//===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass promotes "by reference" arguments to be "by value" arguments. In // practice, this means looking for internal functions that have pointer // arguments. If it can prove, through the use of alias analysis, that an // argument is *only* loaded, then it can pass the value into the function // instead of the address of the value. This can cause recursive simplification // of code and lead to the elimination of allocas (especially in C++ template // code like the STL). // // This pass also handles aggregate arguments that are passed into a function, // scalarizing them if the elements of the aggregate are only loaded. Note that // by default it refuses to scalarize aggregates which would require passing in // more than three operands to the function, because passing thousands of // operands for a large array or structure is unprofitable! This limit can be // configured or disabled, however. // // Note that this transformation could also be done for arguments that are only // stored to (returning the value instead), but does not currently. This case // would be best handled when and if LLVM begins supporting multiple return // values from functions. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/ArgumentPromotion.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Argument.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/NoFolder.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/PromoteMemToReg.h" #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "argpromotion" STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted"); STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated"); namespace { struct ArgPart { Type *Ty; Align Alignment; /// A representative guaranteed-executed load or store instruction for use by /// metadata transfer. Instruction *MustExecInstr; }; using OffsetAndArgPart = std::pair; } // end anonymous namespace static Value *createByteGEP(IRBuilderBase &IRB, const DataLayout &DL, Value *Ptr, Type *ResElemTy, int64_t Offset) { if (Offset != 0) { APInt APOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), Offset); Ptr = IRB.CreatePtrAdd(Ptr, IRB.getInt(APOffset)); } return Ptr; } /// DoPromotion - This method actually performs the promotion of the specified /// arguments, and returns the new function. At this point, we know that it's /// safe to do so. static Function * doPromotion(Function *F, FunctionAnalysisManager &FAM, const DenseMap> &ArgsToPromote) { // Start by computing a new prototype for the function, which is the same as // the old function, but has modified arguments. FunctionType *FTy = F->getFunctionType(); std::vector Params; // Attribute - Keep track of the parameter attributes for the arguments // that we are *not* promoting. For the ones that we do promote, the parameter // attributes are lost SmallVector ArgAttrVec; // Mapping from old to new argument indices. -1 for promoted or removed // arguments. SmallVector NewArgIndices; AttributeList PAL = F->getAttributes(); // First, determine the new argument list unsigned ArgNo = 0, NewArgNo = 0; for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I, ++ArgNo) { if (!ArgsToPromote.count(&*I)) { // Unchanged argument Params.push_back(I->getType()); ArgAttrVec.push_back(PAL.getParamAttrs(ArgNo)); NewArgIndices.push_back(NewArgNo++); } else if (I->use_empty()) { // Dead argument (which are always marked as promotable) ++NumArgumentsDead; NewArgIndices.push_back((unsigned)-1); } else { const auto &ArgParts = ArgsToPromote.find(&*I)->second; for (const auto &Pair : ArgParts) { Params.push_back(Pair.second.Ty); ArgAttrVec.push_back(AttributeSet()); } ++NumArgumentsPromoted; NewArgIndices.push_back((unsigned)-1); NewArgNo += ArgParts.size(); } } Type *RetTy = FTy->getReturnType(); // Construct the new function type using the new arguments. FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); // Create the new function body and insert it into the module. Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(), F->getName()); NF->copyAttributesFrom(F); NF->copyMetadata(F, 0); NF->setIsNewDbgInfoFormat(F->IsNewDbgInfoFormat); // The new function will have the !dbg metadata copied from the original // function. The original function may not be deleted, and dbg metadata need // to be unique, so we need to drop it. F->setSubprogram(nullptr); LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n" << "From: " << *F); uint64_t LargestVectorWidth = 0; for (auto *I : Params) if (auto *VT = dyn_cast(I)) LargestVectorWidth = std::max( LargestVectorWidth, VT->getPrimitiveSizeInBits().getKnownMinValue()); // Recompute the parameter attributes list based on the new arguments for // the function. NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttrs(), PAL.getRetAttrs(), ArgAttrVec)); // Remap argument indices in allocsize attribute. if (auto AllocSize = NF->getAttributes().getFnAttrs().getAllocSizeArgs()) { unsigned Arg1 = NewArgIndices[AllocSize->first]; assert(Arg1 != (unsigned)-1 && "allocsize cannot be promoted argument"); std::optional Arg2; if (AllocSize->second) { Arg2 = NewArgIndices[*AllocSize->second]; assert(Arg2 != (unsigned)-1 && "allocsize cannot be promoted argument"); } NF->addFnAttr(Attribute::getWithAllocSizeArgs(F->getContext(), Arg1, Arg2)); } AttributeFuncs::updateMinLegalVectorWidthAttr(*NF, LargestVectorWidth); ArgAttrVec.clear(); F->getParent()->getFunctionList().insert(F->getIterator(), NF); NF->takeName(F); // Loop over all the callers of the function, transforming the call sites to // pass in the loaded pointers. SmallVector Args; const DataLayout &DL = F->getParent()->getDataLayout(); SmallVector DeadArgs; while (!F->use_empty()) { CallBase &CB = cast(*F->user_back()); assert(CB.getCalledFunction() == F); const AttributeList &CallPAL = CB.getAttributes(); IRBuilder IRB(&CB); // Loop over the operands, inserting GEP and loads in the caller as // appropriate. auto *AI = CB.arg_begin(); ArgNo = 0; for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I, ++AI, ++ArgNo) { if (!ArgsToPromote.count(&*I)) { Args.push_back(*AI); // Unmodified argument ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo)); } else if (!I->use_empty()) { Value *V = *AI; const auto &ArgParts = ArgsToPromote.find(&*I)->second; for (const auto &Pair : ArgParts) { LoadInst *LI = IRB.CreateAlignedLoad( Pair.second.Ty, createByteGEP(IRB, DL, V, Pair.second.Ty, Pair.first), Pair.second.Alignment, V->getName() + ".val"); if (Pair.second.MustExecInstr) { LI->setAAMetadata(Pair.second.MustExecInstr->getAAMetadata()); LI->copyMetadata(*Pair.second.MustExecInstr, {LLVMContext::MD_dereferenceable, LLVMContext::MD_dereferenceable_or_null, LLVMContext::MD_noundef, LLVMContext::MD_nontemporal}); // Only transfer poison-generating metadata if we also have // !noundef. // TODO: Without !noundef, we could merge this metadata across // all promoted loads. if (LI->hasMetadata(LLVMContext::MD_noundef)) LI->copyMetadata(*Pair.second.MustExecInstr, {LLVMContext::MD_range, LLVMContext::MD_nonnull, LLVMContext::MD_align}); } Args.push_back(LI); ArgAttrVec.push_back(AttributeSet()); } } else { assert(ArgsToPromote.count(&*I) && I->use_empty()); DeadArgs.emplace_back(AI->get()); } } // Push any varargs arguments on the list. for (; AI != CB.arg_end(); ++AI, ++ArgNo) { Args.push_back(*AI); ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo)); } SmallVector OpBundles; CB.getOperandBundlesAsDefs(OpBundles); CallBase *NewCS = nullptr; if (InvokeInst *II = dyn_cast(&CB)) { NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), Args, OpBundles, "", &CB); } else { auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB); NewCall->setTailCallKind(cast(&CB)->getTailCallKind()); NewCS = NewCall; } NewCS->setCallingConv(CB.getCallingConv()); NewCS->setAttributes(AttributeList::get(F->getContext(), CallPAL.getFnAttrs(), CallPAL.getRetAttrs(), ArgAttrVec)); NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg}); Args.clear(); ArgAttrVec.clear(); AttributeFuncs::updateMinLegalVectorWidthAttr(*CB.getCaller(), LargestVectorWidth); if (!CB.use_empty()) { CB.replaceAllUsesWith(NewCS); NewCS->takeName(&CB); } // Finally, remove the old call from the program, reducing the use-count of // F. CB.eraseFromParent(); } RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadArgs); // Since we have now created the new function, splice the body of the old // function right into the new function, leaving the old rotting hulk of the // function empty. NF->splice(NF->begin(), F); // We will collect all the new created allocas to promote them into registers // after the following loop SmallVector Allocas; // Loop over the argument list, transferring uses of the old arguments over to // the new arguments, also transferring over the names as well. Function::arg_iterator I2 = NF->arg_begin(); for (Argument &Arg : F->args()) { if (!ArgsToPromote.count(&Arg)) { // If this is an unmodified argument, move the name and users over to the // new version. Arg.replaceAllUsesWith(&*I2); I2->takeName(&Arg); ++I2; continue; } // There potentially are metadata uses for things like llvm.dbg.value. // Replace them with undef, after handling the other regular uses. auto RauwUndefMetadata = make_scope_exit( [&]() { Arg.replaceAllUsesWith(UndefValue::get(Arg.getType())); }); if (Arg.use_empty()) continue; // Otherwise, if we promoted this argument, we have to create an alloca in // the callee for every promotable part and store each of the new incoming // arguments into the corresponding alloca, what lets the old code (the // store instructions if they are allowed especially) a chance to work as // before. assert(Arg.getType()->isPointerTy() && "Only arguments with a pointer type are promotable"); IRBuilder IRB(&NF->begin()->front()); // Add only the promoted elements, so parts from ArgsToPromote SmallDenseMap OffsetToAlloca; for (const auto &Pair : ArgsToPromote.find(&Arg)->second) { int64_t Offset = Pair.first; const ArgPart &Part = Pair.second; Argument *NewArg = I2++; NewArg->setName(Arg.getName() + "." + Twine(Offset) + ".val"); AllocaInst *NewAlloca = IRB.CreateAlloca( Part.Ty, nullptr, Arg.getName() + "." + Twine(Offset) + ".allc"); NewAlloca->setAlignment(Pair.second.Alignment); IRB.CreateAlignedStore(NewArg, NewAlloca, Pair.second.Alignment); // Collect the alloca to retarget the users to OffsetToAlloca.insert({Offset, NewAlloca}); } auto GetAlloca = [&](Value *Ptr) { APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset, /* AllowNonInbounds */ true); assert(Ptr == &Arg && "Not constant offset from arg?"); return OffsetToAlloca.lookup(Offset.getSExtValue()); }; // Cleanup the code from the dead instructions: GEPs and BitCasts in between // the original argument and its users: loads and stores. Retarget every // user to the new created alloca. SmallVector Worklist; SmallVector DeadInsts; append_range(Worklist, Arg.users()); while (!Worklist.empty()) { Value *V = Worklist.pop_back_val(); if (isa(V) || isa(V)) { DeadInsts.push_back(cast(V)); append_range(Worklist, V->users()); continue; } if (auto *LI = dyn_cast(V)) { Value *Ptr = LI->getPointerOperand(); LI->setOperand(LoadInst::getPointerOperandIndex(), GetAlloca(Ptr)); continue; } if (auto *SI = dyn_cast(V)) { assert(!SI->isVolatile() && "Volatile operations can't be promoted."); Value *Ptr = SI->getPointerOperand(); SI->setOperand(StoreInst::getPointerOperandIndex(), GetAlloca(Ptr)); continue; } llvm_unreachable("Unexpected user"); } for (Instruction *I : DeadInsts) { I->replaceAllUsesWith(PoisonValue::get(I->getType())); I->eraseFromParent(); } // Collect the allocas for promotion for (const auto &Pair : OffsetToAlloca) { assert(isAllocaPromotable(Pair.second) && "By design, only promotable allocas should be produced."); Allocas.push_back(Pair.second); } } LLVM_DEBUG(dbgs() << "ARG PROMOTION: " << Allocas.size() << " alloca(s) are promotable by Mem2Reg\n"); if (!Allocas.empty()) { // And we are able to call the `promoteMemoryToRegister()` function. // Our earlier checks have ensured that PromoteMemToReg() will // succeed. auto &DT = FAM.getResult(*NF); auto &AC = FAM.getResult(*NF); PromoteMemToReg(Allocas, DT, &AC); } return NF; } /// Return true if we can prove that all callees pass in a valid pointer for the /// specified function argument. static bool allCallersPassValidPointerForArgument(Argument *Arg, Align NeededAlign, uint64_t NeededDerefBytes) { Function *Callee = Arg->getParent(); const DataLayout &DL = Callee->getParent()->getDataLayout(); APInt Bytes(64, NeededDerefBytes); // Check if the argument itself is marked dereferenceable and aligned. if (isDereferenceableAndAlignedPointer(Arg, NeededAlign, Bytes, DL)) return true; // Look at all call sites of the function. At this point we know we only have // direct callees. return all_of(Callee->users(), [&](User *U) { CallBase &CB = cast(*U); return isDereferenceableAndAlignedPointer(CB.getArgOperand(Arg->getArgNo()), NeededAlign, Bytes, DL); }); } /// Determine that this argument is safe to promote, and find the argument /// parts it can be promoted into. static bool findArgParts(Argument *Arg, const DataLayout &DL, AAResults &AAR, unsigned MaxElements, bool IsRecursive, SmallVectorImpl &ArgPartsVec) { // Quick exit for unused arguments if (Arg->use_empty()) return true; // We can only promote this argument if all the uses are loads at known // offsets. // // Promoting the argument causes it to be loaded in the caller // unconditionally. This is only safe if we can prove that either the load // would have happened in the callee anyway (ie, there is a load in the entry // block) or the pointer passed in at every call site is guaranteed to be // valid. // In the former case, invalid loads can happen, but would have happened // anyway, in the latter case, invalid loads won't happen. This prevents us // from introducing an invalid load that wouldn't have happened in the // original code. SmallDenseMap ArgParts; Align NeededAlign(1); uint64_t NeededDerefBytes = 0; // And if this is a byval argument we also allow to have store instructions. // Only handle in such way arguments with specified alignment; // if it's unspecified, the actual alignment of the argument is // target-specific. bool AreStoresAllowed = Arg->getParamByValType() && Arg->getParamAlign(); // An end user of a pointer argument is a load or store instruction. // Returns std::nullopt if this load or store is not based on the argument. // Return true if we can promote the instruction, false otherwise. auto HandleEndUser = [&](auto *I, Type *Ty, bool GuaranteedToExecute) -> std::optional { // Don't promote volatile or atomic instructions. if (!I->isSimple()) return false; Value *Ptr = I->getPointerOperand(); APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset, /* AllowNonInbounds */ true); if (Ptr != Arg) return std::nullopt; if (Offset.getSignificantBits() >= 64) return false; TypeSize Size = DL.getTypeStoreSize(Ty); // Don't try to promote scalable types. if (Size.isScalable()) return false; // If this is a recursive function and one of the types is a pointer, // then promoting it might lead to recursive promotion. if (IsRecursive && Ty->isPointerTy()) return false; int64_t Off = Offset.getSExtValue(); auto Pair = ArgParts.try_emplace( Off, ArgPart{Ty, I->getAlign(), GuaranteedToExecute ? I : nullptr}); ArgPart &Part = Pair.first->second; bool OffsetNotSeenBefore = Pair.second; // We limit promotion to only promoting up to a fixed number of elements of // the aggregate. if (MaxElements > 0 && ArgParts.size() > MaxElements) { LLVM_DEBUG(dbgs() << "ArgPromotion of " << *Arg << " failed: " << "more than " << MaxElements << " parts\n"); return false; } // For now, we only support loading/storing one specific type at a given // offset. if (Part.Ty != Ty) { LLVM_DEBUG(dbgs() << "ArgPromotion of " << *Arg << " failed: " << "accessed as both " << *Part.Ty << " and " << *Ty << " at offset " << Off << "\n"); return false; } // If this instruction is not guaranteed to execute, and we haven't seen a // load or store at this offset before (or it had lower alignment), then we // need to remember that requirement. // Note that skipping instructions of previously seen offsets is only // correct because we only allow a single type for a given offset, which // also means that the number of accessed bytes will be the same. if (!GuaranteedToExecute && (OffsetNotSeenBefore || Part.Alignment < I->getAlign())) { // We won't be able to prove dereferenceability for negative offsets. if (Off < 0) return false; // If the offset is not aligned, an aligned base pointer won't help. if (!isAligned(I->getAlign(), Off)) return false; NeededDerefBytes = std::max(NeededDerefBytes, Off + Size.getFixedValue()); NeededAlign = std::max(NeededAlign, I->getAlign()); } Part.Alignment = std::max(Part.Alignment, I->getAlign()); return true; }; // Look for loads and stores that are guaranteed to execute on entry. for (Instruction &I : Arg->getParent()->getEntryBlock()) { std::optional Res{}; if (LoadInst *LI = dyn_cast(&I)) Res = HandleEndUser(LI, LI->getType(), /* GuaranteedToExecute */ true); else if (StoreInst *SI = dyn_cast(&I)) Res = HandleEndUser(SI, SI->getValueOperand()->getType(), /* GuaranteedToExecute */ true); if (Res && !*Res) return false; if (!isGuaranteedToTransferExecutionToSuccessor(&I)) break; } // Now look at all loads of the argument. Remember the load instructions // for the aliasing check below. SmallVector Worklist; SmallPtrSet Visited; SmallVector Loads; auto AppendUses = [&](const Value *V) { for (const Use &U : V->uses()) if (Visited.insert(&U).second) Worklist.push_back(&U); }; AppendUses(Arg); while (!Worklist.empty()) { const Use *U = Worklist.pop_back_val(); Value *V = U->getUser(); if (isa(V)) { AppendUses(V); continue; } if (auto *GEP = dyn_cast(V)) { if (!GEP->hasAllConstantIndices()) return false; AppendUses(V); continue; } if (auto *LI = dyn_cast(V)) { if (!*HandleEndUser(LI, LI->getType(), /* GuaranteedToExecute */ false)) return false; Loads.push_back(LI); continue; } // Stores are allowed for byval arguments auto *SI = dyn_cast(V); if (AreStoresAllowed && SI && U->getOperandNo() == StoreInst::getPointerOperandIndex()) { if (!*HandleEndUser(SI, SI->getValueOperand()->getType(), /* GuaranteedToExecute */ false)) return false; continue; // Only stores TO the argument is allowed, all the other stores are // unknown users } // Unknown user. LLVM_DEBUG(dbgs() << "ArgPromotion of " << *Arg << " failed: " << "unknown user " << *V << "\n"); return false; } if (NeededDerefBytes || NeededAlign > 1) { // Try to prove a required deref / aligned requirement. if (!allCallersPassValidPointerForArgument(Arg, NeededAlign, NeededDerefBytes)) { LLVM_DEBUG(dbgs() << "ArgPromotion of " << *Arg << " failed: " << "not dereferenceable or aligned\n"); return false; } } if (ArgParts.empty()) return true; // No users, this is a dead argument. // Sort parts by offset. append_range(ArgPartsVec, ArgParts); sort(ArgPartsVec, llvm::less_first()); // Make sure the parts are non-overlapping. int64_t Offset = ArgPartsVec[0].first; for (const auto &Pair : ArgPartsVec) { if (Pair.first < Offset) return false; // Overlap with previous part. Offset = Pair.first + DL.getTypeStoreSize(Pair.second.Ty); } // If store instructions are allowed, the path from the entry of the function // to each load may be not free of instructions that potentially invalidate // the load, and this is an admissible situation. if (AreStoresAllowed) return true; // Okay, now we know that the argument is only used by load instructions, and // it is safe to unconditionally perform all of them. Use alias analysis to // check to see if the pointer is guaranteed to not be modified from entry of // the function to each of the load instructions. // Because there could be several/many load instructions, remember which // blocks we know to be transparent to the load. df_iterator_default_set TranspBlocks; for (LoadInst *Load : Loads) { // Check to see if the load is invalidated from the start of the block to // the load itself. BasicBlock *BB = Load->getParent(); MemoryLocation Loc = MemoryLocation::get(Load); if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod)) return false; // Pointer is invalidated! // Now check every path from the entry block to the load for transparency. // To do this, we perform a depth first search on the inverse CFG from the // loading block. for (BasicBlock *P : predecessors(BB)) { for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks)) if (AAR.canBasicBlockModify(*TranspBB, Loc)) return false; } } // If the path from the entry of the function to each load is free of // instructions that potentially invalidate the load, we can make the // transformation! return true; } /// Check if callers and callee agree on how promoted arguments would be /// passed. static bool areTypesABICompatible(ArrayRef Types, const Function &F, const TargetTransformInfo &TTI) { return all_of(F.uses(), [&](const Use &U) { CallBase *CB = dyn_cast(U.getUser()); if (!CB) return false; const Function *Caller = CB->getCaller(); const Function *Callee = CB->getCalledFunction(); return TTI.areTypesABICompatible(Caller, Callee, Types); }); } /// PromoteArguments - This method checks the specified function to see if there /// are any promotable arguments and if it is safe to promote the function (for /// example, all callers are direct). If safe to promote some arguments, it /// calls the DoPromotion method. static Function *promoteArguments(Function *F, FunctionAnalysisManager &FAM, unsigned MaxElements, bool IsRecursive) { // Don't perform argument promotion for naked functions; otherwise we can end // up removing parameters that are seemingly 'not used' as they are referred // to in the assembly. if (F->hasFnAttribute(Attribute::Naked)) return nullptr; // Make sure that it is local to this module. if (!F->hasLocalLinkage()) return nullptr; // Don't promote arguments for variadic functions. Adding, removing, or // changing non-pack parameters can change the classification of pack // parameters. Frontends encode that classification at the call site in the // IR, while in the callee the classification is determined dynamically based // on the number of registers consumed so far. if (F->isVarArg()) return nullptr; // Don't transform functions that receive inallocas, as the transformation may // not be safe depending on calling convention. if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca)) return nullptr; // First check: see if there are any pointer arguments! If not, quick exit. SmallVector PointerArgs; for (Argument &I : F->args()) if (I.getType()->isPointerTy()) PointerArgs.push_back(&I); if (PointerArgs.empty()) return nullptr; // Second check: make sure that all callers are direct callers. We can't // transform functions that have indirect callers. Also see if the function // is self-recursive. for (Use &U : F->uses()) { CallBase *CB = dyn_cast(U.getUser()); // Must be a direct call. if (CB == nullptr || !CB->isCallee(&U) || CB->getFunctionType() != F->getFunctionType()) return nullptr; // Can't change signature of musttail callee if (CB->isMustTailCall()) return nullptr; if (CB->getFunction() == F) IsRecursive = true; } // Can't change signature of musttail caller // FIXME: Support promoting whole chain of musttail functions for (BasicBlock &BB : *F) if (BB.getTerminatingMustTailCall()) return nullptr; const DataLayout &DL = F->getParent()->getDataLayout(); auto &AAR = FAM.getResult(*F); const auto &TTI = FAM.getResult(*F); // Check to see which arguments are promotable. If an argument is promotable, // add it to ArgsToPromote. DenseMap> ArgsToPromote; unsigned NumArgsAfterPromote = F->getFunctionType()->getNumParams(); for (Argument *PtrArg : PointerArgs) { // Replace sret attribute with noalias. This reduces register pressure by // avoiding a register copy. if (PtrArg->hasStructRetAttr()) { unsigned ArgNo = PtrArg->getArgNo(); F->removeParamAttr(ArgNo, Attribute::StructRet); F->addParamAttr(ArgNo, Attribute::NoAlias); for (Use &U : F->uses()) { CallBase &CB = cast(*U.getUser()); CB.removeParamAttr(ArgNo, Attribute::StructRet); CB.addParamAttr(ArgNo, Attribute::NoAlias); } } // If we can promote the pointer to its value. SmallVector ArgParts; if (findArgParts(PtrArg, DL, AAR, MaxElements, IsRecursive, ArgParts)) { SmallVector Types; for (const auto &Pair : ArgParts) Types.push_back(Pair.second.Ty); if (areTypesABICompatible(Types, *F, TTI)) { NumArgsAfterPromote += ArgParts.size() - 1; ArgsToPromote.insert({PtrArg, std::move(ArgParts)}); } } } // No promotable pointer arguments. if (ArgsToPromote.empty()) return nullptr; if (NumArgsAfterPromote > TTI.getMaxNumArgs()) return nullptr; return doPromotion(F, FAM, ArgsToPromote); } PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG, CGSCCUpdateResult &UR) { bool Changed = false, LocalChange; // Iterate until we stop promoting from this SCC. do { LocalChange = false; FunctionAnalysisManager &FAM = AM.getResult(C, CG).getManager(); bool IsRecursive = C.size() > 1; for (LazyCallGraph::Node &N : C) { Function &OldF = N.getFunction(); Function *NewF = promoteArguments(&OldF, FAM, MaxElements, IsRecursive); if (!NewF) continue; LocalChange = true; // Directly substitute the functions in the call graph. Note that this // requires the old function to be completely dead and completely // replaced by the new function. It does no call graph updates, it merely // swaps out the particular function mapped to a particular node in the // graph. C.getOuterRefSCC().replaceNodeFunction(N, *NewF); FAM.clear(OldF, OldF.getName()); OldF.eraseFromParent(); PreservedAnalyses FuncPA; FuncPA.preserveSet(); for (auto *U : NewF->users()) { auto *UserF = cast(U)->getFunction(); FAM.invalidate(*UserF, FuncPA); } } Changed |= LocalChange; } while (LocalChange); if (!Changed) return PreservedAnalyses::all(); PreservedAnalyses PA; // We've cleared out analyses for deleted functions. PA.preserve(); // We've manually invalidated analyses for functions we've modified. PA.preserveSet>(); return PA; }