.\" $NetBSD: bridge.4,v 1.5 2004/01/31 20:14:11 jdc Exp $ .\" .\" Copyright 2001 Wasabi Systems, Inc. .\" All rights reserved. .\" .\" Written by Jason R. Thorpe for Wasabi Systems, Inc. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 3. All advertising materials mentioning features or use of this software .\" must display the following acknowledgement: .\" This product includes software developed for the NetBSD Project by .\" Wasabi Systems, Inc. .\" 4. The name of Wasabi Systems, Inc. may not be used to endorse .\" or promote products derived from this software without specific prior .\" written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED .\" TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR .\" PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC .\" BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR .\" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF .\" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS .\" INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN .\" CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) .\" ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE .\" POSSIBILITY OF SUCH DAMAGE. .\" .\" $FreeBSD$ .\" .Dd January 20, 2007 .Dt IF_BRIDGE 4 .Os .Sh NAME .Nm if_bridge .Nd network bridge device .Sh SYNOPSIS To compile this driver into the kernel, place the following line in your kernel configuration file: .Bd -ragged -offset indent .Cd "device if_bridge" .Ed .Pp Alternatively, to load the driver as a module at boot time, place the following lines in .Xr loader.conf 5 : .Bd -literal -offset indent if_bridge_load="YES" bridgestp_load="YES" .Ed .Sh DESCRIPTION The .Nm driver creates a logical link between two or more IEEE 802 networks that use the same (or .Dq "similar enough" ) framing format. For example, it is possible to bridge Ethernet and 802.11 networks together, but it is not possible to bridge Ethernet and Token Ring together. .Pp Each .Nm interface is created at runtime using interface cloning. This is most easily done with the .Xr ifconfig 8 .Cm create command or using the .Va cloned_interfaces variable in .Xr rc.conf 5 . .Pp The .Nm interface randomly chooses a link (MAC) address in the range reserved for locally administered addresses when it is created. The address can be changed by assigning the desired link address using .Xr ifconfig 8 . .Pp A bridge can be used to provide several services, such as a simple 802.11-to-Ethernet bridge for wireless hosts, and traffic isolation. .Pp A bridge works like a hub, forwarding traffic from one interface to another. Multicast and broadcast packets are always forwarded to all interfaces that are part of the bridge. For unicast traffic, the bridge learns which MAC addresses are associated with which interfaces and will forward the traffic selectively. .Pp All the bridged member interfaces need to be up in order to pass network traffic. These can be enabled using .Xr ifconfig 8 or .Va ifconfig_ Ns Ao Ar interface Ac Ns Li ="up" in .Xr rc.conf 5 . .Pp The MTU of the first member interface to be added is used as the bridge MTU. All additional members are required to have exactly the same value. .Pp The TXCSUM capability is disabled for any interface added to the bridge, and it is restored when the interface is removed again. .Pp The bridge supports .Dq monitor mode , where the packets are discarded after .Xr bpf 4 processing, and are not processed or forwarded further. This can be used to multiplex the input of two or more interfaces into a single .Xr bpf 4 stream. This is useful for reconstructing the traffic for network taps that transmit the RX/TX signals out through two separate interfaces. .Sh SPANNING TREE The .Nm driver implements the Rapid Spanning Tree Protocol (RSTP or 802.1w) with backwards compatibility with the legacy Spanning Tree Protocol (STP). Spanning Tree is used to detect and remove loops in a network topology. .Pp RSTP provides faster spanning tree convergence than legacy STP, the protocol will exchange information with neighbouring switches to quickly transition to forwarding without creating loops. .Pp The code will default to RSTP mode but will downgrade any port connected to a legacy STP network so is fully backward compatible. A bridge can be forced to operate in STP mode without rapid state transitions via the .Va proto command in .Xr ifconfig 8 . .Pp The bridge can log STP port changes to .Xr syslog 3 by enabling the .Va net.link.bridge.log_stp variable using .Xr sysctl 8 . .Pp .Sh PACKET FILTERING Packet filtering can be used with any firewall package that hooks in via the .Xr pfil 9 framework. When filtering is enabled, bridged packets will pass through the filter inbound on the originating interface, on the bridge interface and outbound on the appropriate interfaces. Either stage can be disabled. The filtering behaviour can be controlled using .Xr sysctl 8 : .Bl -tag -width ".Va net.link.bridge.pfil_onlyip" .It Va net.link.bridge.pfil_onlyip Controls the handling of non-IP packets which are not passed to .Xr pfil 9 . Set to .Li 1 to only allow IP packets to pass (subject to firewall rules), set to .Li 0 to unconditionally pass all non-IP Ethernet frames. .It Va net.link.bridge.pfil_member Set to .Li 1 to enable filtering on the incoming and outgoing member interfaces, set to .Li 0 to disable it. .It Va net.link.bridge.pfil_bridge Set to .Li 1 to enable filtering on the bridge interface, set to .Li 0 to disable it. .It Va net.link.bridge.ipfw Set to .Li 1 to enable layer2 filtering with .Xr ipfirewall 4 , set to .Li 0 to disable it. This needs to be enabled for .Xr dummynet 4 support. When .Va ipfw is enabled, .Va pfil_bridge and .Va pfil_member will be disabled so that IPFW is not run twice; these can be re-enabled if desired. .It Va net.link.bridge.ipfw_arp Set to .Li 1 to enable layer2 ARP filtering with .Xr ipfirewall 4 , set to .Li 0 to disable it. Requires .Va ipfw to be enabled. .El .Pp ARP and REVARP packets are forwarded without being filtered and others that are not IP nor IPv6 packets are not forwarded when .Va pfil_onlyip is enabled. IPFW can filter Ethernet types using .Cm mac-type so all packets are passed to the filter for processing. .Pp Note that packets to and from the bridging host will be seen by the filter on the interface with the appropriate address configured as well as on the interface on which the packet arrives or departs. .Sh EXAMPLES The following when placed in the file .Pa /etc/rc.conf will cause a bridge called .Dq Li bridge0 to be created, and will add the interfaces .Dq Li ath0 and .Dq Li fxp0 to the bridge, and then enable packet forwarding. Such a configuration could be used to implement a simple 802.11-to-Ethernet bridge (assuming the 802.11 interface is in ad-hoc mode). .Bd -literal -offset indent cloned_interfaces="bridge0" ifconfig_bridge0="addm ath0 addm fxp0 up" .Ed .Pp For the bridge to forward packets all member interfaces and the bridge need to be up. The above example would also require: .Bd -literal -offset indent ifconfig_ath0="up ssid my_ap mode 11g mediaopt hostap" ifconfig_fxp0="up" .Ed .Pp Consider a system with two 4-port Ethernet boards. The following will cause a bridge consisting of all 8 ports with Rapid Spanning Tree enabled to be created: .Bd -literal -offset indent ifconfig bridge0 create ifconfig bridge0 \e addm fxp0 stp fxp0 \e addm fxp1 stp fxp1 \e addm fxp2 stp fxp2 \e addm fxp3 stp fxp3 \e addm fxp4 stp fxp4 \e addm fxp5 stp fxp5 \e addm fxp6 stp fxp6 \e addm fxp7 stp fxp7 \e up .Ed .Pp The bridge can be used as a regular host interface at the same time as bridging between its member ports. In this example, the bridge connects em0 and em1, and will receive its IP address through DHCP: .Bd -literal -offset indent cloned_interfaces="bridge0" ifconfig_bridge0="addm em0 addm em1 DHCP" ifconfig_em0="up" ifconfig_em1="up" .Ed .Pp The bridge can tunnel Ethernet across an IP internet using the EtherIP protocol. This can be combined with .Xr ipsec 4 to provide an encrypted connection. Create a .Xr gif 4 interface and set the local and remote IP addresses for the tunnel, these are reversed on the remote bridge. .Bd -literal -offset indent ifconfig gif0 create ifconfig gif0 tunnel 1.2.3.4 5.6.7.8 up ifconfig bridge0 create ifconfig bridge0 addm fxp0 addm gif0 up .Ed .Sh SEE ALSO .Xr gif 4 , .Xr ipf 4 , .Xr ipfw 4 , .Xr pf 4 , .Xr ifconfig 8 .Sh HISTORY The .Nm driver first appeared in .Fx 6.0 . .Sh AUTHORS .An -nosplit The .Nm bridge driver was originally written by .An Jason L. Wright .Aq jason@thought.net as part of an undergraduate independent study at the University of North Carolina at Greensboro. .Pp This version of the .Nm driver has been heavily modified from the original version by .An Jason R. Thorpe .Aq thorpej@wasabisystems.com . .Pp Rapid Spanning Tree Protocol (RSTP) support was added by .An Andrew Thompson .Aq thompsa@FreeBSD.org . .Sh BUGS The .Nm driver currently supports only Ethernet and Ethernet-like (e.g., 802.11) network devices, with exactly the same interface MTU size as the bridge device. .Pp Only wireless interfaces in hostap mode can be bridged due to the 802.11 framing format, bridging a wireless client is not supported yet.