.\" .\" Copyright (c) 2010-2011 The FreeBSD Foundation .\" All rights reserved. .\" .\" This documentation was written at the Centre for Advanced Internet .\" Architectures, Swinburne University of Technology, Melbourne, Australia by .\" David Hayes and Lawrence Stewart under sponsorship from the FreeBSD .\" Foundation. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" .\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR .\" ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" $FreeBSD$ .\" .Dd August 6, 2019 .Dt MOD_CC 4 .Os .Sh NAME .Nm mod_cc .Nd Modular congestion control .Sh DESCRIPTION The modular congestion control framework allows the TCP implementation to dynamically change the congestion control algorithm used by new and existing connections. Algorithms are identified by a unique .Xr ascii 7 name. Algorithm modules can be compiled into the kernel or loaded as kernel modules using the .Xr kld 4 facility. .Pp The default algorithm is NewReno, and all connections use the default unless explicitly overridden using the .Dv TCP_CONGESTION socket option (see .Xr tcp 4 for details). The default can be changed using a .Xr sysctl 3 MIB variable detailed in the .Sx MIB Variables section below. .Pp Algorithm specific parameters can be set or queried using the .Dv TCP_CCALGOOPT socket option (see .Xr tcp 4 for details). Callers must pass a pointer to an algorithm specific data, and specify its size. .Pp Unloading a congestion control module will fail if it is used as a default by any Vnet. When unloading a module, the Vnet default is used to switch a connection to an alternate congestion control. Note that the new congestion control module may fail to initialize its internal memory, if so it will fail the module unload. If this occurs often times retrying the unload will succeed since the temporary memory shortage as the new CC module malloc's memory, that prevented the switch is often transient. .Sh MIB Variables The framework exposes the following variables in the .Va net.inet.tcp.cc branch of the .Xr sysctl 3 MIB: .Bl -tag -width ".Va abe_frlossreduce" .It Va available Read-only list of currently available congestion control algorithms by name. .It Va algorithm Returns the current default congestion control algorithm when read, and changes the default when set. When attempting to change the default algorithm, this variable should be set to one of the names listed by the .Va net.inet.tcp.cc.available MIB variable. .It Va abe Enable support for RFC 8511, which alters the window decrease factor applied to the congestion window in response to an ECN congestion signal. Refer to individual congestion control man pages to determine if they implement support for ABE and for configuration details. .It Va abe_frlossreduce If non-zero, apply standard beta instead of ABE-beta during ECN-signalled congestion recovery episodes if loss also needs to be repaired. .El .Pp Each congestion control module may also expose other MIB variables to control their behaviour. .Sh Kernel Configuration .Pp All of the available congestion control modules may also be loaded via kernel configutation options. A kernel configuration is required to have at least one congestion control algorithm built into it via kernel option and a system default specified. Compilation of the kernel will fail if these two conditions are not met. .Sh Kernel Configuration Options The framework exposes the following kernel configuration options. .Bl -tag -width ".Va CC_NEWRENO" .It Va CC_NEWRENO This directive loads the newreno congestion control algorithm and is included in GENERIC by default. .It Va CC_CUBIC This directive loads the cubic congestion control algorithm. .It Va CC_VEGAS This directive loads the vegas congestion control algorithm, note that this algorithm also requires the TCP_HHOOK option as well. .It Va CC_CDG This directive loads the cdg congestion control algorithm, note that this algorithm also requires the TCP_HHOOK option as well. .It Va CC_DCTCP This directive loads the dctcp congestion control algorithm. .It Va CC_HD This directive loads the hd congestion control algorithm, note that this algorithm also requires the TCP_HHOOK option as well. .It Va CC_CHD This directive loads the chd congestion control algorithm, note that this algorithm also requires the TCP_HHOOK option as well. .It Va CC_HTCP This directive loads the htcp congestion control algorithm. .It Va CC_DEFAULT This directive specifies the string that represents the name of the system default algorithm, the GENERIC kernel defaults this to newreno. .El .Sh SEE ALSO .Xr cc_cdg 4 , .Xr cc_chd 4 , .Xr cc_cubic 4 , .Xr cc_dctcp 4 , .Xr cc_hd 4 , .Xr cc_htcp 4 , .Xr cc_newreno 4 , .Xr cc_vegas 4 , .Xr tcp 4 , .Xr config 5 , .Xr config 8 , .Xr mod_cc 9 .Sh ACKNOWLEDGEMENTS Development and testing of this software were made possible in part by grants from the FreeBSD Foundation and Cisco University Research Program Fund at Community Foundation Silicon Valley. .Sh HISTORY The .Nm modular congestion control framework first appeared in .Fx 9.0 . .Pp The framework was first released in 2007 by James Healy and Lawrence Stewart whilst working on the NewTCP research project at Swinburne University of Technology's Centre for Advanced Internet Architectures, Melbourne, Australia, which was made possible in part by a grant from the Cisco University Research Program Fund at Community Foundation Silicon Valley. More details are available at: .Pp http://caia.swin.edu.au/urp/newtcp/ .Sh AUTHORS .An -nosplit The .Nm facility was written by .An Lawrence Stewart Aq Mt lstewart@FreeBSD.org , .An James Healy Aq Mt jimmy@deefa.com and .An David Hayes Aq Mt david.hayes@ieee.org . .Pp This manual page was written by .An David Hayes Aq Mt david.hayes@ieee.org and .An Lawrence Stewart Aq Mt lstewart@FreeBSD.org .