//===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // C Includes // C++ Includes // Other libraries and framework includes #include "llvm/ADT/StringRef.h" // Project includes #include "lldb/Core/ArchSpec.h" #include "lldb/Core/DataBuffer.h" #include "lldb/Core/Debugger.h" #include "lldb/Core/Error.h" #include "lldb/Core/FileSpecList.h" #include "lldb/Core/Log.h" #include "lldb/Core/Module.h" #include "lldb/Core/ModuleSpec.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/RangeMap.h" #include "lldb/Core/Section.h" #include "lldb/Core/StreamFile.h" #include "lldb/Core/StreamString.h" #include "lldb/Core/Timer.h" #include "lldb/Core/UUID.h" #include "lldb/Host/Host.h" #include "lldb/Host/FileSpec.h" #include "lldb/Symbol/DWARFCallFrameInfo.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Target/MemoryRegionInfo.h" #include "lldb/Target/Platform.h" #include "lldb/Target/Process.h" #include "lldb/Target/SectionLoadList.h" #include "lldb/Target/Target.h" #include "lldb/Target/Thread.h" #include "lldb/Target/ThreadList.h" #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h" #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h" #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h" #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h" #include "lldb/Utility/SafeMachO.h" #include "ObjectFileMachO.h" #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) // GetLLDBSharedCacheUUID() needs to call dlsym() #include #endif #ifndef __APPLE__ #include "Utility/UuidCompatibility.h" #endif #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull using namespace lldb; using namespace lldb_private; using namespace llvm::MachO; // Some structure definitions needed for parsing the dyld shared cache files // found on iOS devices. struct lldb_copy_dyld_cache_header_v1 { char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info uint32_t mappingCount; // number of dyld_cache_mapping_info entries uint32_t imagesOffset; uint32_t imagesCount; uint64_t dyldBaseAddress; uint64_t codeSignatureOffset; uint64_t codeSignatureSize; uint64_t slideInfoOffset; uint64_t slideInfoSize; uint64_t localSymbolsOffset; uint64_t localSymbolsSize; uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13 and later }; struct lldb_copy_dyld_cache_mapping_info { uint64_t address; uint64_t size; uint64_t fileOffset; uint32_t maxProt; uint32_t initProt; }; struct lldb_copy_dyld_cache_local_symbols_info { uint32_t nlistOffset; uint32_t nlistCount; uint32_t stringsOffset; uint32_t stringsSize; uint32_t entriesOffset; uint32_t entriesCount; }; struct lldb_copy_dyld_cache_local_symbols_entry { uint32_t dylibOffset; uint32_t nlistStartIndex; uint32_t nlistCount; }; class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 { public: RegisterContextDarwin_x86_64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : RegisterContextDarwin_x86_64 (thread, 0) { SetRegisterDataFrom_LC_THREAD (data); } void InvalidateAllRegisters() override { // Do nothing... registers are always valid... } void SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) { lldb::offset_t offset = 0; SetError (GPRRegSet, Read, -1); SetError (FPURegSet, Read, -1); SetError (EXCRegSet, Read, -1); bool done = false; while (!done) { int flavor = data.GetU32 (&offset); if (flavor == 0) done = true; else { uint32_t i; uint32_t count = data.GetU32 (&offset); switch (flavor) { case GPRRegSet: for (i=0; iGetRegisterInfoByName(name); if (reg_info == NULL) reg_info = reg_ctx->GetRegisterInfoByName(alt_name); if (reg_info) { lldb_private::RegisterValue reg_value; if (reg_ctx->ReadRegister(reg_info, reg_value)) { if (reg_info->byte_size >= reg_byte_size) data.Write(reg_value.GetBytes(), reg_byte_size); else { data.Write(reg_value.GetBytes(), reg_info->byte_size); for (size_t i=0, n = reg_byte_size - reg_info->byte_size; iGetRegisterContext()); if (reg_ctx_sp) { RegisterContext *reg_ctx = reg_ctx_sp.get(); data.PutHex32 (GPRRegSet); // Flavor data.PutHex32 (GPRWordCount); WriteRegister (reg_ctx, "rax", NULL, 8, data); WriteRegister (reg_ctx, "rbx", NULL, 8, data); WriteRegister (reg_ctx, "rcx", NULL, 8, data); WriteRegister (reg_ctx, "rdx", NULL, 8, data); WriteRegister (reg_ctx, "rdi", NULL, 8, data); WriteRegister (reg_ctx, "rsi", NULL, 8, data); WriteRegister (reg_ctx, "rbp", NULL, 8, data); WriteRegister (reg_ctx, "rsp", NULL, 8, data); WriteRegister (reg_ctx, "r8", NULL, 8, data); WriteRegister (reg_ctx, "r9", NULL, 8, data); WriteRegister (reg_ctx, "r10", NULL, 8, data); WriteRegister (reg_ctx, "r11", NULL, 8, data); WriteRegister (reg_ctx, "r12", NULL, 8, data); WriteRegister (reg_ctx, "r13", NULL, 8, data); WriteRegister (reg_ctx, "r14", NULL, 8, data); WriteRegister (reg_ctx, "r15", NULL, 8, data); WriteRegister (reg_ctx, "rip", NULL, 8, data); WriteRegister (reg_ctx, "rflags", NULL, 8, data); WriteRegister (reg_ctx, "cs", NULL, 8, data); WriteRegister (reg_ctx, "fs", NULL, 8, data); WriteRegister (reg_ctx, "gs", NULL, 8, data); // // Write out the FPU registers // const size_t fpu_byte_size = sizeof(FPU); // size_t bytes_written = 0; // data.PutHex32 (FPURegSet); // data.PutHex32 (fpu_byte_size/sizeof(uint64_t)); // bytes_written += data.PutHex32(0); // uint32_t pad[0] // bytes_written += data.PutHex32(0); // uint32_t pad[1] // bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2, data); // uint16_t fcw; // "fctrl" // bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2, data); // uint16_t fsw; // "fstat" // bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1, data); // uint8_t ftw; // "ftag" // bytes_written += data.PutHex8 (0); // uint8_t pad1; // bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2, data); // uint16_t fop; // "fop" // bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4, data); // uint32_t ip; // "fioff" // bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2, data); // uint16_t cs; // "fiseg" // bytes_written += data.PutHex16 (0); // uint16_t pad2; // bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4, data); // uint32_t dp; // "fooff" // bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2, data); // uint16_t ds; // "foseg" // bytes_written += data.PutHex16 (0); // uint16_t pad3; // bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4, data); // uint32_t mxcsr; // bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL, 4, data);// uint32_t mxcsrmask; // bytes_written += WriteRegister (reg_ctx, "stmm0", NULL, sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "stmm1", NULL, sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "stmm2", NULL, sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "stmm3", NULL, sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "stmm4", NULL, sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "stmm5", NULL, sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "stmm6", NULL, sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "stmm7", NULL, sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL, sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL, sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL, sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL, sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL, sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL, sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL, sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL, sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL, sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL, sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm10", NULL, sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm11", NULL, sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm12", NULL, sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm13", NULL, sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm14", NULL, sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm15", NULL, sizeof(XMMReg), data); // // // Fill rest with zeros // for (size_t i=0, n = fpu_byte_size - bytes_written; iGetRegisterInfoByName(name); if (reg_info == NULL) reg_info = reg_ctx->GetRegisterInfoByName(alt_name); if (reg_info) { lldb_private::RegisterValue reg_value; if (reg_ctx->ReadRegister(reg_info, reg_value)) { if (reg_info->byte_size >= reg_byte_size) data.Write(reg_value.GetBytes(), reg_byte_size); else { data.Write(reg_value.GetBytes(), reg_info->byte_size); for (size_t i=0, n = reg_byte_size - reg_info->byte_size; iGetRegisterContext()); if (reg_ctx_sp) { RegisterContext *reg_ctx = reg_ctx_sp.get(); data.PutHex32 (GPRRegSet); // Flavor data.PutHex32 (GPRWordCount); WriteRegister (reg_ctx, "eax", NULL, 4, data); WriteRegister (reg_ctx, "ebx", NULL, 4, data); WriteRegister (reg_ctx, "ecx", NULL, 4, data); WriteRegister (reg_ctx, "edx", NULL, 4, data); WriteRegister (reg_ctx, "edi", NULL, 4, data); WriteRegister (reg_ctx, "esi", NULL, 4, data); WriteRegister (reg_ctx, "ebp", NULL, 4, data); WriteRegister (reg_ctx, "esp", NULL, 4, data); WriteRegister (reg_ctx, "ss", NULL, 4, data); WriteRegister (reg_ctx, "eflags", NULL, 4, data); WriteRegister (reg_ctx, "eip", NULL, 4, data); WriteRegister (reg_ctx, "cs", NULL, 4, data); WriteRegister (reg_ctx, "ds", NULL, 4, data); WriteRegister (reg_ctx, "es", NULL, 4, data); WriteRegister (reg_ctx, "fs", NULL, 4, data); WriteRegister (reg_ctx, "gs", NULL, 4, data); // Write out the EXC registers data.PutHex32 (EXCRegSet); data.PutHex32 (EXCWordCount); WriteRegister (reg_ctx, "trapno", NULL, 4, data); WriteRegister (reg_ctx, "err", NULL, 4, data); WriteRegister (reg_ctx, "faultvaddr", NULL, 4, data); return true; } return false; } protected: int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; } int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; } int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; } int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { return 0; } int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { return 0; } int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { return 0; } }; class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm { public: RegisterContextDarwin_arm_Mach (lldb_private::Thread &thread, const DataExtractor &data) : RegisterContextDarwin_arm (thread, 0) { SetRegisterDataFrom_LC_THREAD (data); } void InvalidateAllRegisters() override { // Do nothing... registers are always valid... } void SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) { lldb::offset_t offset = 0; SetError (GPRRegSet, Read, -1); SetError (FPURegSet, Read, -1); SetError (EXCRegSet, Read, -1); bool done = false; while (!done) { int flavor = data.GetU32 (&offset); uint32_t count = data.GetU32 (&offset); lldb::offset_t next_thread_state = offset + (count * 4); switch (flavor) { case GPRRegSet: for (uint32_t i=0; iGetRegisterInfoByName(name); if (reg_info == NULL) reg_info = reg_ctx->GetRegisterInfoByName(alt_name); if (reg_info) { lldb_private::RegisterValue reg_value; if (reg_ctx->ReadRegister(reg_info, reg_value)) { if (reg_info->byte_size >= reg_byte_size) data.Write(reg_value.GetBytes(), reg_byte_size); else { data.Write(reg_value.GetBytes(), reg_info->byte_size); for (size_t i=0, n = reg_byte_size - reg_info->byte_size; iGetRegisterContext()); if (reg_ctx_sp) { RegisterContext *reg_ctx = reg_ctx_sp.get(); data.PutHex32 (GPRRegSet); // Flavor data.PutHex32 (GPRWordCount); WriteRegister (reg_ctx, "r0", NULL, 4, data); WriteRegister (reg_ctx, "r1", NULL, 4, data); WriteRegister (reg_ctx, "r2", NULL, 4, data); WriteRegister (reg_ctx, "r3", NULL, 4, data); WriteRegister (reg_ctx, "r4", NULL, 4, data); WriteRegister (reg_ctx, "r5", NULL, 4, data); WriteRegister (reg_ctx, "r6", NULL, 4, data); WriteRegister (reg_ctx, "r7", NULL, 4, data); WriteRegister (reg_ctx, "r8", NULL, 4, data); WriteRegister (reg_ctx, "r9", NULL, 4, data); WriteRegister (reg_ctx, "r10", NULL, 4, data); WriteRegister (reg_ctx, "r11", NULL, 4, data); WriteRegister (reg_ctx, "r12", NULL, 4, data); WriteRegister (reg_ctx, "sp", NULL, 4, data); WriteRegister (reg_ctx, "lr", NULL, 4, data); WriteRegister (reg_ctx, "pc", NULL, 4, data); WriteRegister (reg_ctx, "cpsr", NULL, 4, data); // Write out the EXC registers // data.PutHex32 (EXCRegSet); // data.PutHex32 (EXCWordCount); // WriteRegister (reg_ctx, "exception", NULL, 4, data); // WriteRegister (reg_ctx, "fsr", NULL, 4, data); // WriteRegister (reg_ctx, "far", NULL, 4, data); return true; } return false; } protected: int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; } int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; } int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; } int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; } int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { return 0; } int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { return 0; } int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { return 0; } int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override { return -1; } }; class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 { public: RegisterContextDarwin_arm64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : RegisterContextDarwin_arm64 (thread, 0) { SetRegisterDataFrom_LC_THREAD (data); } void InvalidateAllRegisters() override { // Do nothing... registers are always valid... } void SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) { lldb::offset_t offset = 0; SetError (GPRRegSet, Read, -1); SetError (FPURegSet, Read, -1); SetError (EXCRegSet, Read, -1); bool done = false; while (!done) { int flavor = data.GetU32 (&offset); uint32_t count = data.GetU32 (&offset); lldb::offset_t next_thread_state = offset + (count * 4); switch (flavor) { case GPRRegSet: // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1 32-bit register) if (count >= (33 * 2) + 1) { for (uint32_t i=0; i<33; ++i) gpr.x[i] = data.GetU64(&offset); gpr.cpsr = data.GetU32(&offset); SetError (GPRRegSet, Read, 0); } offset = next_thread_state; break; case FPURegSet: { uint8_t *fpu_reg_buf = (uint8_t*) &fpu.v[0]; const int fpu_reg_buf_size = sizeof (fpu); if (fpu_reg_buf_size == count && data.ExtractBytes (offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) { SetError (FPURegSet, Read, 0); } else { done = true; } } offset = next_thread_state; break; case EXCRegSet: if (count == 4) { exc.far = data.GetU64(&offset); exc.esr = data.GetU32(&offset); exc.exception = data.GetU32(&offset); SetError (EXCRegSet, Read, 0); } offset = next_thread_state; break; default: done = true; break; } } } static size_t WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) { const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); if (reg_info == NULL) reg_info = reg_ctx->GetRegisterInfoByName(alt_name); if (reg_info) { lldb_private::RegisterValue reg_value; if (reg_ctx->ReadRegister(reg_info, reg_value)) { if (reg_info->byte_size >= reg_byte_size) data.Write(reg_value.GetBytes(), reg_byte_size); else { data.Write(reg_value.GetBytes(), reg_info->byte_size); for (size_t i=0, n = reg_byte_size - reg_info->byte_size; iGetRegisterContext()); if (reg_ctx_sp) { RegisterContext *reg_ctx = reg_ctx_sp.get(); data.PutHex32 (GPRRegSet); // Flavor data.PutHex32 (GPRWordCount); WriteRegister (reg_ctx, "x0", NULL, 8, data); WriteRegister (reg_ctx, "x1", NULL, 8, data); WriteRegister (reg_ctx, "x2", NULL, 8, data); WriteRegister (reg_ctx, "x3", NULL, 8, data); WriteRegister (reg_ctx, "x4", NULL, 8, data); WriteRegister (reg_ctx, "x5", NULL, 8, data); WriteRegister (reg_ctx, "x6", NULL, 8, data); WriteRegister (reg_ctx, "x7", NULL, 8, data); WriteRegister (reg_ctx, "x8", NULL, 8, data); WriteRegister (reg_ctx, "x9", NULL, 8, data); WriteRegister (reg_ctx, "x10", NULL, 8, data); WriteRegister (reg_ctx, "x11", NULL, 8, data); WriteRegister (reg_ctx, "x12", NULL, 8, data); WriteRegister (reg_ctx, "x13", NULL, 8, data); WriteRegister (reg_ctx, "x14", NULL, 8, data); WriteRegister (reg_ctx, "x15", NULL, 8, data); WriteRegister (reg_ctx, "x16", NULL, 8, data); WriteRegister (reg_ctx, "x17", NULL, 8, data); WriteRegister (reg_ctx, "x18", NULL, 8, data); WriteRegister (reg_ctx, "x19", NULL, 8, data); WriteRegister (reg_ctx, "x20", NULL, 8, data); WriteRegister (reg_ctx, "x21", NULL, 8, data); WriteRegister (reg_ctx, "x22", NULL, 8, data); WriteRegister (reg_ctx, "x23", NULL, 8, data); WriteRegister (reg_ctx, "x24", NULL, 8, data); WriteRegister (reg_ctx, "x25", NULL, 8, data); WriteRegister (reg_ctx, "x26", NULL, 8, data); WriteRegister (reg_ctx, "x27", NULL, 8, data); WriteRegister (reg_ctx, "x28", NULL, 8, data); WriteRegister (reg_ctx, "fp", NULL, 8, data); WriteRegister (reg_ctx, "lr", NULL, 8, data); WriteRegister (reg_ctx, "sp", NULL, 8, data); WriteRegister (reg_ctx, "pc", NULL, 8, data); WriteRegister (reg_ctx, "cpsr", NULL, 4, data); // Write out the EXC registers // data.PutHex32 (EXCRegSet); // data.PutHex32 (EXCWordCount); // WriteRegister (reg_ctx, "far", NULL, 8, data); // WriteRegister (reg_ctx, "esr", NULL, 4, data); // WriteRegister (reg_ctx, "exception", NULL, 4, data); return true; } return false; } protected: int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; } int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; } int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; } int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; } int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { return 0; } int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { return 0; } int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { return 0; } int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override { return -1; } }; static uint32_t MachHeaderSizeFromMagic(uint32_t magic) { switch (magic) { case MH_MAGIC: case MH_CIGAM: return sizeof(struct mach_header); case MH_MAGIC_64: case MH_CIGAM_64: return sizeof(struct mach_header_64); break; default: break; } return 0; } #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008 void ObjectFileMachO::Initialize() { PluginManager::RegisterPlugin (GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance, CreateMemoryInstance, GetModuleSpecifications, SaveCore); } void ObjectFileMachO::Terminate() { PluginManager::UnregisterPlugin (CreateInstance); } lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() { static ConstString g_name("mach-o"); return g_name; } const char * ObjectFileMachO::GetPluginDescriptionStatic() { return "Mach-o object file reader (32 and 64 bit)"; } ObjectFile * ObjectFileMachO::CreateInstance (const lldb::ModuleSP &module_sp, DataBufferSP& data_sp, lldb::offset_t data_offset, const FileSpec* file, lldb::offset_t file_offset, lldb::offset_t length) { if (!data_sp) { data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); data_offset = 0; } if (ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length)) { // Update the data to contain the entire file if it doesn't already if (data_sp->GetByteSize() < length) { data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); data_offset = 0; } std::unique_ptr objfile_ap(new ObjectFileMachO (module_sp, data_sp, data_offset, file, file_offset, length)); if (objfile_ap.get() && objfile_ap->ParseHeader()) return objfile_ap.release(); } return NULL; } ObjectFile * ObjectFileMachO::CreateMemoryInstance (const lldb::ModuleSP &module_sp, DataBufferSP& data_sp, const ProcessSP &process_sp, lldb::addr_t header_addr) { if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { std::unique_ptr objfile_ap(new ObjectFileMachO (module_sp, data_sp, process_sp, header_addr)); if (objfile_ap.get() && objfile_ap->ParseHeader()) return objfile_ap.release(); } return NULL; } size_t ObjectFileMachO::GetModuleSpecifications (const lldb_private::FileSpec& file, lldb::DataBufferSP& data_sp, lldb::offset_t data_offset, lldb::offset_t file_offset, lldb::offset_t length, lldb_private::ModuleSpecList &specs) { const size_t initial_count = specs.GetSize(); if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { DataExtractor data; data.SetData(data_sp); llvm::MachO::mach_header header; if (ParseHeader (data, &data_offset, header)) { size_t header_and_load_cmds = header.sizeofcmds + MachHeaderSizeFromMagic(header.magic); if (header_and_load_cmds >= data_sp->GetByteSize()) { data_sp = file.ReadFileContents(file_offset, header_and_load_cmds); data.SetData(data_sp); data_offset = MachHeaderSizeFromMagic(header.magic); } if (data_sp) { ModuleSpec spec; spec.GetFileSpec() = file; spec.SetObjectOffset(file_offset); spec.SetObjectSize(length); if (GetArchitecture (header, data, data_offset, spec.GetArchitecture())) { if (spec.GetArchitecture().IsValid()) { GetUUID (header, data, data_offset, spec.GetUUID()); specs.Append(spec); } } } } } return specs.GetSize() - initial_count; } const ConstString & ObjectFileMachO::GetSegmentNameTEXT() { static ConstString g_segment_name_TEXT ("__TEXT"); return g_segment_name_TEXT; } const ConstString & ObjectFileMachO::GetSegmentNameDATA() { static ConstString g_segment_name_DATA ("__DATA"); return g_segment_name_DATA; } const ConstString & ObjectFileMachO::GetSegmentNameDATA_DIRTY() { static ConstString g_segment_name ("__DATA_DIRTY"); return g_segment_name; } const ConstString & ObjectFileMachO::GetSegmentNameDATA_CONST() { static ConstString g_segment_name ("__DATA_CONST"); return g_segment_name; } const ConstString & ObjectFileMachO::GetSegmentNameOBJC() { static ConstString g_segment_name_OBJC ("__OBJC"); return g_segment_name_OBJC; } const ConstString & ObjectFileMachO::GetSegmentNameLINKEDIT() { static ConstString g_section_name_LINKEDIT ("__LINKEDIT"); return g_section_name_LINKEDIT; } const ConstString & ObjectFileMachO::GetSectionNameEHFrame() { static ConstString g_section_name_eh_frame ("__eh_frame"); return g_section_name_eh_frame; } bool ObjectFileMachO::MagicBytesMatch (DataBufferSP& data_sp, lldb::addr_t data_offset, lldb::addr_t data_length) { DataExtractor data; data.SetData (data_sp, data_offset, data_length); lldb::offset_t offset = 0; uint32_t magic = data.GetU32(&offset); return MachHeaderSizeFromMagic(magic) != 0; } ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, DataBufferSP& data_sp, lldb::offset_t data_offset, const FileSpec* file, lldb::offset_t file_offset, lldb::offset_t length) : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), m_mach_segments(), m_mach_sections(), m_entry_point_address(), m_thread_context_offsets(), m_thread_context_offsets_valid(false) { ::memset (&m_header, 0, sizeof(m_header)); ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); } ObjectFileMachO::ObjectFileMachO (const lldb::ModuleSP &module_sp, lldb::DataBufferSP& header_data_sp, const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) : ObjectFile(module_sp, process_sp, header_addr, header_data_sp), m_mach_segments(), m_mach_sections(), m_entry_point_address(), m_thread_context_offsets(), m_thread_context_offsets_valid(false) { ::memset (&m_header, 0, sizeof(m_header)); ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); } bool ObjectFileMachO::ParseHeader (DataExtractor &data, lldb::offset_t *data_offset_ptr, llvm::MachO::mach_header &header) { data.SetByteOrder (endian::InlHostByteOrder()); // Leave magic in the original byte order header.magic = data.GetU32(data_offset_ptr); bool can_parse = false; bool is_64_bit = false; switch (header.magic) { case MH_MAGIC: data.SetByteOrder (endian::InlHostByteOrder()); data.SetAddressByteSize(4); can_parse = true; break; case MH_MAGIC_64: data.SetByteOrder (endian::InlHostByteOrder()); data.SetAddressByteSize(8); can_parse = true; is_64_bit = true; break; case MH_CIGAM: data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); data.SetAddressByteSize(4); can_parse = true; break; case MH_CIGAM_64: data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); data.SetAddressByteSize(8); is_64_bit = true; can_parse = true; break; default: break; } if (can_parse) { data.GetU32(data_offset_ptr, &header.cputype, 6); if (is_64_bit) *data_offset_ptr += 4; return true; } else { memset(&header, 0, sizeof(header)); } return false; } bool ObjectFileMachO::ParseHeader () { ModuleSP module_sp(GetModule()); if (module_sp) { lldb_private::Mutex::Locker locker(module_sp->GetMutex()); bool can_parse = false; lldb::offset_t offset = 0; m_data.SetByteOrder (endian::InlHostByteOrder()); // Leave magic in the original byte order m_header.magic = m_data.GetU32(&offset); switch (m_header.magic) { case MH_MAGIC: m_data.SetByteOrder (endian::InlHostByteOrder()); m_data.SetAddressByteSize(4); can_parse = true; break; case MH_MAGIC_64: m_data.SetByteOrder (endian::InlHostByteOrder()); m_data.SetAddressByteSize(8); can_parse = true; break; case MH_CIGAM: m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); m_data.SetAddressByteSize(4); can_parse = true; break; case MH_CIGAM_64: m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); m_data.SetAddressByteSize(8); can_parse = true; break; default: break; } if (can_parse) { m_data.GetU32(&offset, &m_header.cputype, 6); ArchSpec mach_arch; if (GetArchitecture (mach_arch)) { // Check if the module has a required architecture const ArchSpec &module_arch = module_sp->GetArchitecture(); if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch)) return false; if (SetModulesArchitecture (mach_arch)) { const size_t header_and_lc_size = m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic); if (m_data.GetByteSize() < header_and_lc_size) { DataBufferSP data_sp; ProcessSP process_sp (m_process_wp.lock()); if (process_sp) { data_sp = ReadMemory (process_sp, m_memory_addr, header_and_lc_size); } else { // Read in all only the load command data from the file on disk data_sp = m_file.ReadFileContents(m_file_offset, header_and_lc_size); if (data_sp->GetByteSize() != header_and_lc_size) return false; } if (data_sp) m_data.SetData (data_sp); } } return true; } } else { memset(&m_header, 0, sizeof(struct mach_header)); } } return false; } ByteOrder ObjectFileMachO::GetByteOrder () const { return m_data.GetByteOrder (); } bool ObjectFileMachO::IsExecutable() const { return m_header.filetype == MH_EXECUTE; } uint32_t ObjectFileMachO::GetAddressByteSize () const { return m_data.GetAddressByteSize (); } AddressClass ObjectFileMachO::GetAddressClass (lldb::addr_t file_addr) { Symtab *symtab = GetSymtab(); if (symtab) { Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); if (symbol) { if (symbol->ValueIsAddress()) { SectionSP section_sp (symbol->GetAddressRef().GetSection()); if (section_sp) { const lldb::SectionType section_type = section_sp->GetType(); switch (section_type) { case eSectionTypeInvalid: return eAddressClassUnknown; case eSectionTypeCode: if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) { // For ARM we have a bit in the n_desc field of the symbol // that tells us ARM/Thumb which is bit 0x0008. if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) return eAddressClassCodeAlternateISA; } return eAddressClassCode; case eSectionTypeContainer: return eAddressClassUnknown; case eSectionTypeData: case eSectionTypeDataCString: case eSectionTypeDataCStringPointers: case eSectionTypeDataSymbolAddress: case eSectionTypeData4: case eSectionTypeData8: case eSectionTypeData16: case eSectionTypeDataPointers: case eSectionTypeZeroFill: case eSectionTypeDataObjCMessageRefs: case eSectionTypeDataObjCCFStrings: case eSectionTypeGoSymtab: return eAddressClassData; case eSectionTypeDebug: case eSectionTypeDWARFDebugAbbrev: case eSectionTypeDWARFDebugAddr: case eSectionTypeDWARFDebugAranges: case eSectionTypeDWARFDebugFrame: case eSectionTypeDWARFDebugInfo: case eSectionTypeDWARFDebugLine: case eSectionTypeDWARFDebugLoc: case eSectionTypeDWARFDebugMacInfo: case eSectionTypeDWARFDebugMacro: case eSectionTypeDWARFDebugPubNames: case eSectionTypeDWARFDebugPubTypes: case eSectionTypeDWARFDebugRanges: case eSectionTypeDWARFDebugStr: case eSectionTypeDWARFDebugStrOffsets: case eSectionTypeDWARFAppleNames: case eSectionTypeDWARFAppleTypes: case eSectionTypeDWARFAppleNamespaces: case eSectionTypeDWARFAppleObjC: return eAddressClassDebug; case eSectionTypeEHFrame: case eSectionTypeARMexidx: case eSectionTypeARMextab: case eSectionTypeCompactUnwind: return eAddressClassRuntime; case eSectionTypeELFSymbolTable: case eSectionTypeELFDynamicSymbols: case eSectionTypeELFRelocationEntries: case eSectionTypeELFDynamicLinkInfo: case eSectionTypeOther: return eAddressClassUnknown; } } } const SymbolType symbol_type = symbol->GetType(); switch (symbol_type) { case eSymbolTypeAny: return eAddressClassUnknown; case eSymbolTypeAbsolute: return eAddressClassUnknown; case eSymbolTypeCode: case eSymbolTypeTrampoline: case eSymbolTypeResolver: if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) { // For ARM we have a bit in the n_desc field of the symbol // that tells us ARM/Thumb which is bit 0x0008. if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) return eAddressClassCodeAlternateISA; } return eAddressClassCode; case eSymbolTypeData: return eAddressClassData; case eSymbolTypeRuntime: return eAddressClassRuntime; case eSymbolTypeException: return eAddressClassRuntime; case eSymbolTypeSourceFile: return eAddressClassDebug; case eSymbolTypeHeaderFile: return eAddressClassDebug; case eSymbolTypeObjectFile: return eAddressClassDebug; case eSymbolTypeCommonBlock: return eAddressClassDebug; case eSymbolTypeBlock: return eAddressClassDebug; case eSymbolTypeLocal: return eAddressClassData; case eSymbolTypeParam: return eAddressClassData; case eSymbolTypeVariable: return eAddressClassData; case eSymbolTypeVariableType: return eAddressClassDebug; case eSymbolTypeLineEntry: return eAddressClassDebug; case eSymbolTypeLineHeader: return eAddressClassDebug; case eSymbolTypeScopeBegin: return eAddressClassDebug; case eSymbolTypeScopeEnd: return eAddressClassDebug; case eSymbolTypeAdditional: return eAddressClassUnknown; case eSymbolTypeCompiler: return eAddressClassDebug; case eSymbolTypeInstrumentation:return eAddressClassDebug; case eSymbolTypeUndefined: return eAddressClassUnknown; case eSymbolTypeObjCClass: return eAddressClassRuntime; case eSymbolTypeObjCMetaClass: return eAddressClassRuntime; case eSymbolTypeObjCIVar: return eAddressClassRuntime; case eSymbolTypeReExported: return eAddressClassRuntime; } } } return eAddressClassUnknown; } Symtab * ObjectFileMachO::GetSymtab() { ModuleSP module_sp(GetModule()); if (module_sp) { lldb_private::Mutex::Locker locker(module_sp->GetMutex()); if (m_symtab_ap.get() == NULL) { m_symtab_ap.reset(new Symtab(this)); Mutex::Locker symtab_locker (m_symtab_ap->GetMutex()); ParseSymtab (); m_symtab_ap->Finalize (); } } return m_symtab_ap.get(); } bool ObjectFileMachO::IsStripped () { if (m_dysymtab.cmd == 0) { ModuleSP module_sp(GetModule()); if (module_sp) { lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); for (uint32_t i=0; i EncryptedFileRanges; EncryptedFileRanges encrypted_file_ranges; encryption_info_command encryption_cmd; for (i=0; i(strlen(load_cmd.segname), sizeof(load_cmd.segname))); SectionSP unified_section_sp(unified_section_list.FindSectionByName(const_segname)); if (is_dsym && unified_section_sp) { if (const_segname == GetSegmentNameLINKEDIT()) { // We need to keep the __LINKEDIT segment private to this object file only add_to_unified = false; } else { // This is the dSYM file and this section has already been created by // the object file, no need to create it. add_section = false; } } load_cmd.vmaddr = m_data.GetAddress(&offset); load_cmd.vmsize = m_data.GetAddress(&offset); load_cmd.fileoff = m_data.GetAddress(&offset); load_cmd.filesize = m_data.GetAddress(&offset); if (m_length != 0 && load_cmd.filesize != 0) { if (load_cmd.fileoff > m_length) { // We have a load command that says it extends past the end of the file. This is likely // a corrupt file. We don't have any way to return an error condition here (this method // was likely invoked from something like ObjectFile::GetSectionList()) -- all we can do // is null out the SectionList vector and if a process has been set up, dump a message // to stdout. The most common case here is core file debugging with a truncated file. const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; module_sp->ReportWarning("load command %u %s has a fileoff (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), ignoring this section", i, lc_segment_name, load_cmd.fileoff, m_length); load_cmd.fileoff = 0; load_cmd.filesize = 0; } if (load_cmd.fileoff + load_cmd.filesize > m_length) { // We have a load command that says it extends past the end of the file. This is likely // a corrupt file. We don't have any way to return an error condition here (this method // was likely invoked from something like ObjectFile::GetSectionList()) -- all we can do // is null out the SectionList vector and if a process has been set up, dump a message // to stdout. The most common case here is core file debugging with a truncated file. const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; GetModule()->ReportWarning("load command %u %s has a fileoff + filesize (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), the segment will be truncated to match", i, lc_segment_name, load_cmd.fileoff + load_cmd.filesize, m_length); // Tuncase the length load_cmd.filesize = m_length - load_cmd.fileoff; } } if (m_data.GetU32(&offset, &load_cmd.maxprot, 4)) { const bool segment_is_encrypted = (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0; // Keep a list of mach segments around in case we need to // get at data that isn't stored in the abstracted Sections. m_mach_segments.push_back (load_cmd); // Use a segment ID of the segment index shifted left by 8 so they // never conflict with any of the sections. SectionSP segment_sp; if (add_section && (const_segname || is_core)) { segment_sp.reset(new Section (module_sp, // Module to which this section belongs this, // Object file to which this sections belongs ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible const_segname, // Name of this section eSectionTypeContainer, // This section is a container of other sections. load_cmd.vmaddr, // File VM address == addresses as they are found in the object file load_cmd.vmsize, // VM size in bytes of this section load_cmd.fileoff, // Offset to the data for this section in the file load_cmd.filesize, // Size in bytes of this section as found in the file 0, // Segments have no alignment information load_cmd.flags)); // Flags for this section segment_sp->SetIsEncrypted (segment_is_encrypted); m_sections_ap->AddSection(segment_sp); if (add_to_unified) unified_section_list.AddSection(segment_sp); } else if (unified_section_sp) { if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) { // Check to see if the module was read from memory? if (module_sp->GetObjectFile()->GetHeaderAddress().IsValid()) { // We have a module that is in memory and needs to have its // file address adjusted. We need to do this because when we // load a file from memory, its addresses will be slid already, // yet the addresses in the new symbol file will still be unslid. // Since everything is stored as section offset, this shouldn't // cause any problems. // Make sure we've parsed the symbol table from the // ObjectFile before we go around changing its Sections. module_sp->GetObjectFile()->GetSymtab(); // eh_frame would present the same problems but we parse that on // a per-function basis as-needed so it's more difficult to // remove its use of the Sections. Realistically, the environments // where this code path will be taken will not have eh_frame sections. unified_section_sp->SetFileAddress(load_cmd.vmaddr); // Notify the module that the section addresses have been changed once // we're done so any file-address caches can be updated. section_file_addresses_changed = true; } } m_sections_ap->AddSection(unified_section_sp); } struct section_64 sect64; ::memset (§64, 0, sizeof(sect64)); // Push a section into our mach sections for the section at // index zero (NO_SECT) if we don't have any mach sections yet... if (m_mach_sections.empty()) m_mach_sections.push_back(sect64); uint32_t segment_sect_idx; const lldb::user_id_t first_segment_sectID = sectID + 1; const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8; for (segment_sect_idx=0; segment_sect_idx(strlen(sect64.sectname), sizeof(sect64.sectname))); if (!const_segname) { // We have a segment with no name so we need to conjure up // segments that correspond to the section's segname if there // isn't already such a section. If there is such a section, // we resize the section so that it spans all sections. // We also mark these sections as fake so address matches don't // hit if they land in the gaps between the child sections. const_segname.SetTrimmedCStringWithLength(sect64.segname, sizeof(sect64.segname)); segment_sp = unified_section_list.FindSectionByName (const_segname); if (segment_sp.get()) { Section *segment = segment_sp.get(); // Grow the section size as needed. const lldb::addr_t sect64_min_addr = sect64.addr; const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size; if (sect64_min_addr >= curr_seg_min_addr) { const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr; // Only grow the section size if needed if (new_seg_byte_size > curr_seg_byte_size) segment->SetByteSize (new_seg_byte_size); } else { // We need to change the base address of the segment and // adjust the child section offsets for all existing children. const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr; segment->Slide(slide_amount, false); segment->GetChildren().Slide(-slide_amount, false); segment->SetByteSize (curr_seg_max_addr - sect64_min_addr); } // Grow the section size as needed. if (sect64.offset) { const lldb::addr_t segment_min_file_offset = segment->GetFileOffset(); const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize(); const lldb::addr_t section_min_file_offset = sect64.offset; const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size; const lldb::addr_t new_file_offset = std::min (section_min_file_offset, segment_min_file_offset); const lldb::addr_t new_file_size = std::max (section_max_file_offset, segment_max_file_offset) - new_file_offset; segment->SetFileOffset (new_file_offset); segment->SetFileSize (new_file_size); } } else { // Create a fake section for the section's named segment segment_sp.reset(new Section (segment_sp, // Parent section module_sp, // Module to which this section belongs this, // Object file to which this section belongs ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible const_segname, // Name of this section eSectionTypeContainer, // This section is a container of other sections. sect64.addr, // File VM address == addresses as they are found in the object file sect64.size, // VM size in bytes of this section sect64.offset, // Offset to the data for this section in the file sect64.offset ? sect64.size : 0, // Size in bytes of this section as found in the file sect64.align, load_cmd.flags)); // Flags for this section segment_sp->SetIsFake(true); m_sections_ap->AddSection(segment_sp); if (add_to_unified) unified_section_list.AddSection(segment_sp); segment_sp->SetIsEncrypted (segment_is_encrypted); } } assert (segment_sp.get()); lldb::SectionType sect_type = eSectionTypeOther; if (sect64.flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS)) sect_type = eSectionTypeCode; else { uint32_t mach_sect_type = sect64.flags & SECTION_TYPE; static ConstString g_sect_name_objc_data ("__objc_data"); static ConstString g_sect_name_objc_msgrefs ("__objc_msgrefs"); static ConstString g_sect_name_objc_selrefs ("__objc_selrefs"); static ConstString g_sect_name_objc_classrefs ("__objc_classrefs"); static ConstString g_sect_name_objc_superrefs ("__objc_superrefs"); static ConstString g_sect_name_objc_const ("__objc_const"); static ConstString g_sect_name_objc_classlist ("__objc_classlist"); static ConstString g_sect_name_cfstring ("__cfstring"); static ConstString g_sect_name_dwarf_debug_abbrev ("__debug_abbrev"); static ConstString g_sect_name_dwarf_debug_aranges ("__debug_aranges"); static ConstString g_sect_name_dwarf_debug_frame ("__debug_frame"); static ConstString g_sect_name_dwarf_debug_info ("__debug_info"); static ConstString g_sect_name_dwarf_debug_line ("__debug_line"); static ConstString g_sect_name_dwarf_debug_loc ("__debug_loc"); static ConstString g_sect_name_dwarf_debug_macinfo ("__debug_macinfo"); static ConstString g_sect_name_dwarf_debug_pubnames ("__debug_pubnames"); static ConstString g_sect_name_dwarf_debug_pubtypes ("__debug_pubtypes"); static ConstString g_sect_name_dwarf_debug_ranges ("__debug_ranges"); static ConstString g_sect_name_dwarf_debug_str ("__debug_str"); static ConstString g_sect_name_dwarf_apple_names ("__apple_names"); static ConstString g_sect_name_dwarf_apple_types ("__apple_types"); static ConstString g_sect_name_dwarf_apple_namespaces ("__apple_namespac"); static ConstString g_sect_name_dwarf_apple_objc ("__apple_objc"); static ConstString g_sect_name_eh_frame ("__eh_frame"); static ConstString g_sect_name_compact_unwind ("__unwind_info"); static ConstString g_sect_name_text ("__text"); static ConstString g_sect_name_data ("__data"); static ConstString g_sect_name_go_symtab ("__gosymtab"); if (section_name == g_sect_name_dwarf_debug_abbrev) sect_type = eSectionTypeDWARFDebugAbbrev; else if (section_name == g_sect_name_dwarf_debug_aranges) sect_type = eSectionTypeDWARFDebugAranges; else if (section_name == g_sect_name_dwarf_debug_frame) sect_type = eSectionTypeDWARFDebugFrame; else if (section_name == g_sect_name_dwarf_debug_info) sect_type = eSectionTypeDWARFDebugInfo; else if (section_name == g_sect_name_dwarf_debug_line) sect_type = eSectionTypeDWARFDebugLine; else if (section_name == g_sect_name_dwarf_debug_loc) sect_type = eSectionTypeDWARFDebugLoc; else if (section_name == g_sect_name_dwarf_debug_macinfo) sect_type = eSectionTypeDWARFDebugMacInfo; else if (section_name == g_sect_name_dwarf_debug_pubnames) sect_type = eSectionTypeDWARFDebugPubNames; else if (section_name == g_sect_name_dwarf_debug_pubtypes) sect_type = eSectionTypeDWARFDebugPubTypes; else if (section_name == g_sect_name_dwarf_debug_ranges) sect_type = eSectionTypeDWARFDebugRanges; else if (section_name == g_sect_name_dwarf_debug_str) sect_type = eSectionTypeDWARFDebugStr; else if (section_name == g_sect_name_dwarf_apple_names) sect_type = eSectionTypeDWARFAppleNames; else if (section_name == g_sect_name_dwarf_apple_types) sect_type = eSectionTypeDWARFAppleTypes; else if (section_name == g_sect_name_dwarf_apple_namespaces) sect_type = eSectionTypeDWARFAppleNamespaces; else if (section_name == g_sect_name_dwarf_apple_objc) sect_type = eSectionTypeDWARFAppleObjC; else if (section_name == g_sect_name_objc_selrefs) sect_type = eSectionTypeDataCStringPointers; else if (section_name == g_sect_name_objc_msgrefs) sect_type = eSectionTypeDataObjCMessageRefs; else if (section_name == g_sect_name_eh_frame) sect_type = eSectionTypeEHFrame; else if (section_name == g_sect_name_compact_unwind) sect_type = eSectionTypeCompactUnwind; else if (section_name == g_sect_name_cfstring) sect_type = eSectionTypeDataObjCCFStrings; else if (section_name == g_sect_name_go_symtab) sect_type = eSectionTypeGoSymtab; else if (section_name == g_sect_name_objc_data || section_name == g_sect_name_objc_classrefs || section_name == g_sect_name_objc_superrefs || section_name == g_sect_name_objc_const || section_name == g_sect_name_objc_classlist) { sect_type = eSectionTypeDataPointers; } if (sect_type == eSectionTypeOther) { switch (mach_sect_type) { // TODO: categorize sections by other flags for regular sections case S_REGULAR: if (section_name == g_sect_name_text) sect_type = eSectionTypeCode; else if (section_name == g_sect_name_data) sect_type = eSectionTypeData; else sect_type = eSectionTypeOther; break; case S_ZEROFILL: sect_type = eSectionTypeZeroFill; break; case S_CSTRING_LITERALS: sect_type = eSectionTypeDataCString; break; // section with only literal C strings case S_4BYTE_LITERALS: sect_type = eSectionTypeData4; break; // section with only 4 byte literals case S_8BYTE_LITERALS: sect_type = eSectionTypeData8; break; // section with only 8 byte literals case S_LITERAL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only pointers to literals case S_NON_LAZY_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only non-lazy symbol pointers case S_LAZY_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only lazy symbol pointers case S_SYMBOL_STUBS: sect_type = eSectionTypeCode; break; // section with only symbol stubs, byte size of stub in the reserved2 field case S_MOD_INIT_FUNC_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for initialization case S_MOD_TERM_FUNC_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for termination case S_COALESCED: sect_type = eSectionTypeOther; break; case S_GB_ZEROFILL: sect_type = eSectionTypeZeroFill; break; case S_INTERPOSING: sect_type = eSectionTypeCode; break; // section with only pairs of function pointers for interposing case S_16BYTE_LITERALS: sect_type = eSectionTypeData16; break; // section with only 16 byte literals case S_DTRACE_DOF: sect_type = eSectionTypeDebug; break; case S_LAZY_DYLIB_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; default: break; } } } SectionSP section_sp(new Section (segment_sp, module_sp, this, ++sectID, section_name, sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size, sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align, sect64.flags)); // Set the section to be encrypted to match the segment bool section_is_encrypted = false; if (!segment_is_encrypted && load_cmd.filesize != 0) section_is_encrypted = encrypted_file_ranges.FindEntryThatContains(sect64.offset) != NULL; section_sp->SetIsEncrypted (segment_is_encrypted || section_is_encrypted); segment_sp->GetChildren().AddSection(section_sp); if (segment_sp->IsFake()) { segment_sp.reset(); const_segname.Clear(); } } } if (segment_sp && is_dsym) { if (first_segment_sectID <= sectID) { lldb::user_id_t sect_uid; for (sect_uid = first_segment_sectID; sect_uid <= sectID; ++sect_uid) { SectionSP curr_section_sp(segment_sp->GetChildren().FindSectionByID (sect_uid)); SectionSP next_section_sp; if (sect_uid + 1 <= sectID) next_section_sp = segment_sp->GetChildren().FindSectionByID (sect_uid+1); if (curr_section_sp.get()) { if (curr_section_sp->GetByteSize() == 0) { if (next_section_sp.get() != NULL) curr_section_sp->SetByteSize ( next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress() ); else curr_section_sp->SetByteSize ( load_cmd.vmsize ); } } } } } } } } else if (load_cmd.cmd == LC_DYSYMTAB) { m_dysymtab.cmd = load_cmd.cmd; m_dysymtab.cmdsize = load_cmd.cmdsize; m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); } offset = load_cmd_offset + load_cmd.cmdsize; } if (section_file_addresses_changed && module_sp.get()) { module_sp->SectionFileAddressesChanged(); } } } class MachSymtabSectionInfo { public: MachSymtabSectionInfo (SectionList *section_list) : m_section_list (section_list), m_section_infos() { // Get the number of sections down to a depth of 1 to include // all segments and their sections, but no other sections that // may be added for debug map or m_section_infos.resize(section_list->GetNumSections(1)); } SectionSP GetSection (uint8_t n_sect, addr_t file_addr) { if (n_sect == 0) return SectionSP(); if (n_sect < m_section_infos.size()) { if (!m_section_infos[n_sect].section_sp) { SectionSP section_sp (m_section_list->FindSectionByID (n_sect)); m_section_infos[n_sect].section_sp = section_sp; if (section_sp) { m_section_infos[n_sect].vm_range.SetBaseAddress (section_sp->GetFileAddress()); m_section_infos[n_sect].vm_range.SetByteSize (section_sp->GetByteSize()); } else { Host::SystemLog (Host::eSystemLogError, "error: unable to find section for section %u\n", n_sect); } } if (m_section_infos[n_sect].vm_range.Contains(file_addr)) { // Symbol is in section. return m_section_infos[n_sect].section_sp; } else if (m_section_infos[n_sect].vm_range.GetByteSize () == 0 && m_section_infos[n_sect].vm_range.GetBaseAddress() == file_addr) { // Symbol is in section with zero size, but has the same start // address as the section. This can happen with linker symbols // (symbols that start with the letter 'l' or 'L'. return m_section_infos[n_sect].section_sp; } } return m_section_list->FindSectionContainingFileAddress(file_addr); } protected: struct SectionInfo { SectionInfo () : vm_range(), section_sp () { } VMRange vm_range; SectionSP section_sp; }; SectionList *m_section_list; std::vector m_section_infos; }; struct TrieEntry { TrieEntry () : name(), address(LLDB_INVALID_ADDRESS), flags (0), other(0), import_name() { } void Clear () { name.Clear(); address = LLDB_INVALID_ADDRESS; flags = 0; other = 0; import_name.Clear(); } void Dump () const { printf ("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"", static_cast(address), static_cast(flags), static_cast(other), name.GetCString()); if (import_name) printf (" -> \"%s\"\n", import_name.GetCString()); else printf ("\n"); } ConstString name; uint64_t address; uint64_t flags; uint64_t other; ConstString import_name; }; struct TrieEntryWithOffset { lldb::offset_t nodeOffset; TrieEntry entry; TrieEntryWithOffset (lldb::offset_t offset) : nodeOffset (offset), entry() { } void Dump (uint32_t idx) const { printf ("[%3u] 0x%16.16llx: ", idx, static_cast(nodeOffset)); entry.Dump(); } bool operator<(const TrieEntryWithOffset& other) const { return ( nodeOffset < other.nodeOffset ); } }; static bool ParseTrieEntries (DataExtractor &data, lldb::offset_t offset, const bool is_arm, std::vector &nameSlices, std::set &resolver_addresses, std::vector& output) { if (!data.ValidOffset(offset)) return true; const uint64_t terminalSize = data.GetULEB128(&offset); lldb::offset_t children_offset = offset + terminalSize; if ( terminalSize != 0 ) { TrieEntryWithOffset e (offset); e.entry.flags = data.GetULEB128(&offset); const char *import_name = NULL; if ( e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT ) { e.entry.address = 0; e.entry.other = data.GetULEB128(&offset); // dylib ordinal import_name = data.GetCStr(&offset); } else { e.entry.address = data.GetULEB128(&offset); if ( e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER ) { e.entry.other = data.GetULEB128(&offset); uint64_t resolver_addr = e.entry.other; if (is_arm) resolver_addr &= THUMB_ADDRESS_BIT_MASK; resolver_addresses.insert(resolver_addr); } else e.entry.other = 0; } // Only add symbols that are reexport symbols with a valid import name if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name && import_name[0]) { std::string name; if (!nameSlices.empty()) { for (auto name_slice: nameSlices) name.append(name_slice.data(), name_slice.size()); } if (name.size() > 1) { // Skip the leading '_' e.entry.name.SetCStringWithLength(name.c_str() + 1,name.size() - 1); } if (import_name) { // Skip the leading '_' e.entry.import_name.SetCString(import_name+1); } output.push_back(e); } } const uint8_t childrenCount = data.GetU8(&children_offset); for (uint8_t i=0; i < childrenCount; ++i) { const char *cstr = data.GetCStr(&children_offset); if (cstr) nameSlices.push_back(llvm::StringRef(cstr)); else return false; // Corrupt data lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset); if (childNodeOffset) { if (!ParseTrieEntries(data, childNodeOffset, is_arm, nameSlices, resolver_addresses, output)) { return false; } } nameSlices.pop_back(); } return true; } // Read the UUID out of a dyld_shared_cache file on-disk. UUID ObjectFileMachO::GetSharedCacheUUID (FileSpec dyld_shared_cache, const ByteOrder byte_order, const uint32_t addr_byte_size) { UUID dsc_uuid; DataBufferSP dsc_data_sp = dyld_shared_cache.MemoryMapFileContentsIfLocal(0, sizeof(struct lldb_copy_dyld_cache_header_v1)); if (dsc_data_sp) { DataExtractor dsc_header_data (dsc_data_sp, byte_order, addr_byte_size); char version_str[7]; lldb::offset_t offset = 0; memcpy (version_str, dsc_header_data.GetData (&offset, 6), 6); version_str[6] = '\0'; if (strcmp (version_str, "dyld_v") == 0) { offset = offsetof (struct lldb_copy_dyld_cache_header_v1, uuid); uint8_t uuid_bytes[sizeof (uuid_t)]; memcpy (uuid_bytes, dsc_header_data.GetData (&offset, sizeof (uuid_t)), sizeof (uuid_t)); dsc_uuid.SetBytes (uuid_bytes); } } return dsc_uuid; } size_t ObjectFileMachO::ParseSymtab () { Timer scoped_timer(__PRETTY_FUNCTION__, "ObjectFileMachO::ParseSymtab () module = %s", m_file.GetFilename().AsCString("")); ModuleSP module_sp (GetModule()); if (!module_sp) return 0; struct symtab_command symtab_load_command = { 0, 0, 0, 0, 0, 0 }; struct linkedit_data_command function_starts_load_command = { 0, 0, 0, 0 }; struct dyld_info_command dyld_info = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; typedef AddressDataArray FunctionStarts; FunctionStarts function_starts; lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); uint32_t i; FileSpecList dylib_files; Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); for (i=0; iLogMessage(log, "LC_SYMTAB.symoff == 0"); return 0; } if (symtab_load_command.stroff == 0) { if (log) module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0"); return 0; } if (symtab_load_command.nsyms == 0) { if (log) module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0"); return 0; } if (symtab_load_command.strsize == 0) { if (log) module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0"); return 0; } break; case LC_DYLD_INFO: case LC_DYLD_INFO_ONLY: if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) { dyld_info.cmd = lc.cmd; dyld_info.cmdsize = lc.cmdsize; } else { memset (&dyld_info, 0, sizeof(dyld_info)); } break; case LC_LOAD_DYLIB: case LC_LOAD_WEAK_DYLIB: case LC_REEXPORT_DYLIB: case LC_LOADFVMLIB: case LC_LOAD_UPWARD_DYLIB: { uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); const char *path = m_data.PeekCStr(name_offset); if (path) { FileSpec file_spec(path, false); // Strip the path if there is @rpath, @executable, etc so we just use the basename if (path[0] == '@') file_spec.GetDirectory().Clear(); if (lc.cmd == LC_REEXPORT_DYLIB) { m_reexported_dylibs.AppendIfUnique(file_spec); } dylib_files.Append(file_spec); } } break; case LC_FUNCTION_STARTS: function_starts_load_command.cmd = lc.cmd; function_starts_load_command.cmdsize = lc.cmdsize; if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) == NULL) // fill in symoff, nsyms, stroff, strsize fields memset (&function_starts_load_command, 0, sizeof(function_starts_load_command)); break; default: break; } offset = cmd_offset + lc.cmdsize; } if (symtab_load_command.cmd) { Symtab *symtab = m_symtab_ap.get(); SectionList *section_list = GetSectionList(); if (section_list == NULL) return 0; const uint32_t addr_byte_size = m_data.GetAddressByteSize(); const ByteOrder byte_order = m_data.GetByteOrder(); bool bit_width_32 = addr_byte_size == 4; const size_t nlist_byte_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); DataExtractor nlist_data (NULL, 0, byte_order, addr_byte_size); DataExtractor strtab_data (NULL, 0, byte_order, addr_byte_size); DataExtractor function_starts_data (NULL, 0, byte_order, addr_byte_size); DataExtractor indirect_symbol_index_data (NULL, 0, byte_order, addr_byte_size); DataExtractor dyld_trie_data (NULL, 0, byte_order, addr_byte_size); const addr_t nlist_data_byte_size = symtab_load_command.nsyms * nlist_byte_size; const addr_t strtab_data_byte_size = symtab_load_command.strsize; addr_t strtab_addr = LLDB_INVALID_ADDRESS; ProcessSP process_sp (m_process_wp.lock()); Process *process = process_sp.get(); uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete; if (process && m_header.filetype != llvm::MachO::MH_OBJECT) { Target &target = process->GetTarget(); memory_module_load_level = target.GetMemoryModuleLoadLevel(); SectionSP linkedit_section_sp(section_list->FindSectionByName(GetSegmentNameLINKEDIT())); // Reading mach file from memory in a process or core file... if (linkedit_section_sp) { addr_t linkedit_load_addr = linkedit_section_sp->GetLoadBaseAddress(&target); if (linkedit_load_addr == LLDB_INVALID_ADDRESS) { // We might be trying to access the symbol table before the __LINKEDIT's load // address has been set in the target. We can't fail to read the symbol table, // so calculate the right address manually linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get()); } const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset(); const addr_t symoff_addr = linkedit_load_addr + symtab_load_command.symoff - linkedit_file_offset; strtab_addr = linkedit_load_addr + symtab_load_command.stroff - linkedit_file_offset; bool data_was_read = false; #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) if (m_header.flags & 0x80000000u && process->GetAddressByteSize() == sizeof (void*)) { // This mach-o memory file is in the dyld shared cache. If this // program is not remote and this is iOS, then this process will // share the same shared cache as the process we are debugging and // we can read the entire __LINKEDIT from the address space in this // process. This is a needed optimization that is used for local iOS // debugging only since all shared libraries in the shared cache do // not have corresponding files that exist in the file system of the // device. They have been combined into a single file. This means we // always have to load these files from memory. All of the symbol and // string tables from all of the __LINKEDIT sections from the shared // libraries in the shared cache have been merged into a single large // symbol and string table. Reading all of this symbol and string table // data across can slow down debug launch times, so we optimize this by // reading the memory for the __LINKEDIT section from this process. UUID lldb_shared_cache(GetLLDBSharedCacheUUID()); UUID process_shared_cache(GetProcessSharedCacheUUID(process)); bool use_lldb_cache = true; if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() && lldb_shared_cache != process_shared_cache) { use_lldb_cache = false; ModuleSP module_sp (GetModule()); if (module_sp) module_sp->ReportWarning ("shared cache in process does not match lldb's own shared cache, startup will be slow."); } PlatformSP platform_sp (target.GetPlatform()); if (platform_sp && platform_sp->IsHost() && use_lldb_cache) { data_was_read = true; nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size, eByteOrderLittle); strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size, eByteOrderLittle); if (function_starts_load_command.cmd) { const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; function_starts_data.SetData ((void *)func_start_addr, function_starts_load_command.datasize, eByteOrderLittle); } } } #endif if (!data_was_read) { if (memory_module_load_level == eMemoryModuleLoadLevelComplete) { DataBufferSP nlist_data_sp (ReadMemory (process_sp, symoff_addr, nlist_data_byte_size)); if (nlist_data_sp) nlist_data.SetData (nlist_data_sp, 0, nlist_data_sp->GetByteSize()); // Load strings individually from memory when loading from memory since shared cache // string tables contain strings for all symbols from all shared cached libraries //DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr, strtab_data_byte_size)); //if (strtab_data_sp) // strtab_data.SetData (strtab_data_sp, 0, strtab_data_sp->GetByteSize()); if (m_dysymtab.nindirectsyms != 0) { const addr_t indirect_syms_addr = linkedit_load_addr + m_dysymtab.indirectsymoff - linkedit_file_offset; DataBufferSP indirect_syms_data_sp (ReadMemory (process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4)); if (indirect_syms_data_sp) indirect_symbol_index_data.SetData (indirect_syms_data_sp, 0, indirect_syms_data_sp->GetByteSize()); } } if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) { if (function_starts_load_command.cmd) { const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; DataBufferSP func_start_data_sp (ReadMemory (process_sp, func_start_addr, function_starts_load_command.datasize)); if (func_start_data_sp) function_starts_data.SetData (func_start_data_sp, 0, func_start_data_sp->GetByteSize()); } } } } } else { nlist_data.SetData (m_data, symtab_load_command.symoff, nlist_data_byte_size); strtab_data.SetData (m_data, symtab_load_command.stroff, strtab_data_byte_size); if (dyld_info.export_size > 0) { dyld_trie_data.SetData (m_data, dyld_info.export_off, dyld_info.export_size); } if (m_dysymtab.nindirectsyms != 0) { indirect_symbol_index_data.SetData (m_data, m_dysymtab.indirectsymoff, m_dysymtab.nindirectsyms * 4); } if (function_starts_load_command.cmd) { function_starts_data.SetData (m_data, function_starts_load_command.dataoff, function_starts_load_command.datasize); } } if (nlist_data.GetByteSize() == 0 && memory_module_load_level == eMemoryModuleLoadLevelComplete) { if (log) module_sp->LogMessage(log, "failed to read nlist data"); return 0; } const bool have_strtab_data = strtab_data.GetByteSize() > 0; if (!have_strtab_data) { if (process) { if (strtab_addr == LLDB_INVALID_ADDRESS) { if (log) module_sp->LogMessage(log, "failed to locate the strtab in memory"); return 0; } } else { if (log) module_sp->LogMessage(log, "failed to read strtab data"); return 0; } } const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT(); const ConstString &g_segment_name_DATA = GetSegmentNameDATA(); const ConstString &g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY(); const ConstString &g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST(); const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC(); const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame(); SectionSP text_section_sp(section_list->FindSectionByName(g_segment_name_TEXT)); SectionSP data_section_sp(section_list->FindSectionByName(g_segment_name_DATA)); SectionSP data_dirty_section_sp(section_list->FindSectionByName(g_segment_name_DATA_DIRTY)); SectionSP data_const_section_sp(section_list->FindSectionByName(g_segment_name_DATA_CONST)); SectionSP objc_section_sp(section_list->FindSectionByName(g_segment_name_OBJC)); SectionSP eh_frame_section_sp; if (text_section_sp.get()) eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName (g_section_name_eh_frame); else eh_frame_section_sp = section_list->FindSectionByName (g_section_name_eh_frame); const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM); // lldb works best if it knows the start address of all functions in a module. // Linker symbols or debug info are normally the best source of information for start addr / size but // they may be stripped in a released binary. // Two additional sources of information exist in Mach-O binaries: // LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each function's start address in the // binary, relative to the text section. // eh_frame - the eh_frame FDEs have the start addr & size of each function // LC_FUNCTION_STARTS is the fastest source to read in, and is present on all modern binaries. // Binaries built to run on older releases may need to use eh_frame information. if (text_section_sp && function_starts_data.GetByteSize()) { FunctionStarts::Entry function_start_entry; function_start_entry.data = false; lldb::offset_t function_start_offset = 0; function_start_entry.addr = text_section_sp->GetFileAddress(); uint64_t delta; while ((delta = function_starts_data.GetULEB128(&function_start_offset)) > 0) { // Now append the current entry function_start_entry.addr += delta; function_starts.Append(function_start_entry); } } else { // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the load command claiming an eh_frame // but it doesn't actually have the eh_frame content. And if we have a dSYM, we don't need to do any // of this fill-in-the-missing-symbols works anyway - the debug info should give us all the functions in // the module. if (text_section_sp.get() && eh_frame_section_sp.get() && m_type != eTypeDebugInfo) { DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp, eRegisterKindEHFrame, true); DWARFCallFrameInfo::FunctionAddressAndSizeVector functions; eh_frame.GetFunctionAddressAndSizeVector (functions); addr_t text_base_addr = text_section_sp->GetFileAddress(); size_t count = functions.GetSize(); for (size_t i = 0; i < count; ++i) { const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func = functions.GetEntryAtIndex (i); if (func) { FunctionStarts::Entry function_start_entry; function_start_entry.addr = func->base - text_base_addr; function_starts.Append(function_start_entry); } } } } const size_t function_starts_count = function_starts.GetSize(); const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() : static_cast(NO_SECT); lldb::offset_t nlist_data_offset = 0; uint32_t N_SO_index = UINT32_MAX; MachSymtabSectionInfo section_info (section_list); std::vector N_FUN_indexes; std::vector N_NSYM_indexes; std::vector N_INCL_indexes; std::vector N_BRAC_indexes; std::vector N_COMM_indexes; typedef std::multimap ValueToSymbolIndexMap; typedef std::map NListIndexToSymbolIndexMap; typedef std::map ConstNameToSymbolIndexMap; ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx; // Any symbols that get merged into another will get an entry // in this map so we know NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; uint32_t nlist_idx = 0; Symbol *symbol_ptr = NULL; uint32_t sym_idx = 0; Symbol *sym = NULL; size_t num_syms = 0; std::string memory_symbol_name; uint32_t unmapped_local_symbols_found = 0; std::vector trie_entries; std::set resolver_addresses; if (dyld_trie_data.GetByteSize() > 0) { std::vector nameSlices; ParseTrieEntries (dyld_trie_data, 0, is_arm, nameSlices, resolver_addresses, trie_entries); ConstString text_segment_name ("__TEXT"); SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); if (text_segment_sp) { const lldb::addr_t text_segment_file_addr = text_segment_sp->GetFileAddress(); if (text_segment_file_addr != LLDB_INVALID_ADDRESS) { for (auto &e : trie_entries) e.entry.address += text_segment_file_addr; } } } typedef std::set IndirectSymbols; IndirectSymbols indirect_symbol_names; #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been optimized by moving LOCAL // symbols out of the memory mapped portion of the DSC. The symbol information has all been retained, // but it isn't available in the normal nlist data. However, there *are* duplicate entries of *some* // LOCAL symbols in the normal nlist data. To handle this situation correctly, we must first attempt // to parse any DSC unmapped symbol information. If we find any, we set a flag that tells the normal // nlist parser to ignore all LOCAL symbols. if (m_header.flags & 0x80000000u) { // Before we can start mapping the DSC, we need to make certain the target process is actually // using the cache we can find. // Next we need to determine the correct path for the dyld shared cache. ArchSpec header_arch; GetArchitecture(header_arch); char dsc_path[PATH_MAX]; char dsc_path_development[PATH_MAX]; snprintf(dsc_path, sizeof(dsc_path), "%s%s%s", "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR */ "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ header_arch.GetArchitectureName()); snprintf(dsc_path_development, sizeof(dsc_path), "%s%s%s%s", "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR */ "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ header_arch.GetArchitectureName(), ".development"); FileSpec dsc_nondevelopment_filespec(dsc_path, false); FileSpec dsc_development_filespec(dsc_path_development, false); FileSpec dsc_filespec; UUID dsc_uuid; UUID process_shared_cache_uuid; if (process) { process_shared_cache_uuid = GetProcessSharedCacheUUID(process); } // First see if we can find an exact match for the inferior process shared cache UUID in // the development or non-development shared caches on disk. if (process_shared_cache_uuid.IsValid()) { if (dsc_development_filespec.Exists()) { UUID dsc_development_uuid = GetSharedCacheUUID (dsc_development_filespec, byte_order, addr_byte_size); if (dsc_development_uuid.IsValid() && dsc_development_uuid == process_shared_cache_uuid) { dsc_filespec = dsc_development_filespec; dsc_uuid = dsc_development_uuid; } } if (!dsc_uuid.IsValid() && dsc_nondevelopment_filespec.Exists()) { UUID dsc_nondevelopment_uuid = GetSharedCacheUUID (dsc_nondevelopment_filespec, byte_order, addr_byte_size); if (dsc_nondevelopment_uuid.IsValid() && dsc_nondevelopment_uuid == process_shared_cache_uuid) { dsc_filespec = dsc_nondevelopment_filespec; dsc_uuid = dsc_nondevelopment_uuid; } } } // Failing a UUID match, prefer the development dyld_shared cache if both are present. if (!dsc_filespec.Exists()) { if (dsc_development_filespec.Exists()) { dsc_filespec = dsc_development_filespec; } else { dsc_filespec = dsc_nondevelopment_filespec; } } /* The dyld_cache_header has a pointer to the dyld_cache_local_symbols_info structure (localSymbolsOffset). The dyld_cache_local_symbols_info structure gives us three things: 1. The start and count of the nlist records in the dyld_shared_cache file 2. The start and size of the strings for these nlist records 3. The start and count of dyld_cache_local_symbols_entry entries There is one dyld_cache_local_symbols_entry per dylib/framework in the dyld shared cache. The "dylibOffset" field is the Mach-O header of this dylib/framework in the dyld shared cache. The dyld_cache_local_symbols_entry also lists the start of this dylib/framework's nlist records and the count of how many nlist records there are for this dylib/framework. */ // Process the dyld shared cache header to find the unmapped symbols DataBufferSP dsc_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(0, sizeof(struct lldb_copy_dyld_cache_header_v1)); if (!dsc_uuid.IsValid()) { dsc_uuid = GetSharedCacheUUID (dsc_filespec, byte_order, addr_byte_size); } if (dsc_data_sp) { DataExtractor dsc_header_data (dsc_data_sp, byte_order, addr_byte_size); bool uuid_match = true; if (dsc_uuid.IsValid() && process) { if (process_shared_cache_uuid.IsValid() && dsc_uuid != process_shared_cache_uuid) { // The on-disk dyld_shared_cache file is not the same as the one in this // process' memory, don't use it. uuid_match = false; ModuleSP module_sp (GetModule()); if (module_sp) module_sp->ReportWarning ("process shared cache does not match on-disk dyld_shared_cache file, some symbol names will be missing."); } } offset = offsetof (struct lldb_copy_dyld_cache_header_v1, mappingOffset); uint32_t mappingOffset = dsc_header_data.GetU32(&offset); // If the mappingOffset points to a location inside the header, we've // opened an old dyld shared cache, and should not proceed further. if (uuid_match && mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) { DataBufferSP dsc_mapping_info_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(mappingOffset, sizeof (struct lldb_copy_dyld_cache_mapping_info)); DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp, byte_order, addr_byte_size); offset = 0; // The File addresses (from the in-memory Mach-O load commands) for the shared libraries // in the shared library cache need to be adjusted by an offset to match up with the // dylibOffset identifying field in the dyld_cache_local_symbol_entry's. This offset is // recorded in mapping_offset_value. const uint64_t mapping_offset_value = dsc_mapping_info_data.GetU64(&offset); offset = offsetof (struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset); uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset); uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset); if (localSymbolsOffset && localSymbolsSize) { // Map the local symbols if (DataBufferSP dsc_local_symbols_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(localSymbolsOffset, localSymbolsSize)) { DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp, byte_order, addr_byte_size); offset = 0; typedef std::map UndefinedNameToDescMap; typedef std::map SymbolIndexToName; UndefinedNameToDescMap undefined_name_to_desc; SymbolIndexToName reexport_shlib_needs_fixup; // Read the local_symbols_infos struct in one shot struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info; dsc_local_symbols_data.GetU32(&offset, &local_symbols_info.nlistOffset, 6); SectionSP text_section_sp(section_list->FindSectionByName(GetSegmentNameTEXT())); uint32_t header_file_offset = (text_section_sp->GetFileAddress() - mapping_offset_value); offset = local_symbols_info.entriesOffset; for (uint32_t entry_index = 0; entry_index < local_symbols_info.entriesCount; entry_index++) { struct lldb_copy_dyld_cache_local_symbols_entry local_symbols_entry; local_symbols_entry.dylibOffset = dsc_local_symbols_data.GetU32(&offset); local_symbols_entry.nlistStartIndex = dsc_local_symbols_data.GetU32(&offset); local_symbols_entry.nlistCount = dsc_local_symbols_data.GetU32(&offset); if (header_file_offset == local_symbols_entry.dylibOffset) { unmapped_local_symbols_found = local_symbols_entry.nlistCount; // The normal nlist code cannot correctly size the Symbols array, we need to allocate it here. sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms + unmapped_local_symbols_found - m_dysymtab.nlocalsym); num_syms = symtab->GetNumSymbols(); nlist_data_offset = local_symbols_info.nlistOffset + (nlist_byte_size * local_symbols_entry.nlistStartIndex); uint32_t string_table_offset = local_symbols_info.stringsOffset; for (uint32_t nlist_index = 0; nlist_index < local_symbols_entry.nlistCount; nlist_index++) { ///////////////////////////// { struct nlist_64 nlist; if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) break; nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(&nlist_data_offset); nlist.n_type = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked (&nlist_data_offset); nlist.n_value = dsc_local_symbols_data.GetAddress_unchecked (&nlist_data_offset); SymbolType type = eSymbolTypeInvalid; const char *symbol_name = dsc_local_symbols_data.PeekCStr(string_table_offset + nlist.n_strx); if (symbol_name == NULL) { // No symbol should be NULL, even the symbols with no // string values should have an offset zero which points // to an empty C-string Host::SystemLog (Host::eSystemLogError, "error: DSC unmapped local symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", entry_index, nlist.n_strx, module_sp->GetFileSpec().GetPath().c_str()); continue; } if (symbol_name[0] == '\0') symbol_name = NULL; const char *symbol_name_non_abi_mangled = NULL; SectionSP symbol_section; uint32_t symbol_byte_size = 0; bool add_nlist = true; bool is_debug = ((nlist.n_type & N_STAB) != 0); bool demangled_is_synthesized = false; bool is_gsym = false; bool set_value = true; assert (sym_idx < num_syms); sym[sym_idx].SetDebug (is_debug); if (is_debug) { switch (nlist.n_type) { case N_GSYM: // global symbol: name,,NO_SECT,type,0 // Sometimes the N_GSYM value contains the address. // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They // have the same address, but we want to ensure that we always find only the real symbol, // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the // same address. is_gsym = true; sym[sym_idx].SetExternal(true); if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') { llvm::StringRef symbol_name_ref(symbol_name); if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_class.size(); type = eSymbolTypeObjCClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); type = eSymbolTypeObjCMetaClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); type = eSymbolTypeObjCIVar; demangled_is_synthesized = true; } } else { if (nlist.n_value != 0) symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); type = eSymbolTypeData; } break; case N_FNAME: // procedure name (f77 kludge): name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_FUN: // procedure: name,,n_sect,linenumber,address if (symbol_name) { type = eSymbolTypeCode; symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); N_FUN_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); // We use the current number of symbols in the symbol table in lieu of // using nlist_idx in case we ever start trimming entries out N_FUN_indexes.push_back(sym_idx); } else { type = eSymbolTypeCompiler; if ( !N_FUN_indexes.empty() ) { // Copy the size of the function into the original STAB entry so we don't have // to hunt for it later symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); N_FUN_indexes.pop_back(); // We don't really need the end function STAB as it contains the size which // we already placed with the original symbol, so don't add it if we want a // minimal symbol table add_nlist = false; } } break; case N_STSYM: // static symbol: name,,n_sect,type,address N_STSYM_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); if (symbol_name && symbol_name[0]) { type = ObjectFile::GetSymbolTypeFromName(symbol_name+1, eSymbolTypeData); } break; case N_LCSYM: // .lcomm symbol: name,,n_sect,type,address symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); type = eSymbolTypeCommonBlock; break; case N_BNSYM: // We use the current number of symbols in the symbol table in lieu of // using nlist_idx in case we ever start trimming entries out // Skip these if we want minimal symbol tables add_nlist = false; break; case N_ENSYM: // Set the size of the N_BNSYM to the terminating index of this N_ENSYM // so that we can always skip the entire symbol if we need to navigate // more quickly at the source level when parsing STABS // Skip these if we want minimal symbol tables add_nlist = false; break; case N_OPT: // emitted with gcc2_compiled and in gcc source type = eSymbolTypeCompiler; break; case N_RSYM: // register sym: name,,NO_SECT,type,register type = eSymbolTypeVariable; break; case N_SLINE: // src line: 0,,n_sect,linenumber,address symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); type = eSymbolTypeLineEntry; break; case N_SSYM: // structure elt: name,,NO_SECT,type,struct_offset type = eSymbolTypeVariableType; break; case N_SO: // source file name type = eSymbolTypeSourceFile; if (symbol_name == NULL) { add_nlist = false; if (N_SO_index != UINT32_MAX) { // Set the size of the N_SO to the terminating index of this N_SO // so that we can always skip the entire N_SO if we need to navigate // more quickly at the source level when parsing STABS symbol_ptr = symtab->SymbolAtIndex(N_SO_index); symbol_ptr->SetByteSize(sym_idx); symbol_ptr->SetSizeIsSibling(true); } N_NSYM_indexes.clear(); N_INCL_indexes.clear(); N_BRAC_indexes.clear(); N_COMM_indexes.clear(); N_FUN_indexes.clear(); N_SO_index = UINT32_MAX; } else { // We use the current number of symbols in the symbol table in lieu of // using nlist_idx in case we ever start trimming entries out const bool N_SO_has_full_path = symbol_name[0] == '/'; if (N_SO_has_full_path) { if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) { // We have two consecutive N_SO entries where the first contains a directory // and the second contains a full path. sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; add_nlist = false; } else { // This is the first entry in a N_SO that contains a directory or // a full path to the source file N_SO_index = sym_idx; } } else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) { // This is usually the second N_SO entry that contains just the filename, // so here we combine it with the first one if we are minimizing the symbol table const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); if (so_path && so_path[0]) { std::string full_so_path (so_path); const size_t double_slash_pos = full_so_path.find("//"); if (double_slash_pos != std::string::npos) { // The linker has been generating bad N_SO entries with doubled up paths // in the format "%s%s" where the first string in the DW_AT_comp_dir, // and the second is the directory for the source file so you end up with // a path that looks like "/tmp/src//tmp/src/" FileSpec so_dir(so_path, false); if (!so_dir.Exists()) { so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); if (so_dir.Exists()) { // Trim off the incorrect path full_so_path.erase(0, double_slash_pos + 1); } } } if (*full_so_path.rbegin() != '/') full_so_path += '/'; full_so_path += symbol_name; sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); add_nlist = false; m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; } } else { // This could be a relative path to a N_SO N_SO_index = sym_idx; } } break; case N_OSO: // object file name: name,,0,0,st_mtime type = eSymbolTypeObjectFile; break; case N_LSYM: // local sym: name,,NO_SECT,type,offset type = eSymbolTypeLocal; break; //---------------------------------------------------------------------- // INCL scopes //---------------------------------------------------------------------- case N_BINCL: // include file beginning: name,,NO_SECT,0,sum // We use the current number of symbols in the symbol table in lieu of // using nlist_idx in case we ever start trimming entries out N_INCL_indexes.push_back(sym_idx); type = eSymbolTypeScopeBegin; break; case N_EINCL: // include file end: name,,NO_SECT,0,0 // Set the size of the N_BINCL to the terminating index of this N_EINCL // so that we can always skip the entire symbol if we need to navigate // more quickly at the source level when parsing STABS if ( !N_INCL_indexes.empty() ) { symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_INCL_indexes.pop_back(); } type = eSymbolTypeScopeEnd; break; case N_SOL: // #included file name: name,,n_sect,0,address type = eSymbolTypeHeaderFile; // We currently don't use the header files on darwin add_nlist = false; break; case N_PARAMS: // compiler parameters: name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_VERSION: // compiler version: name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_OLEVEL: // compiler -O level: name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_PSYM: // parameter: name,,NO_SECT,type,offset type = eSymbolTypeVariable; break; case N_ENTRY: // alternate entry: name,,n_sect,linenumber,address symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); type = eSymbolTypeLineEntry; break; //---------------------------------------------------------------------- // Left and Right Braces //---------------------------------------------------------------------- case N_LBRAC: // left bracket: 0,,NO_SECT,nesting level,address // We use the current number of symbols in the symbol table in lieu of // using nlist_idx in case we ever start trimming entries out symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); N_BRAC_indexes.push_back(sym_idx); type = eSymbolTypeScopeBegin; break; case N_RBRAC: // right bracket: 0,,NO_SECT,nesting level,address // Set the size of the N_LBRAC to the terminating index of this N_RBRAC // so that we can always skip the entire symbol if we need to navigate // more quickly at the source level when parsing STABS symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); if ( !N_BRAC_indexes.empty() ) { symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_BRAC_indexes.pop_back(); } type = eSymbolTypeScopeEnd; break; case N_EXCL: // deleted include file: name,,NO_SECT,0,sum type = eSymbolTypeHeaderFile; break; //---------------------------------------------------------------------- // COMM scopes //---------------------------------------------------------------------- case N_BCOMM: // begin common: name,,NO_SECT,0,0 // We use the current number of symbols in the symbol table in lieu of // using nlist_idx in case we ever start trimming entries out type = eSymbolTypeScopeBegin; N_COMM_indexes.push_back(sym_idx); break; case N_ECOML: // end common (local name): 0,,n_sect,0,address symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); // Fall through case N_ECOMM: // end common: name,,n_sect,0,0 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML // so that we can always skip the entire symbol if we need to navigate // more quickly at the source level when parsing STABS if ( !N_COMM_indexes.empty() ) { symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_COMM_indexes.pop_back(); } type = eSymbolTypeScopeEnd; break; case N_LENG: // second stab entry with length information type = eSymbolTypeAdditional; break; default: break; } } else { //uint8_t n_pext = N_PEXT & nlist.n_type; uint8_t n_type = N_TYPE & nlist.n_type; sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); switch (n_type) { case N_INDR: { const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); if (reexport_name_cstr && reexport_name_cstr[0]) { type = eSymbolTypeReExported; ConstString reexport_name(reexport_name_cstr + ((reexport_name_cstr[0] == '_') ? 1 : 0)); sym[sym_idx].SetReExportedSymbolName(reexport_name); set_value = false; reexport_shlib_needs_fixup[sym_idx] = reexport_name; indirect_symbol_names.insert(ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); } else type = eSymbolTypeUndefined; } break; case N_UNDF: if (symbol_name && symbol_name[0]) { ConstString undefined_name(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); undefined_name_to_desc[undefined_name] = nlist.n_desc; } // Fall through case N_PBUD: type = eSymbolTypeUndefined; break; case N_ABS: type = eSymbolTypeAbsolute; break; case N_SECT: { symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); if (symbol_section == NULL) { // TODO: warn about this? add_nlist = false; break; } if (TEXT_eh_frame_sectID == nlist.n_sect) { type = eSymbolTypeException; } else { uint32_t section_type = symbol_section->Get() & SECTION_TYPE; switch (section_type) { case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for initialization case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for termination case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; default: switch (symbol_section->GetType()) { case lldb::eSectionTypeCode: type = eSymbolTypeCode; break; case eSectionTypeData: case eSectionTypeDataCString: // Inlined C string data case eSectionTypeDataCStringPointers: // Pointers to C string data case eSectionTypeDataSymbolAddress: // Address of a symbol in the symbol table case eSectionTypeData4: case eSectionTypeData8: case eSectionTypeData16: type = eSymbolTypeData; break; default: break; } break; } if (type == eSymbolTypeInvalid) { const char *symbol_sect_name = symbol_section->GetName().AsCString(); if (symbol_section->IsDescendant (text_section_sp.get())) { if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SELF_MODIFYING_CODE | S_ATTR_SOME_INSTRUCTIONS)) type = eSymbolTypeData; else type = eSymbolTypeCode; } else if (symbol_section->IsDescendant(data_section_sp.get()) || symbol_section->IsDescendant(data_dirty_section_sp.get()) || symbol_section->IsDescendant(data_const_section_sp.get())) { if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) { type = eSymbolTypeRuntime; if (symbol_name) { llvm::StringRef symbol_name_ref(symbol_name); if (symbol_name_ref.startswith("_OBJC_")) { static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_class.size(); type = eSymbolTypeObjCClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); type = eSymbolTypeObjCMetaClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); type = eSymbolTypeObjCIVar; demangled_is_synthesized = true; } } } } else if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) { type = eSymbolTypeException; } else { type = eSymbolTypeData; } } else if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) { type = eSymbolTypeTrampoline; } else if (symbol_section->IsDescendant(objc_section_sp.get())) { type = eSymbolTypeRuntime; if (symbol_name && symbol_name[0] == '.') { llvm::StringRef symbol_name_ref(symbol_name); static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) { symbol_name_non_abi_mangled = symbol_name; symbol_name = symbol_name + g_objc_v1_prefix_class.size(); type = eSymbolTypeObjCClass; demangled_is_synthesized = true; } } } } } } break; } } if (add_nlist) { uint64_t symbol_value = nlist.n_value; if (symbol_name_non_abi_mangled) { sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); } else { bool symbol_name_is_mangled = false; if (symbol_name && symbol_name[0] == '_') { symbol_name_is_mangled = symbol_name[1] == '_'; symbol_name++; // Skip the leading underscore } if (symbol_name) { ConstString const_symbol_name(symbol_name); sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); if (is_gsym && is_debug) { const char *gsym_name = sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString(); if (gsym_name) N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; } } } if (symbol_section) { const addr_t section_file_addr = symbol_section->GetFileAddress(); if (symbol_byte_size == 0 && function_starts_count > 0) { addr_t symbol_lookup_file_addr = nlist.n_value; // Do an exact address match for non-ARM addresses, else get the closest since // the symbol might be a thumb symbol which has an address with bit zero set FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); if (is_arm && func_start_entry) { // Verify that the function start address is the symbol address (ARM) // or the symbol address + 1 (thumb) if (func_start_entry->addr != symbol_lookup_file_addr && func_start_entry->addr != (symbol_lookup_file_addr + 1)) { // Not the right entry, NULL it out... func_start_entry = NULL; } } if (func_start_entry) { func_start_entry->data = true; addr_t symbol_file_addr = func_start_entry->addr; uint32_t symbol_flags = 0; if (is_arm) { if (symbol_file_addr & 1) symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; } const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); if (next_func_start_entry) { addr_t next_symbol_file_addr = next_func_start_entry->addr; // Be sure the clear the Thumb address bit when we calculate the size // from the current and next address if (is_arm) next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; symbol_byte_size = std::min(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); } else { symbol_byte_size = section_end_file_addr - symbol_file_addr; } } } symbol_value -= section_file_addr; } if (is_debug == false) { if (type == eSymbolTypeCode) { // See if we can find a N_FUN entry for any code symbols. // If we do find a match, and the name matches, then we // can merge the two into just the function symbol to avoid // duplicate entries in the symbol table std::pair range; range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); if (range.first != range.second) { bool found_it = false; for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) { if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) { m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; // We just need the flags from the linker symbol, so put these flags // into the N_FUN flags to avoid duplicate symbols in the symbol table sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) sym[pos->second].SetType (eSymbolTypeResolver); sym[sym_idx].Clear(); found_it = true; break; } } if (found_it) continue; } else { if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) type = eSymbolTypeResolver; } } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass || type == eSymbolTypeObjCMetaClass || type == eSymbolTypeObjCIVar ) { // See if we can find a N_STSYM entry for any data symbols. // If we do find a match, and the name matches, then we // can merge the two into just the Static symbol to avoid // duplicate entries in the symbol table std::pair range; range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); if (range.first != range.second) { bool found_it = false; for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) { if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) { m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; // We just need the flags from the linker symbol, so put these flags // into the N_STSYM flags to avoid duplicate symbols in the symbol table sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); sym[sym_idx].Clear(); found_it = true; break; } } if (found_it) continue; } else { const char *gsym_name = sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString(); if (gsym_name) { // Combine N_GSYM stab entries with the non stab symbol ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(gsym_name); if (pos != N_GSYM_name_to_sym_idx.end()) { const uint32_t GSYM_sym_idx = pos->second; m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; // Copy the address, because often the N_GSYM address has an invalid address of zero // when the global is a common symbol sym[GSYM_sym_idx].GetAddressRef().SetSection (symbol_section); sym[GSYM_sym_idx].GetAddressRef().SetOffset (symbol_value); // We just need the flags from the linker symbol, so put these flags // into the N_GSYM flags to avoid duplicate symbols in the symbol table sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); sym[sym_idx].Clear(); continue; } } } } } sym[sym_idx].SetID (nlist_idx); sym[sym_idx].SetType (type); if (set_value) { sym[sym_idx].GetAddressRef().SetSection (symbol_section); sym[sym_idx].GetAddressRef().SetOffset (symbol_value); } sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); if (symbol_byte_size > 0) sym[sym_idx].SetByteSize(symbol_byte_size); if (demangled_is_synthesized) sym[sym_idx].SetDemangledNameIsSynthesized(true); ++sym_idx; } else { sym[sym_idx].Clear(); } } ///////////////////////////// } break; // No more entries to consider } } for (const auto &pos :reexport_shlib_needs_fixup) { const auto undef_pos = undefined_name_to_desc.find(pos.second); if (undef_pos != undefined_name_to_desc.end()) { const uint8_t dylib_ordinal = llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) sym[pos.first].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(dylib_ordinal-1)); } } } } } } } // Must reset this in case it was mutated above! nlist_data_offset = 0; #endif if (nlist_data.GetByteSize() > 0) { // If the sym array was not created while parsing the DSC unmapped // symbols, create it now. if (sym == NULL) { sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms); num_syms = symtab->GetNumSymbols(); } if (unmapped_local_symbols_found) { assert(m_dysymtab.ilocalsym == 0); nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size); nlist_idx = m_dysymtab.nlocalsym; } else { nlist_idx = 0; } typedef std::map UndefinedNameToDescMap; typedef std::map SymbolIndexToName; UndefinedNameToDescMap undefined_name_to_desc; SymbolIndexToName reexport_shlib_needs_fixup; for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) { struct nlist_64 nlist; if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) break; nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset); nlist.n_type = nlist_data.GetU8_unchecked (&nlist_data_offset); nlist.n_sect = nlist_data.GetU8_unchecked (&nlist_data_offset); nlist.n_desc = nlist_data.GetU16_unchecked (&nlist_data_offset); nlist.n_value = nlist_data.GetAddress_unchecked (&nlist_data_offset); SymbolType type = eSymbolTypeInvalid; const char *symbol_name = NULL; if (have_strtab_data) { symbol_name = strtab_data.PeekCStr(nlist.n_strx); if (symbol_name == NULL) { // No symbol should be NULL, even the symbols with no // string values should have an offset zero which points // to an empty C-string Host::SystemLog (Host::eSystemLogError, "error: symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", nlist_idx, nlist.n_strx, module_sp->GetFileSpec().GetPath().c_str()); continue; } if (symbol_name[0] == '\0') symbol_name = NULL; } else { const addr_t str_addr = strtab_addr + nlist.n_strx; Error str_error; if (process->ReadCStringFromMemory(str_addr, memory_symbol_name, str_error)) symbol_name = memory_symbol_name.c_str(); } const char *symbol_name_non_abi_mangled = NULL; SectionSP symbol_section; lldb::addr_t symbol_byte_size = 0; bool add_nlist = true; bool is_gsym = false; bool is_debug = ((nlist.n_type & N_STAB) != 0); bool demangled_is_synthesized = false; bool set_value = true; assert (sym_idx < num_syms); sym[sym_idx].SetDebug (is_debug); if (is_debug) { switch (nlist.n_type) { case N_GSYM: // global symbol: name,,NO_SECT,type,0 // Sometimes the N_GSYM value contains the address. // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They // have the same address, but we want to ensure that we always find only the real symbol, // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the // same address. is_gsym = true; sym[sym_idx].SetExternal(true); if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') { llvm::StringRef symbol_name_ref(symbol_name); if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_class.size(); type = eSymbolTypeObjCClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); type = eSymbolTypeObjCMetaClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); type = eSymbolTypeObjCIVar; demangled_is_synthesized = true; } } else { if (nlist.n_value != 0) symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); type = eSymbolTypeData; } break; case N_FNAME: // procedure name (f77 kludge): name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_FUN: // procedure: name,,n_sect,linenumber,address if (symbol_name) { type = eSymbolTypeCode; symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); N_FUN_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); // We use the current number of symbols in the symbol table in lieu of // using nlist_idx in case we ever start trimming entries out N_FUN_indexes.push_back(sym_idx); } else { type = eSymbolTypeCompiler; if ( !N_FUN_indexes.empty() ) { // Copy the size of the function into the original STAB entry so we don't have // to hunt for it later symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); N_FUN_indexes.pop_back(); // We don't really need the end function STAB as it contains the size which // we already placed with the original symbol, so don't add it if we want a // minimal symbol table add_nlist = false; } } break; case N_STSYM: // static symbol: name,,n_sect,type,address N_STSYM_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); if (symbol_name && symbol_name[0]) { type = ObjectFile::GetSymbolTypeFromName(symbol_name+1, eSymbolTypeData); } break; case N_LCSYM: // .lcomm symbol: name,,n_sect,type,address symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); type = eSymbolTypeCommonBlock; break; case N_BNSYM: // We use the current number of symbols in the symbol table in lieu of // using nlist_idx in case we ever start trimming entries out // Skip these if we want minimal symbol tables add_nlist = false; break; case N_ENSYM: // Set the size of the N_BNSYM to the terminating index of this N_ENSYM // so that we can always skip the entire symbol if we need to navigate // more quickly at the source level when parsing STABS // Skip these if we want minimal symbol tables add_nlist = false; break; case N_OPT: // emitted with gcc2_compiled and in gcc source type = eSymbolTypeCompiler; break; case N_RSYM: // register sym: name,,NO_SECT,type,register type = eSymbolTypeVariable; break; case N_SLINE: // src line: 0,,n_sect,linenumber,address symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); type = eSymbolTypeLineEntry; break; case N_SSYM: // structure elt: name,,NO_SECT,type,struct_offset type = eSymbolTypeVariableType; break; case N_SO: // source file name type = eSymbolTypeSourceFile; if (symbol_name == NULL) { add_nlist = false; if (N_SO_index != UINT32_MAX) { // Set the size of the N_SO to the terminating index of this N_SO // so that we can always skip the entire N_SO if we need to navigate // more quickly at the source level when parsing STABS symbol_ptr = symtab->SymbolAtIndex(N_SO_index); symbol_ptr->SetByteSize(sym_idx); symbol_ptr->SetSizeIsSibling(true); } N_NSYM_indexes.clear(); N_INCL_indexes.clear(); N_BRAC_indexes.clear(); N_COMM_indexes.clear(); N_FUN_indexes.clear(); N_SO_index = UINT32_MAX; } else { // We use the current number of symbols in the symbol table in lieu of // using nlist_idx in case we ever start trimming entries out const bool N_SO_has_full_path = symbol_name[0] == '/'; if (N_SO_has_full_path) { if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) { // We have two consecutive N_SO entries where the first contains a directory // and the second contains a full path. sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; add_nlist = false; } else { // This is the first entry in a N_SO that contains a directory or // a full path to the source file N_SO_index = sym_idx; } } else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) { // This is usually the second N_SO entry that contains just the filename, // so here we combine it with the first one if we are minimizing the symbol table const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName(lldb::eLanguageTypeUnknown).AsCString(); if (so_path && so_path[0]) { std::string full_so_path (so_path); const size_t double_slash_pos = full_so_path.find("//"); if (double_slash_pos != std::string::npos) { // The linker has been generating bad N_SO entries with doubled up paths // in the format "%s%s" where the first string in the DW_AT_comp_dir, // and the second is the directory for the source file so you end up with // a path that looks like "/tmp/src//tmp/src/" FileSpec so_dir(so_path, false); if (!so_dir.Exists()) { so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); if (so_dir.Exists()) { // Trim off the incorrect path full_so_path.erase(0, double_slash_pos + 1); } } } if (*full_so_path.rbegin() != '/') full_so_path += '/'; full_so_path += symbol_name; sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); add_nlist = false; m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; } } else { // This could be a relative path to a N_SO N_SO_index = sym_idx; } } break; case N_OSO: // object file name: name,,0,0,st_mtime type = eSymbolTypeObjectFile; break; case N_LSYM: // local sym: name,,NO_SECT,type,offset type = eSymbolTypeLocal; break; //---------------------------------------------------------------------- // INCL scopes //---------------------------------------------------------------------- case N_BINCL: // include file beginning: name,,NO_SECT,0,sum // We use the current number of symbols in the symbol table in lieu of // using nlist_idx in case we ever start trimming entries out N_INCL_indexes.push_back(sym_idx); type = eSymbolTypeScopeBegin; break; case N_EINCL: // include file end: name,,NO_SECT,0,0 // Set the size of the N_BINCL to the terminating index of this N_EINCL // so that we can always skip the entire symbol if we need to navigate // more quickly at the source level when parsing STABS if ( !N_INCL_indexes.empty() ) { symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_INCL_indexes.pop_back(); } type = eSymbolTypeScopeEnd; break; case N_SOL: // #included file name: name,,n_sect,0,address type = eSymbolTypeHeaderFile; // We currently don't use the header files on darwin add_nlist = false; break; case N_PARAMS: // compiler parameters: name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_VERSION: // compiler version: name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_OLEVEL: // compiler -O level: name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_PSYM: // parameter: name,,NO_SECT,type,offset type = eSymbolTypeVariable; break; case N_ENTRY: // alternate entry: name,,n_sect,linenumber,address symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); type = eSymbolTypeLineEntry; break; //---------------------------------------------------------------------- // Left and Right Braces //---------------------------------------------------------------------- case N_LBRAC: // left bracket: 0,,NO_SECT,nesting level,address // We use the current number of symbols in the symbol table in lieu of // using nlist_idx in case we ever start trimming entries out symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); N_BRAC_indexes.push_back(sym_idx); type = eSymbolTypeScopeBegin; break; case N_RBRAC: // right bracket: 0,,NO_SECT,nesting level,address // Set the size of the N_LBRAC to the terminating index of this N_RBRAC // so that we can always skip the entire symbol if we need to navigate // more quickly at the source level when parsing STABS symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); if ( !N_BRAC_indexes.empty() ) { symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_BRAC_indexes.pop_back(); } type = eSymbolTypeScopeEnd; break; case N_EXCL: // deleted include file: name,,NO_SECT,0,sum type = eSymbolTypeHeaderFile; break; //---------------------------------------------------------------------- // COMM scopes //---------------------------------------------------------------------- case N_BCOMM: // begin common: name,,NO_SECT,0,0 // We use the current number of symbols in the symbol table in lieu of // using nlist_idx in case we ever start trimming entries out type = eSymbolTypeScopeBegin; N_COMM_indexes.push_back(sym_idx); break; case N_ECOML: // end common (local name): 0,,n_sect,0,address symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); // Fall through case N_ECOMM: // end common: name,,n_sect,0,0 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML // so that we can always skip the entire symbol if we need to navigate // more quickly at the source level when parsing STABS if ( !N_COMM_indexes.empty() ) { symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_COMM_indexes.pop_back(); } type = eSymbolTypeScopeEnd; break; case N_LENG: // second stab entry with length information type = eSymbolTypeAdditional; break; default: break; } } else { //uint8_t n_pext = N_PEXT & nlist.n_type; uint8_t n_type = N_TYPE & nlist.n_type; sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); switch (n_type) { case N_INDR: { const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); if (reexport_name_cstr && reexport_name_cstr[0]) { type = eSymbolTypeReExported; ConstString reexport_name(reexport_name_cstr + ((reexport_name_cstr[0] == '_') ? 1 : 0)); sym[sym_idx].SetReExportedSymbolName(reexport_name); set_value = false; reexport_shlib_needs_fixup[sym_idx] = reexport_name; indirect_symbol_names.insert(ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); } else type = eSymbolTypeUndefined; } break; case N_UNDF: if (symbol_name && symbol_name[0]) { ConstString undefined_name(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); undefined_name_to_desc[undefined_name] = nlist.n_desc; } // Fall through case N_PBUD: type = eSymbolTypeUndefined; break; case N_ABS: type = eSymbolTypeAbsolute; break; case N_SECT: { symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); if (!symbol_section) { // TODO: warn about this? add_nlist = false; break; } if (TEXT_eh_frame_sectID == nlist.n_sect) { type = eSymbolTypeException; } else { uint32_t section_type = symbol_section->Get() & SECTION_TYPE; switch (section_type) { case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for initialization case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for termination case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; default: switch (symbol_section->GetType()) { case lldb::eSectionTypeCode: type = eSymbolTypeCode; break; case eSectionTypeData: case eSectionTypeDataCString: // Inlined C string data case eSectionTypeDataCStringPointers: // Pointers to C string data case eSectionTypeDataSymbolAddress: // Address of a symbol in the symbol table case eSectionTypeData4: case eSectionTypeData8: case eSectionTypeData16: type = eSymbolTypeData; break; default: break; } break; } if (type == eSymbolTypeInvalid) { const char *symbol_sect_name = symbol_section->GetName().AsCString(); if (symbol_section->IsDescendant (text_section_sp.get())) { if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SELF_MODIFYING_CODE | S_ATTR_SOME_INSTRUCTIONS)) type = eSymbolTypeData; else type = eSymbolTypeCode; } else if (symbol_section->IsDescendant(data_section_sp.get()) || symbol_section->IsDescendant(data_dirty_section_sp.get()) || symbol_section->IsDescendant(data_const_section_sp.get())) { if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) { type = eSymbolTypeRuntime; if (symbol_name) { llvm::StringRef symbol_name_ref(symbol_name); if (symbol_name_ref.startswith("_OBJC_")) { static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_class.size(); type = eSymbolTypeObjCClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); type = eSymbolTypeObjCMetaClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); type = eSymbolTypeObjCIVar; demangled_is_synthesized = true; } } } } else if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) { type = eSymbolTypeException; } else { type = eSymbolTypeData; } } else if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) { type = eSymbolTypeTrampoline; } else if (symbol_section->IsDescendant(objc_section_sp.get())) { type = eSymbolTypeRuntime; if (symbol_name && symbol_name[0] == '.') { llvm::StringRef symbol_name_ref(symbol_name); static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) { symbol_name_non_abi_mangled = symbol_name; symbol_name = symbol_name + g_objc_v1_prefix_class.size(); type = eSymbolTypeObjCClass; demangled_is_synthesized = true; } } } } } } break; } } if (add_nlist) { uint64_t symbol_value = nlist.n_value; if (symbol_name_non_abi_mangled) { sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); } else { bool symbol_name_is_mangled = false; if (symbol_name && symbol_name[0] == '_') { symbol_name_is_mangled = symbol_name[1] == '_'; symbol_name++; // Skip the leading underscore } if (symbol_name) { ConstString const_symbol_name(symbol_name); sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); } } if (is_gsym) { const char *gsym_name = sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled).GetCString(); if (gsym_name) N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; } if (symbol_section) { const addr_t section_file_addr = symbol_section->GetFileAddress(); if (symbol_byte_size == 0 && function_starts_count > 0) { addr_t symbol_lookup_file_addr = nlist.n_value; // Do an exact address match for non-ARM addresses, else get the closest since // the symbol might be a thumb symbol which has an address with bit zero set FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); if (is_arm && func_start_entry) { // Verify that the function start address is the symbol address (ARM) // or the symbol address + 1 (thumb) if (func_start_entry->addr != symbol_lookup_file_addr && func_start_entry->addr != (symbol_lookup_file_addr + 1)) { // Not the right entry, NULL it out... func_start_entry = NULL; } } if (func_start_entry) { func_start_entry->data = true; addr_t symbol_file_addr = func_start_entry->addr; if (is_arm) symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); if (next_func_start_entry) { addr_t next_symbol_file_addr = next_func_start_entry->addr; // Be sure the clear the Thumb address bit when we calculate the size // from the current and next address if (is_arm) next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; symbol_byte_size = std::min(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); } else { symbol_byte_size = section_end_file_addr - symbol_file_addr; } } } symbol_value -= section_file_addr; } if (is_debug == false) { if (type == eSymbolTypeCode) { // See if we can find a N_FUN entry for any code symbols. // If we do find a match, and the name matches, then we // can merge the two into just the function symbol to avoid // duplicate entries in the symbol table std::pair range; range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); if (range.first != range.second) { bool found_it = false; for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) { if (sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) { m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; // We just need the flags from the linker symbol, so put these flags // into the N_FUN flags to avoid duplicate symbols in the symbol table sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) sym[pos->second].SetType (eSymbolTypeResolver); sym[sym_idx].Clear(); found_it = true; break; } } if (found_it) continue; } else { if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) type = eSymbolTypeResolver; } } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass || type == eSymbolTypeObjCMetaClass || type == eSymbolTypeObjCIVar ) { // See if we can find a N_STSYM entry for any data symbols. // If we do find a match, and the name matches, then we // can merge the two into just the Static symbol to avoid // duplicate entries in the symbol table std::pair range; range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); if (range.first != range.second) { bool found_it = false; for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) { if (sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) { m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; // We just need the flags from the linker symbol, so put these flags // into the N_STSYM flags to avoid duplicate symbols in the symbol table sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); sym[sym_idx].Clear(); found_it = true; break; } } if (found_it) continue; } else { // Combine N_GSYM stab entries with the non stab symbol const char *gsym_name = sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled).GetCString(); if (gsym_name) { ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(gsym_name); if (pos != N_GSYM_name_to_sym_idx.end()) { const uint32_t GSYM_sym_idx = pos->second; m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; // Copy the address, because often the N_GSYM address has an invalid address of zero // when the global is a common symbol sym[GSYM_sym_idx].GetAddressRef().SetSection (symbol_section); sym[GSYM_sym_idx].GetAddressRef().SetOffset (symbol_value); // We just need the flags from the linker symbol, so put these flags // into the N_GSYM flags to avoid duplicate symbols in the symbol table sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); sym[sym_idx].Clear(); continue; } } } } } sym[sym_idx].SetID (nlist_idx); sym[sym_idx].SetType (type); if (set_value) { sym[sym_idx].GetAddressRef().SetSection (symbol_section); sym[sym_idx].GetAddressRef().SetOffset (symbol_value); } sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); if (symbol_byte_size > 0) sym[sym_idx].SetByteSize(symbol_byte_size); if (demangled_is_synthesized) sym[sym_idx].SetDemangledNameIsSynthesized(true); ++sym_idx; } else { sym[sym_idx].Clear(); } } for (const auto &pos :reexport_shlib_needs_fixup) { const auto undef_pos = undefined_name_to_desc.find(pos.second); if (undef_pos != undefined_name_to_desc.end()) { const uint8_t dylib_ordinal = llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) sym[pos.first].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(dylib_ordinal-1)); } } } uint32_t synthetic_sym_id = symtab_load_command.nsyms; if (function_starts_count > 0) { char synthetic_function_symbol[PATH_MAX]; uint32_t num_synthetic_function_symbols = 0; for (i=0; i 0) { if (num_syms < sym_idx + num_synthetic_function_symbols) { num_syms = sym_idx + num_synthetic_function_symbols; sym = symtab->Resize (num_syms); } uint32_t synthetic_function_symbol_idx = 0; for (i=0; idata == false) { addr_t symbol_file_addr = func_start_entry->addr; uint32_t symbol_flags = 0; if (is_arm) { if (symbol_file_addr & 1) symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; } Address symbol_addr; if (module_sp->ResolveFileAddress (symbol_file_addr, symbol_addr)) { SectionSP symbol_section (symbol_addr.GetSection()); uint32_t symbol_byte_size = 0; if (symbol_section) { const addr_t section_file_addr = symbol_section->GetFileAddress(); const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); if (next_func_start_entry) { addr_t next_symbol_file_addr = next_func_start_entry->addr; if (is_arm) next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; symbol_byte_size = std::min(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); } else { symbol_byte_size = section_end_file_addr - symbol_file_addr; } snprintf (synthetic_function_symbol, sizeof(synthetic_function_symbol), "___lldb_unnamed_function%u$$%s", ++synthetic_function_symbol_idx, module_sp->GetFileSpec().GetFilename().GetCString()); sym[sym_idx].SetID (synthetic_sym_id++); sym[sym_idx].GetMangled().SetDemangledName(ConstString(synthetic_function_symbol)); sym[sym_idx].SetType (eSymbolTypeCode); sym[sym_idx].SetIsSynthetic (true); sym[sym_idx].GetAddressRef() = symbol_addr; if (symbol_flags) sym[sym_idx].SetFlags (symbol_flags); if (symbol_byte_size) sym[sym_idx].SetByteSize (symbol_byte_size); ++sym_idx; } } } } } } // Trim our symbols down to just what we ended up with after // removing any symbols. if (sym_idx < num_syms) { num_syms = sym_idx; sym = symtab->Resize (num_syms); } // Now synthesize indirect symbols if (m_dysymtab.nindirectsyms != 0) { if (indirect_symbol_index_data.GetByteSize()) { NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end(); for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx) { if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) == S_SYMBOL_STUBS) { uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2; if (symbol_stub_byte_size == 0) continue; const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size; if (num_symbol_stubs == 0) continue; const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1; for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) { const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx; const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size); lldb::offset_t symbol_stub_offset = symbol_stub_index * 4; if (indirect_symbol_index_data.ValidOffsetForDataOfSize(symbol_stub_offset, 4)) { const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32 (&symbol_stub_offset); if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL)) continue; NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find (stub_sym_id); Symbol *stub_symbol = NULL; if (index_pos != end_index_pos) { // We have a remapping from the original nlist index to // a current symbol index, so just look this up by index stub_symbol = symtab->SymbolAtIndex (index_pos->second); } else { // We need to lookup a symbol using the original nlist // symbol index since this index is coming from the // S_SYMBOL_STUBS stub_symbol = symtab->FindSymbolByID (stub_sym_id); } if (stub_symbol) { Address so_addr(symbol_stub_addr, section_list); if (stub_symbol->GetType() == eSymbolTypeUndefined) { // Change the external symbol into a trampoline that makes sense // These symbols were N_UNDF N_EXT, and are useless to us, so we // can re-use them so we don't have to make up a synthetic symbol // for no good reason. if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) stub_symbol->SetType (eSymbolTypeTrampoline); else stub_symbol->SetType (eSymbolTypeResolver); stub_symbol->SetExternal (false); stub_symbol->GetAddressRef() = so_addr; stub_symbol->SetByteSize (symbol_stub_byte_size); } else { // Make a synthetic symbol to describe the trampoline stub Mangled stub_symbol_mangled_name(stub_symbol->GetMangled()); if (sym_idx >= num_syms) { sym = symtab->Resize (++num_syms); stub_symbol = NULL; // this pointer no longer valid } sym[sym_idx].SetID (synthetic_sym_id++); sym[sym_idx].GetMangled() = stub_symbol_mangled_name; if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) sym[sym_idx].SetType (eSymbolTypeTrampoline); else sym[sym_idx].SetType (eSymbolTypeResolver); sym[sym_idx].SetIsSynthetic (true); sym[sym_idx].GetAddressRef() = so_addr; sym[sym_idx].SetByteSize (symbol_stub_byte_size); ++sym_idx; } } else { if (log) log->Warning ("symbol stub referencing symbol table symbol %u that isn't in our minimal symbol table, fix this!!!", stub_sym_id); } } } } } } } if (!trie_entries.empty()) { for (const auto &e : trie_entries) { if (e.entry.import_name) { // Only add indirect symbols from the Trie entries if we // didn't have a N_INDR nlist entry for this already if (indirect_symbol_names.find(e.entry.name) == indirect_symbol_names.end()) { // Make a synthetic symbol to describe re-exported symbol. if (sym_idx >= num_syms) sym = symtab->Resize (++num_syms); sym[sym_idx].SetID (synthetic_sym_id++); sym[sym_idx].GetMangled() = Mangled(e.entry.name); sym[sym_idx].SetType (eSymbolTypeReExported); sym[sym_idx].SetIsSynthetic (true); sym[sym_idx].SetReExportedSymbolName(e.entry.import_name); if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) { sym[sym_idx].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(e.entry.other-1)); } ++sym_idx; } } } } // StreamFile s(stdout, false); // s.Printf ("Symbol table before CalculateSymbolSizes():\n"); // symtab->Dump(&s, NULL, eSortOrderNone); // Set symbol byte sizes correctly since mach-o nlist entries don't have sizes symtab->CalculateSymbolSizes(); // s.Printf ("Symbol table after CalculateSymbolSizes():\n"); // symtab->Dump(&s, NULL, eSortOrderNone); return symtab->GetNumSymbols(); } return 0; } void ObjectFileMachO::Dump (Stream *s) { ModuleSP module_sp(GetModule()); if (module_sp) { lldb_private::Mutex::Locker locker(module_sp->GetMutex()); s->Printf("%p: ", static_cast(this)); s->Indent(); if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64) s->PutCString("ObjectFileMachO64"); else s->PutCString("ObjectFileMachO32"); ArchSpec header_arch; GetArchitecture(header_arch); *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; SectionList *sections = GetSectionList(); if (sections) sections->Dump(s, NULL, true, UINT32_MAX); if (m_symtab_ap.get()) m_symtab_ap->Dump(s, NULL, eSortOrderNone); } } bool ObjectFileMachO::GetUUID (const llvm::MachO::mach_header &header, const lldb_private::DataExtractor &data, lldb::offset_t lc_offset, lldb_private::UUID& uuid) { uint32_t i; struct uuid_command load_cmd; lldb::offset_t offset = lc_offset; for (i=0; iGetMutex()); lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); return GetUUID (m_header, m_data, offset, *uuid); } return false; } uint32_t ObjectFileMachO::GetDependentModules (FileSpecList& files) { uint32_t count = 0; ModuleSP module_sp(GetModule()); if (module_sp) { lldb_private::Mutex::Locker locker(module_sp->GetMutex()); struct load_command load_cmd; lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); std::vector rpath_paths; std::vector rpath_relative_paths; const bool resolve_path = false; // Don't resolve the dependent file paths since they may not reside on this system uint32_t i; for (i=0; i corresponding to the flavor. // // // So we just keep reading the various register flavors till we find the GPR one, then read the PC out of there. // FIXME: We will need to have a "RegisterContext data provider" class at some point that can get all the registers // out of data in this form & attach them to a given thread. That should underlie the MacOS X User process plugin, // and we'll also need it for the MacOS X Core File process plugin. When we have that we can also use it here. // // For now we hard-code the offsets and flavors we need: // // ModuleSP module_sp(GetModule()); if (module_sp) { lldb_private::Mutex::Locker locker(module_sp->GetMutex()); struct load_command load_cmd; lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); uint32_t i; lldb::addr_t start_address = LLDB_INVALID_ADDRESS; bool done = false; for (i=0; iFindSectionByName(text_segment_name); if (text_segment_sp) { done = true; start_address = text_segment_sp->GetFileAddress() + entryoffset; } } default: break; } if (done) break; // Go to the next load command: offset = cmd_offset + load_cmd.cmdsize; } if (start_address != LLDB_INVALID_ADDRESS) { // We got the start address from the load commands, so now resolve that address in the sections // of this ObjectFile: if (!m_entry_point_address.ResolveAddressUsingFileSections (start_address, GetSectionList())) { m_entry_point_address.Clear(); } } else { // We couldn't read the UnixThread load command - maybe it wasn't there. As a fallback look for the // "start" symbol in the main executable. ModuleSP module_sp (GetModule()); if (module_sp) { SymbolContextList contexts; SymbolContext context; if (module_sp->FindSymbolsWithNameAndType(ConstString ("start"), eSymbolTypeCode, contexts)) { if (contexts.GetContextAtIndex(0, context)) m_entry_point_address = context.symbol->GetAddress(); } } } } return m_entry_point_address; } lldb_private::Address ObjectFileMachO::GetHeaderAddress () { lldb_private::Address header_addr; SectionList *section_list = GetSectionList(); if (section_list) { SectionSP text_segment_sp (section_list->FindSectionByName (GetSegmentNameTEXT())); if (text_segment_sp) { header_addr.SetSection (text_segment_sp); header_addr.SetOffset (0); } } return header_addr; } uint32_t ObjectFileMachO::GetNumThreadContexts () { ModuleSP module_sp(GetModule()); if (module_sp) { lldb_private::Mutex::Locker locker(module_sp->GetMutex()); if (!m_thread_context_offsets_valid) { m_thread_context_offsets_valid = true; lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); FileRangeArray::Entry file_range; thread_command thread_cmd; for (uint32_t i=0; iGetMutex()); if (!m_thread_context_offsets_valid) GetNumThreadContexts (); const FileRangeArray::Entry *thread_context_file_range = m_thread_context_offsets.GetEntryAtIndex (idx); if (thread_context_file_range) { DataExtractor data (m_data, thread_context_file_range->GetRangeBase(), thread_context_file_range->GetByteSize()); switch (m_header.cputype) { case llvm::MachO::CPU_TYPE_ARM64: reg_ctx_sp.reset (new RegisterContextDarwin_arm64_Mach (thread, data)); break; case llvm::MachO::CPU_TYPE_ARM: reg_ctx_sp.reset (new RegisterContextDarwin_arm_Mach (thread, data)); break; case llvm::MachO::CPU_TYPE_I386: reg_ctx_sp.reset (new RegisterContextDarwin_i386_Mach (thread, data)); break; case llvm::MachO::CPU_TYPE_X86_64: reg_ctx_sp.reset (new RegisterContextDarwin_x86_64_Mach (thread, data)); break; } } } return reg_ctx_sp; } ObjectFile::Type ObjectFileMachO::CalculateType() { switch (m_header.filetype) { case MH_OBJECT: // 0x1u if (GetAddressByteSize () == 4) { // 32 bit kexts are just object files, but they do have a valid // UUID load command. UUID uuid; if (GetUUID(&uuid)) { // this checking for the UUID load command is not enough // we could eventually look for the symbol named // "OSKextGetCurrentIdentifier" as this is required of kexts if (m_strata == eStrataInvalid) m_strata = eStrataKernel; return eTypeSharedLibrary; } } return eTypeObjectFile; case MH_EXECUTE: return eTypeExecutable; // 0x2u case MH_FVMLIB: return eTypeSharedLibrary; // 0x3u case MH_CORE: return eTypeCoreFile; // 0x4u case MH_PRELOAD: return eTypeSharedLibrary; // 0x5u case MH_DYLIB: return eTypeSharedLibrary; // 0x6u case MH_DYLINKER: return eTypeDynamicLinker; // 0x7u case MH_BUNDLE: return eTypeSharedLibrary; // 0x8u case MH_DYLIB_STUB: return eTypeStubLibrary; // 0x9u case MH_DSYM: return eTypeDebugInfo; // 0xAu case MH_KEXT_BUNDLE: return eTypeSharedLibrary; // 0xBu default: break; } return eTypeUnknown; } ObjectFile::Strata ObjectFileMachO::CalculateStrata() { switch (m_header.filetype) { case MH_OBJECT: // 0x1u { // 32 bit kexts are just object files, but they do have a valid // UUID load command. UUID uuid; if (GetUUID(&uuid)) { // this checking for the UUID load command is not enough // we could eventually look for the symbol named // "OSKextGetCurrentIdentifier" as this is required of kexts if (m_type == eTypeInvalid) m_type = eTypeSharedLibrary; return eStrataKernel; } } return eStrataUnknown; case MH_EXECUTE: // 0x2u // Check for the MH_DYLDLINK bit in the flags if (m_header.flags & MH_DYLDLINK) { return eStrataUser; } else { SectionList *section_list = GetSectionList(); if (section_list) { static ConstString g_kld_section_name ("__KLD"); if (section_list->FindSectionByName(g_kld_section_name)) return eStrataKernel; } } return eStrataRawImage; case MH_FVMLIB: return eStrataUser; // 0x3u case MH_CORE: return eStrataUnknown; // 0x4u case MH_PRELOAD: return eStrataRawImage; // 0x5u case MH_DYLIB: return eStrataUser; // 0x6u case MH_DYLINKER: return eStrataUser; // 0x7u case MH_BUNDLE: return eStrataUser; // 0x8u case MH_DYLIB_STUB: return eStrataUser; // 0x9u case MH_DSYM: return eStrataUnknown; // 0xAu case MH_KEXT_BUNDLE: return eStrataKernel; // 0xBu default: break; } return eStrataUnknown; } uint32_t ObjectFileMachO::GetVersion (uint32_t *versions, uint32_t num_versions) { ModuleSP module_sp(GetModule()); if (module_sp) { lldb_private::Mutex::Locker locker(module_sp->GetMutex()); struct dylib_command load_cmd; lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); uint32_t version_cmd = 0; uint64_t version = 0; uint32_t i; for (i=0; i 0) { if (num_versions > 0) versions[0] = (version & 0xFFFF0000ull) >> 16; if (num_versions > 1) versions[1] = (version & 0x0000FF00ull) >> 8; if (num_versions > 2) versions[2] = (version & 0x000000FFull); // Fill in an remaining version numbers with invalid values for (i=3; iGetMutex()); return GetArchitecture (m_header, m_data, MachHeaderSizeFromMagic(m_header.magic), arch); } return false; } UUID ObjectFileMachO::GetProcessSharedCacheUUID (Process *process) { UUID uuid; if (process) { addr_t all_image_infos = process->GetImageInfoAddress(); // The address returned by GetImageInfoAddress may be the address of dyld (don't want) // or it may be the address of the dyld_all_image_infos structure (want). The first four // bytes will be either the version field (all_image_infos) or a Mach-O file magic constant. // Version 13 and higher of dyld_all_image_infos is required to get the sharedCacheUUID field. Error err; uint32_t version_or_magic = process->ReadUnsignedIntegerFromMemory (all_image_infos, 4, -1, err); if (version_or_magic != static_cast(-1) && version_or_magic != MH_MAGIC && version_or_magic != MH_CIGAM && version_or_magic != MH_MAGIC_64 && version_or_magic != MH_CIGAM_64 && version_or_magic >= 13) { addr_t sharedCacheUUID_address = LLDB_INVALID_ADDRESS; int wordsize = process->GetAddressByteSize(); if (wordsize == 8) { sharedCacheUUID_address = all_image_infos + 160; // sharedCacheUUID } if (wordsize == 4) { sharedCacheUUID_address = all_image_infos + 84; // sharedCacheUUID } if (sharedCacheUUID_address != LLDB_INVALID_ADDRESS) { uuid_t shared_cache_uuid; if (process->ReadMemory (sharedCacheUUID_address, shared_cache_uuid, sizeof (uuid_t), err) == sizeof (uuid_t)) { uuid.SetBytes (shared_cache_uuid); } } } } return uuid; } UUID ObjectFileMachO::GetLLDBSharedCacheUUID () { UUID uuid; #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) uint8_t *(*dyld_get_all_image_infos)(void); dyld_get_all_image_infos = (uint8_t*(*)()) dlsym (RTLD_DEFAULT, "_dyld_get_all_image_infos"); if (dyld_get_all_image_infos) { uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos(); if (dyld_all_image_infos_address) { uint32_t *version = (uint32_t*) dyld_all_image_infos_address; // version if (*version >= 13) { uuid_t *sharedCacheUUID_address = 0; int wordsize = sizeof (uint8_t *); if (wordsize == 8) { sharedCacheUUID_address = (uuid_t*) ((uint8_t*) dyld_all_image_infos_address + 160); // sharedCacheUUID } else { sharedCacheUUID_address = (uuid_t*) ((uint8_t*) dyld_all_image_infos_address + 84); // sharedCacheUUID } uuid.SetBytes (sharedCacheUUID_address); } } } #endif return uuid; } uint32_t ObjectFileMachO::GetMinimumOSVersion (uint32_t *versions, uint32_t num_versions) { if (m_min_os_versions.empty()) { lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); bool success = false; for (uint32_t i=0; success == false && i < m_header.ncmds; ++i) { const lldb::offset_t load_cmd_offset = offset; version_min_command lc; if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) break; if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX || lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS || lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS || lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) { if (m_data.GetU32 (&offset, &lc.version, (sizeof(lc) / sizeof(uint32_t)) - 2)) { const uint32_t xxxx = lc.version >> 16; const uint32_t yy = (lc.version >> 8) & 0xffu; const uint32_t zz = lc.version & 0xffu; if (xxxx) { m_min_os_versions.push_back(xxxx); m_min_os_versions.push_back(yy); m_min_os_versions.push_back(zz); } success = true; } } offset = load_cmd_offset + lc.cmdsize; } if (success == false) { // Push an invalid value so we don't keep trying to m_min_os_versions.push_back(UINT32_MAX); } } if (m_min_os_versions.size() > 1 || m_min_os_versions[0] != UINT32_MAX) { if (versions != NULL && num_versions > 0) { for (size_t i=0; i> 16; const uint32_t yy = (lc.sdk >> 8) & 0xffu; const uint32_t zz = lc.sdk & 0xffu; if (xxxx) { m_sdk_versions.push_back(xxxx); m_sdk_versions.push_back(yy); m_sdk_versions.push_back(zz); } success = true; } } offset = load_cmd_offset + lc.cmdsize; } if (success == false) { // Push an invalid value so we don't keep trying to m_sdk_versions.push_back(UINT32_MAX); } } if (m_sdk_versions.size() > 1 || m_sdk_versions[0] != UINT32_MAX) { if (versions != NULL && num_versions > 0) { for (size_t i=0; iGetSize(); for (size_t sect_idx = 0; sect_idx < num_sections && mach_base_file_addr == LLDB_INVALID_ADDRESS; ++sect_idx) { Section *section = section_list->GetSectionAtIndex (sect_idx).get(); if (section && section->GetFileSize() > 0 && section->GetFileOffset() == 0 && section->IsThreadSpecific() == false && module_sp.get() == section->GetModule().get()) { return section; } } } } return nullptr; } lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(lldb::addr_t mach_header_load_address, const Section *mach_header_section, const Section *section) { ModuleSP module_sp = GetModule(); if (module_sp && mach_header_section && section && mach_header_load_address != LLDB_INVALID_ADDRESS) { lldb::addr_t mach_header_file_addr = mach_header_section->GetFileAddress(); if (mach_header_file_addr != LLDB_INVALID_ADDRESS) { if (section && section->GetFileSize() > 0 && section->IsThreadSpecific() == false && module_sp.get() == section->GetModule().get()) { // Ignore __LINKEDIT and __DWARF segments if (section->GetName() == GetSegmentNameLINKEDIT()) { // Only map __LINKEDIT if we have an in memory image and this isn't // a kernel binary like a kext or mach_kernel. const bool is_memory_image = (bool)m_process_wp.lock(); const Strata strata = GetStrata(); if (is_memory_image == false || strata == eStrataKernel) return LLDB_INVALID_ADDRESS; } return section->GetFileAddress() - mach_header_file_addr + mach_header_load_address; } } } return LLDB_INVALID_ADDRESS; } bool ObjectFileMachO::SetLoadAddress (Target &target, lldb::addr_t value, bool value_is_offset) { ModuleSP module_sp = GetModule(); if (module_sp) { size_t num_loaded_sections = 0; SectionList *section_list = GetSectionList (); if (section_list) { const size_t num_sections = section_list->GetSize(); if (value_is_offset) { // "value" is an offset to apply to each top level segment for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) { // Iterate through the object file sections to find all // of the sections that size on disk (to avoid __PAGEZERO) // and load them SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); if (section_sp && section_sp->GetFileSize() > 0 && section_sp->IsThreadSpecific() == false && module_sp.get() == section_sp->GetModule().get()) { // Ignore __LINKEDIT and __DWARF segments if (section_sp->GetName() == GetSegmentNameLINKEDIT()) { // Only map __LINKEDIT if we have an in memory image and this isn't // a kernel binary like a kext or mach_kernel. const bool is_memory_image = (bool)m_process_wp.lock(); const Strata strata = GetStrata(); if (is_memory_image == false || strata == eStrataKernel) continue; } if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_sp->GetFileAddress() + value)) ++num_loaded_sections; } } } else { // "value" is the new base address of the mach_header, adjust each // section accordingly Section *mach_header_section = GetMachHeaderSection(); if (mach_header_section) { for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) { SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); lldb::addr_t section_load_addr = CalculateSectionLoadAddressForMemoryImage(value, mach_header_section, section_sp.get()); if (section_load_addr != LLDB_INVALID_ADDRESS) { if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_load_addr)) ++num_loaded_sections; } } } } } return num_loaded_sections > 0; } return false; } bool ObjectFileMachO::SaveCore (const lldb::ProcessSP &process_sp, const FileSpec &outfile, Error &error) { if (process_sp) { Target &target = process_sp->GetTarget(); const ArchSpec target_arch = target.GetArchitecture(); const llvm::Triple &target_triple = target_arch.GetTriple(); if (target_triple.getVendor() == llvm::Triple::Apple && (target_triple.getOS() == llvm::Triple::MacOSX || target_triple.getOS() == llvm::Triple::IOS || target_triple.getOS() == llvm::Triple::WatchOS || target_triple.getOS() == llvm::Triple::TvOS)) { bool make_core = false; switch (target_arch.GetMachine()) { case llvm::Triple::aarch64: case llvm::Triple::arm: case llvm::Triple::thumb: case llvm::Triple::x86: case llvm::Triple::x86_64: make_core = true; break; default: error.SetErrorStringWithFormat ("unsupported core architecture: %s", target_triple.str().c_str()); break; } if (make_core) { std::vector segment_load_commands; // uint32_t range_info_idx = 0; MemoryRegionInfo range_info; Error range_error = process_sp->GetMemoryRegionInfo(0, range_info); const uint32_t addr_byte_size = target_arch.GetAddressByteSize(); const ByteOrder byte_order = target_arch.GetByteOrder(); if (range_error.Success()) { while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) { const addr_t addr = range_info.GetRange().GetRangeBase(); const addr_t size = range_info.GetRange().GetByteSize(); if (size == 0) break; // Calculate correct protections uint32_t prot = 0; if (range_info.GetReadable() == MemoryRegionInfo::eYes) prot |= VM_PROT_READ; if (range_info.GetWritable() == MemoryRegionInfo::eYes) prot |= VM_PROT_WRITE; if (range_info.GetExecutable() == MemoryRegionInfo::eYes) prot |= VM_PROT_EXECUTE; // printf ("[%3u] [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 ") %c%c%c\n", // range_info_idx, // addr, // size, // (prot & VM_PROT_READ ) ? 'r' : '-', // (prot & VM_PROT_WRITE ) ? 'w' : '-', // (prot & VM_PROT_EXECUTE) ? 'x' : '-'); if (prot != 0) { uint32_t cmd_type = LC_SEGMENT_64; uint32_t segment_size = sizeof (segment_command_64); if (addr_byte_size == 4) { cmd_type = LC_SEGMENT; segment_size = sizeof (segment_command); } segment_command_64 segment = { cmd_type, // uint32_t cmd; segment_size, // uint32_t cmdsize; {0}, // char segname[16]; addr, // uint64_t vmaddr; // uint32_t for 32-bit Mach-O size, // uint64_t vmsize; // uint32_t for 32-bit Mach-O 0, // uint64_t fileoff; // uint32_t for 32-bit Mach-O size, // uint64_t filesize; // uint32_t for 32-bit Mach-O prot, // uint32_t maxprot; prot, // uint32_t initprot; 0, // uint32_t nsects; 0 }; // uint32_t flags; segment_load_commands.push_back(segment); } else { // No protections and a size of 1 used to be returned from old // debugservers when we asked about a region that was past the // last memory region and it indicates the end... if (size == 1) break; } range_error = process_sp->GetMemoryRegionInfo(range_info.GetRange().GetRangeEnd(), range_info); if (range_error.Fail()) break; } StreamString buffer (Stream::eBinary, addr_byte_size, byte_order); mach_header_64 mach_header; if (addr_byte_size == 8) { mach_header.magic = MH_MAGIC_64; } else { mach_header.magic = MH_MAGIC; } mach_header.cputype = target_arch.GetMachOCPUType(); mach_header.cpusubtype = target_arch.GetMachOCPUSubType(); mach_header.filetype = MH_CORE; mach_header.ncmds = segment_load_commands.size(); mach_header.flags = 0; mach_header.reserved = 0; ThreadList &thread_list = process_sp->GetThreadList(); const uint32_t num_threads = thread_list.GetSize(); // Make an array of LC_THREAD data items. Each one contains // the contents of the LC_THREAD load command. The data doesn't // contain the load command + load command size, we will // add the load command and load command size as we emit the data. std::vector LC_THREAD_datas(num_threads); for (auto &LC_THREAD_data : LC_THREAD_datas) { LC_THREAD_data.GetFlags().Set(Stream::eBinary); LC_THREAD_data.SetAddressByteSize(addr_byte_size); LC_THREAD_data.SetByteOrder(byte_order); } for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) { ThreadSP thread_sp (thread_list.GetThreadAtIndex(thread_idx)); if (thread_sp) { switch (mach_header.cputype) { case llvm::MachO::CPU_TYPE_ARM64: RegisterContextDarwin_arm64_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); break; case llvm::MachO::CPU_TYPE_ARM: RegisterContextDarwin_arm_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); break; case llvm::MachO::CPU_TYPE_I386: RegisterContextDarwin_i386_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); break; case llvm::MachO::CPU_TYPE_X86_64: RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); break; } } } // The size of the load command is the size of the segments... if (addr_byte_size == 8) { mach_header.sizeofcmds = segment_load_commands.size() * sizeof (struct segment_command_64); } else { mach_header.sizeofcmds = segment_load_commands.size() * sizeof (struct segment_command); } // and the size of all LC_THREAD load command for (const auto &LC_THREAD_data : LC_THREAD_datas) { ++mach_header.ncmds; mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize(); } printf ("mach_header: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x\n", mach_header.magic, mach_header.cputype, mach_header.cpusubtype, mach_header.filetype, mach_header.ncmds, mach_header.sizeofcmds, mach_header.flags, mach_header.reserved); // Write the mach header buffer.PutHex32(mach_header.magic); buffer.PutHex32(mach_header.cputype); buffer.PutHex32(mach_header.cpusubtype); buffer.PutHex32(mach_header.filetype); buffer.PutHex32(mach_header.ncmds); buffer.PutHex32(mach_header.sizeofcmds); buffer.PutHex32(mach_header.flags); if (addr_byte_size == 8) { buffer.PutHex32(mach_header.reserved); } // Skip the mach header and all load commands and align to the next // 0x1000 byte boundary addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds; if (file_offset & 0x00000fff) { file_offset += 0x00001000ull; file_offset &= (~0x00001000ull + 1); } for (auto &segment : segment_load_commands) { segment.fileoff = file_offset; file_offset += segment.filesize; } // Write out all of the LC_THREAD load commands for (const auto &LC_THREAD_data : LC_THREAD_datas) { const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize(); buffer.PutHex32(LC_THREAD); buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data buffer.Write(LC_THREAD_data.GetData(), LC_THREAD_data_size); } // Write out all of the segment load commands for (const auto &segment : segment_load_commands) { printf ("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64 ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n", segment.cmd, segment.cmdsize, segment.vmaddr, segment.vmaddr + segment.vmsize, segment.fileoff, segment.filesize, segment.maxprot, segment.initprot, segment.nsects, segment.flags); buffer.PutHex32(segment.cmd); buffer.PutHex32(segment.cmdsize); buffer.PutRawBytes(segment.segname, sizeof(segment.segname)); if (addr_byte_size == 8) { buffer.PutHex64(segment.vmaddr); buffer.PutHex64(segment.vmsize); buffer.PutHex64(segment.fileoff); buffer.PutHex64(segment.filesize); } else { buffer.PutHex32(static_cast(segment.vmaddr)); buffer.PutHex32(static_cast(segment.vmsize)); buffer.PutHex32(static_cast(segment.fileoff)); buffer.PutHex32(static_cast(segment.filesize)); } buffer.PutHex32(segment.maxprot); buffer.PutHex32(segment.initprot); buffer.PutHex32(segment.nsects); buffer.PutHex32(segment.flags); } File core_file; std::string core_file_path(outfile.GetPath()); error = core_file.Open(core_file_path.c_str(), File::eOpenOptionWrite | File::eOpenOptionTruncate | File::eOpenOptionCanCreate); if (error.Success()) { // Read 1 page at a time uint8_t bytes[0x1000]; // Write the mach header and load commands out to the core file size_t bytes_written = buffer.GetString().size(); error = core_file.Write(buffer.GetString().data(), bytes_written); if (error.Success()) { // Now write the file data for all memory segments in the process for (const auto &segment : segment_load_commands) { if (core_file.SeekFromStart(segment.fileoff) == -1) { error.SetErrorStringWithFormat("unable to seek to offset 0x%" PRIx64 " in '%s'", segment.fileoff, core_file_path.c_str()); break; } printf ("Saving %" PRId64 " bytes of data for memory region at 0x%" PRIx64 "\n", segment.vmsize, segment.vmaddr); addr_t bytes_left = segment.vmsize; addr_t addr = segment.vmaddr; Error memory_read_error; while (bytes_left > 0 && error.Success()) { const size_t bytes_to_read = bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left; const size_t bytes_read = process_sp->ReadMemory(addr, bytes, bytes_to_read, memory_read_error); if (bytes_read == bytes_to_read) { size_t bytes_written = bytes_read; error = core_file.Write(bytes, bytes_written); bytes_left -= bytes_read; addr += bytes_read; } else { // Some pages within regions are not readable, those // should be zero filled memset (bytes, 0, bytes_to_read); size_t bytes_written = bytes_to_read; error = core_file.Write(bytes, bytes_written); bytes_left -= bytes_to_read; addr += bytes_to_read; } } } } } } else { error.SetErrorString("process doesn't support getting memory region info"); } } return true; // This is the right plug to handle saving core files for this process } } return false; }