk, ret, size + trailsize, size, false); } } #ifdef MALLOC_STATS arena->stats.nmalloc_large++; arena->stats.allocated_large += size; #endif malloc_spin_unlock(&arena->lock); if (opt_junk) memset(ret, 0xa5, size); else if (opt_zero) memset(ret, 0, size); return (ret); } static inline void * ipalloc(size_t alignment, size_t size) { void *ret; size_t ceil_size; /* * Round size up to the nearest multiple of alignment. * * This done, we can take advantage of the fact that for each small * size class, every object is aligned at the smallest power of two * that is non-zero in the base two representation of the size. For * example: * * Size | Base 2 | Minimum alignment * -----+----------+------------------ * 96 | 1100000 | 32 * 144 | 10100000 | 32 * 192 | 11000000 | 64 * * Depending on runtime settings, it is possible that arena_malloc() * will further round up to a power of two, but that never causes * correctness issues. */ ceil_size = (size + (alignment - 1)) & (-alignment); /* * (ceil_size < size) protects against the combination of maximal * alignment and size greater than maximal alignment. */ if (ceil_size < size) { /* size_t overflow. */ return (NULL); } if (ceil_size <= PAGE_SIZE || (alignment <= PAGE_SIZE && ceil_size <= arena_maxclass)) ret = arena_malloc(choose_arena(), ceil_size, false); else { size_t run_size; /* * We can't achieve subpage alignment, so round up alignment * permanently; it makes later calculations simpler. */ alignment = PAGE_CEILING(alignment); ceil_size = PAGE_CEILING(size); /* * (ceil_size < size) protects against very large sizes within * PAGE_SIZE of SIZE_T_MAX. * * (ceil_size + alignment < ceil_size) protects against the * combination of maximal alignment and ceil_size large enough * to cause overflow. This is similar to the first overflow * check above, but it needs to be repeated due to the new * ceil_size value, which may now be *equal* to maximal * alignment, whereas before we only detected overflow if the * original size was *greater* than maximal alignment. */ if (ceil_size < size || ceil_size + alignment < ceil_size) { /* size_t overflow. */ return (NULL); } /* * Calculate the size of the over-size run that arena_palloc() * would need to allocate in order to guarantee the alignment. */ if (ceil_size >= alignment) run_size = ceil_size + alignment - PAGE_SIZE; else { /* * It is possible that (alignment << 1) will cause * overflow, but it doesn't matter because we also * subtract PAGE_SIZE, which in the case of overflow * leaves us with a very large run_size. That causes * the first conditional below to fail, which means * that the bogus run_size value never gets used for * anything important. */ run_size = (alignment << 1) - PAGE_SIZE; } if (run_size <= arena_maxclass) { ret = arena_palloc(choose_arena(), alignment, ceil_size, run_size); } else if (alignment <= chunksize) ret = huge_malloc(ceil_size, false); else ret = huge_palloc(alignment, ceil_size); } assert(((uintptr_t)ret & (alignment - 1)) == 0); return (ret); } /* Return the size of the allocation pointed to by ptr. */ static size_t arena_salloc(const void *ptr) { size_t ret; arena_chunk_t *chunk; size_t pageind, mapbits; assert(ptr != NULL); assert(CHUNK_ADDR2BASE(ptr) != ptr); chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT); mapbits = chunk->map[pageind].bits; assert((mapbits & CHUNK_MAP_ALLOCATED) != 0); if ((mapbits & CHUNK_MAP_LARGE) == 0) { arena_run_t *run = (arena_run_t *)(mapbits & ~PAGE_MASK); assert(run->magic == ARENA_RUN_MAGIC); ret = run->bin->reg_size; } else { ret = mapbits & ~PAGE_MASK; assert(ret != 0); } return (ret); } static inline size_t isalloc(const void *ptr) { size_t ret; arena_chunk_t *chunk; assert(ptr != NULL); chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); if (chunk != ptr) { /* Region. */ assert(chunk->arena->magic == ARENA_MAGIC); ret = arena_salloc(ptr); } else { extent_node_t *node, key; /* Chunk (huge allocation). */ malloc_mutex_lock(&huge_mtx); /* Extract from tree of huge allocations. */ key.addr = __DECONST(void *, ptr); node = extent_tree_ad_search(&huge, &key); assert(node != NULL); ret = node->size; malloc_mutex_unlock(&huge_mtx); } return (ret); } static inline void arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr, arena_chunk_map_t *mapelm) { arena_run_t *run; arena_bin_t *bin; size_t size; run = (arena_run_t *)(mapelm->bits & ~PAGE_MASK); assert(run->magic == ARENA_RUN_MAGIC); bin = run->bin; size = bin->reg_size; if (opt_junk) memset(ptr, 0x5a, size); arena_run_reg_dalloc(run, bin, ptr, size); run->nfree++; if (run->nfree == bin->nregs) { /* Deallocate run. */ if (run == bin->runcur) bin->runcur = NULL; else if (bin->nregs != 1) { size_t run_pageind = (((uintptr_t)run - (uintptr_t)chunk)) >> PAGE_SHIFT; arena_chunk_map_t *run_mapelm = &chunk->map[run_pageind]; /* * This block's conditional is necessary because if the * run only contains one region, then it never gets * inserted into the non-full runs tree. */ arena_run_tree_remove(&bin->runs, run_mapelm); } #ifdef MALLOC_DEBUG run->magic = 0; #endif arena_run_dalloc(arena, run, true); #ifdef MALLOC_STATS bin->stats.curruns--; #endif } else if (run->nfree == 1 && run != bin->runcur) { /* * Make sure that bin->runcur always refers to the lowest * non-full run, if one exists. */ if (bin->runcur == NULL) bin->runcur = run; else if ((uintptr_t)run < (uintptr_t)bin->runcur) { /* Switch runcur. */ if (bin->runcur->nfree > 0) { arena_chunk_t *runcur_chunk = CHUNK_ADDR2BASE(bin->runcur); size_t runcur_pageind = (((uintptr_t)bin->runcur - (uintptr_t)runcur_chunk)) >> PAGE_SHIFT; arena_chunk_map_t *runcur_mapelm = &runcur_chunk->map[runcur_pageind]; /* Insert runcur. */ arena_run_tree_insert(&bin->runs, runcur_mapelm); } bin->runcur = run; } else { size_t run_pageind = (((uintptr_t)run - (uintptr_t)chunk)) >> PAGE_SHIFT; arena_chunk_map_t *run_mapelm = &chunk->map[run_pageind]; assert(arena_run_tree_search(&bin->runs, run_mapelm) == NULL); arena_run_tree_insert(&bin->runs, run_mapelm); } } #ifdef MALLOC_STATS arena->stats.allocated_small -= size; arena->stats.ndalloc_small++; #endif } #ifdef MALLOC_MAG static void mag_unload(mag_t *mag) { arena_chunk_t *chunk; arena_t *arena; void *round; size_t i, ndeferred, nrounds; for (ndeferred = mag->nrounds; ndeferred > 0;) { nrounds = ndeferred; /* Lock the arena associated with the first round. */ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(mag->rounds[0]); arena = chunk->arena; #ifdef MALLOC_BALANCE arena_lock_balance(arena); #else malloc_spin_lock(&arena->lock); #endif /* Deallocate every round that belongs to the locked arena. */ for (i = ndeferred = 0; i < nrounds; i++) { round = mag->rounds[i]; chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(round); if (chunk->arena == arena) { size_t pageind = (((uintptr_t)round - (uintptr_t)chunk) >> PAGE_SHIFT); arena_chunk_map_t *mapelm = &chunk->map[pageind]; arena_dalloc_small(arena, chunk, round, mapelm); } else { /* * This round was allocated via a different * arena than the one that is currently locked. * Stash the round, so that it can be handled * in a future pass. */ mag->rounds[ndeferred] = round; ndeferred++; } } malloc_spin_unlock(&arena->lock); } mag->nrounds = 0; } static inline void mag_rack_dalloc(mag_rack_t *rack, void *ptr) { arena_t *arena; arena_chunk_t *chunk; arena_run_t *run; arena_bin_t *bin; bin_mags_t *bin_mags; mag_t *mag; size_t pageind, binind; arena_chunk_map_t *mapelm; chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); arena = chunk->arena; pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT); mapelm = &chunk->map[pageind]; run = (arena_run_t *)(mapelm->bits & ~PAGE_MASK); assert(run->magic == ARENA_RUN_MAGIC); bin = run->bin; binind = ((uintptr_t)bin - (uintptr_t)&arena->bins) / sizeof(arena_bin_t); assert(binind < nbins); if (opt_junk) memset(ptr, 0x5a, arena->bins[binind].reg_size); bin_mags = &rack->bin_mags[binind]; mag = bin_mags->curmag; if (mag == NULL) { /* Create an initial magazine for this size class. */ assert(bin_mags->sparemag == NULL); mag = mag_create(choose_arena(), binind); if (mag == NULL) { malloc_spin_lock(&arena->lock); arena_dalloc_small(arena, chunk, ptr, mapelm); malloc_spin_unlock(&arena->lock); return; } bin_mags->curmag = mag; } if (mag->nrounds == max_rounds) { if (bin_mags->sparemag != NULL) { if (bin_mags->sparemag->nrounds < max_rounds) { /* Swap magazines. */ bin_mags->curmag = bin_mags->sparemag; bin_mags->sparemag = mag; mag = bin_mags->curmag; } else { /* Unload the current magazine. */ mag_unload(mag); } } else { /* Create a second magazine. */ mag = mag_create(choose_arena(), binind); if (mag == NULL) { mag = rack->bin_mags[binind].curmag; mag_unload(mag); } else { bin_mags->sparemag = bin_mags->curmag; bin_mags->curmag = mag; } } assert(mag->nrounds < max_rounds); } mag->rounds[mag->nrounds] = ptr; mag->nrounds++; } #endif static void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr) { /* Large allocation. */ malloc_spin_lock(&arena->lock); #ifndef MALLOC_STATS if (opt_junk) #endif { size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT; size_t size = chunk->map[pageind].bits & ~PAGE_MASK; #ifdef MALLOC_STATS if (opt_junk) #endif memset(ptr, 0x5a, size); #ifdef MALLOC_STATS arena->stats.allocated_large -= size; #endif } #ifdef MALLOC_STATS arena->stats.ndalloc_large++; #endif arena_run_dalloc(arena, (arena_run_t *)ptr, true); malloc_spin_unlock(&arena->lock); } static inline void arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr) { size_t pageind; arena_chunk_map_t *mapelm; assert(arena != NULL); assert(arena->magic == ARENA_MAGIC); assert(chunk->arena == arena); assert(ptr != NULL); assert(CHUNK_ADDR2BASE(ptr) != ptr); pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT); mapelm = &chunk->map[pageind]; assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0); if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) { /* Small allocation. */ #ifdef MALLOC_MAG if (__isthreaded && opt_mag) { mag_rack_t *rack = mag_rack; if (rack == NULL) { rack = mag_rack_create(arena); if (rack == NULL) { malloc_spin_lock(&arena->lock); arena_dalloc_small(arena, chunk, ptr, mapelm); malloc_spin_unlock(&arena->lock); return; } mag_rack = rack; } mag_rack_dalloc(rack, ptr); } else { #endif malloc_spin_lock(&arena->lock); arena_dalloc_small(arena, chunk, ptr, mapelm); malloc_spin_unlock(&arena->lock); #ifdef MALLOC_MAG } #endif } else arena_dalloc_large(arena, chunk, ptr); } static inline void idalloc(void *ptr) { arena_chunk_t *chunk; assert(ptr != NULL); chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); if (chunk != ptr) arena_dalloc(chunk->arena, chunk, ptr); else huge_dalloc(ptr); } static void arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr, size_t size, size_t oldsize) { assert(size < oldsize); /* * Shrink the run, and make trailing pages available for other * allocations. */ #ifdef MALLOC_BALANCE arena_lock_balance(arena); #else malloc_spin_lock(&arena->lock); #endif arena_run_trim_tail(arena, chunk, (arena_run_t *)ptr, oldsize, size, true); #ifdef MALLOC_STATS arena->stats.allocated_large -= oldsize - size; #endif malloc_spin_unlock(&arena->lock); } static bool arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr, size_t size, size_t oldsize) { size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT; size_t npages = oldsize >> PAGE_SHIFT; assert(oldsize == (chunk->map[pageind].bits & ~PAGE_MASK)); /* Try to extend the run. */ assert(size > oldsize); #ifdef MALLOC_BALANCE arena_lock_balance(arena); #else malloc_spin_lock(&arena->lock); #endif if (pageind + npages < chunk_npages && (chunk->map[pageind+npages].bits & CHUNK_MAP_ALLOCATED) == 0 && (chunk->map[pageind+npages].bits & ~PAGE_MASK) >= size - oldsize) { /* * The next run is available and sufficiently large. Split the * following run, then merge the first part with the existing * allocation. */ arena_run_split(arena, (arena_run_t *)((uintptr_t)chunk + ((pageind+npages) << PAGE_SHIFT)), size - oldsize, true, false); chunk->map[pageind].bits = size | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED; chunk->map[pageind+npages].bits = CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED; #ifdef MALLOC_STATS arena->stats.allocated_large += size - oldsize; #endif malloc_spin_unlock(&arena->lock); return (false); } malloc_spin_unlock(&arena->lock); return (true); } /* * Try to resize a large allocation, in order to avoid copying. This will * always fail if growing an object, and the following run is already in use. */ static bool arena_ralloc_large(void *ptr, size_t size, size_t oldsize) { size_t psize; psize = PAGE_CEILING(size); if (psize == oldsize) { /* Same size class. */ if (opt_junk && size < oldsize) { memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size); } return (false); } else { arena_chunk_t *chunk; arena_t *arena; chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); arena = chunk->arena; assert(arena->magic == ARENA_MAGIC); if (psize < oldsize) { /* Fill before shrinking in order avoid a race. */ if (opt_junk) { memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size); } arena_ralloc_large_shrink(arena, chunk, ptr, psize, oldsize); return (false); } else { bool ret = arena_ralloc_large_grow(arena, chunk, ptr, psize, oldsize); if (ret == false && opt_zero) { memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize); } return (ret); } } } static void * arena_ralloc(void *ptr, size_t size, size_t oldsize) { void *ret; size_t copysize; /* Try to avoid moving the allocation. */ if (size <= bin_maxclass) { if (oldsize <= bin_maxclass && size2bin[size] == size2bin[oldsize]) goto IN_PLACE; } else { if (oldsize > bin_maxclass && oldsize <= arena_maxclass) { assert(size > bin_maxclass); if (arena_ralloc_large(ptr, size, oldsize) == false) return (ptr); } } /* * If we get here, then size and oldsize are different enough that we * need to move the object. In that case, fall back to allocating new * space and copying. */ ret = arena_malloc(choose_arena(), size, false); if (ret == NULL) return (NULL); /* Junk/zero-filling were already done by arena_malloc(). */ copysize = (size < oldsize) ? size : oldsize; memcpy(ret, ptr, copysize); idalloc(ptr); return (ret); IN_PLACE: if (opt_junk && size < oldsize) memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size); else if (opt_zero && size > oldsize) memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize); return (ptr); } static inline void * iralloc(void *ptr, size_t size) { size_t oldsize; assert(ptr != NULL); assert(size != 0); oldsize = isalloc(ptr); if (size <= arena_maxclass) return (arena_ralloc(ptr, size, oldsize)); else return (huge_ralloc(ptr, size, oldsize)); } static bool arena_new(arena_t *arena) { unsigned i; arena_bin_t *bin; size_t prev_run_size; if (malloc_spin_init(&arena->lock)) return (true); #ifdef MALLOC_STATS memset(&arena->stats, 0, sizeof(arena_stats_t)); #endif /* Initialize chunks. */ arena_chunk_tree_dirty_new(&arena->chunks_dirty); arena->spare = NULL; arena->ndirty = 0; arena_avail_tree_new(&arena->runs_avail); #ifdef MALLOC_BALANCE arena->contention = 0; #endif /* Initialize bins. */ prev_run_size = PAGE_SIZE; i = 0; #ifdef MALLOC_TINY /* (2^n)-spaced tiny bins. */ for (; i < ntbins; i++) { bin = &arena->bins[i]; bin->runcur = NULL; arena_run_tree_new(&bin->runs); bin->reg_size = (1U << (TINY_MIN_2POW + i)); prev_run_size = arena_bin_run_size_calc(bin, prev_run_size); #ifdef MALLOC_STATS memset(&bin->stats, 0, sizeof(malloc_bin_stats_t)); #endif } #endif /* Quantum-spaced bins. */ for (; i < ntbins + nqbins; i++) { bin = &arena->bins[i]; bin->runcur = NULL; arena_run_tree_new(&bin->runs); bin->reg_size = (i - ntbins + 1) << QUANTUM_2POW; prev_run_size = arena_bin_run_size_calc(bin, prev_run_size); #ifdef MALLOC_STATS memset(&bin->stats, 0, sizeof(malloc_bin_stats_t)); #endif } /* Cacheline-spaced bins. */ for (; i < ntbins + nqbins + ncbins; i++) { bin = &arena->bins[i]; bin->runcur = NULL; arena_run_tree_new(&bin->runs); bin->reg_size = cspace_min + ((i - (ntbins + nqbins)) << CACHELINE_2POW); prev_run_size = arena_bin_run_size_calc(bin, prev_run_size); #ifdef MALLOC_STATS memset(&bin->stats, 0, sizeof(malloc_bin_stats_t)); #endif } /* Subpage-spaced bins. */ for (; i < nbins; i++) { bin = &arena->bins[i]; bin->runcur = NULL; arena_run_tree_new(&bin->runs); bin->reg_size = sspace_min + ((i - (ntbins + nqbins + ncbins)) << SUBPAGE_2POW); prev_run_size = arena_bin_run_size_calc(bin, prev_run_size); #ifdef MALLOC_STATS memset(&bin->stats, 0, sizeof(malloc_bin_stats_t)); #endif } #ifdef MALLOC_DEBUG arena->magic = ARENA_MAGIC; #endif return (false); } /* Create a new arena and insert it into the arenas array at index ind. */ static arena_t * arenas_extend(unsigned ind) { arena_t *ret; /* Allocate enough space for trailing bins. */ ret = (arena_t *)base_alloc(sizeof(arena_t) + (sizeof(arena_bin_t) * (nbins - 1))); if (ret != NULL && arena_new(ret) == false) { arenas[ind] = ret; return (ret); } /* Only reached if there is an OOM error. */ /* * OOM here is quite inconvenient to propagate, since dealing with it * would require a check for failure in the fast path. Instead, punt * by using arenas[0]. In practice, this is an extremely unlikely * failure. */ _malloc_message(_getprogname(), ": (malloc) Error initializing arena\n", "", ""); if (opt_abort) abort(); return (arenas[0]); } #ifdef MALLOC_MAG static mag_t * mag_create(arena_t *arena, size_t binind) { mag_t *ret; if (sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1)) <= bin_maxclass) { ret = arena_malloc_small(arena, sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1)), false); } else { ret = imalloc(sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1))); } if (ret == NULL) return (NULL); ret->binind = binind; ret->nrounds = 0; return (ret); } static void mag_destroy(mag_t *mag) { arena_t *arena; arena_chunk_t *chunk; size_t pageind; arena_chunk_map_t *mapelm; chunk = CHUNK_ADDR2BASE(mag); arena = chunk->arena; pageind = (((uintptr_t)mag - (uintptr_t)chunk) >> PAGE_SHIFT); mapelm = &chunk->map[pageind]; assert(mag->nrounds == 0); if (sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1)) <= bin_maxclass) { malloc_spin_lock(&arena->lock); arena_dalloc_small(arena, chunk, mag, mapelm); malloc_spin_unlock(&arena->lock); } else idalloc(mag); } static mag_rack_t * mag_rack_create(arena_t *arena) { assert(sizeof(mag_rack_t) + (sizeof(bin_mags_t *) * (nbins - 1)) <= bin_maxclass); return (arena_malloc_small(arena, sizeof(mag_rack_t) + (sizeof(bin_mags_t) * (nbins - 1)), true)); } static void mag_rack_destroy(mag_rack_t *rack) { arena_t *arena; arena_chunk_t *chunk; bin_mags_t *bin_mags; size_t i, pageind; arena_chunk_map_t *mapelm; for (i = 0; i < nbins; i++) { bin_mags = &rack->bin_mags[i]; if (bin_mags->curmag != NULL) { assert(bin_mags->curmag->binind == i); mag_unload(bin_mags->curmag); mag_destroy(bin_mags->curmag); } if (bin_mags->sparemag != NULL) { assert(bin_mags->sparemag->binind == i); mag_unload(bin_mags->sparemag); mag_destroy(bin_mags->sparemag); } } chunk = CHUNK_ADDR2BASE(rack); arena = chunk->arena; pageind = (((uintptr_t)rack - (uintptr_t)chunk) >> PAGE_SHIFT); mapelm = &chunk->map[pageind]; malloc_spin_lock(&arena->lock); arena_dalloc_small(arena, chunk, rack, mapelm); malloc_spin_unlock(&arena->lock); } #endif /* * End arena. */ /******************************************************************************/ /* * Begin general internal functions. */ static void * huge_malloc(size_t size, bool zero) { void *ret; size_t csize; extent_node_t *node; /* Allocate one or more contiguous chunks for this request. */ csize = CHUNK_CEILING(size); if (csize == 0) { /* size is large enough to cause size_t wrap-around. */ return (NULL); } /* Allocate an extent node with which to track the chunk. */ node = base_node_alloc(); if (node == NULL) return (NULL); ret = chunk_alloc(csize, zero); if (ret == NULL) { base_node_dealloc(node); return (NULL); } /* Insert node into huge. */ node->addr = ret; node->size = csize; malloc_mutex_lock(&huge_mtx); extent_tree_ad_insert(&huge, node); #ifdef MALLOC_STATS huge_nmalloc++; huge_allocated += csize; #endif malloc_mutex_unlock(&huge_mtx); if (zero == false) { if (opt_junk) memset(ret, 0xa5, csize); else if (opt_zero) memset(ret, 0, csize); } return (ret); } /* Only handles large allocations that require more than chunk alignment. */ static void * huge_palloc(size_t alignment, size_t size) { void *ret; size_t alloc_size, chunk_size, offset; extent_node_t *node; /* * This allocation requires alignment that is even larger than chunk * alignment. This means that huge_malloc() isn't good enough. * * Allocate almost twice as many chunks as are demanded by the size or * alignment, in order to assure the alignment can be achieved, then * unmap leading and trailing chunks. */ assert(alignment >= chunksize); chunk_size = CHUNK_CEILING(size); if (size >= alignment) alloc_size = chunk_size + alignment - chunksize; else alloc_size = (alignment << 1) - chunksize; /* Allocate an extent node with which to track the chunk. */ node = base_node_alloc(); if (node == NULL) return (NULL); ret = chunk_alloc(alloc_size, false); if (ret == NULL) { base_node_dealloc(node); return (NULL); } offset = (uintptr_t)ret & (alignment - 1); assert((offset & chunksize_mask) == 0); assert(offset < alloc_size); if (offset == 0) { /* Trim trailing space. */ chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size - chunk_size); } else { size_t trailsize; /* Trim leading space. */ chunk_dealloc(ret, alignment - offset); ret = (void *)((uintptr_t)ret + (alignment - offset)); trailsize = alloc_size - (alignment - offset) - chunk_size; if (trailsize != 0) { /* Trim trailing space. */ assert(trailsize < alloc_size); chunk_dealloc((void *)((uintptr_t)ret + chunk_size), trailsize); } } /* Insert node into huge. */ node->addr = ret; node->size = chunk_size; malloc_mutex_lock(&huge_mtx); extent_tree_ad_insert(&huge, node); #ifdef MALLOC_STATS huge_nmalloc++; huge_allocated += chunk_size; #endif malloc_mutex_unlock(&huge_mtx); if (opt_junk) memset(ret, 0xa5, chunk_size); else if (opt_zero) memset(ret, 0, chunk_size); return (ret); } static void * huge_ralloc(void *ptr, size_t size, size_t oldsize) { void *ret; size_t copysize; /* Avoid moving the allocation if the size class would not change. */ if (oldsize > arena_maxclass && CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) { if (opt_junk && size < oldsize) { memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size); } else if (opt_zero && size > oldsize) { memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize); } return (ptr); } /* * If we get here, then size and oldsize are different enough that we * need to use a different size class. In that case, fall back to * allocating new space and copying. */ ret = huge_malloc(size, false); if (ret == NULL) return (NULL); copysize = (size < oldsize) ? size : oldsize; memcpy(ret, ptr, copysize); idalloc(ptr); return (ret); } static void huge_dalloc(void *ptr) { extent_node_t *node, key; malloc_mutex_lock(&huge_mtx); /* Extract from tree of huge allocations. */ key.addr = ptr; node = extent_tree_ad_search(&huge, &key); assert(node != NULL); assert(node->addr == ptr); extent_tree_ad_remove(&huge, node); #ifdef MALLOC_STATS huge_ndalloc++; huge_allocated -= node->size; #endif malloc_mutex_unlock(&huge_mtx); /* Unmap chunk. */ #ifdef MALLOC_DSS if (opt_dss && opt_junk) memset(node->addr, 0x5a, node->size); #endif chunk_dealloc(node->addr, node->size); base_node_dealloc(node); } static void malloc_print_stats(void) { if (opt_print_stats) { char s[UMAX2S_BUFSIZE]; _malloc_message("___ Begin malloc statistics ___\n", "", "", ""); _malloc_message("Assertions ", #ifdef NDEBUG "disabled", #else "enabled", #endif "\n", ""); _malloc_message("Boolean MALLOC_OPTIONS: ", opt_abort ? "A" : "a", "", ""); #ifdef MALLOC_DSS _malloc_message(opt_dss ? "D" : "d", "", "", ""); #endif #ifdef MALLOC_MAG _malloc_message(opt_mag ? "G" : "g", "", "", ""); #endif _malloc_message(opt_junk ? "J" : "j", "", "", ""); #ifdef MALLOC_DSS _malloc_message(opt_mmap ? "M" : "m", "", "", ""); #endif _malloc_message(opt_utrace ? "PU" : "Pu", opt_sysv ? "V" : "v", opt_xmalloc ? "X" : "x", opt_zero ? "Z\n" : "z\n"); _malloc_message("CPUs: ", umax2s(ncpus, s), "\n", ""); _malloc_message("Max arenas: ", umax2s(narenas, s), "\n", ""); #ifdef MALLOC_BALANCE _malloc_message("Arena balance threshold: ", umax2s(opt_balance_threshold, s), "\n", ""); #endif _malloc_message("Pointer size: ", umax2s(sizeof(void *), s), "\n", ""); _malloc_message("Quantum size: ", umax2s(QUANTUM, s), "\n", ""); _malloc_message("Cacheline size (assumed): ", umax2s(CACHELINE, s), "\n", ""); #ifdef MALLOC_TINY _malloc_message("Tiny 2^n-spaced sizes: [", umax2s((1U << TINY_MIN_2POW), s), "..", ""); _malloc_message(umax2s((qspace_min >> 1), s), "]\n", "", ""); #endif _malloc_message("Quantum-spaced sizes: [", umax2s(qspace_min, s), "..", ""); _malloc_message(umax2s(qspace_max, s), "]\n", "", ""); _malloc_message("Cacheline-spaced sizes: [", umax2s(cspace_min, s), "..", ""); _malloc_message(umax2s(cspace_max, s), "]\n", "", ""); _malloc_message("Subpage-spaced sizes: [", umax2s(sspace_min, s), "..", ""); _malloc_message(umax2s(sspace_max, s), "]\n", "", ""); #ifdef MALLOC_MAG _malloc_message("Rounds per magazine: ", umax2s(max_rounds, s), "\n", ""); #endif _malloc_message("Max dirty pages per arena: ", umax2s(opt_dirty_max, s), "\n", ""); _malloc_message("Chunk size: ", umax2s(chunksize, s), "", ""); _malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", ""); #ifdef MALLOC_STATS { size_t allocated, mapped; #ifdef MALLOC_BALANCE uint64_t nbalance = 0; #endif unsigned i; arena_t *arena; /* Calculate and print allocated/mapped stats. */ /* arenas. */ for (i = 0, allocated = 0; i < narenas; i++) { if (arenas[i] != NULL) { malloc_spin_lock(&arenas[i]->lock); allocated += arenas[i]->stats.allocated_small; allocated += arenas[i]->stats.allocated_large; #ifdef MALLOC_BALANCE nbalance += arenas[i]->stats.nbalance; #endif malloc_spin_unlock(&arenas[i]->lock); } } /* huge/base. */ malloc_mutex_lock(&huge_mtx); allocated += huge_allocated; mapped = stats_chunks.curchunks * chunksize; malloc_mutex_unlock(&huge_mtx); malloc_mutex_lock(&base_mtx); mapped += base_mapped; malloc_mutex_unlock(&base_mtx); malloc_printf("Allocated: %zu, mapped: %zu\n", allocated, mapped); #ifdef MALLOC_BALANCE malloc_printf("Arena balance reassignments: %llu\n", nbalance); #endif /* Print chunk stats. */ { chunk_stats_t chunks_stats; malloc_mutex_lock(&huge_mtx); chunks_stats = stats_chunks; malloc_mutex_unlock(&huge_mtx); malloc_printf("chunks: nchunks " "highchunks curchunks\n"); malloc_printf(" %13llu%13lu%13lu\n", chunks_stats.nchunks, chunks_stats.highchunks, chunks_stats.curchunks); } /* Print chunk stats. */ malloc_printf( "huge: nmalloc ndalloc allocated\n"); malloc_printf(" %12llu %12llu %12zu\n", huge_nmalloc, huge_ndalloc, huge_allocated); /* Print stats for each arena. */ for (i = 0; i < narenas; i++) { arena = arenas[i]; if (arena != NULL) { malloc_printf( "\narenas[%u]:\n", i); malloc_spin_lock(&arena->lock); stats_print(arena); malloc_spin_unlock(&arena->lock); } } } #endif /* #ifdef MALLOC_STATS */ _malloc_message("--- End malloc statistics ---\n", "", "", ""); } } #ifdef MALLOC_DEBUG static void size2bin_validate(void) { size_t i, size, binind; assert(size2bin[0] == 0xffU); i = 1; # ifdef MALLOC_TINY /* Tiny. */ for (; i < (1U << TINY_MIN_2POW); i++) { size = pow2_ceil(1U << TINY_MIN_2POW); binind = ffs((int)(size >> (TINY_MIN_2POW + 1))); assert(size2bin[i] == binind); } for (; i < qspace_min; i++) { size = pow2_ceil(i); binind = ffs((int)(size >> (TINY_MIN_2POW + 1))); assert(size2bin[i] == binind); } # endif /* Quantum-spaced. */ for (; i <= qspace_max; i++) { size = QUANTUM_CEILING(i); binind = ntbins + (size >> QUANTUM_2POW) - 1; assert(size2bin[i] == binind); } /* Cacheline-spaced. */ for (; i <= cspace_max; i++) { size = CACHELINE_CEILING(i); binind = ntbins + nqbins + ((size - cspace_min) >> CACHELINE_2POW); assert(size2bin[i] == binind); } /* Sub-page. */ for (; i <= sspace_max; i++) { size = SUBPAGE_CEILING(i); binind = ntbins + nqbins + ncbins + ((size - sspace_min) >> SUBPAGE_2POW); assert(size2bin[i] == binind); } } #endif static bool size2bin_init(void) { if (opt_qspace_max_2pow != QSPACE_MAX_2POW_DEFAULT || opt_cspace_max_2pow != CSPACE_MAX_2POW_DEFAULT) return (size2bin_init_hard()); size2bin = const_size2bin; #ifdef MALLOC_DEBUG assert(sizeof(const_size2bin) == bin_maxclass + 1); size2bin_validate(); #endif return (false); } static bool size2bin_init_hard(void) { size_t i, size, binind; uint8_t *custom_size2bin; assert(opt_qspace_max_2pow != QSPACE_MAX_2POW_DEFAULT || opt_cspace_max_2pow != CSPACE_MAX_2POW_DEFAULT); custom_size2bin = (uint8_t *)base_alloc(bin_maxclass + 1); if (custom_size2bin == NULL) return (true); custom_size2bin[0] = 0xffU; i = 1; #ifdef MALLOC_TINY /* Tiny. */ for (; i < (1U << TINY_MIN_2POW); i++) { size = pow2_ceil(1U << TINY_MIN_2POW); binind = ffs((int)(size >> (TINY_MIN_2POW + 1))); custom_size2bin[i] = binind; } for (; i < qspace_min; i++) { size = pow2_ceil(i); binind = ffs((int)(size >> (TINY_MIN_2POW + 1))); custom_size2bin[i] = binind; } #endif /* Quantum-spaced. */ for (; i <= qspace_max; i++) { size = QUANTUM_CEILING(i); binind = ntbins + (size >> QUANTUM_2POW) - 1; custom_size2bin[i] = binind; } /* Cacheline-spaced. */ for (; i <= cspace_max; i++) { size = CACHELINE_CEILING(i); binind = ntbins + nqbins + ((size - cspace_min) >> CACHELINE_2POW); custom_size2bin[i] = binind; } /* Sub-page. */ for (; i <= sspace_max; i++) { size = SUBPAGE_CEILING(i); binind = ntbins + nqbins + ncbins + ((size - sspace_min) >> SUBPAGE_2POW); custom_size2bin[i] = binind; } size2bin = custom_size2bin; #ifdef MALLOC_DEBUG size2bin_validate(); #endif return (false); } /* * FreeBSD's pthreads implementation calls malloc(3), so the malloc * implementation has to take pains to avoid infinite recursion during * initialization. */ static inline bool malloc_init(void) { if (malloc_initialized == false) return (malloc_init_hard()); return (false); } static bool malloc_init_hard(void) { unsigned i; int linklen; char buf[PATH_MAX + 1]; const char *opts; malloc_mutex_lock(&init_lock); if (malloc_initialized) { /* * Another thread initialized the allocator before this one * acquired init_lock. */ malloc_mutex_unlock(&init_lock); return (false); } /* Get number of CPUs. */ { int mib[2]; size_t len; mib[0] = CTL_HW; mib[1] = HW_NCPU; len = sizeof(ncpus); if (sysctl(mib, 2, &ncpus, &len, (void *) 0, 0) == -1) { /* Error. */ ncpus = 1; } } /* * Increase the chunk size to the largest page size that is greater * than the default chunk size and less than or equal to 4MB. */ { size_t pagesizes[MAXPAGESIZES]; int k, nsizes; nsizes = getpagesizes(pagesizes, MAXPAGESIZES); for (k = 0; k < nsizes; k++) if (pagesizes[k] <= (1LU << 22)) while ((1LU << opt_chunk_2pow) < pagesizes[k]) opt_chunk_2pow++; } for (i = 0; i < 3; i++) { unsigned j; /* Get runtime configuration. */ switch (i) { case 0: if ((linklen = readlink("/etc/malloc.conf", buf, sizeof(buf) - 1)) != -1) { /* * Use the contents of the "/etc/malloc.conf" * symbolic link's name. */ buf[linklen] = '\0'; opts = buf; } else { /* No configuration specified. */ buf[0] = '\0'; opts = buf; } break; case 1: if (issetugid() == 0 && (opts = getenv("MALLOC_OPTIONS")) != NULL) { /* * Do nothing; opts is already initialized to * the value of the MALLOC_OPTIONS environment * variable. */ } else { /* No configuration specified. */ buf[0] = '\0'; opts = buf; } break; case 2: if (_malloc_options != NULL) { /* * Use options that were compiled into the * program. */ opts = _malloc_options; } else { /* No configuration specified. */ buf[0] = '\0'; opts = buf; } break; default: /* NOTREACHED */ assert(false); } for (j = 0; opts[j] != '\0'; j++) { unsigned k, nreps; bool nseen; /* Parse repetition count, if any. */ for (nreps = 0, nseen = false;; j++, nseen = true) { switch (opts[j]) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': nreps *= 10; nreps += opts[j] - '0'; break; default: goto MALLOC_OUT; } } MALLOC_OUT: if (nseen == false) nreps = 1; for (k = 0; k < nreps; k++) { switch (opts[j]) { case 'a': opt_abort = false; break; case 'A': opt_abort = true; break; case 'b': #ifdef MALLOC_BALANCE opt_balance_threshold >>= 1; #endif break; case 'B': #ifdef MALLOC_BALANCE if (opt_balance_threshold == 0) opt_balance_threshold = 1; else if ((opt_balance_threshold << 1) > opt_balance_threshold) opt_balance_threshold <<= 1; #endif break; case 'c': if (opt_cspace_max_2pow - 1 > opt_qspace_max_2pow && opt_cspace_max_2pow > CACHELINE_2POW) opt_cspace_max_2pow--; break; case 'C': if (opt_cspace_max_2pow < PAGE_SHIFT - 1) opt_cspace_max_2pow++; break; case 'd': #ifdef MALLOC_DSS opt_dss = false; #endif break; case 'D': #ifdef MALLOC_DSS opt_dss = true; #endif break; case 'f': opt_dirty_max >>= 1; break; case 'F': if (opt_dirty_max == 0) opt_dirty_max = 1; else if ((opt_dirty_max << 1) != 0) opt_dirty_max <<= 1; break; #ifdef MALLOC_MAG case 'g': opt_mag = false; break; case 'G': opt_mag = true; break; #endif case 'j': opt_junk = false; break; case 'J': opt_junk = true; break; case 'k': /* * Chunks always require at least one * header page, so chunks can never be * smaller than two pages. */ if (opt_chunk_2pow > PAGE_SHIFT + 1) opt_chunk_2pow--; break; case 'K': if (opt_chunk_2pow + 1 < (sizeof(size_t) << 3)) opt_chunk_2pow++; break; case 'm': #ifdef MALLOC_DSS opt_mmap = false; #endif break; case 'M': #ifdef MALLOC_DSS opt_mmap = true; #endif break; case 'n': opt_narenas_lshift--; break; case 'N': opt_narenas_lshift++; break; case 'p': opt_print_stats = false; break; case 'P': opt_print_stats = true; break; case 'q': if (opt_qspace_max_2pow > QUANTUM_2POW) opt_qspace_max_2pow--; break; case 'Q': if (opt_qspace_max_2pow + 1 < opt_cspace_max_2pow) opt_qspace_max_2pow++; break; #ifdef MALLOC_MAG case 'R': if (opt_mag_size_2pow + 1 < (8U << SIZEOF_PTR_2POW)) opt_mag_size_2pow++; break; case 'r': /* * Make sure there's always at least * one round per magazine. */ if ((1U << (opt_mag_size_2pow-1)) >= sizeof(mag_t)) opt_mag_size_2pow--; break; #endif case 'u': opt_utrace = false; break; case 'U': opt_utrace = true; break; case 'v': opt_sysv = false; break; case 'V': opt_sysv = true; break; case 'x': opt_xmalloc = false; break; case 'X': opt_xmalloc = true; break; case 'z': opt_zero = false; break; case 'Z': opt_zero = true; break; default: { char cbuf[2]; cbuf[0] = opts[j]; cbuf[1] = '\0'; _malloc_message(_getprogname(), ": (malloc) Unsupported character " "in malloc options: '", cbuf, "'\n"); } } } } } #ifdef MALLOC_DSS /* Make sure that there is some method for acquiring memory. */ if (opt_dss == false && opt_mmap == false) opt_mmap = true; #endif /* Take care to call atexit() only once. */ if (opt_print_stats) { /* Print statistics at exit. */ atexit(malloc_print_stats); } #ifdef MALLOC_MAG /* * Calculate the actual number of rounds per magazine, taking into * account header overhead. */ max_rounds = (1LLU << (opt_mag_size_2pow - SIZEOF_PTR_2POW)) - (sizeof(mag_t) >> SIZEOF_PTR_2POW) + 1; #endif /* Set variables according to the value of opt_[qc]space_max_2pow. */ qspace_max = (1U << opt_qspace_max_2pow); cspace_min = CACHELINE_CEILING(qspace_max); if (cspace_min == qspace_max) cspace_min += CACHELINE; cspace_max = (1U << opt_cspace_max_2pow); sspace_min = SUBPAGE_CEILING(cspace_max); if (sspace_min == cspace_max) sspace_min += SUBPAGE; assert(sspace_min < PAGE_SIZE); sspace_max = PAGE_SIZE - SUBPAGE; #ifdef MALLOC_TINY assert(QUANTUM_2POW >= TINY_MIN_2POW); #endif assert(ntbins <= QUANTUM_2POW); nqbins = qspace_max >> QUANTUM_2POW; ncbins = ((cspace_max - cspace_min) >> CACHELINE_2POW) + 1; nsbins = ((sspace_max - sspace_min) >> SUBPAGE_2POW) + 1; nbins = ntbins + nqbins + ncbins + nsbins; if (size2bin_init()) { malloc_mutex_unlock(&init_lock); return (true); } /* Set variables according to the value of opt_chunk_2pow. */ chunksize = (1LU << opt_chunk_2pow); chunksize_mask = chunksize - 1; chunk_npages = (chunksize >> PAGE_SHIFT); { size_t header_size; /* * Compute the header size such that it is large enough to * contain the page map. */ header_size = sizeof(arena_chunk_t) + (sizeof(arena_chunk_map_t) * (chunk_npages - 1)); arena_chunk_header_npages = (header_size >> PAGE_SHIFT) + ((header_size & PAGE_MASK) != 0); } arena_maxclass = chunksize - (arena_chunk_header_npages << PAGE_SHIFT); UTRACE(0, 0, 0); #ifdef MALLOC_STATS memset(&stats_chunks, 0, sizeof(chunk_stats_t)); #endif /* Various sanity checks that regard configuration. */ assert(chunksize >= PAGE_SIZE); /* Initialize chunks data. */ malloc_mutex_init(&huge_mtx); extent_tree_ad_new(&huge); #ifdef MALLOC_DSS malloc_mutex_init(&dss_mtx); dss_base = sbrk(0); dss_prev = dss_base; dss_max = dss_base; extent_tree_szad_new(&dss_chunks_szad); extent_tree_ad_new(&dss_chunks_ad); #endif #ifdef MALLOC_STATS huge_nmalloc = 0; huge_ndalloc = 0; huge_allocated = 0; #endif /* Initialize base allocation data structures. */ #ifdef MALLOC_STATS base_mapped = 0; #endif #ifdef MALLOC_DSS /* * Allocate a base chunk here, since it doesn't actually have to be * chunk-aligned. Doing this before allocating any other chunks allows * the use of space that would otherwise be wasted. */ if (opt_dss) base_pages_alloc(0); #endif base_nodes = NULL; malloc_mutex_init(&base_mtx); if (ncpus > 1) { /* * For SMP systems, create twice as many arenas as there are * CPUs by default. */ opt_narenas_lshift++; } /* Determine how many arenas to use. */ narenas = ncpus; if (opt_narenas_lshift > 0) { if ((narenas << opt_narenas_lshift) > narenas) narenas <<= opt_narenas_lshift; /* * Make sure not to exceed the limits of what base_alloc() can * handle. */ if (narenas * sizeof(arena_t *) > chunksize) narenas = chunksize / sizeof(arena_t *); } else if (opt_narenas_lshift < 0) { if ((narenas >> -opt_narenas_lshift) < narenas) narenas >>= -opt_narenas_lshift; /* Make sure there is at least one arena. */ if (narenas == 0) narenas = 1; } #ifdef MALLOC_BALANCE assert(narenas != 0); for (narenas_2pow = 0; (narenas >> (narenas_2pow + 1)) != 0; narenas_2pow++); #endif #ifdef NO_TLS if (narenas > 1) { static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263}; unsigned nprimes, parenas; /* * Pick a prime number of hash arenas that is more than narenas * so that direct hashing of pthread_self() pointers tends to * spread allocations evenly among the arenas. */ assert((narenas & 1) == 0); /* narenas must be even. */ nprimes = (sizeof(primes) >> SIZEOF_INT_2POW); parenas = primes[nprimes - 1]; /* In case not enough primes. */ for (i = 1; i < nprimes; i++) { if (primes[i] > narenas) { parenas = primes[i]; break; } } narenas = parenas; } #endif #ifndef NO_TLS # ifndef MALLOC_BALANCE next_arena = 0; # endif #endif /* Allocate and initialize arenas. */ arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas); if (arenas == NULL) { malloc_mutex_unlock(&init_lock); return (true); } /* * Zero the array. In practice, this should always be pre-zeroed, * since it was just mmap()ed, but let's be sure. */ memset(arenas, 0, sizeof(arena_t *) * narenas); /* * Initialize one arena here. The rest are lazily created in * choose_arena_hard(). */ arenas_extend(0); if (arenas[0] == NULL) { malloc_mutex_unlock(&init_lock); return (true); } #ifndef NO_TLS /* * Assign the initial arena to the initial thread, in order to avoid * spurious creation of an extra arena if the application switches to * threaded mode. */ arenas_map = arenas[0]; #endif /* * Seed here for the initial thread, since choose_arena_hard() is only * called for other threads. The seed value doesn't really matter. */ #ifdef MALLOC_BALANCE SPRN(balance, 42); #endif malloc_spin_init(&arenas_lock); malloc_initialized = true; malloc_mutex_unlock(&init_lock); return (false); } /* * End general internal functions. */ /******************************************************************************/ /* * Begin malloc(3)-compatible functions. */ void * malloc(size_t size) { void *ret; if (malloc_init()) { ret = NULL; goto RETURN; } if (size == 0) { if (opt_sysv == false) size = 1; else { ret = NULL; goto RETURN; } } ret = imalloc(size); RETURN: if (ret == NULL) { if (opt_xmalloc) { _malloc_message(_getprogname(), ": (malloc) Error in malloc(): out of memory\n", "", ""); abort(); } errno = ENOMEM; } UTRACE(0, size, ret); return (ret); } int posix_memalign(void **memptr, size_t alignment, size_t size) { int ret; void *result; if (malloc_init()) result = NULL; else { /* Make sure that alignment is a large enough power of 2. */ if (((alignment - 1) & alignment) != 0 || alignment < sizeof(void *)) { if (opt_xmalloc) { _malloc_message(_getprogname(), ": (malloc) Error in posix_memalign(): " "invalid alignment\n", "", ""); abort(); } result = NULL; ret = EINVAL; goto RETURN; } if (size == 0) { if (opt_sysv == false) size = 1; else { result = NULL; ret = 0; goto RETURN; } } result = ipalloc(alignment, size); } if (result == NULL) { if (opt_xmalloc) { _malloc_message(_getprogname(), ": (malloc) Error in posix_memalign(): out of memory\n", "", ""); abort(); } ret = ENOMEM; goto RETURN; } *memptr = result; ret = 0; RETURN: UTRACE(0, size, result); return (ret); } void * calloc(size_t num, size_t size) { void *ret; size_t num_size; if (malloc_init()) { num_size = 0; ret = NULL; goto RETURN; } num_size = num * size; if (num_size == 0) { if ((opt_sysv == false) && ((num == 0) || (size == 0))) num_size = 1; else { ret = NULL; goto RETURN; } /* * Try to avoid division here. We know that it isn't possible to * overflow during multiplication if neither operand uses any of the * most significant half of the bits in a size_t. */ } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2))) && (num_size / size != num)) { /* size_t overflow. */ ret = NULL; goto RETURN; } ret = icalloc(num_size); RETURN: if (ret == NULL) { if (opt_xmalloc) { _malloc_message(_getprogname(), ": (malloc) Error in calloc(): out of memory\n", "", ""); abort(); } errno = ENOMEM; } UTRACE(0, num_size, ret); return (ret); } void * realloc(void *ptr, size_t size) { void *ret; if (size == 0) { if (opt_sysv == false) size = 1; else { if (ptr != NULL) idalloc(ptr); ret = NULL; goto RETURN; } } if (ptr != NULL) { assert(malloc_initialized); ret = iralloc(ptr, size); if (ret == NULL) { if (opt_xmalloc) { _malloc_message(_getprogname(), ": (malloc) Error in realloc(): out of " "memory\n", "", ""); abort(); } errno = ENOMEM; } } else { if (malloc_init()) ret = NULL; else ret = imalloc(size); if (ret == NULL) { if (opt_xmalloc) { _malloc_message(_getprogname(), ": (malloc) Error in realloc(): out of " "memory\n", "", ""); abort(); } errno = ENOMEM; } } RETURN: UTRACE(ptr, size, ret); return (ret); } void free(void *ptr) { UTRACE(ptr, 0, 0); if (ptr != NULL) { assert(malloc_initialized); idalloc(ptr); } } /* * End malloc(3)-compatible functions. */ /******************************************************************************/ /* * Begin non-standard functions. */ size_t malloc_usable_size(const void *ptr) { assert(ptr != NULL); return (isalloc(ptr)); } /* * End non-standard functions. */ /******************************************************************************/ /* * Begin library-private functions. */ /******************************************************************************/ /* * Begin thread cache. */ /* * We provide an unpublished interface in order to receive notifications from * the pthreads library whenever a thread exits. This allows us to clean up * thread caches. */ void _malloc_thread_cleanup(void) { #ifdef MALLOC_MAG if (mag_rack != NULL) { assert(mag_rack != (void *)-1); mag_rack_destroy(mag_rack); #ifdef MALLOC_DEBUG mag_rack = (void *)-1; #endif } #endif } /* * The following functions are used by threading libraries for protection of * malloc during fork(). These functions are only called if the program is * running in threaded mode, so there is no need to check whether the program * is threaded here. */ void _malloc_prefork(void) { bool again; unsigned i, j; arena_t *larenas[narenas], *tarenas[narenas]; /* Acquire all mutexes in a safe order. */ /* * arenas_lock must be acquired after all of the arena mutexes, in * order to avoid potential deadlock with arena_lock_balance[_hard](). * Since arenas_lock protects the arenas array, the following code has * to race with arenas_extend() callers until it succeeds in locking * all arenas before locking arenas_lock. */ memset(larenas, 0, sizeof(arena_t *) * narenas); do { again = false; malloc_spin_lock(&arenas_lock); for (i = 0; i < narenas; i++) { if (arenas[i] != larenas[i]) { memcpy(tarenas, arenas, sizeof(arena_t *) * narenas); malloc_spin_unlock(&arenas_lock); for (j = 0; j < narenas; j++) { if (larenas[j] != tarenas[j]) { larenas[j] = tarenas[j]; malloc_spin_lock( &larenas[j]->lock); } } again = true; break; } } } while (again); malloc_mutex_lock(&base_mtx); malloc_mutex_lock(&huge_mtx); #ifdef MALLOC_DSS malloc_mutex_lock(&dss_mtx); #endif } void _malloc_postfork(void) { unsigned i; arena_t *larenas[narenas]; /* Release all mutexes, now that fork() has completed. */ #ifdef MALLOC_DSS malloc_mutex_unlock(&dss_mtx); #endif malloc_mutex_unlock(&huge_mtx); malloc_mutex_unlock(&base_mtx); memcpy(larenas, arenas, sizeof(arena_t *) * narenas); malloc_spin_unlock(&arenas_lock); for (i = 0; i < narenas; i++) { if (larenas[i] != NULL) malloc_spin_unlock(&larenas[i]->lock); } } /* * End library-private functions. */ /******************************************************************************/