//=-- lsan_common.cc ------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of LeakSanitizer. // Implementation of common leak checking functionality. // //===----------------------------------------------------------------------===// #include "lsan_common.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_flags.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "sanitizer_common/sanitizer_stacktrace.h" #include "sanitizer_common/sanitizer_stoptheworld.h" #if CAN_SANITIZE_LEAKS namespace __lsan { Flags lsan_flags; static void InitializeFlags() { Flags *f = flags(); // Default values. f->report_blocks = false; f->resolution = 0; f->max_leaks = 0; f->exitcode = 23; f->use_registers = true; f->use_globals = true; f->use_stacks = true; f->use_tls = true; f->use_unaligned = false; f->log_pointers = false; f->log_threads = false; const char *options = GetEnv("LSAN_OPTIONS"); if (options) { ParseFlag(options, &f->use_registers, "use_registers"); ParseFlag(options, &f->use_globals, "use_globals"); ParseFlag(options, &f->use_stacks, "use_stacks"); ParseFlag(options, &f->use_tls, "use_tls"); ParseFlag(options, &f->use_unaligned, "use_unaligned"); ParseFlag(options, &f->report_blocks, "report_blocks"); ParseFlag(options, &f->resolution, "resolution"); CHECK_GE(&f->resolution, 0); ParseFlag(options, &f->max_leaks, "max_leaks"); CHECK_GE(&f->max_leaks, 0); ParseFlag(options, &f->log_pointers, "log_pointers"); ParseFlag(options, &f->log_threads, "log_threads"); ParseFlag(options, &f->exitcode, "exitcode"); } } void InitCommonLsan() { InitializeFlags(); InitializePlatformSpecificModules(); } static inline bool CanBeAHeapPointer(uptr p) { // Since our heap is located in mmap-ed memory, we can assume a sensible lower // boundary on heap addresses. const uptr kMinAddress = 4 * 4096; if (p < kMinAddress) return false; #ifdef __x86_64__ // Accept only canonical form user-space addresses. return ((p >> 47) == 0); #else return true; #endif } // Scan the memory range, looking for byte patterns that point into allocator // chunks. Mark those chunks with tag and add them to the frontier. // There are two usage modes for this function: finding non-leaked chunks // (tag = kReachable) and finding indirectly leaked chunks // (tag = kIndirectlyLeaked). In the second case, there's no flood fill, // so frontier = 0. void ScanRangeForPointers(uptr begin, uptr end, InternalVector *frontier, const char *region_type, ChunkTag tag) { const uptr alignment = flags()->pointer_alignment(); if (flags()->log_pointers) Report("Scanning %s range %p-%p.\n", region_type, begin, end); uptr pp = begin; if (pp % alignment) pp = pp + alignment - pp % alignment; for (; pp + sizeof(uptr) <= end; pp += alignment) { void *p = *reinterpret_cast(pp); if (!CanBeAHeapPointer(reinterpret_cast(p))) continue; // FIXME: PointsIntoChunk is SLOW because GetBlockBegin() in // LargeMmapAllocator involves a lock and a linear search. void *chunk = PointsIntoChunk(p); if (!chunk) continue; LsanMetadata m(chunk); if (m.tag() == kReachable) continue; m.set_tag(tag); if (flags()->log_pointers) Report("%p: found %p pointing into chunk %p-%p of size %llu.\n", pp, p, chunk, reinterpret_cast(chunk) + m.requested_size(), m.requested_size()); if (frontier) frontier->push_back(reinterpret_cast(chunk)); } } // Scan thread data (stacks and TLS) for heap pointers. static void ProcessThreads(SuspendedThreadsList const &suspended_threads, InternalVector *frontier) { InternalScopedBuffer registers(SuspendedThreadsList::RegisterCount()); uptr registers_begin = reinterpret_cast(registers.data()); uptr registers_end = registers_begin + registers.size(); for (uptr i = 0; i < suspended_threads.thread_count(); i++) { uptr os_id = static_cast(suspended_threads.GetThreadID(i)); if (flags()->log_threads) Report("Processing thread %d.\n", os_id); uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end; bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end, &tls_begin, &tls_end, &cache_begin, &cache_end); if (!thread_found) { // If a thread can't be found in the thread registry, it's probably in the // process of destruction. Log this event and move on. if (flags()->log_threads) Report("Thread %d not found in registry.\n", os_id); continue; } uptr sp; bool have_registers = (suspended_threads.GetRegistersAndSP(i, registers.data(), &sp) == 0); if (!have_registers) { Report("Unable to get registers from thread %d.\n"); // If unable to get SP, consider the entire stack to be reachable. sp = stack_begin; } if (flags()->use_registers && have_registers) ScanRangeForPointers(registers_begin, registers_end, frontier, "REGISTERS", kReachable); if (flags()->use_stacks) { if (flags()->log_threads) Report("Stack at %p-%p, SP = %p.\n", stack_begin, stack_end, sp); if (sp < stack_begin || sp >= stack_end) { // SP is outside the recorded stack range (e.g. the thread is running a // signal handler on alternate stack). Again, consider the entire stack // range to be reachable. if (flags()->log_threads) Report("WARNING: stack_pointer not in stack_range.\n"); } else { // Shrink the stack range to ignore out-of-scope values. stack_begin = sp; } ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK", kReachable); } if (flags()->use_tls) { if (flags()->log_threads) Report("TLS at %p-%p.\n", tls_begin, tls_end); if (cache_begin == cache_end) { ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable); } else { // Because LSan should not be loaded with dlopen(), we can assume // that allocator cache will be part of static TLS image. CHECK_LE(tls_begin, cache_begin); CHECK_GE(tls_end, cache_end); if (tls_begin < cache_begin) ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS", kReachable); if (tls_end > cache_end) ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable); } } } } static void FloodFillReachable(InternalVector *frontier) { while (frontier->size()) { uptr next_chunk = frontier->back(); frontier->pop_back(); LsanMetadata m(reinterpret_cast(next_chunk)); ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier, "HEAP", kReachable); } } // Mark leaked chunks which are reachable from other leaked chunks. void MarkIndirectlyLeakedCb::operator()(void *p) const { p = GetUserBegin(p); LsanMetadata m(p); if (m.allocated() && m.tag() != kReachable) { ScanRangeForPointers(reinterpret_cast(p), reinterpret_cast(p) + m.requested_size(), /* frontier */ 0, "HEAP", kIndirectlyLeaked); } } // Set the appropriate tag on each chunk. static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) { // Holds the flood fill frontier. InternalVector frontier(GetPageSizeCached()); if (flags()->use_globals) ProcessGlobalRegions(&frontier); ProcessThreads(suspended_threads, &frontier); FloodFillReachable(&frontier); ProcessPlatformSpecificAllocations(&frontier); FloodFillReachable(&frontier); // Now all reachable chunks are marked. Iterate over leaked chunks and mark // those that are reachable from other leaked chunks. if (flags()->log_pointers) Report("Now scanning leaked blocks for pointers.\n"); ForEachChunk(MarkIndirectlyLeakedCb()); } void ClearTagCb::operator()(void *p) const { p = GetUserBegin(p); LsanMetadata m(p); m.set_tag(kDirectlyLeaked); } static void PrintStackTraceById(u32 stack_trace_id) { CHECK(stack_trace_id); uptr size = 0; const uptr *trace = StackDepotGet(stack_trace_id, &size); StackTrace::PrintStack(trace, size, common_flags()->symbolize, common_flags()->strip_path_prefix, 0); } static void LockAndSuspendThreads(StopTheWorldCallback callback, void *arg) { LockThreadRegistry(); LockAllocator(); StopTheWorld(callback, arg); // Allocator must be unlocked by the callback. UnlockThreadRegistry(); } ///// Normal leak checking. ///// void CollectLeaksCb::operator()(void *p) const { p = GetUserBegin(p); LsanMetadata m(p); if (!m.allocated()) return; if (m.tag() != kReachable) { uptr resolution = flags()->resolution; if (resolution > 0) { uptr size = 0; const uptr *trace = StackDepotGet(m.stack_trace_id(), &size); size = Min(size, resolution); leak_report_->Add(StackDepotPut(trace, size), m.requested_size(), m.tag()); } else { leak_report_->Add(m.stack_trace_id(), m.requested_size(), m.tag()); } } } static void CollectLeaks(LeakReport *leak_report) { ForEachChunk(CollectLeaksCb(leak_report)); } void PrintLeakedCb::operator()(void *p) const { p = GetUserBegin(p); LsanMetadata m(p); if (!m.allocated()) return; if (m.tag() != kReachable) { CHECK(m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked); Printf("%s leaked %llu byte block at %p\n", m.tag() == kDirectlyLeaked ? "Directly" : "Indirectly", m.requested_size(), p); } } static void PrintLeaked() { Printf("Reporting individual blocks:\n"); Printf("============================\n"); ForEachChunk(PrintLeakedCb()); Printf("\n"); } enum LeakCheckResult { kFatalError, kLeaksFound, kNoLeaks }; static void DoLeakCheckCallback(const SuspendedThreadsList &suspended_threads, void *arg) { LeakCheckResult *result = reinterpret_cast(arg); CHECK_EQ(*result, kFatalError); // Allocator must not be locked when we call GetRegionBegin(). UnlockAllocator(); ClassifyAllChunks(suspended_threads); LeakReport leak_report; CollectLeaks(&leak_report); if (leak_report.IsEmpty()) { *result = kNoLeaks; return; } Printf("\n"); Printf("=================================================================\n"); Report("ERROR: LeakSanitizer: detected memory leaks\n"); leak_report.PrintLargest(flags()->max_leaks); if (flags()->report_blocks) PrintLeaked(); leak_report.PrintSummary(); Printf("\n"); ForEachChunk(ClearTagCb()); *result = kLeaksFound; } void DoLeakCheck() { LeakCheckResult result = kFatalError; LockAndSuspendThreads(DoLeakCheckCallback, &result); if (result == kFatalError) { Report("LeakSanitizer has encountered a fatal error.\n"); Die(); } else if (result == kLeaksFound) { if (flags()->exitcode) internal__exit(flags()->exitcode); } } ///// LeakReport implementation. ///// // A hard limit on the number of distinct leaks, to avoid quadratic complexity // in LeakReport::Add(). We don't expect to ever see this many leaks in // real-world applications. // FIXME: Get rid of this limit by changing the implementation of LeakReport to // use a hash table. const uptr kMaxLeaksConsidered = 1000; void LeakReport::Add(u32 stack_trace_id, uptr leaked_size, ChunkTag tag) { CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked); bool is_directly_leaked = (tag == kDirectlyLeaked); for (uptr i = 0; i < leaks_.size(); i++) if (leaks_[i].stack_trace_id == stack_trace_id && leaks_[i].is_directly_leaked == is_directly_leaked) { leaks_[i].hit_count++; leaks_[i].total_size += leaked_size; return; } if (leaks_.size() == kMaxLeaksConsidered) return; Leak leak = { /* hit_count */ 1, leaked_size, stack_trace_id, is_directly_leaked }; leaks_.push_back(leak); } static bool IsLarger(const Leak &leak1, const Leak &leak2) { return leak1.total_size > leak2.total_size; } void LeakReport::PrintLargest(uptr max_leaks) { CHECK(leaks_.size() <= kMaxLeaksConsidered); Printf("\n"); if (leaks_.size() == kMaxLeaksConsidered) Printf("Too many leaks! Only the first %llu leaks encountered will be " "reported.\n", kMaxLeaksConsidered); if (max_leaks > 0 && max_leaks < leaks_.size()) Printf("The %llu largest leak(s):\n", max_leaks); InternalSort(&leaks_, leaks_.size(), IsLarger); max_leaks = max_leaks > 0 ? Min(max_leaks, leaks_.size()) : leaks_.size(); for (uptr i = 0; i < max_leaks; i++) { Printf("%s leak of %llu byte(s) in %llu object(s) allocated from:\n", leaks_[i].is_directly_leaked ? "Direct" : "Indirect", leaks_[i].total_size, leaks_[i].hit_count); PrintStackTraceById(leaks_[i].stack_trace_id); Printf("\n"); } if (max_leaks < leaks_.size()) { uptr remaining = leaks_.size() - max_leaks; Printf("Omitting %llu more leak(s).\n", remaining); } } void LeakReport::PrintSummary() { CHECK(leaks_.size() <= kMaxLeaksConsidered); uptr bytes = 0, allocations = 0; for (uptr i = 0; i < leaks_.size(); i++) { bytes += leaks_[i].total_size; allocations += leaks_[i].hit_count; } Printf("SUMMARY: LeakSanitizer: %llu byte(s) leaked in %llu allocation(s).\n", bytes, allocations); } } // namespace __lsan #endif // CAN_SANITIZE_LEAKS