//===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "ObjectFileELF.h" #include #include #include #include "lldb/Core/ArchSpec.h" #include "lldb/Core/DataBuffer.h" #include "lldb/Core/Error.h" #include "lldb/Core/FileSpecList.h" #include "lldb/Core/Log.h" #include "lldb/Core/Module.h" #include "lldb/Core/ModuleSpec.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/Section.h" #include "lldb/Core/Stream.h" #include "lldb/Core/Timer.h" #include "lldb/Symbol/DWARFCallFrameInfo.h" #include "lldb/Symbol/SymbolContext.h" #include "lldb/Target/SectionLoadList.h" #include "lldb/Target/Target.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/ARMBuildAttributes.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MipsABIFlags.h" #define CASE_AND_STREAM(s, def, width) \ case def: \ s->Printf("%-*s", width, #def); \ break; using namespace lldb; using namespace lldb_private; using namespace elf; using namespace llvm::ELF; namespace { // ELF note owner definitions const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; const char *const LLDB_NT_OWNER_GNU = "GNU"; const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; const char *const LLDB_NT_OWNER_CSR = "csr"; const char *const LLDB_NT_OWNER_ANDROID = "Android"; const char *const LLDB_NT_OWNER_CORE = "CORE"; const char *const LLDB_NT_OWNER_LINUX = "LINUX"; // ELF note type definitions const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; const elf_word LLDB_NT_GNU_ABI_SIZE = 16; const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; // GNU ABI note OS constants const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; // LLDB_NT_OWNER_CORE and LLDB_NT_OWNER_LINUX note contants #define NT_PRSTATUS 1 #define NT_PRFPREG 2 #define NT_PRPSINFO 3 #define NT_TASKSTRUCT 4 #define NT_AUXV 6 #define NT_SIGINFO 0x53494749 #define NT_FILE 0x46494c45 #define NT_PRXFPREG 0x46e62b7f #define NT_PPC_VMX 0x100 #define NT_PPC_SPE 0x101 #define NT_PPC_VSX 0x102 #define NT_386_TLS 0x200 #define NT_386_IOPERM 0x201 #define NT_X86_XSTATE 0x202 #define NT_S390_HIGH_GPRS 0x300 #define NT_S390_TIMER 0x301 #define NT_S390_TODCMP 0x302 #define NT_S390_TODPREG 0x303 #define NT_S390_CTRS 0x304 #define NT_S390_PREFIX 0x305 #define NT_S390_LAST_BREAK 0x306 #define NT_S390_SYSTEM_CALL 0x307 #define NT_S390_TDB 0x308 #define NT_S390_VXRS_LOW 0x309 #define NT_S390_VXRS_HIGH 0x30a #define NT_ARM_VFP 0x400 #define NT_ARM_TLS 0x401 #define NT_ARM_HW_BREAK 0x402 #define NT_ARM_HW_WATCH 0x403 #define NT_ARM_SYSTEM_CALL 0x404 #define NT_METAG_CBUF 0x500 #define NT_METAG_RPIPE 0x501 #define NT_METAG_TLS 0x502 //===----------------------------------------------------------------------===// /// @class ELFRelocation /// @brief Generic wrapper for ELFRel and ELFRela. /// /// This helper class allows us to parse both ELFRel and ELFRela relocation /// entries in a generic manner. class ELFRelocation { public: /// Constructs an ELFRelocation entry with a personality as given by @p /// type. /// /// @param type Either DT_REL or DT_RELA. Any other value is invalid. ELFRelocation(unsigned type); ~ELFRelocation(); bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); static unsigned RelocType32(const ELFRelocation &rel); static unsigned RelocType64(const ELFRelocation &rel); static unsigned RelocSymbol32(const ELFRelocation &rel); static unsigned RelocSymbol64(const ELFRelocation &rel); static unsigned RelocOffset32(const ELFRelocation &rel); static unsigned RelocOffset64(const ELFRelocation &rel); static unsigned RelocAddend32(const ELFRelocation &rel); static unsigned RelocAddend64(const ELFRelocation &rel); private: typedef llvm::PointerUnion RelocUnion; RelocUnion reloc; }; ELFRelocation::ELFRelocation(unsigned type) { if (type == DT_REL || type == SHT_REL) reloc = new ELFRel(); else if (type == DT_RELA || type == SHT_RELA) reloc = new ELFRela(); else { assert(false && "unexpected relocation type"); reloc = static_cast(NULL); } } ELFRelocation::~ELFRelocation() { if (reloc.is()) delete reloc.get(); else delete reloc.get(); } bool ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset) { if (reloc.is()) return reloc.get()->Parse(data, offset); else return reloc.get()->Parse(data, offset); } unsigned ELFRelocation::RelocType32(const ELFRelocation &rel) { if (rel.reloc.is()) return ELFRel::RelocType32(*rel.reloc.get()); else return ELFRela::RelocType32(*rel.reloc.get()); } unsigned ELFRelocation::RelocType64(const ELFRelocation &rel) { if (rel.reloc.is()) return ELFRel::RelocType64(*rel.reloc.get()); else return ELFRela::RelocType64(*rel.reloc.get()); } unsigned ELFRelocation::RelocSymbol32(const ELFRelocation &rel) { if (rel.reloc.is()) return ELFRel::RelocSymbol32(*rel.reloc.get()); else return ELFRela::RelocSymbol32(*rel.reloc.get()); } unsigned ELFRelocation::RelocSymbol64(const ELFRelocation &rel) { if (rel.reloc.is()) return ELFRel::RelocSymbol64(*rel.reloc.get()); else return ELFRela::RelocSymbol64(*rel.reloc.get()); } unsigned ELFRelocation::RelocOffset32(const ELFRelocation &rel) { if (rel.reloc.is()) return rel.reloc.get()->r_offset; else return rel.reloc.get()->r_offset; } unsigned ELFRelocation::RelocOffset64(const ELFRelocation &rel) { if (rel.reloc.is()) return rel.reloc.get()->r_offset; else return rel.reloc.get()->r_offset; } unsigned ELFRelocation::RelocAddend32(const ELFRelocation &rel) { if (rel.reloc.is()) return 0; else return rel.reloc.get()->r_addend; } unsigned ELFRelocation::RelocAddend64(const ELFRelocation &rel) { if (rel.reloc.is()) return 0; else return rel.reloc.get()->r_addend; } } // end anonymous namespace bool ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) { // Read all fields. if (data.GetU32(offset, &n_namesz, 3) == NULL) return false; // The name field is required to be nul-terminated, and n_namesz // includes the terminating nul in observed implementations (contrary // to the ELF-64 spec). A special case is needed for cores generated // by some older Linux versions, which write a note named "CORE" // without a nul terminator and n_namesz = 4. if (n_namesz == 4) { char buf[4]; if (data.ExtractBytes(*offset, 4, data.GetByteOrder(), buf) != 4) return false; if (strncmp(buf, "CORE", 4) == 0) { n_name = "CORE"; *offset += 4; return true; } } const char *cstr = data.GetCStr(offset, llvm::alignTo(n_namesz, 4)); if (cstr == NULL) { Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS)); if (log) log->Printf("Failed to parse note name lacking nul terminator"); return false; } n_name = cstr; return true; } static uint32_t kalimbaVariantFromElfFlags(const elf::elf_word e_flags) { const uint32_t dsp_rev = e_flags & 0xFF; uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE; switch (dsp_rev) { // TODO(mg11) Support more variants case 10: kal_arch_variant = llvm::Triple::KalimbaSubArch_v3; break; case 14: kal_arch_variant = llvm::Triple::KalimbaSubArch_v4; break; case 17: case 20: kal_arch_variant = llvm::Triple::KalimbaSubArch_v5; break; default: break; } return kal_arch_variant; } static uint32_t mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian) { const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH; uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown; switch (mips_arch) { case llvm::ELF::EF_MIPS_ARCH_1: case llvm::ELF::EF_MIPS_ARCH_2: case llvm::ELF::EF_MIPS_ARCH_32: return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32; case llvm::ELF::EF_MIPS_ARCH_32R2: return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2; case llvm::ELF::EF_MIPS_ARCH_32R6: return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6; case llvm::ELF::EF_MIPS_ARCH_3: case llvm::ELF::EF_MIPS_ARCH_4: case llvm::ELF::EF_MIPS_ARCH_5: case llvm::ELF::EF_MIPS_ARCH_64: return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64; case llvm::ELF::EF_MIPS_ARCH_64R2: return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2; case llvm::ELF::EF_MIPS_ARCH_64R6: return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6; default: break; } return arch_variant; } static uint32_t subTypeFromElfHeader(const elf::ELFHeader &header) { if (header.e_machine == llvm::ELF::EM_MIPS) return mipsVariantFromElfFlags(header.e_flags, header.e_ident[EI_DATA]); return llvm::ELF::EM_CSR_KALIMBA == header.e_machine ? kalimbaVariantFromElfFlags(header.e_flags) : LLDB_INVALID_CPUTYPE; } //! The kalimba toolchain identifies a code section as being //! one with the SHT_PROGBITS set in the section sh_type and the top //! bit in the 32-bit address field set. static lldb::SectionType kalimbaSectionType(const elf::ELFHeader &header, const elf::ELFSectionHeader §_hdr) { if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) { return eSectionTypeOther; } if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) { return eSectionTypeZeroFill; } if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) { const lldb::addr_t KAL_CODE_BIT = 1 << 31; return KAL_CODE_BIT & sect_hdr.sh_addr ? eSectionTypeCode : eSectionTypeData; } return eSectionTypeOther; } // Arbitrary constant used as UUID prefix for core files. const uint32_t ObjectFileELF::g_core_uuid_magic(0xE210C); //------------------------------------------------------------------ // Static methods. //------------------------------------------------------------------ void ObjectFileELF::Initialize() { PluginManager::RegisterPlugin(GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance, CreateMemoryInstance, GetModuleSpecifications); } void ObjectFileELF::Terminate() { PluginManager::UnregisterPlugin(CreateInstance); } lldb_private::ConstString ObjectFileELF::GetPluginNameStatic() { static ConstString g_name("elf"); return g_name; } const char *ObjectFileELF::GetPluginDescriptionStatic() { return "ELF object file reader."; } ObjectFile *ObjectFileELF::CreateInstance(const lldb::ModuleSP &module_sp, DataBufferSP &data_sp, lldb::offset_t data_offset, const lldb_private::FileSpec *file, lldb::offset_t file_offset, lldb::offset_t length) { if (!data_sp) { data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); data_offset = 0; } if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) { const uint8_t *magic = data_sp->GetBytes() + data_offset; if (ELFHeader::MagicBytesMatch(magic)) { // Update the data to contain the entire file if it doesn't already if (data_sp->GetByteSize() < length) { data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); data_offset = 0; magic = data_sp->GetBytes(); } unsigned address_size = ELFHeader::AddressSizeInBytes(magic); if (address_size == 4 || address_size == 8) { std::unique_ptr objfile_ap(new ObjectFileELF( module_sp, data_sp, data_offset, file, file_offset, length)); ArchSpec spec; if (objfile_ap->GetArchitecture(spec) && objfile_ap->SetModulesArchitecture(spec)) return objfile_ap.release(); } } } return NULL; } ObjectFile *ObjectFileELF::CreateMemoryInstance( const lldb::ModuleSP &module_sp, DataBufferSP &data_sp, const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) { if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) { const uint8_t *magic = data_sp->GetBytes(); if (ELFHeader::MagicBytesMatch(magic)) { unsigned address_size = ELFHeader::AddressSizeInBytes(magic); if (address_size == 4 || address_size == 8) { std::auto_ptr objfile_ap( new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); ArchSpec spec; if (objfile_ap->GetArchitecture(spec) && objfile_ap->SetModulesArchitecture(spec)) return objfile_ap.release(); } } } return NULL; } bool ObjectFileELF::MagicBytesMatch(DataBufferSP &data_sp, lldb::addr_t data_offset, lldb::addr_t data_length) { if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) { const uint8_t *magic = data_sp->GetBytes() + data_offset; return ELFHeader::MagicBytesMatch(magic); } return false; } /* * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c * * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or * code or tables extracted from it, as desired without restriction. */ static uint32_t calc_crc32(uint32_t crc, const void *buf, size_t size) { static const uint32_t g_crc32_tab[] = { 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d}; const uint8_t *p = (const uint8_t *)buf; crc = crc ^ ~0U; while (size--) crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); return crc ^ ~0U; } static uint32_t calc_gnu_debuglink_crc32(const void *buf, size_t size) { return calc_crc32(0U, buf, size); } uint32_t ObjectFileELF::CalculateELFNotesSegmentsCRC32( const ProgramHeaderColl &program_headers, DataExtractor &object_data) { typedef ProgramHeaderCollConstIter Iter; uint32_t core_notes_crc = 0; for (Iter I = program_headers.begin(); I != program_headers.end(); ++I) { if (I->p_type == llvm::ELF::PT_NOTE) { const elf_off ph_offset = I->p_offset; const size_t ph_size = I->p_filesz; DataExtractor segment_data; if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) { // The ELF program header contained incorrect data, // probably corefile is incomplete or corrupted. break; } core_notes_crc = calc_crc32(core_notes_crc, segment_data.GetDataStart(), segment_data.GetByteSize()); } } return core_notes_crc; } static const char *OSABIAsCString(unsigned char osabi_byte) { #define _MAKE_OSABI_CASE(x) \ case x: \ return #x switch (osabi_byte) { _MAKE_OSABI_CASE(ELFOSABI_NONE); _MAKE_OSABI_CASE(ELFOSABI_HPUX); _MAKE_OSABI_CASE(ELFOSABI_NETBSD); _MAKE_OSABI_CASE(ELFOSABI_GNU); _MAKE_OSABI_CASE(ELFOSABI_HURD); _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); _MAKE_OSABI_CASE(ELFOSABI_AIX); _MAKE_OSABI_CASE(ELFOSABI_IRIX); _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); _MAKE_OSABI_CASE(ELFOSABI_TRU64); _MAKE_OSABI_CASE(ELFOSABI_MODESTO); _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); _MAKE_OSABI_CASE(ELFOSABI_NSK); _MAKE_OSABI_CASE(ELFOSABI_AROS); _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); _MAKE_OSABI_CASE(ELFOSABI_ARM); _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); default: return ""; } #undef _MAKE_OSABI_CASE } // // WARNING : This function is being deprecated // It's functionality has moved to ArchSpec::SetArchitecture // This function is only being kept to validate the move. // // TODO : Remove this function static bool GetOsFromOSABI(unsigned char osabi_byte, llvm::Triple::OSType &ostype) { switch (osabi_byte) { case ELFOSABI_AIX: ostype = llvm::Triple::OSType::AIX; break; case ELFOSABI_FREEBSD: ostype = llvm::Triple::OSType::FreeBSD; break; case ELFOSABI_GNU: ostype = llvm::Triple::OSType::Linux; break; case ELFOSABI_NETBSD: ostype = llvm::Triple::OSType::NetBSD; break; case ELFOSABI_OPENBSD: ostype = llvm::Triple::OSType::OpenBSD; break; case ELFOSABI_SOLARIS: ostype = llvm::Triple::OSType::Solaris; break; default: ostype = llvm::Triple::OSType::UnknownOS; } return ostype != llvm::Triple::OSType::UnknownOS; } size_t ObjectFileELF::GetModuleSpecifications( const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp, lldb::offset_t data_offset, lldb::offset_t file_offset, lldb::offset_t length, lldb_private::ModuleSpecList &specs) { Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); const size_t initial_count = specs.GetSize(); if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { DataExtractor data; data.SetData(data_sp); elf::ELFHeader header; if (header.Parse(data, &data_offset)) { if (data_sp) { ModuleSpec spec(file); const uint32_t sub_type = subTypeFromElfHeader(header); spec.GetArchitecture().SetArchitecture( eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); if (spec.GetArchitecture().IsValid()) { llvm::Triple::OSType ostype; llvm::Triple::VendorType vendor; llvm::Triple::OSType spec_ostype = spec.GetArchitecture().GetTriple().getOS(); if (log) log->Printf("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath().c_str(), OSABIAsCString(header.e_ident[EI_OSABI])); // SetArchitecture should have set the vendor to unknown vendor = spec.GetArchitecture().GetTriple().getVendor(); assert(vendor == llvm::Triple::UnknownVendor); // // Validate it is ok to remove GetOsFromOSABI GetOsFromOSABI(header.e_ident[EI_OSABI], ostype); assert(spec_ostype == ostype); if (spec_ostype != llvm::Triple::OSType::UnknownOS) { if (log) log->Printf("ObjectFileELF::%s file '%s' set ELF module OS type " "from ELF header OSABI.", __FUNCTION__, file.GetPath().c_str()); } // Try to get the UUID from the section list. Usually that's at the // end, so // map the file in if we don't have it already. size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize; if (section_header_end > data_sp->GetByteSize()) { data_sp = file.MemoryMapFileContentsIfLocal(file_offset, section_header_end); data.SetData(data_sp); } uint32_t gnu_debuglink_crc = 0; std::string gnu_debuglink_file; SectionHeaderColl section_headers; lldb_private::UUID &uuid = spec.GetUUID(); using namespace std::placeholders; const SetDataFunction set_data = std::bind(&ObjectFileELF::SetData, std::cref(data), _1, _2, _3); GetSectionHeaderInfo(section_headers, set_data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture()); llvm::Triple &spec_triple = spec.GetArchitecture().GetTriple(); if (log) log->Printf("ObjectFileELF::%s file '%s' module set to triple: %s " "(architecture %s)", __FUNCTION__, file.GetPath().c_str(), spec_triple.getTriple().c_str(), spec.GetArchitecture().GetArchitectureName()); if (!uuid.IsValid()) { uint32_t core_notes_crc = 0; if (!gnu_debuglink_crc) { lldb_private::Timer scoped_timer( LLVM_PRETTY_FUNCTION, "Calculating module crc32 %s with size %" PRIu64 " KiB", file.GetLastPathComponent().AsCString(), (file.GetByteSize() - file_offset) / 1024); // For core files - which usually don't happen to have a // gnu_debuglink, // and are pretty bulky - calculating whole contents crc32 would // be too much of luxury. // Thus we will need to fallback to something simpler. if (header.e_type == llvm::ELF::ET_CORE) { size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize; if (program_headers_end > data_sp->GetByteSize()) { data_sp = file.MemoryMapFileContentsIfLocal( file_offset, program_headers_end); data.SetData(data_sp); } ProgramHeaderColl program_headers; GetProgramHeaderInfo(program_headers, set_data, header); size_t segment_data_end = 0; for (ProgramHeaderCollConstIter I = program_headers.begin(); I != program_headers.end(); ++I) { segment_data_end = std::max( I->p_offset + I->p_filesz, segment_data_end); } if (segment_data_end > data_sp->GetByteSize()) { data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end); data.SetData(data_sp); } core_notes_crc = CalculateELFNotesSegmentsCRC32(program_headers, data); } else { // Need to map entire file into memory to calculate the crc. data_sp = file.MemoryMapFileContentsIfLocal(file_offset, SIZE_MAX); data.SetData(data_sp); gnu_debuglink_crc = calc_gnu_debuglink_crc32( data.GetDataStart(), data.GetByteSize()); } } if (gnu_debuglink_crc) { // Use 4 bytes of crc from the .gnu_debuglink section. uint32_t uuidt[4] = {gnu_debuglink_crc, 0, 0, 0}; uuid.SetBytes(uuidt, sizeof(uuidt)); } else if (core_notes_crc) { // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make // it look different form // .gnu_debuglink crc followed by 4 bytes of note segments crc. uint32_t uuidt[4] = {g_core_uuid_magic, core_notes_crc, 0, 0}; uuid.SetBytes(uuidt, sizeof(uuidt)); } } specs.Append(spec); } } } } return specs.GetSize() - initial_count; } //------------------------------------------------------------------ // PluginInterface protocol //------------------------------------------------------------------ lldb_private::ConstString ObjectFileELF::GetPluginName() { return GetPluginNameStatic(); } uint32_t ObjectFileELF::GetPluginVersion() { return m_plugin_version; } //------------------------------------------------------------------ // ObjectFile protocol //------------------------------------------------------------------ ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp, DataBufferSP &data_sp, lldb::offset_t data_offset, const FileSpec *file, lldb::offset_t file_offset, lldb::offset_t length) : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0), m_program_headers(), m_section_headers(), m_dynamic_symbols(), m_filespec_ap(), m_entry_point_address(), m_arch_spec() { if (file) m_file = *file; ::memset(&m_header, 0, sizeof(m_header)); } ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp, DataBufferSP &header_data_sp, const lldb::ProcessSP &process_sp, addr_t header_addr) : ObjectFile(module_sp, process_sp, header_addr, header_data_sp), m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0), m_program_headers(), m_section_headers(), m_dynamic_symbols(), m_filespec_ap(), m_entry_point_address(), m_arch_spec() { ::memset(&m_header, 0, sizeof(m_header)); } ObjectFileELF::~ObjectFileELF() {} bool ObjectFileELF::IsExecutable() const { return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); } bool ObjectFileELF::SetLoadAddress(Target &target, lldb::addr_t value, bool value_is_offset) { ModuleSP module_sp = GetModule(); if (module_sp) { size_t num_loaded_sections = 0; SectionList *section_list = GetSectionList(); if (section_list) { if (!value_is_offset) { bool found_offset = false; for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i) { const elf::ELFProgramHeader *header = GetProgramHeaderByIndex(i); if (header == nullptr) continue; if (header->p_type != PT_LOAD || header->p_offset != 0) continue; value = value - header->p_vaddr; found_offset = true; break; } if (!found_offset) return false; } const size_t num_sections = section_list->GetSize(); size_t sect_idx = 0; for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) { // Iterate through the object file sections to find all // of the sections that have SHF_ALLOC in their flag bits. SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx)); if (section_sp && section_sp->Test(SHF_ALLOC)) { lldb::addr_t load_addr = section_sp->GetFileAddress(); // We don't want to update the load address of a section with type // eSectionTypeAbsoluteAddress as they already have the absolute load // address // already specified if (section_sp->GetType() != eSectionTypeAbsoluteAddress) load_addr += value; // On 32-bit systems the load address have to fit into 4 bytes. The // rest of // the bytes are the overflow from the addition. if (GetAddressByteSize() == 4) load_addr &= 0xFFFFFFFF; if (target.GetSectionLoadList().SetSectionLoadAddress(section_sp, load_addr)) ++num_loaded_sections; } } return num_loaded_sections > 0; } } return false; } ByteOrder ObjectFileELF::GetByteOrder() const { if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) return eByteOrderBig; if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) return eByteOrderLittle; return eByteOrderInvalid; } uint32_t ObjectFileELF::GetAddressByteSize() const { return m_data.GetAddressByteSize(); } AddressClass ObjectFileELF::GetAddressClass(addr_t file_addr) { Symtab *symtab = GetSymtab(); if (!symtab) return eAddressClassUnknown; // The address class is determined based on the symtab. Ask it from the object // file what // contains the symtab information. ObjectFile *symtab_objfile = symtab->GetObjectFile(); if (symtab_objfile != nullptr && symtab_objfile != this) return symtab_objfile->GetAddressClass(file_addr); auto res = ObjectFile::GetAddressClass(file_addr); if (res != eAddressClassCode) return res; auto ub = m_address_class_map.upper_bound(file_addr); if (ub == m_address_class_map.begin()) { // No entry in the address class map before the address. Return // default address class for an address in a code section. return eAddressClassCode; } // Move iterator to the address class entry preceding address --ub; return ub->second; } size_t ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) { return std::distance(m_section_headers.begin(), I) + 1u; } size_t ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const { return std::distance(m_section_headers.begin(), I) + 1u; } bool ObjectFileELF::ParseHeader() { lldb::offset_t offset = 0; if (!m_header.Parse(m_data, &offset)) return false; if (!IsInMemory()) return true; // For in memory object files m_data might not contain the full object file. // Try to load it // until the end of the "Section header table" what is at the end of the ELF // file. addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize; if (m_data.GetByteSize() < file_size) { ProcessSP process_sp(m_process_wp.lock()); if (!process_sp) return false; DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size); if (!data_sp) return false; m_data.SetData(data_sp, 0, file_size); } return true; } bool ObjectFileELF::GetUUID(lldb_private::UUID *uuid) { // Need to parse the section list to get the UUIDs, so make sure that's been // done. if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) return false; if (m_uuid.IsValid()) { // We have the full build id uuid. *uuid = m_uuid; return true; } else if (GetType() == ObjectFile::eTypeCoreFile) { uint32_t core_notes_crc = 0; if (!ParseProgramHeaders()) return false; core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); if (core_notes_crc) { // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it // look different form .gnu_debuglink crc - followed by 4 bytes of note // segments crc. uint32_t uuidt[4] = {g_core_uuid_magic, core_notes_crc, 0, 0}; m_uuid.SetBytes(uuidt, sizeof(uuidt)); } } else { if (!m_gnu_debuglink_crc) m_gnu_debuglink_crc = calc_gnu_debuglink_crc32(m_data.GetDataStart(), m_data.GetByteSize()); if (m_gnu_debuglink_crc) { // Use 4 bytes of crc from the .gnu_debuglink section. uint32_t uuidt[4] = {m_gnu_debuglink_crc, 0, 0, 0}; m_uuid.SetBytes(uuidt, sizeof(uuidt)); } } if (m_uuid.IsValid()) { *uuid = m_uuid; return true; } return false; } lldb_private::FileSpecList ObjectFileELF::GetDebugSymbolFilePaths() { FileSpecList file_spec_list; if (!m_gnu_debuglink_file.empty()) { FileSpec file_spec(m_gnu_debuglink_file, false); file_spec_list.Append(file_spec); } return file_spec_list; } uint32_t ObjectFileELF::GetDependentModules(FileSpecList &files) { size_t num_modules = ParseDependentModules(); uint32_t num_specs = 0; for (unsigned i = 0; i < num_modules; ++i) { if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) num_specs++; } return num_specs; } Address ObjectFileELF::GetImageInfoAddress(Target *target) { if (!ParseDynamicSymbols()) return Address(); SectionList *section_list = GetSectionList(); if (!section_list) return Address(); // Find the SHT_DYNAMIC (.dynamic) section. SectionSP dynsym_section_sp( section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)); if (!dynsym_section_sp) return Address(); assert(dynsym_section_sp->GetObjectFile() == this); user_id_t dynsym_id = dynsym_section_sp->GetID(); const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); if (!dynsym_hdr) return Address(); for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) { ELFDynamic &symbol = m_dynamic_symbols[i]; if (symbol.d_tag == DT_DEBUG) { // Compute the offset as the number of previous entries plus the // size of d_tag. addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); return Address(dynsym_section_sp, offset); } // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP // exists in non-PIE. else if ((symbol.d_tag == DT_MIPS_RLD_MAP || symbol.d_tag == DT_MIPS_RLD_MAP_REL) && target) { addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); if (dyn_base == LLDB_INVALID_ADDRESS) return Address(); Error error; if (symbol.d_tag == DT_MIPS_RLD_MAP) { // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer. Address addr; if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr)) return addr; } if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) { // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer, // relative to the address of the tag. uint64_t rel_offset; rel_offset = target->ReadUnsignedIntegerFromMemory( dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error); if (error.Success() && rel_offset != UINT64_MAX) { Address addr; addr_t debug_ptr_address = dyn_base + (offset - GetAddressByteSize()) + rel_offset; addr.SetOffset(debug_ptr_address); return addr; } } } } return Address(); } lldb_private::Address ObjectFileELF::GetEntryPointAddress() { if (m_entry_point_address.IsValid()) return m_entry_point_address; if (!ParseHeader() || !IsExecutable()) return m_entry_point_address; SectionList *section_list = GetSectionList(); addr_t offset = m_header.e_entry; if (!section_list) m_entry_point_address.SetOffset(offset); else m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); return m_entry_point_address; } //---------------------------------------------------------------------- // ParseDependentModules //---------------------------------------------------------------------- size_t ObjectFileELF::ParseDependentModules() { if (m_filespec_ap.get()) return m_filespec_ap->GetSize(); m_filespec_ap.reset(new FileSpecList()); if (!ParseSectionHeaders()) return 0; SectionList *section_list = GetSectionList(); if (!section_list) return 0; // Find the SHT_DYNAMIC section. Section *dynsym = section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true) .get(); if (!dynsym) return 0; assert(dynsym->GetObjectFile() == this); const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex(dynsym->GetID()); if (!header) return 0; // sh_link: section header index of string table used by entries in the // section. Section *dynstr = section_list->FindSectionByID(header->sh_link + 1).get(); if (!dynstr) return 0; DataExtractor dynsym_data; DataExtractor dynstr_data; if (ReadSectionData(dynsym, dynsym_data) && ReadSectionData(dynstr, dynstr_data)) { ELFDynamic symbol; const lldb::offset_t section_size = dynsym_data.GetByteSize(); lldb::offset_t offset = 0; // The only type of entries we are concerned with are tagged DT_NEEDED, // yielding the name of a required library. while (offset < section_size) { if (!symbol.Parse(dynsym_data, &offset)) break; if (symbol.d_tag != DT_NEEDED) continue; uint32_t str_index = static_cast(symbol.d_val); const char *lib_name = dynstr_data.PeekCStr(str_index); m_filespec_ap->Append(FileSpec(lib_name, true)); } } return m_filespec_ap->GetSize(); } //---------------------------------------------------------------------- // GetProgramHeaderInfo //---------------------------------------------------------------------- size_t ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, const SetDataFunction &set_data, const ELFHeader &header) { // We have already parsed the program headers if (!program_headers.empty()) return program_headers.size(); // If there are no program headers to read we are done. if (header.e_phnum == 0) return 0; program_headers.resize(header.e_phnum); if (program_headers.size() != header.e_phnum) return 0; const size_t ph_size = header.e_phnum * header.e_phentsize; const elf_off ph_offset = header.e_phoff; DataExtractor data; if (set_data(data, ph_offset, ph_size) != ph_size) return 0; uint32_t idx; lldb::offset_t offset; for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) { if (program_headers[idx].Parse(data, &offset) == false) break; } if (idx < program_headers.size()) program_headers.resize(idx); return program_headers.size(); } //---------------------------------------------------------------------- // ParseProgramHeaders //---------------------------------------------------------------------- size_t ObjectFileELF::ParseProgramHeaders() { using namespace std::placeholders; return GetProgramHeaderInfo( m_program_headers, std::bind(&ObjectFileELF::SetDataWithReadMemoryFallback, this, _1, _2, _3), m_header); } lldb_private::Error ObjectFileELF::RefineModuleDetailsFromNote(lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid) { Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); Error error; lldb::offset_t offset = 0; while (true) { // Parse the note header. If this fails, bail out. const lldb::offset_t note_offset = offset; ELFNote note = ELFNote(); if (!note.Parse(data, &offset)) { // We're done. return error; } if (log) log->Printf("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str(), note.n_type); // Process FreeBSD ELF notes. if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) { // Pull out the min version info. uint32_t version_info; if (data.GetU32(&offset, &version_info, 1) == nullptr) { error.SetErrorString("failed to read FreeBSD ABI note payload"); return error; } // Convert the version info into a major/minor number. const uint32_t version_major = version_info / 100000; const uint32_t version_minor = (version_info / 1000) % 100; char os_name[32]; snprintf(os_name, sizeof(os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor); // Set the elf OS version to FreeBSD. Also clear the vendor. arch_spec.GetTriple().setOSName(os_name); arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); if (log) log->Printf("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast(version_info % 1000)); } // Process GNU ELF notes. else if (note.n_name == LLDB_NT_OWNER_GNU) { switch (note.n_type) { case LLDB_NT_GNU_ABI_TAG: if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) { // Pull out the min OS version supporting the ABI. uint32_t version_info[4]; if (data.GetU32(&offset, &version_info[0], note.n_descsz / 4) == nullptr) { error.SetErrorString("failed to read GNU ABI note payload"); return error; } // Set the OS per the OS field. switch (version_info[0]) { case LLDB_NT_GNU_ABI_OS_LINUX: arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); arch_spec.GetTriple().setVendor( llvm::Triple::VendorType::UnknownVendor); if (log) log->Printf( "ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); // FIXME we have the minimal version number, we could be propagating // that. version_info[1] = OS Major, version_info[2] = OS Minor, // version_info[3] = Revision. break; case LLDB_NT_GNU_ABI_OS_HURD: arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); arch_spec.GetTriple().setVendor( llvm::Triple::VendorType::UnknownVendor); if (log) log->Printf("ObjectFileELF::%s detected Hurd (unsupported), min " "version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); break; case LLDB_NT_GNU_ABI_OS_SOLARIS: arch_spec.GetTriple().setOS(llvm::Triple::OSType::Solaris); arch_spec.GetTriple().setVendor( llvm::Triple::VendorType::UnknownVendor); if (log) log->Printf( "ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); break; default: if (log) log->Printf( "ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]); break; } } break; case LLDB_NT_GNU_BUILD_ID_TAG: // Only bother processing this if we don't already have the uuid set. if (!uuid.IsValid()) { // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a // build-id of a different // length. Accept it as long as it's at least 4 bytes as it will be // better than our own crc32. if (note.n_descsz >= 4 && note.n_descsz <= 20) { uint8_t uuidbuf[20]; if (data.GetU8(&offset, &uuidbuf, note.n_descsz) == nullptr) { error.SetErrorString("failed to read GNU_BUILD_ID note payload"); return error; } // Save the build id as the UUID for the module. uuid.SetBytes(uuidbuf, note.n_descsz); } } break; } } // Process NetBSD ELF notes. else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) { // Pull out the min version info. uint32_t version_info; if (data.GetU32(&offset, &version_info, 1) == nullptr) { error.SetErrorString("failed to read NetBSD ABI note payload"); return error; } // Set the elf OS version to NetBSD. Also clear the vendor. arch_spec.GetTriple().setOS(llvm::Triple::OSType::NetBSD); arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); if (log) log->Printf( "ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info); } // Process CSR kalimba notes else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && (note.n_name == LLDB_NT_OWNER_CSR)) { arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); // TODO At some point the description string could be processed. // It could provide a steer towards the kalimba variant which // this ELF targets. if (note.n_descsz) { const char *cstr = data.GetCStr(&offset, llvm::alignTo(note.n_descsz, 4)); (void)cstr; } } else if (note.n_name == LLDB_NT_OWNER_ANDROID) { arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); arch_spec.GetTriple().setEnvironment( llvm::Triple::EnvironmentType::Android); } else if (note.n_name == LLDB_NT_OWNER_LINUX) { // This is sometimes found in core files and usually contains extended // register info arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); } else if (note.n_name == LLDB_NT_OWNER_CORE) { // Parse the NT_FILE to look for stuff in paths to shared libraries // As the contents look like this in a 64 bit ELF core file: // count = 0x000000000000000a (10) // page_size = 0x0000000000001000 (4096) // Index start end file_ofs path // ===== ------------------ ------------------ ------------------ // ------------------------------------- // [ 0] 0x0000000000400000 0x0000000000401000 0x0000000000000000 // /tmp/a.out // [ 1] 0x0000000000600000 0x0000000000601000 0x0000000000000000 // /tmp/a.out // [ 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 // /tmp/a.out // [ 3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000 // /lib/x86_64-linux-gnu/libc-2.19.so // [ 4] 0x00007fa79cba8000 0x00007fa79cda7000 0x00000000000001bb // /lib/x86_64-linux-gnu/libc-2.19.so // [ 5] 0x00007fa79cda7000 0x00007fa79cdab000 0x00000000000001ba // /lib/x86_64-linux-gnu/libc-2.19.so // [ 6] 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be // /lib/x86_64-linux-gnu/libc-2.19.so // [ 7] 0x00007fa79cdb2000 0x00007fa79cdd5000 0x0000000000000000 // /lib/x86_64-linux-gnu/ld-2.19.so // [ 8] 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 // /lib/x86_64-linux-gnu/ld-2.19.so // [ 9] 0x00007fa79cfd5000 0x00007fa79cfd6000 0x0000000000000023 // /lib/x86_64-linux-gnu/ld-2.19.so // In the 32 bit ELFs the count, page_size, start, end, file_ofs are // uint32_t // For reference: see readelf source code (in binutils). if (note.n_type == NT_FILE) { uint64_t count = data.GetAddress(&offset); const char *cstr; data.GetAddress(&offset); // Skip page size offset += count * 3 * data.GetAddressByteSize(); // Skip all start/end/file_ofs for (size_t i = 0; i < count; ++i) { cstr = data.GetCStr(&offset); if (cstr == nullptr) { error.SetErrorStringWithFormat("ObjectFileELF::%s trying to read " "at an offset after the end " "(GetCStr returned nullptr)", __FUNCTION__); return error; } llvm::StringRef path(cstr); if (path.contains("/lib/x86_64-linux-gnu") || path.contains("/lib/i386-linux-gnu")) { arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); break; } } } } // Calculate the offset of the next note just in case "offset" has been used // to poke at the contents of the note data offset = note_offset + note.GetByteSize(); } return error; } void ObjectFileELF::ParseARMAttributes(DataExtractor &data, uint64_t length, ArchSpec &arch_spec) { lldb::offset_t Offset = 0; uint8_t FormatVersion = data.GetU8(&Offset); if (FormatVersion != llvm::ARMBuildAttrs::Format_Version) return; Offset = Offset + sizeof(uint32_t); // Section Length llvm::StringRef VendorName = data.GetCStr(&Offset); if (VendorName != "aeabi") return; if (arch_spec.GetTriple().getEnvironment() == llvm::Triple::UnknownEnvironment) arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); while (Offset < length) { uint8_t Tag = data.GetU8(&Offset); uint32_t Size = data.GetU32(&Offset); if (Tag != llvm::ARMBuildAttrs::File || Size == 0) continue; while (Offset < length) { uint64_t Tag = data.GetULEB128(&Offset); switch (Tag) { default: if (Tag < 32) data.GetULEB128(&Offset); else if (Tag % 2 == 0) data.GetULEB128(&Offset); else data.GetCStr(&Offset); break; case llvm::ARMBuildAttrs::CPU_raw_name: case llvm::ARMBuildAttrs::CPU_name: data.GetCStr(&Offset); break; case llvm::ARMBuildAttrs::ABI_VFP_args: { uint64_t VFPArgs = data.GetULEB128(&Offset); if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) { if (arch_spec.GetTriple().getEnvironment() == llvm::Triple::UnknownEnvironment || arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF) arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float); } else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) { if (arch_spec.GetTriple().getEnvironment() == llvm::Triple::UnknownEnvironment || arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI) arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF); arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float); } break; } } } } } //---------------------------------------------------------------------- // GetSectionHeaderInfo //---------------------------------------------------------------------- size_t ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, const SetDataFunction &set_data, const elf::ELFHeader &header, lldb_private::UUID &uuid, std::string &gnu_debuglink_file, uint32_t &gnu_debuglink_crc, ArchSpec &arch_spec) { // Don't reparse the section headers if we already did that. if (!section_headers.empty()) return section_headers.size(); // Only initialize the arch_spec to okay defaults if they're not already set. // We'll refine this with note data as we parse the notes. if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) { llvm::Triple::OSType ostype; llvm::Triple::OSType spec_ostype; const uint32_t sub_type = subTypeFromElfHeader(header); arch_spec.SetArchitecture(eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); // Validate if it is ok to remove GetOsFromOSABI. // Note, that now the OS is determined based on EI_OSABI flag and // the info extracted from ELF notes (see RefineModuleDetailsFromNote). // However in some cases that still might be not enough: for example // a shared library might not have any notes at all // and have EI_OSABI flag set to System V, // as result the OS will be set to UnknownOS. GetOsFromOSABI(header.e_ident[EI_OSABI], ostype); spec_ostype = arch_spec.GetTriple().getOS(); assert(spec_ostype == ostype); } if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el) { switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) { case llvm::ELF::EF_MIPS_MICROMIPS: arch_spec.SetFlags(ArchSpec::eMIPSAse_micromips); break; case llvm::ELF::EF_MIPS_ARCH_ASE_M16: arch_spec.SetFlags(ArchSpec::eMIPSAse_mips16); break; case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX: arch_spec.SetFlags(ArchSpec::eMIPSAse_mdmx); break; default: break; } } if (arch_spec.GetMachine() == llvm::Triple::arm || arch_spec.GetMachine() == llvm::Triple::thumb) { if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT) arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float); else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT) arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float); } // If there are no section headers we are done. if (header.e_shnum == 0) return 0; Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); section_headers.resize(header.e_shnum); if (section_headers.size() != header.e_shnum) return 0; const size_t sh_size = header.e_shnum * header.e_shentsize; const elf_off sh_offset = header.e_shoff; DataExtractor sh_data; if (set_data(sh_data, sh_offset, sh_size) != sh_size) return 0; uint32_t idx; lldb::offset_t offset; for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) { if (section_headers[idx].Parse(sh_data, &offset) == false) break; } if (idx < section_headers.size()) section_headers.resize(idx); const unsigned strtab_idx = header.e_shstrndx; if (strtab_idx && strtab_idx < section_headers.size()) { const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; const size_t byte_size = sheader.sh_size; const Elf64_Off offset = sheader.sh_offset; lldb_private::DataExtractor shstr_data; if (set_data(shstr_data, offset, byte_size) == byte_size) { for (SectionHeaderCollIter I = section_headers.begin(); I != section_headers.end(); ++I) { static ConstString g_sect_name_gnu_debuglink(".gnu_debuglink"); const ELFSectionHeaderInfo &sheader = *I; const uint64_t section_size = sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size; ConstString name(shstr_data.PeekCStr(I->sh_name)); I->section_name = name; if (arch_spec.IsMIPS()) { uint32_t arch_flags = arch_spec.GetFlags(); DataExtractor data; if (sheader.sh_type == SHT_MIPS_ABIFLAGS) { if (section_size && (set_data(data, sheader.sh_offset, section_size) == section_size)) { // MIPS ASE Mask is at offset 12 in MIPS.abiflags section lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0 arch_flags |= data.GetU32(&offset); // The floating point ABI is at offset 7 offset = 7; switch (data.GetU8(&offset)) { case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY: arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_ANY; break; case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE: arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_DOUBLE; break; case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE: arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SINGLE; break; case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT: arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT; break; case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64: arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_OLD_64; break; case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX: arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_XX; break; case llvm::Mips::Val_GNU_MIPS_ABI_FP_64: arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64; break; case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A: arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64A; break; } } } // Settings appropriate ArchSpec ABI Flags switch (header.e_flags & llvm::ELF::EF_MIPS_ABI) { case llvm::ELF::EF_MIPS_ABI_O32: arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32; break; case EF_MIPS_ABI_O64: arch_flags |= lldb_private::ArchSpec::eMIPSABI_O64; break; case EF_MIPS_ABI_EABI32: arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI32; break; case EF_MIPS_ABI_EABI64: arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI64; break; default: // ABI Mask doesn't cover N32 and N64 ABI. if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64) arch_flags |= lldb_private::ArchSpec::eMIPSABI_N64; else if (header.e_flags && llvm::ELF::EF_MIPS_ABI2) arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32; break; } arch_spec.SetFlags(arch_flags); } if (arch_spec.GetMachine() == llvm::Triple::arm || arch_spec.GetMachine() == llvm::Triple::thumb) { DataExtractor data; if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 && set_data(data, sheader.sh_offset, section_size) == section_size) ParseARMAttributes(data, section_size, arch_spec); } if (name == g_sect_name_gnu_debuglink) { DataExtractor data; if (section_size && (set_data(data, sheader.sh_offset, section_size) == section_size)) { lldb::offset_t gnu_debuglink_offset = 0; gnu_debuglink_file = data.GetCStr(&gnu_debuglink_offset); gnu_debuglink_offset = llvm::alignTo(gnu_debuglink_offset, 4); data.GetU32(&gnu_debuglink_offset, &gnu_debuglink_crc, 1); } } // Process ELF note section entries. bool is_note_header = (sheader.sh_type == SHT_NOTE); // The section header ".note.android.ident" is stored as a // PROGBITS type header but it is actually a note header. static ConstString g_sect_name_android_ident(".note.android.ident"); if (!is_note_header && name == g_sect_name_android_ident) is_note_header = true; if (is_note_header) { // Allow notes to refine module info. DataExtractor data; if (section_size && (set_data(data, sheader.sh_offset, section_size) == section_size)) { Error error = RefineModuleDetailsFromNote(data, arch_spec, uuid); if (error.Fail()) { if (log) log->Printf("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString()); } } } } // Make any unknown triple components to be unspecified unknowns. if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor) arch_spec.GetTriple().setVendorName(llvm::StringRef()); if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS) arch_spec.GetTriple().setOSName(llvm::StringRef()); return section_headers.size(); } } section_headers.clear(); return 0; } size_t ObjectFileELF::GetProgramHeaderCount() { return ParseProgramHeaders(); } const elf::ELFProgramHeader * ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id) { if (!id || !ParseProgramHeaders()) return NULL; if (--id < m_program_headers.size()) return &m_program_headers[id]; return NULL; } DataExtractor ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id) { const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id); if (segment_header == NULL) return DataExtractor(); return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz); } std::string ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const { size_t pos = symbol_name.find('@'); return symbol_name.substr(0, pos).str(); } //---------------------------------------------------------------------- // ParseSectionHeaders //---------------------------------------------------------------------- size_t ObjectFileELF::ParseSectionHeaders() { using namespace std::placeholders; return GetSectionHeaderInfo( m_section_headers, std::bind(&ObjectFileELF::SetDataWithReadMemoryFallback, this, _1, _2, _3), m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec); } lldb::offset_t ObjectFileELF::SetData(const lldb_private::DataExtractor &src, lldb_private::DataExtractor &dst, lldb::offset_t offset, lldb::offset_t length) { return dst.SetData(src, offset, length); } lldb::offset_t ObjectFileELF::SetDataWithReadMemoryFallback(lldb_private::DataExtractor &dst, lldb::offset_t offset, lldb::offset_t length) { if (offset + length <= m_data.GetByteSize()) return dst.SetData(m_data, offset, length); const auto process_sp = m_process_wp.lock(); if (process_sp != nullptr) { addr_t file_size = offset + length; DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size); if (!data_sp) return false; m_data.SetData(data_sp, 0, file_size); } return dst.SetData(m_data, offset, length); } const ObjectFileELF::ELFSectionHeaderInfo * ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) { if (!id || !ParseSectionHeaders()) return NULL; if (--id < m_section_headers.size()) return &m_section_headers[id]; return NULL; } lldb::user_id_t ObjectFileELF::GetSectionIndexByName(const char *name) { if (!name || !name[0] || !ParseSectionHeaders()) return 0; for (size_t i = 1; i < m_section_headers.size(); ++i) if (m_section_headers[i].section_name == ConstString(name)) return i; return 0; } void ObjectFileELF::CreateSections(SectionList &unified_section_list) { if (!m_sections_ap.get() && ParseSectionHeaders()) { m_sections_ap.reset(new SectionList()); for (SectionHeaderCollIter I = m_section_headers.begin(); I != m_section_headers.end(); ++I) { const ELFSectionHeaderInfo &header = *I; ConstString &name = I->section_name; const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; static ConstString g_sect_name_text(".text"); static ConstString g_sect_name_data(".data"); static ConstString g_sect_name_bss(".bss"); static ConstString g_sect_name_tdata(".tdata"); static ConstString g_sect_name_tbss(".tbss"); static ConstString g_sect_name_dwarf_debug_abbrev(".debug_abbrev"); static ConstString g_sect_name_dwarf_debug_addr(".debug_addr"); static ConstString g_sect_name_dwarf_debug_aranges(".debug_aranges"); static ConstString g_sect_name_dwarf_debug_frame(".debug_frame"); static ConstString g_sect_name_dwarf_debug_info(".debug_info"); static ConstString g_sect_name_dwarf_debug_line(".debug_line"); static ConstString g_sect_name_dwarf_debug_loc(".debug_loc"); static ConstString g_sect_name_dwarf_debug_macinfo(".debug_macinfo"); static ConstString g_sect_name_dwarf_debug_macro(".debug_macro"); static ConstString g_sect_name_dwarf_debug_pubnames(".debug_pubnames"); static ConstString g_sect_name_dwarf_debug_pubtypes(".debug_pubtypes"); static ConstString g_sect_name_dwarf_debug_ranges(".debug_ranges"); static ConstString g_sect_name_dwarf_debug_str(".debug_str"); static ConstString g_sect_name_dwarf_debug_str_offsets( ".debug_str_offsets"); static ConstString g_sect_name_dwarf_debug_abbrev_dwo( ".debug_abbrev.dwo"); static ConstString g_sect_name_dwarf_debug_info_dwo(".debug_info.dwo"); static ConstString g_sect_name_dwarf_debug_line_dwo(".debug_line.dwo"); static ConstString g_sect_name_dwarf_debug_macro_dwo(".debug_macro.dwo"); static ConstString g_sect_name_dwarf_debug_loc_dwo(".debug_loc.dwo"); static ConstString g_sect_name_dwarf_debug_str_dwo(".debug_str.dwo"); static ConstString g_sect_name_dwarf_debug_str_offsets_dwo( ".debug_str_offsets.dwo"); static ConstString g_sect_name_eh_frame(".eh_frame"); static ConstString g_sect_name_arm_exidx(".ARM.exidx"); static ConstString g_sect_name_arm_extab(".ARM.extab"); static ConstString g_sect_name_go_symtab(".gosymtab"); SectionType sect_type = eSectionTypeOther; bool is_thread_specific = false; if (name == g_sect_name_text) sect_type = eSectionTypeCode; else if (name == g_sect_name_data) sect_type = eSectionTypeData; else if (name == g_sect_name_bss) sect_type = eSectionTypeZeroFill; else if (name == g_sect_name_tdata) { sect_type = eSectionTypeData; is_thread_specific = true; } else if (name == g_sect_name_tbss) { sect_type = eSectionTypeZeroFill; is_thread_specific = true; } // .debug_abbrev – Abbreviations used in the .debug_info section // .debug_aranges – Lookup table for mapping addresses to compilation // units // .debug_frame – Call frame information // .debug_info – The core DWARF information section // .debug_line – Line number information // .debug_loc – Location lists used in DW_AT_location attributes // .debug_macinfo – Macro information // .debug_pubnames – Lookup table for mapping object and function names to // compilation units // .debug_pubtypes – Lookup table for mapping type names to compilation // units // .debug_ranges – Address ranges used in DW_AT_ranges attributes // .debug_str – String table used in .debug_info // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, // http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html // MISSING? .debug-index - // http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644 // MISSING? .debug_types - Type descriptions from DWARF 4? See // http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo else if (name == g_sect_name_dwarf_debug_abbrev) sect_type = eSectionTypeDWARFDebugAbbrev; else if (name == g_sect_name_dwarf_debug_addr) sect_type = eSectionTypeDWARFDebugAddr; else if (name == g_sect_name_dwarf_debug_aranges) sect_type = eSectionTypeDWARFDebugAranges; else if (name == g_sect_name_dwarf_debug_frame) sect_type = eSectionTypeDWARFDebugFrame; else if (name == g_sect_name_dwarf_debug_info) sect_type = eSectionTypeDWARFDebugInfo; else if (name == g_sect_name_dwarf_debug_line) sect_type = eSectionTypeDWARFDebugLine; else if (name == g_sect_name_dwarf_debug_loc) sect_type = eSectionTypeDWARFDebugLoc; else if (name == g_sect_name_dwarf_debug_macinfo) sect_type = eSectionTypeDWARFDebugMacInfo; else if (name == g_sect_name_dwarf_debug_macro) sect_type = eSectionTypeDWARFDebugMacro; else if (name == g_sect_name_dwarf_debug_pubnames) sect_type = eSectionTypeDWARFDebugPubNames; else if (name == g_sect_name_dwarf_debug_pubtypes) sect_type = eSectionTypeDWARFDebugPubTypes; else if (name == g_sect_name_dwarf_debug_ranges) sect_type = eSectionTypeDWARFDebugRanges; else if (name == g_sect_name_dwarf_debug_str) sect_type = eSectionTypeDWARFDebugStr; else if (name == g_sect_name_dwarf_debug_str_offsets) sect_type = eSectionTypeDWARFDebugStrOffsets; else if (name == g_sect_name_dwarf_debug_abbrev_dwo) sect_type = eSectionTypeDWARFDebugAbbrev; else if (name == g_sect_name_dwarf_debug_info_dwo) sect_type = eSectionTypeDWARFDebugInfo; else if (name == g_sect_name_dwarf_debug_line_dwo) sect_type = eSectionTypeDWARFDebugLine; else if (name == g_sect_name_dwarf_debug_macro_dwo) sect_type = eSectionTypeDWARFDebugMacro; else if (name == g_sect_name_dwarf_debug_loc_dwo) sect_type = eSectionTypeDWARFDebugLoc; else if (name == g_sect_name_dwarf_debug_str_dwo) sect_type = eSectionTypeDWARFDebugStr; else if (name == g_sect_name_dwarf_debug_str_offsets_dwo) sect_type = eSectionTypeDWARFDebugStrOffsets; else if (name == g_sect_name_eh_frame) sect_type = eSectionTypeEHFrame; else if (name == g_sect_name_arm_exidx) sect_type = eSectionTypeARMexidx; else if (name == g_sect_name_arm_extab) sect_type = eSectionTypeARMextab; else if (name == g_sect_name_go_symtab) sect_type = eSectionTypeGoSymtab; const uint32_t permissions = ((header.sh_flags & SHF_ALLOC) ? ePermissionsReadable : 0u) | ((header.sh_flags & SHF_WRITE) ? ePermissionsWritable : 0u) | ((header.sh_flags & SHF_EXECINSTR) ? ePermissionsExecutable : 0u); switch (header.sh_type) { case SHT_SYMTAB: assert(sect_type == eSectionTypeOther); sect_type = eSectionTypeELFSymbolTable; break; case SHT_DYNSYM: assert(sect_type == eSectionTypeOther); sect_type = eSectionTypeELFDynamicSymbols; break; case SHT_RELA: case SHT_REL: assert(sect_type == eSectionTypeOther); sect_type = eSectionTypeELFRelocationEntries; break; case SHT_DYNAMIC: assert(sect_type == eSectionTypeOther); sect_type = eSectionTypeELFDynamicLinkInfo; break; } if (eSectionTypeOther == sect_type) { // the kalimba toolchain assumes that ELF section names are free-form. // It does // support linkscripts which (can) give rise to various arbitrarily // named // sections being "Code" or "Data". sect_type = kalimbaSectionType(m_header, header); } const uint32_t target_bytes_size = (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ? m_arch_spec.GetDataByteSize() : eSectionTypeCode == sect_type ? m_arch_spec.GetCodeByteSize() : 1; elf::elf_xword log2align = (header.sh_addralign == 0) ? 0 : llvm::Log2_64(header.sh_addralign); SectionSP section_sp(new Section( GetModule(), // Module to which this section belongs. this, // ObjectFile to which this section belongs and should read // section data from. SectionIndex(I), // Section ID. name, // Section name. sect_type, // Section type. header.sh_addr, // VM address. vm_size, // VM size in bytes of this section. header.sh_offset, // Offset of this section in the file. file_size, // Size of the section as found in the file. log2align, // Alignment of the section header.sh_flags, // Flags for this section. target_bytes_size)); // Number of host bytes per target byte section_sp->SetPermissions(permissions); if (is_thread_specific) section_sp->SetIsThreadSpecific(is_thread_specific); m_sections_ap->AddSection(section_sp); } } if (m_sections_ap.get()) { if (GetType() == eTypeDebugInfo) { static const SectionType g_sections[] = { eSectionTypeDWARFDebugAbbrev, eSectionTypeDWARFDebugAddr, eSectionTypeDWARFDebugAranges, eSectionTypeDWARFDebugFrame, eSectionTypeDWARFDebugInfo, eSectionTypeDWARFDebugLine, eSectionTypeDWARFDebugLoc, eSectionTypeDWARFDebugMacInfo, eSectionTypeDWARFDebugPubNames, eSectionTypeDWARFDebugPubTypes, eSectionTypeDWARFDebugRanges, eSectionTypeDWARFDebugStr, eSectionTypeDWARFDebugStrOffsets, eSectionTypeELFSymbolTable, }; SectionList *elf_section_list = m_sections_ap.get(); for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx) { SectionType section_type = g_sections[idx]; SectionSP section_sp( elf_section_list->FindSectionByType(section_type, true)); if (section_sp) { SectionSP module_section_sp( unified_section_list.FindSectionByType(section_type, true)); if (module_section_sp) unified_section_list.ReplaceSection(module_section_sp->GetID(), section_sp); else unified_section_list.AddSection(section_sp); } } } else { unified_section_list = *m_sections_ap; } } } // Find the arm/aarch64 mapping symbol character in the given symbol name. // Mapping symbols have the // form of "$[.]*". Additionally we recognize cases when the mapping // symbol prefixed by // an arbitrary string because if a symbol prefix added to each symbol in the // object file with // objcopy then the mapping symbols are also prefixed. static char FindArmAarch64MappingSymbol(const char *symbol_name) { if (!symbol_name) return '\0'; const char *dollar_pos = ::strchr(symbol_name, '$'); if (!dollar_pos || dollar_pos[1] == '\0') return '\0'; if (dollar_pos[2] == '\0' || dollar_pos[2] == '.') return dollar_pos[1]; return '\0'; } #define STO_MIPS_ISA (3 << 6) #define STO_MICROMIPS (2 << 6) #define IS_MICROMIPS(ST_OTHER) (((ST_OTHER)&STO_MIPS_ISA) == STO_MICROMIPS) // private unsigned ObjectFileELF::ParseSymbols(Symtab *symtab, user_id_t start_id, SectionList *section_list, const size_t num_symbols, const DataExtractor &symtab_data, const DataExtractor &strtab_data) { ELFSymbol symbol; lldb::offset_t offset = 0; static ConstString text_section_name(".text"); static ConstString init_section_name(".init"); static ConstString fini_section_name(".fini"); static ConstString ctors_section_name(".ctors"); static ConstString dtors_section_name(".dtors"); static ConstString data_section_name(".data"); static ConstString rodata_section_name(".rodata"); static ConstString rodata1_section_name(".rodata1"); static ConstString data2_section_name(".data1"); static ConstString bss_section_name(".bss"); static ConstString opd_section_name(".opd"); // For ppc64 // On Android the oatdata and the oatexec symbols in the oat and odex files // covers the full // .text section what causes issues with displaying unusable symbol name to // the user and very // slow unwinding speed because the instruction emulation based unwind plans // try to emulate all // instructions in these symbols. Don't add these symbols to the symbol list // as they have no // use for the debugger and they are causing a lot of trouble. // Filtering can't be restricted to Android because this special object file // don't contain the // note section specifying the environment to Android but the custom extension // and file name // makes it highly unlikely that this will collide with anything else. ConstString file_extension = m_file.GetFileNameExtension(); bool skip_oatdata_oatexec = file_extension == ConstString("oat") || file_extension == ConstString("odex"); ArchSpec arch; GetArchitecture(arch); ModuleSP module_sp(GetModule()); SectionList *module_section_list = module_sp ? module_sp->GetSectionList() : nullptr; // Local cache to avoid doing a FindSectionByName for each symbol. The "const // char*" key must // came from a ConstString object so they can be compared by pointer std::unordered_map section_name_to_section; unsigned i; for (i = 0; i < num_symbols; ++i) { if (symbol.Parse(symtab_data, &offset) == false) break; const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); if (!symbol_name) symbol_name = ""; // No need to add non-section symbols that have no names if (symbol.getType() != STT_SECTION && (symbol_name == nullptr || symbol_name[0] == '\0')) continue; // Skipping oatdata and oatexec sections if it is requested. See details // above the // definition of skip_oatdata_oatexec for the reasons. if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0)) continue; SectionSP symbol_section_sp; SymbolType symbol_type = eSymbolTypeInvalid; Elf64_Half section_idx = symbol.st_shndx; switch (section_idx) { case SHN_ABS: symbol_type = eSymbolTypeAbsolute; break; case SHN_UNDEF: symbol_type = eSymbolTypeUndefined; break; default: symbol_section_sp = section_list->GetSectionAtIndex(section_idx); break; } // If a symbol is undefined do not process it further even if it has a STT // type if (symbol_type != eSymbolTypeUndefined) { switch (symbol.getType()) { default: case STT_NOTYPE: // The symbol's type is not specified. break; case STT_OBJECT: // The symbol is associated with a data object, such as a variable, // an array, etc. symbol_type = eSymbolTypeData; break; case STT_FUNC: // The symbol is associated with a function or other executable code. symbol_type = eSymbolTypeCode; break; case STT_SECTION: // The symbol is associated with a section. Symbol table entries of // this type exist primarily for relocation and normally have // STB_LOCAL binding. break; case STT_FILE: // Conventionally, the symbol's name gives the name of the source // file associated with the object file. A file symbol has STB_LOCAL // binding, its section index is SHN_ABS, and it precedes the other // STB_LOCAL symbols for the file, if it is present. symbol_type = eSymbolTypeSourceFile; break; case STT_GNU_IFUNC: // The symbol is associated with an indirect function. The actual // function will be resolved if it is referenced. symbol_type = eSymbolTypeResolver; break; } } if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) { if (symbol_section_sp) { const ConstString §_name = symbol_section_sp->GetName(); if (sect_name == text_section_name || sect_name == init_section_name || sect_name == fini_section_name || sect_name == ctors_section_name || sect_name == dtors_section_name) { symbol_type = eSymbolTypeCode; } else if (sect_name == data_section_name || sect_name == data2_section_name || sect_name == rodata_section_name || sect_name == rodata1_section_name || sect_name == bss_section_name) { symbol_type = eSymbolTypeData; } } } int64_t symbol_value_offset = 0; uint32_t additional_flags = 0; if (arch.IsValid()) { if (arch.GetMachine() == llvm::Triple::arm) { if (symbol.getBinding() == STB_LOCAL) { char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); if (symbol_type == eSymbolTypeCode) { switch (mapping_symbol) { case 'a': // $a[.]* - marks an ARM instruction sequence m_address_class_map[symbol.st_value] = eAddressClassCode; break; case 'b': case 't': // $b[.]* - marks a THUMB BL instruction sequence // $t[.]* - marks a THUMB instruction sequence m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; break; case 'd': // $d[.]* - marks a data item sequence (e.g. lit pool) m_address_class_map[symbol.st_value] = eAddressClassData; break; } } if (mapping_symbol) continue; } } else if (arch.GetMachine() == llvm::Triple::aarch64) { if (symbol.getBinding() == STB_LOCAL) { char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); if (symbol_type == eSymbolTypeCode) { switch (mapping_symbol) { case 'x': // $x[.]* - marks an A64 instruction sequence m_address_class_map[symbol.st_value] = eAddressClassCode; break; case 'd': // $d[.]* - marks a data item sequence (e.g. lit pool) m_address_class_map[symbol.st_value] = eAddressClassData; break; } } if (mapping_symbol) continue; } } if (arch.GetMachine() == llvm::Triple::arm) { if (symbol_type == eSymbolTypeCode) { if (symbol.st_value & 1) { // Subtracting 1 from the address effectively unsets // the low order bit, which results in the address // actually pointing to the beginning of the symbol. // This delta will be used below in conjunction with // symbol.st_value to produce the final symbol_value // that we store in the symtab. symbol_value_offset = -1; m_address_class_map[symbol.st_value ^ 1] = eAddressClassCodeAlternateISA; } else { // This address is ARM m_address_class_map[symbol.st_value] = eAddressClassCode; } } } /* * MIPS: * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for * MIPS). * This allows processor to switch between microMIPS and MIPS without any * need * for special mode-control register. However, apart from .debug_line, * none of * the ELF/DWARF sections set the ISA bit (for symbol or section). Use * st_other * flag to check whether the symbol is microMIPS and then set the address * class * accordingly. */ const llvm::Triple::ArchType llvm_arch = arch.GetMachine(); if (llvm_arch == llvm::Triple::mips || llvm_arch == llvm::Triple::mipsel || llvm_arch == llvm::Triple::mips64 || llvm_arch == llvm::Triple::mips64el) { if (IS_MICROMIPS(symbol.st_other)) m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) { symbol.st_value = symbol.st_value & (~1ull); m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; } else { if (symbol_type == eSymbolTypeCode) m_address_class_map[symbol.st_value] = eAddressClassCode; else if (symbol_type == eSymbolTypeData) m_address_class_map[symbol.st_value] = eAddressClassData; else m_address_class_map[symbol.st_value] = eAddressClassUnknown; } } } // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB // symbols. See above for // more details. uint64_t symbol_value = symbol.st_value + symbol_value_offset; if (symbol_section_sp == nullptr && section_idx == SHN_ABS && symbol.st_size != 0) { // We don't have a section for a symbol with non-zero size. Create a new // section for it // so the address range covered by the symbol is also covered by the // module (represented // through the section list). It is needed so module lookup for the // addresses covered // by this symbol will be successfull. This case happens for absolute // symbols. ConstString fake_section_name(std::string(".absolute.") + symbol_name); symbol_section_sp = std::make_shared
(module_sp, this, SHN_ABS, fake_section_name, eSectionTypeAbsoluteAddress, symbol_value, symbol.st_size, 0, 0, 0, SHF_ALLOC); module_section_list->AddSection(symbol_section_sp); section_list->AddSection(symbol_section_sp); } if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile) symbol_value -= symbol_section_sp->GetFileAddress(); if (symbol_section_sp && module_section_list && module_section_list != section_list) { const ConstString §_name = symbol_section_sp->GetName(); auto section_it = section_name_to_section.find(sect_name.GetCString()); if (section_it == section_name_to_section.end()) section_it = section_name_to_section .emplace(sect_name.GetCString(), module_section_list->FindSectionByName(sect_name)) .first; if (section_it->second && section_it->second->GetFileSize()) symbol_section_sp = section_it->second; } bool is_global = symbol.getBinding() == STB_GLOBAL; uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; bool is_mangled = (symbol_name[0] == '_' && symbol_name[1] == 'Z'); llvm::StringRef symbol_ref(symbol_name); // Symbol names may contain @VERSION suffixes. Find those and strip them // temporarily. size_t version_pos = symbol_ref.find('@'); bool has_suffix = version_pos != llvm::StringRef::npos; llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos); Mangled mangled(ConstString(symbol_bare), is_mangled); // Now append the suffix back to mangled and unmangled names. Only do it if // the // demangling was successful (string is not empty). if (has_suffix) { llvm::StringRef suffix = symbol_ref.substr(version_pos); llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef(); if (!mangled_name.empty()) mangled.SetMangledName(ConstString((mangled_name + suffix).str())); ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown); llvm::StringRef demangled_name = demangled.GetStringRef(); if (!demangled_name.empty()) mangled.SetDemangledName(ConstString((demangled_name + suffix).str())); } // In ELF all symbol should have a valid size but it is not true for some // function symbols // coming from hand written assembly. As none of the function symbol should // have 0 size we // try to calculate the size for these symbols in the symtab with saying // that their original // size is not valid. bool symbol_size_valid = symbol.st_size != 0 || symbol.getType() != STT_FUNC; Symbol dc_symbol( i + start_id, // ID is the original symbol table index. mangled, symbol_type, // Type of this symbol is_global, // Is this globally visible? false, // Is this symbol debug info? false, // Is this symbol a trampoline? false, // Is this symbol artificial? AddressRange(symbol_section_sp, // Section in which this symbol is // defined or null. symbol_value, // Offset in section or symbol value. symbol.st_size), // Size in bytes of this symbol. symbol_size_valid, // Symbol size is valid has_suffix, // Contains linker annotations? flags); // Symbol flags. symtab->AddSymbol(dc_symbol); } return i; } unsigned ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab) { if (symtab->GetObjectFile() != this) { // If the symbol table section is owned by a different object file, have it // do the // parsing. ObjectFileELF *obj_file_elf = static_cast(symtab->GetObjectFile()); return obj_file_elf->ParseSymbolTable(symbol_table, start_id, symtab); } // Get section list for this object file. SectionList *section_list = m_sections_ap.get(); if (!section_list) return 0; user_id_t symtab_id = symtab->GetID(); const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); assert(symtab_hdr->sh_type == SHT_SYMTAB || symtab_hdr->sh_type == SHT_DYNSYM); // sh_link: section header index of associated string table. // Section ID's are ones based. user_id_t strtab_id = symtab_hdr->sh_link + 1; Section *strtab = section_list->FindSectionByID(strtab_id).get(); if (symtab && strtab) { assert(symtab->GetObjectFile() == this); assert(strtab->GetObjectFile() == this); DataExtractor symtab_data; DataExtractor strtab_data; if (ReadSectionData(symtab, symtab_data) && ReadSectionData(strtab, strtab_data)) { size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; return ParseSymbols(symbol_table, start_id, section_list, num_symbols, symtab_data, strtab_data); } } return 0; } size_t ObjectFileELF::ParseDynamicSymbols() { if (m_dynamic_symbols.size()) return m_dynamic_symbols.size(); SectionList *section_list = GetSectionList(); if (!section_list) return 0; // Find the SHT_DYNAMIC section. Section *dynsym = section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true) .get(); if (!dynsym) return 0; assert(dynsym->GetObjectFile() == this); ELFDynamic symbol; DataExtractor dynsym_data; if (ReadSectionData(dynsym, dynsym_data)) { const lldb::offset_t section_size = dynsym_data.GetByteSize(); lldb::offset_t cursor = 0; while (cursor < section_size) { if (!symbol.Parse(dynsym_data, &cursor)) break; m_dynamic_symbols.push_back(symbol); } } return m_dynamic_symbols.size(); } const ELFDynamic *ObjectFileELF::FindDynamicSymbol(unsigned tag) { if (!ParseDynamicSymbols()) return NULL; DynamicSymbolCollIter I = m_dynamic_symbols.begin(); DynamicSymbolCollIter E = m_dynamic_symbols.end(); for (; I != E; ++I) { ELFDynamic *symbol = &*I; if (symbol->d_tag == tag) return symbol; } return NULL; } unsigned ObjectFileELF::PLTRelocationType() { // DT_PLTREL // This member specifies the type of relocation entry to which the // procedure linkage table refers. The d_val member holds DT_REL or // DT_RELA, as appropriate. All relocations in a procedure linkage table // must use the same relocation. const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); if (symbol) return symbol->d_val; return 0; } // Returns the size of the normal plt entries and the offset of the first normal // plt entry. The // 0th entry in the plt table is usually a resolution entry which have different // size in some // architectures then the rest of the plt entries. static std::pair GetPltEntrySizeAndOffset(const ELFSectionHeader *rel_hdr, const ELFSectionHeader *plt_hdr) { const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 // bytes. // So round the entsize up by the alignment if addralign is set. elf_xword plt_entsize = plt_hdr->sh_addralign ? llvm::alignTo(plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize; // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly. // PLT entries relocation code in general requires multiple instruction and // should be greater than 4 bytes in most cases. Try to guess correct size // just in case. if (plt_entsize <= 4) { // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the // size of the plt // entries based on the number of entries and the size of the plt section // with the // assumption that the size of the 0th entry is at least as big as the size // of the normal // entries and it isn't much bigger then that. if (plt_hdr->sh_addralign) plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign; else plt_entsize = plt_hdr->sh_size / (num_relocations + 1); } elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize; return std::make_pair(plt_entsize, plt_offset); } static unsigned ParsePLTRelocations( Symtab *symbol_table, user_id_t start_id, unsigned rel_type, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, const ELFSectionHeader *plt_hdr, const ELFSectionHeader *sym_hdr, const lldb::SectionSP &plt_section_sp, DataExtractor &rel_data, DataExtractor &symtab_data, DataExtractor &strtab_data) { ELFRelocation rel(rel_type); ELFSymbol symbol; lldb::offset_t offset = 0; uint64_t plt_offset, plt_entsize; std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr); const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); reloc_info_fn reloc_type; reloc_info_fn reloc_symbol; if (hdr->Is32Bit()) { reloc_type = ELFRelocation::RelocType32; reloc_symbol = ELFRelocation::RelocSymbol32; } else { reloc_type = ELFRelocation::RelocType64; reloc_symbol = ELFRelocation::RelocSymbol64; } unsigned slot_type = hdr->GetRelocationJumpSlotType(); unsigned i; for (i = 0; i < num_relocations; ++i) { if (rel.Parse(rel_data, &offset) == false) break; if (reloc_type(rel) != slot_type) continue; lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; if (!symbol.Parse(symtab_data, &symbol_offset)) break; const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; uint64_t plt_index = plt_offset + i * plt_entsize; Symbol jump_symbol( i + start_id, // Symbol table index symbol_name, // symbol name. is_mangled, // is the symbol name mangled? eSymbolTypeTrampoline, // Type of this symbol false, // Is this globally visible? false, // Is this symbol debug info? true, // Is this symbol a trampoline? true, // Is this symbol artificial? plt_section_sp, // Section in which this symbol is defined or null. plt_index, // Offset in section or symbol value. plt_entsize, // Size in bytes of this symbol. true, // Size is valid false, // Contains linker annotations? 0); // Symbol flags. symbol_table->AddSymbol(jump_symbol); } return i; } unsigned ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, user_id_t start_id, const ELFSectionHeaderInfo *rel_hdr, user_id_t rel_id) { assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); // The link field points to the associated symbol table. user_id_t symtab_id = rel_hdr->sh_link; // If the link field doesn't point to the appropriate symbol name table then // try to find it by name as some compiler don't fill in the link fields. if (!symtab_id) symtab_id = GetSectionIndexByName(".dynsym"); // Get PLT section. We cannot use rel_hdr->sh_info, since current linkers // point that to the .got.plt or .got section instead of .plt. user_id_t plt_id = GetSectionIndexByName(".plt"); if (!symtab_id || !plt_id) return 0; // Section ID's are ones based; symtab_id++; plt_id++; const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); if (!plt_hdr) return 0; const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); if (!sym_hdr) return 0; SectionList *section_list = m_sections_ap.get(); if (!section_list) return 0; Section *rel_section = section_list->FindSectionByID(rel_id).get(); if (!rel_section) return 0; SectionSP plt_section_sp(section_list->FindSectionByID(plt_id)); if (!plt_section_sp) return 0; Section *symtab = section_list->FindSectionByID(symtab_id).get(); if (!symtab) return 0; // sh_link points to associated string table. Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); if (!strtab) return 0; DataExtractor rel_data; if (!ReadSectionData(rel_section, rel_data)) return 0; DataExtractor symtab_data; if (!ReadSectionData(symtab, symtab_data)) return 0; DataExtractor strtab_data; if (!ReadSectionData(strtab, strtab_data)) return 0; unsigned rel_type = PLTRelocationType(); if (!rel_type) return 0; return ParsePLTRelocations(symbol_table, start_id, rel_type, &m_header, rel_hdr, plt_hdr, sym_hdr, plt_section_sp, rel_data, symtab_data, strtab_data); } unsigned ObjectFileELF::RelocateSection( Symtab *symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, DataExtractor &rel_data, DataExtractor &symtab_data, DataExtractor &debug_data, Section *rel_section) { ELFRelocation rel(rel_hdr->sh_type); lldb::addr_t offset = 0; const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); reloc_info_fn reloc_type; reloc_info_fn reloc_symbol; if (hdr->Is32Bit()) { reloc_type = ELFRelocation::RelocType32; reloc_symbol = ELFRelocation::RelocSymbol32; } else { reloc_type = ELFRelocation::RelocType64; reloc_symbol = ELFRelocation::RelocSymbol64; } for (unsigned i = 0; i < num_relocations; ++i) { if (rel.Parse(rel_data, &offset) == false) break; Symbol *symbol = NULL; if (hdr->Is32Bit()) { switch (reloc_type(rel)) { case R_386_32: case R_386_PC32: default: assert(false && "unexpected relocation type"); } } else { switch (reloc_type(rel)) { case R_X86_64_64: { symbol = symtab->FindSymbolByID(reloc_symbol(rel)); if (symbol) { addr_t value = symbol->GetAddressRef().GetFileAddress(); DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer(); uint64_t *dst = reinterpret_cast( data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel)); *dst = value + ELFRelocation::RelocAddend64(rel); } break; } case R_X86_64_32: case R_X86_64_32S: { symbol = symtab->FindSymbolByID(reloc_symbol(rel)); if (symbol) { addr_t value = symbol->GetAddressRef().GetFileAddress(); value += ELFRelocation::RelocAddend32(rel); assert( (reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) || (reloc_type(rel) == R_X86_64_32S && ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN))); uint32_t truncated_addr = (value & 0xFFFFFFFF); DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer(); uint32_t *dst = reinterpret_cast( data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel)); *dst = truncated_addr; } break; } case R_X86_64_PC32: default: assert(false && "unexpected relocation type"); } } } return 0; } unsigned ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id) { assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); // Parse in the section list if needed. SectionList *section_list = GetSectionList(); if (!section_list) return 0; // Section ID's are ones based. user_id_t symtab_id = rel_hdr->sh_link + 1; user_id_t debug_id = rel_hdr->sh_info + 1; const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); if (!symtab_hdr) return 0; const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); if (!debug_hdr) return 0; Section *rel = section_list->FindSectionByID(rel_id).get(); if (!rel) return 0; Section *symtab = section_list->FindSectionByID(symtab_id).get(); if (!symtab) return 0; Section *debug = section_list->FindSectionByID(debug_id).get(); if (!debug) return 0; DataExtractor rel_data; DataExtractor symtab_data; DataExtractor debug_data; if (ReadSectionData(rel, rel_data) && ReadSectionData(symtab, symtab_data) && ReadSectionData(debug, debug_data)) { RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr, rel_data, symtab_data, debug_data, debug); } return 0; } Symtab *ObjectFileELF::GetSymtab() { ModuleSP module_sp(GetModule()); if (!module_sp) return NULL; // We always want to use the main object file so we (hopefully) only have one // cached copy // of our symtab, dynamic sections, etc. ObjectFile *module_obj_file = module_sp->GetObjectFile(); if (module_obj_file && module_obj_file != this) return module_obj_file->GetSymtab(); if (m_symtab_ap.get() == NULL) { SectionList *section_list = module_sp->GetSectionList(); if (!section_list) return NULL; uint64_t symbol_id = 0; std::lock_guard guard(module_sp->GetMutex()); // Sharable objects and dynamic executables usually have 2 distinct symbol // tables, one named ".symtab", and the other ".dynsym". The dynsym is a // smaller // version of the symtab that only contains global symbols. The information // found // in the dynsym is therefore also found in the symtab, while the reverse is // not // necessarily true. Section *symtab = section_list->FindSectionByType(eSectionTypeELFSymbolTable, true).get(); if (!symtab) { // The symtab section is non-allocable and can be stripped, so if it // doesn't exist // then use the dynsym section which should always be there. symtab = section_list->FindSectionByType(eSectionTypeELFDynamicSymbols, true) .get(); } if (symtab) { m_symtab_ap.reset(new Symtab(symtab->GetObjectFile())); symbol_id += ParseSymbolTable(m_symtab_ap.get(), symbol_id, symtab); } // DT_JMPREL // If present, this entry's d_ptr member holds the address of // relocation // entries associated solely with the procedure linkage table. // Separating // these relocation entries lets the dynamic linker ignore them during // process initialization, if lazy binding is enabled. If this entry is // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must // also be present. const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); if (symbol) { // Synthesize trampoline symbols to help navigate the PLT. addr_t addr = symbol->d_ptr; Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get(); if (reloc_section) { user_id_t reloc_id = reloc_section->GetID(); const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id); assert(reloc_header); if (m_symtab_ap == nullptr) m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile())); ParseTrampolineSymbols(m_symtab_ap.get(), symbol_id, reloc_header, reloc_id); } } DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo(); if (eh_frame) { if (m_symtab_ap == nullptr) m_symtab_ap.reset(new Symtab(this)); ParseUnwindSymbols(m_symtab_ap.get(), eh_frame); } // If we still don't have any symtab then create an empty instance to avoid // do the section // lookup next time. if (m_symtab_ap == nullptr) m_symtab_ap.reset(new Symtab(this)); m_symtab_ap->CalculateSymbolSizes(); } for (SectionHeaderCollIter I = m_section_headers.begin(); I != m_section_headers.end(); ++I) { if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) { if (CalculateType() == eTypeObjectFile) { const char *section_name = I->section_name.AsCString(""); if (strstr(section_name, ".rela.debug") || strstr(section_name, ".rel.debug")) { const ELFSectionHeader &reloc_header = *I; user_id_t reloc_id = SectionIndex(I); RelocateDebugSections(&reloc_header, reloc_id); } } } } return m_symtab_ap.get(); } void ObjectFileELF::ParseUnwindSymbols(Symtab *symbol_table, DWARFCallFrameInfo *eh_frame) { SectionList *section_list = GetSectionList(); if (!section_list) return; // First we save the new symbols into a separate list and add them to the // symbol table after // we colleced all symbols we want to add. This is neccessary because adding a // new symbol // invalidates the internal index of the symtab what causing the next lookup // to be slow because // it have to recalculate the index first. std::vector new_symbols; eh_frame->ForEachFDEEntries([this, symbol_table, section_list, &new_symbols]( lldb::addr_t file_addr, uint32_t size, dw_offset_t) { Symbol *symbol = symbol_table->FindSymbolAtFileAddress(file_addr); if (symbol) { if (!symbol->GetByteSizeIsValid()) { symbol->SetByteSize(size); symbol->SetSizeIsSynthesized(true); } } else { SectionSP section_sp = section_list->FindSectionContainingFileAddress(file_addr); if (section_sp) { addr_t offset = file_addr - section_sp->GetFileAddress(); const char *symbol_name = GetNextSyntheticSymbolName().GetCString(); uint64_t symbol_id = symbol_table->GetNumSymbols(); Symbol eh_symbol( symbol_id, // Symbol table index. symbol_name, // Symbol name. false, // Is the symbol name mangled? eSymbolTypeCode, // Type of this symbol. true, // Is this globally visible? false, // Is this symbol debug info? false, // Is this symbol a trampoline? true, // Is this symbol artificial? section_sp, // Section in which this symbol is defined or null. offset, // Offset in section or symbol value. 0, // Size: Don't specify the size as an FDE can false, // Size is valid: cover multiple symbols. false, // Contains linker annotations? 0); // Symbol flags. new_symbols.push_back(eh_symbol); } } return true; }); for (const Symbol &s : new_symbols) symbol_table->AddSymbol(s); } bool ObjectFileELF::IsStripped() { // TODO: determine this for ELF return false; } //===----------------------------------------------------------------------===// // Dump // // Dump the specifics of the runtime file container (such as any headers // segments, sections, etc). //---------------------------------------------------------------------- void ObjectFileELF::Dump(Stream *s) { ModuleSP module_sp(GetModule()); if (!module_sp) { return; } std::lock_guard guard(module_sp->GetMutex()); s->Printf("%p: ", static_cast(this)); s->Indent(); s->PutCString("ObjectFileELF"); ArchSpec header_arch; GetArchitecture(header_arch); *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; DumpELFHeader(s, m_header); s->EOL(); DumpELFProgramHeaders(s); s->EOL(); DumpELFSectionHeaders(s); s->EOL(); SectionList *section_list = GetSectionList(); if (section_list) section_list->Dump(s, NULL, true, UINT32_MAX); Symtab *symtab = GetSymtab(); if (symtab) symtab->Dump(s, NULL, eSortOrderNone); s->EOL(); DumpDependentModules(s); s->EOL(); } //---------------------------------------------------------------------- // DumpELFHeader // // Dump the ELF header to the specified output stream //---------------------------------------------------------------------- void ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) { s->PutCString("ELF Header\n"); s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]); s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]); s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]); s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); s->Printf("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); s->Printf("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); s->Printf("e_type = 0x%4.4x ", header.e_type); DumpELFHeader_e_type(s, header.e_type); s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); s->Printf("e_version = 0x%8.8x\n", header.e_version); s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); s->Printf("e_flags = 0x%8.8x\n", header.e_flags); s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); s->Printf("e_phnum = 0x%4.4x\n", header.e_phnum); s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); s->Printf("e_shnum = 0x%4.4x\n", header.e_shnum); s->Printf("e_shstrndx = 0x%4.4x\n", header.e_shstrndx); } //---------------------------------------------------------------------- // DumpELFHeader_e_type // // Dump an token value for the ELF header member e_type //---------------------------------------------------------------------- void ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) { switch (e_type) { case ET_NONE: *s << "ET_NONE"; break; case ET_REL: *s << "ET_REL"; break; case ET_EXEC: *s << "ET_EXEC"; break; case ET_DYN: *s << "ET_DYN"; break; case ET_CORE: *s << "ET_CORE"; break; default: break; } } //---------------------------------------------------------------------- // DumpELFHeader_e_ident_EI_DATA // // Dump an token value for the ELF header member e_ident[EI_DATA] //---------------------------------------------------------------------- void ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data) { switch (ei_data) { case ELFDATANONE: *s << "ELFDATANONE"; break; case ELFDATA2LSB: *s << "ELFDATA2LSB - Little Endian"; break; case ELFDATA2MSB: *s << "ELFDATA2MSB - Big Endian"; break; default: break; } } //---------------------------------------------------------------------- // DumpELFProgramHeader // // Dump a single ELF program header to the specified output stream //---------------------------------------------------------------------- void ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph) { DumpELFProgramHeader_p_type(s, ph.p_type); s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr); s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags); DumpELFProgramHeader_p_flags(s, ph.p_flags); s->Printf(") %8.8" PRIx64, ph.p_align); } //---------------------------------------------------------------------- // DumpELFProgramHeader_p_type // // Dump an token value for the ELF program header member p_type which // describes the type of the program header // ---------------------------------------------------------------------- void ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) { const int kStrWidth = 15; switch (p_type) { CASE_AND_STREAM(s, PT_NULL, kStrWidth); CASE_AND_STREAM(s, PT_LOAD, kStrWidth); CASE_AND_STREAM(s, PT_DYNAMIC, kStrWidth); CASE_AND_STREAM(s, PT_INTERP, kStrWidth); CASE_AND_STREAM(s, PT_NOTE, kStrWidth); CASE_AND_STREAM(s, PT_SHLIB, kStrWidth); CASE_AND_STREAM(s, PT_PHDR, kStrWidth); CASE_AND_STREAM(s, PT_TLS, kStrWidth); CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); default: s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); break; } } //---------------------------------------------------------------------- // DumpELFProgramHeader_p_flags // // Dump an token value for the ELF program header member p_flags //---------------------------------------------------------------------- void ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) { *s << ((p_flags & PF_X) ? "PF_X" : " ") << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') << ((p_flags & PF_W) ? "PF_W" : " ") << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') << ((p_flags & PF_R) ? "PF_R" : " "); } //---------------------------------------------------------------------- // DumpELFProgramHeaders // // Dump all of the ELF program header to the specified output stream //---------------------------------------------------------------------- void ObjectFileELF::DumpELFProgramHeaders(Stream *s) { if (!ParseProgramHeaders()) return; s->PutCString("Program Headers\n"); s->PutCString("IDX p_type p_offset p_vaddr p_paddr " "p_filesz p_memsz p_flags p_align\n"); s->PutCString("==== --------------- -------- -------- -------- " "-------- -------- ------------------------- --------\n"); uint32_t idx = 0; for (ProgramHeaderCollConstIter I = m_program_headers.begin(); I != m_program_headers.end(); ++I, ++idx) { s->Printf("[%2u] ", idx); ObjectFileELF::DumpELFProgramHeader(s, *I); s->EOL(); } } //---------------------------------------------------------------------- // DumpELFSectionHeader // // Dump a single ELF section header to the specified output stream //---------------------------------------------------------------------- void ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh) { s->Printf("%8.8x ", sh.sh_name); DumpELFSectionHeader_sh_type(s, sh.sh_type); s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); DumpELFSectionHeader_sh_flags(s, sh.sh_flags); s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size); s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); } //---------------------------------------------------------------------- // DumpELFSectionHeader_sh_type // // Dump an token value for the ELF section header member sh_type which // describes the type of the section //---------------------------------------------------------------------- void ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) { const int kStrWidth = 12; switch (sh_type) { CASE_AND_STREAM(s, SHT_NULL, kStrWidth); CASE_AND_STREAM(s, SHT_PROGBITS, kStrWidth); CASE_AND_STREAM(s, SHT_SYMTAB, kStrWidth); CASE_AND_STREAM(s, SHT_STRTAB, kStrWidth); CASE_AND_STREAM(s, SHT_RELA, kStrWidth); CASE_AND_STREAM(s, SHT_HASH, kStrWidth); CASE_AND_STREAM(s, SHT_DYNAMIC, kStrWidth); CASE_AND_STREAM(s, SHT_NOTE, kStrWidth); CASE_AND_STREAM(s, SHT_NOBITS, kStrWidth); CASE_AND_STREAM(s, SHT_REL, kStrWidth); CASE_AND_STREAM(s, SHT_SHLIB, kStrWidth); CASE_AND_STREAM(s, SHT_DYNSYM, kStrWidth); CASE_AND_STREAM(s, SHT_LOPROC, kStrWidth); CASE_AND_STREAM(s, SHT_HIPROC, kStrWidth); CASE_AND_STREAM(s, SHT_LOUSER, kStrWidth); CASE_AND_STREAM(s, SHT_HIUSER, kStrWidth); default: s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); break; } } //---------------------------------------------------------------------- // DumpELFSectionHeader_sh_flags // // Dump an token value for the ELF section header member sh_flags //---------------------------------------------------------------------- void ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags) { *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); } //---------------------------------------------------------------------- // DumpELFSectionHeaders // // Dump all of the ELF section header to the specified output stream //---------------------------------------------------------------------- void ObjectFileELF::DumpELFSectionHeaders(Stream *s) { if (!ParseSectionHeaders()) return; s->PutCString("Section Headers\n"); s->PutCString("IDX name type flags " "addr offset size link info addralgn " "entsize Name\n"); s->PutCString("==== -------- ------------ -------------------------------- " "-------- -------- -------- -------- -------- -------- " "-------- ====================\n"); uint32_t idx = 0; for (SectionHeaderCollConstIter I = m_section_headers.begin(); I != m_section_headers.end(); ++I, ++idx) { s->Printf("[%2u] ", idx); ObjectFileELF::DumpELFSectionHeader(s, *I); const char *section_name = I->section_name.AsCString(""); if (section_name) *s << ' ' << section_name << "\n"; } } void ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) { size_t num_modules = ParseDependentModules(); if (num_modules > 0) { s->PutCString("Dependent Modules:\n"); for (unsigned i = 0; i < num_modules; ++i) { const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); s->Printf(" %s\n", spec.GetFilename().GetCString()); } } } bool ObjectFileELF::GetArchitecture(ArchSpec &arch) { if (!ParseHeader()) return false; if (m_section_headers.empty()) { // Allow elf notes to be parsed which may affect the detected architecture. ParseSectionHeaders(); } if (CalculateType() == eTypeCoreFile && m_arch_spec.TripleOSIsUnspecifiedUnknown()) { // Core files don't have section headers yet they have PT_NOTE program // headers // that might shed more light on the architecture if (ParseProgramHeaders()) { for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i) { const elf::ELFProgramHeader *header = GetProgramHeaderByIndex(i); if (header && header->p_type == PT_NOTE && header->p_offset != 0 && header->p_filesz > 0) { DataExtractor data; if (data.SetData(m_data, header->p_offset, header->p_filesz) == header->p_filesz) { lldb_private::UUID uuid; RefineModuleDetailsFromNote(data, m_arch_spec, uuid); } } } } } arch = m_arch_spec; return true; } ObjectFile::Type ObjectFileELF::CalculateType() { switch (m_header.e_type) { case llvm::ELF::ET_NONE: // 0 - No file type return eTypeUnknown; case llvm::ELF::ET_REL: // 1 - Relocatable file return eTypeObjectFile; case llvm::ELF::ET_EXEC: // 2 - Executable file return eTypeExecutable; case llvm::ELF::ET_DYN: // 3 - Shared object file return eTypeSharedLibrary; case ET_CORE: // 4 - Core file return eTypeCoreFile; default: break; } return eTypeUnknown; } ObjectFile::Strata ObjectFileELF::CalculateStrata() { switch (m_header.e_type) { case llvm::ELF::ET_NONE: // 0 - No file type return eStrataUnknown; case llvm::ELF::ET_REL: // 1 - Relocatable file return eStrataUnknown; case llvm::ELF::ET_EXEC: // 2 - Executable file // TODO: is there any way to detect that an executable is a kernel // related executable by inspecting the program headers, section // headers, symbols, or any other flag bits??? return eStrataUser; case llvm::ELF::ET_DYN: // 3 - Shared object file // TODO: is there any way to detect that an shared library is a kernel // related executable by inspecting the program headers, section // headers, symbols, or any other flag bits??? return eStrataUnknown; case ET_CORE: // 4 - Core file // TODO: is there any way to detect that an core file is a kernel // related executable by inspecting the program headers, section // headers, symbols, or any other flag bits??? return eStrataUnknown; default: break; } return eStrataUnknown; }